
UNIVERSIDAD DE CONCEPCIÓN

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

MAGÍSTER EN ASTRONOMÍA

Magnetic activity of stars using TESS data

Actividad magnética de las estrellas usando

datos TESS

Profesor Guía: Dr. Dominik Schleicher
Departamento de Astronomía

Facultad de Ciencias Físicas y Matemáticas
Universidad de Concepción

Tesis para ser presentada a la Dirección de Postgrado de la Universidad de

Concepción para optar al grado de Magíster en Astronomía

JAVIERA IGNACIA SOTO BARRIOS

JULIO, 2022

CONCEPCIÓN, CHILE



© 2022, Javiera Ignacia Soto Barrios
Se autoriza la reproducción total o parcial, con fines académicos, por cualquier
medio o procedimiento, incluyendo la cita bibliográfica del documento.



A mi familia.



i

AGRADECIMIENTOS

En primer lugar, me gustaría agradecer a mis supervisores, el Dr. Dominik
Schleicher y la Dra. Sandra Jeffers, por impulsar el desarrollo de esta investigación.
El Profesor Dominik me apoyó en todo momento; gracias por guiarme en este
proceso respondiendo inmediatamente a mis dudas de principiante, por ser
empático y muy solidario. Gracias a la Dra. Sandra por evaluar con su experiencia
mis resultados en cada momento del proyecto.

Al Dr. Ronald Mennickent del Departamento de Astronomia, por su disposición,
sugerencias y gran apoyo al proporcionarme valiosas herramientas como softwares
y programas de análisis de datos. También quiero agradecer al Dr. Jaime Rosales
por ayudarme desde el inicio de este estudio con el manejo y análisis de datos.
Quiero agradecer el apoyo financiero del proyecto regular FONDECYT 1201280,
por permitir el desarrollo de esta investigación desde sus inicios.

A mis padres y hermanos, por implusarme a "apuntar alto", celebrar mis logros y
creer en mi.
A mi novio, Bastián, por ayudarme cuando más lo necesitaba.
A mis compañeros de pregrado y actuales magíster: Felipe B., Felipe A. y Daniel,
por los buenos momentos, las risas y las tardes de estudio antes de los certamenes
en la facultad, aprendí mucho con ellos y pasé una bonita vida universitaria.



ii

Resumen

En las últimas décadas, se han realizado numerosos estudios sobre la teoría de
la dínamo indicando una importante relación entre el periodo de rotación estelar
y actividad magnética. Estos estudios sugieren la existencia de poblaciones de
estrellas con diferentes tipos de actividad. Con el fin de determinar la eficacia de
dos algoritmos para el análisis de la frecuencia el periodograma de Lomb Scargle
generalizado y las ondículas (The weighted wavelet Z-transform (WWZ)) y los
aplicamos a dos muestras de estrellas frías. Una muestra de 53 estrellas tomada
de Boro Saikia et al. (2018) y una segunda muestra de 168 estrellas tomada de
Messina et al. (2022). A partir de esto, comparamos los resultados obtenidos por
los autores y los obtenidos en este estudio. El primer paso para el análisis de estas
estrellas fue la observación de su curva de luz de las dos muestras de estrellas frías
(estrellas de la secuencia principal F,G,K) y la posterior limpieza con Lightkurve y
un ajuste con la técnica LOWESS (Locally- Weighted Scatterplot Smoothing). En
segundo lugar, y sobre todo con el objetivo de conseguir la precisión necesaria para
detectar los periodos, los periodogramas de cada estrella se analizaron en rangos
entre 1 y 100 días (con la excepción de los análisis detallados de las variaciones
de los de las variaciones en los periodogramas de las estrellas con periodos de
rotación inferiores a 1 día) y posteriormente una ventana de observación en rangos
de tiempo más pequeños para detectar el periodo más período más destacado en
los gráficos de frecuencia frente al tiempo. Después, el análisis de la frecuencia
se realizó de forma similar en los diagramas de color proporcionados por una
búsqueda de ondículas. Se probaron ambos algoritmos de análisis de frecuencias,
demostrando una estrecha concordancia en ambos métodos y sus respectivas
incertidumbres. Los resultados de ambos y su comparación con sus antecedentes
de investigación se presentan.

Keywords – estrellas: rotación — estrellas: actividad
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Abstract

In recent decades, numerous studies have been carried out on dynamo theory
indicating an important relationship between the stellar rotation period and
magnetic activity. These studies suggested the existence of populations of stars
with different types of activity.
In order to determine the effectiveness of two algorithms for frequency analysis:
the Generalised Lomb Scargle periodogram and Wavelets (The weighted wavelet
Z-transform (WWZ)).And we applied them to two samples of cool stars. A sample
of 53 stars taken from Boro Saikia et al. (2018) and a second sample of 168 stars
taken from Messina et al. (2022). From this, we compare the results obtained by
the authors and those obtained in this study.
The first step for the analysis of these stars was the observation of their light curve
of the two cool star samples (F,G,K main sequence stars) and the subsequent
cleaning by Lightkurve and an adjustment with the LOWESS technique (Locally-
Weighted Scatterplot Smoothing) fit.
Secondly, and particularly with the aim of achieving the required precision to
detect the periods, the periodograms of each star were analyzed in ranges between
1 and 100 days (with the exception of the detailed scans of the variations in the
periodograms for stars with rotation periods of less than 1 day) and subsequently
an observation window was created in smaller time ranges to detect the most
prominent period in the frequency versus time plots.
After that, the frequency analysis was similarly performed on the color diagrams
provided by a wavelet search.
Both frequency analysis algorithms were tested, demonstrating a close agreement
in both methods and their respective uncertainties. The results of both and their
comparison with their research background are presented.

Keywords – stars: rotation — stars: activity
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Chapter 1. Theoretical framework 1

Chapter 1

Theoretical framework

In this chapter we will discuss the magnetism in the Sun and other stars, as a
way of providing the context for this study.

1.1 Magnetic activity of Stars

1.1.1 Magnetism in the Sun

Among the billions of stars that make up our galaxy, there is one medium-sized
star in one arm of the Milky Way spiral: the Sun. For ancient civilizations it was
a god and for us, a power plant that generates heat and sustains the existence of
life.
Far from what appears to be a motionless point in the glow, the Sun has more
complex structures, writhing and glowing. The Sun’s magnetic field is behind
many of the phenomena on the solar surface. Solar-type stars show solar activity
due to magnetism (see, Solanki et al. (2006); de Wijn et al. (2009)).
The Sun’s magnetic field is a phenomenon that originates in the interior of the
layers, driving solar activity.
The most obvious signs of the presence of solar activity are sunspots. Sunspots
occur in the photosphere and are regions of lower temperatures than their
surroundings, with intense magnetic fields (∼ 0.1 - 0.5 T). They are limited to low
heliocentric latitudes, rarely forming near the solar equator, following Spörer’s
Law Spoerer (1889).
The first documentation of sunspots appeared in 350 BC, attributed to one of
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Aristotle’s students, who observed the presence of sunspots. Although sunspots
were meticulously observed by Chinese astronomers of the Middle Ages, sunspots
were only rediscovered in the West with the advent of telescopes in the 17th century.

Figure 1.1.1: Image of the Sun, taken during a period of maximum solar activity,
it shows several groups of sunspots. The largest spots in the image are more than
20,000 km across, almost twice the diameter of the Earth. Typical sunspots are
only half that size. Images taken by Palomar Observatory/Caltech.
Sunspots: (a) Sunspots always seem to occur in pairs of opposite magnetic
polarities. An enlarged image of a sunspot pair is shown. Also shown is
the structure of a sunspot consisting of a cool, dark umbra surrounded by a
warmer, brighter penumbra. (b) A high-resolution image of a typical sunspot is
shown, showing surface granules surrounding the sunspot. Image from Carnegie
Observatories; SST/Royal Swedish Academy of Sciences.

The sunspot cycle shows great variability in amplitude and variation, taking
into consideration the time period from 1645 to 1715, when sunspots became
extremely rare. This so-called "quiet period" is also known as the Maunder
Minimum Eddy (1976).
Samuel Heinrich Schwabe, who had been systematically observing to discover
intra-mercurial planets, determined that the mean number of average sunspots on
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Figure 1.1.2: Solar butterfly diagram. (Top panel): The positions of the spots
are shown for each rotation of the Sun during the 20th century. During the epoch
of solar minimum activity, very few sunspots are seen. While during the epoch of
maximum solar activity, the number of spots increases to about 100 spots in a
month. (Bottom panel): Sunspots cluster at mid-latitudes, widening and then
being displaced toward the equator as the solar cycle progresses. Image from the
Solar Group at the NASA Marshall Space Flight Center, by Dr. David Hathaway.

the solar surface varied cyclically with a period he estimated to be about 10 years
Schwabe (1843).
The number of sunspots increases and decreases over a period of 11 years, which
corresponds to an energy exchange between the toroidal and poloidal solar
magnetic fields. The latitudes where sunspots are located can vary, depending on
the solar cycle of the sunspot.
As new sunspots are generated (near the equator), sunspots that are older and
located at higher latitudes progressively fade away. Figure 1.1.2 shows a plot
of the latitude of observed sunspots as a function of time. During the "Solar
Minimum", sunspots are confined between 25° to 30° north and south of the solar
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equator. During the "Solar Maximum", sunspots are re-positioned between 15° to
20° from the equator, increasing the number of sunspots. Finally, at the end of
the cycle at solar minimum, the number of sunspots has decreased again, and
most of the sunspots are located about 10° from the solar equator. Each new
cycle seems to overlap with the end of the previous solar cycle.

Figure 1.1.3: Representation of the Solar Minimum (left image). Increase in the
number of sunspots at Solar Maximum (right image). This indicates the magnetic
variation of the Sun. Image taken from NASA’s Solar Dynamics Observatory.

During the 11 years of the solar cycle, the leading spot in the sunspot pair in the
northern hemisphere of the Sun have the same polarity, while the sunspots in the
southern hemisphere indicate an opposite polarity. These polarities reverse their
signs in another 11 years, so that the complete solar cycle has a duration of 22
years.
The magnetic polarity of each sunspot pair is known as the Hale cycle Hale et al.
(1919).

Recent advances in numerical simulations using a flux transport model and
knowledge of the fluxes in the Sun’s interior from helioseismology aim to predict
the strength of the next solar cycles.
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Figure 1.1.4: (a, b) The Sun’s differential rotation coils and deforms the solar
magnetic field. (c) Magnetic field lines emerge from the surface and generate a
loop generating sunspot pair. The shown pattern of field lines explains the pattern
observed later in the sunspot polarities. Illustration taken from Chaisson, E. &
McMillan, S. (2017). Astronomy today. (9th edition, Vol.1 and Vol. 2). Pearson.

1.1.2 Magnetism in other stars

There are no disturbing doubts about the Sun. The point here is to observe other
stars with a similar internal structure as the Sun. The study of stellar magnetic
activity makes it possible to test solar dynamo models and to understand stellar
magnetic evolution. A wide variety of stars along and outside the Hertzsprung-
Russell diagram exhibits magnetic activity.
It has been shown that emission in the H and K-line cores from ionized calcium is
a good indicator of chromospheric magnetic activity Noyes et al. (1984).
A sample of more than 100 stars has been monitored about three decades ago
and an extensive database has been organized Baliunas et al. (1995). The most
outstanding results are:

• Young, rapidly rotating stars show a high level of variable and irregular
magnetic activity. Older, slowly rotating stars show Sun-like levels of
magnetic activity and magnetic activity cycles with periods ranging from 2
to about 20 years.

• Extremely active stars, such as some binaries and very young stars, can
exhibit brightness variations due to huge sunspots by 10%. The relationship
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between the brightness of a star and its magnetic activity is dependent on
its level of magnetic activity Radick et al. (1998).

• The Sun has an average level of activity but a much smaller photometric
variability than other stars. This cycle variability of the Sun is a factor of
2-4 smaller than the variability of stars with a comparable level of activity
Radick et al. (1998). A possible explanation for this phenomenon could be
the fact that active regions are generated at low latitudes Schatten (1993).

• The level of magnetic activity for stars that have cycles of activity is anti-
correlated with the course of the cycle Baliunas and Soon (1995). A similar
type of relationship has been observed in the Sun Ossendrijver and Hoyng
(1996).

In summary, solar-type stars show a wide variety of behaviors from systematic
solar observational databases. Understanding these observations would provide us
with more information regarding the Sun.

1.2 Solar Dynamo Theory

It is widely believed that the Sun’s magnetic field is generated by a magnetic
dynamo inside the Sun. The fact that the Sun’s magnetic field changes dramatically
over the course of a few years, and the fact that it changes cyclically indicates
that the magnetic field continues to be generated within the Sun.
The dynamo mechanism turns out to be a fairly common phenomenon in the
cosmos, explaining the origin of the magnetic field in different astronomical systems
in the universe.
Larmor (1919) proposed a dynamo process as a possible answer to the mechanism
behind the solar magnetic field, through a short paper entitled "How can a rotating
body like the Sun become a magnet?". The basis of the theory is that the magnetic
field is sustained by the motion of an electrically charged fluid.
The motion of a conductive fluid (such as the highly ionized plasma of the Sun)
in which the motion of the fluid induces these electric flows can be expressed as:

• The movement (u) of the electrically conducting fluid through a magnetic
field (B) induces an electric field (u × B).

• The variation of the magnetic field creates an electric field (E) by Faraday’s
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law (∇ × E = - ∂B / ∂t).

• This electric field (created in (a) and (b)) incites a current (j) in the fluid,
given by Ohm’s law for a moving conductor (j = σ(E + u × B)).

• The electric current produces a magnetic field by Ampere’s law
(∇ × B = µ0j).

• The interaction of the magnetic field with the current produces a Lorentz
force (j × B) acting on the motion of the electrically conducting fluid. Note
that this force is quadratic in the magnetic field since j = (1/µ0)∇ × B of
Ampere’s law.

The induction equation can be defined thanks to the pre-Maxwell equations with
Ohm’s law for a conductor in motion

∂B

∂t
= ∇ × (u × B) + η∇2B, (1.2.1)

where η is the magnetic diffusivity of the fluid.
This equation tells us that there are two processes involved that induce the
evolution of the magnetic field B. The second term (η∇2B) is a diffusion term
leading to the decay of the magnetic field. The first term (∇ × (u × B))
represents the inductive effects of the motions within the fluid leading to an
increase of the magnetic field. The equation shows how any gradient in the flow
(due to the presence of shear or differential rotation) will lead to a stretching of
the poloidal field into toroidal. This process is called the "omega effect". The first
part of the dynamo problem can be rephrased as "is there a velocity (u) for which
the inductive term is more efficient in generating the field than the diffusive term
in destroying the field?". After 50 years, following Larmor’s questioning Larmor
(1919), several demonstrations have been carried out.
An important step in dynamo theory came with Thomas George Cowling, who
put forward Cowling’s antidynamo theorem Cowling (1934), which ruled out a
wide class of configurations by stating that no stable axisymmetric magnetic field
can be maintained by dynamo action.
By separating the toroidal and poloidal magnetic field inside the Sun, the
differential rotation produces a stretching of the poloidal magnetic flux, thus
generating a new toroidal flux.
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Figure 1.2.1: Representation of the Ω effect. Differential rotation over the
toroidal magnetic field. The light arrows indicate magnetic field lines and the
dark arrows indicate the shear flux. Figure taken from Priest (2020).

Rotation induces anisotropic momentum and energy transport, which defines
differential rotation and global meridional circulations that amplify and transport
magnetic flux Miesch and Toomre (2009). Rotation also gives way to helical flows
and fields that allow promoting hydro-magnetic self-organization by coupling large
and small scales.
Parker (1955) and years later Steenbeck et al. (1966) considered the problem of a
turbulent flow and a magnetic field varying on two scales.
Parker (1955) expressed that magnetic buoyancy would cause, by convection, the
magnetic flux tubes to form sunspot pairs, where, many of these flux cycles would
originate through a toroidal flux a poloidal flux through an α effect Parker
(1955).

Figure 1.2.2: Description of the α effect, magnetic flux tubes entering and
leaving by convection creating sunspot pairs of opposite directions. Figure taken
from Priest (2020).
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Figure 1.2.3: Schematic of the α effect. The magnetic field flux enters with
upward motions creating a poloidal magnetic field. Figure taken from Priest
(2020).

Recent papers address the issues of solar and stellar convection in detail, see Miesch
(2005) and Miesch and Toomre (2009), and Howe (2009) on the observational
(helioseismic) front.

1.3 Determination of the rotation period: Rossby

number

The triggering of the magnetic fields subsequently involved in the chromospheric
activity of stars as measured through the Ca II HK lines and their rotation period
has been widely explained as a result of dynamo action Hartmann and Noyes
(1987). Stellar rotation has been a key parameter in deriving stellar ages and is
closely related to magnetic activity.
One widely used technique for deriving rotation periods has been photometry.
Photometry is the process of measuring the brightness of the stars that have been
captured. It gives us a direct amount of the energy flux received from celestial
objects in a certain wavelength interval.
We can distinguish two types of photometry:

• Differential photometry:
The magnitude obtained for a variable star is compared with the magnitude
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obtained for other stars with known brightness from the literature and located
in a nearby field, for the purpose of obtaining a "normalized magnitude" for
the variable star.

• Absolute photometry:
The magnitudes of the stars are measured using the results of the calibration
of our system each night and the atmospheric conditions, employing a set of
stars outside the field of view.

Photometry allows us to classify stars by means of a color-color diagram, the
analysis of light curves through the temporal variation of their magnitude, for the
determination of distances and sizes. Photometry also allows us to measure the
rotation periods of stars, which is a measure of how fast they rotate and is linked
to the generation of magnetic activity.

Another technique was presented by Eberhard and Schwarzschild (1913), where
they first proposed the measurement of stellar activity in cool stars through the
emission from the core of the Ca II H+K spectral lines. In an attempt to test
this hypothesis, the Mount Wilson project measured the chromospheric activity
of over a thousand stars Wilson (1968); Duncan et al. (1991), finding that cool
stars have cycles of magnetic activity, classifying the stars into an Active Branch
and an Inactive Branch. Years later, some stars were found to show intermediate
activity, in the parameter space known as the Vaughan-Preston Gap Vaughan
and Preston (1980).
Baliunas and Soon (1995) concluded that there are different stellar populations
with three distinct activity cycles. The relationship between chromospheric
activity and stellar rotation has been pointed out by Kraft (1967) as a product of
rotation-dependent dynamo action, which triggers magnetic fields that influence
activity (see, Rutten and Schrijver (1987)). Noyes et al. (1984) observed that the
calcium emission flux depends on the Rossby number Ro, and reported a possible
correlation between the period of the Pcyc activity cycle and the Rossby number,
Ro = Prot/4πτc, with Prot being the stellar rotation period and τc the stellar
convection time scale.

This relation was subsequently studied by Soderblom et al. (1993); Brandenburg
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et al. (1998); Saar and Brandenburg (1999); Bohm-Vitense (2007), where
Ro ≡ Prot/τc. For values of Ro corresponding to faster rotating stars, the
activity of the stars shows saturation, while, on the other hand, for higher Ro

values, i.e., when the star has a relatively shorter rotation period, the activity
and Ro are shown to be correlated Pallavicini et al. (1981); Noyes et al. (1984);
Pizzolato et al. (2003).
In a recent study, Boro Saikia et al. (2018) have determined the rotation and
activity periods for a larger sample of stars, finding that potentially the relation
between rotation and activity period may form a continuum between active and
inactive Ro, rather than a strict relation to them.
Some authors such as Schleicher and Mennickent (2017) propose magnetic activity
as a possible explanation for the long periods observed in periodic double variables
(DPVs) where cyclic variations in their light curve were recorded atypically.

1.3.1 Period of magnetic activity

The Mount Wilson project Wilson (1968) was a project dedicated to measuring
the chromospheric activity of over 1000 stars. In it, the sample of stars was
classified according to their magnetic activity:

• Stars with active branch

• Stars with an Intermediate level of activity

• Stars of an Inactive branch

On this topic, several authors have led research on the relationship between activity
and the rotation period (examples are Noyes et al. (1984);Rutten and Schrijver
(1987);Stepien (1993);Baliunas et al. (1996b);Montesinos et al. (2001);Böhm-
Vitense (2007); among others).
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Figure 1.3.1: On the left we see the relation Böhm-Vitense (2007) of the periods
of the activity cycles, Pcyc in years, as a function of the rotation periods, Prot in
days, with two important branches, A and I. The "A" sequence of stars showing
chromospheric activity and the "I" sequence of cooler and slower rotating stars.
The data represented were high quality data taken from Saar and Brandenburg
(1999) and Lorente and Montesinos (2005). Crosses indicate stars belonging to
sequence "A" and asterisks indicate stars belonging to sequence "I". Square
symbols around dots show stars with a B-V < 0.62. The triangles depicted in the
figure indicate secondary periods for some stars belonging to the A sequence. The
Sun is represented as a blue square.
While an update by Boro Saikia et al. (2018) is shown on the right side. Red
symbols represent activity cycles classified as CA (cool stars with a well-defined
solar activity cycle), green symbols are activity cycles classified as CB (cool stars
with multiple cycles), and black symbols are activity cycles classified as CC (cool
stars with probable activity cycles). The circles show Mount Wilson stars and the
triangles represent HARPS stars. The horizontal black line indicates the midpoint
of the maximum cycle length of 25 years. Figure extracted from the Master’s
Thesis of Fabricio Villegas Villegas (2019).

1.3.1.1 Magnetic Activity Indicators

⋄ S-Index

A recognized indicator of chromospheric activity is the S-index Wilson (1968).
It was subsequently introduced by Vaughan et al. (1978) as a dimensionless
indicator of Ca II activity using the HKP-1 and HKP-2 spectrometers at the
Mount Wilson Observatory (MWO).
The S-index values were denoted as:

S − index = α
H + K

R + V
, (1.3.1)
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where α is an instrumental calibration factor. H and K correspond to the flux
measured in a 1.09 Å wide window (FWHM) centered on each line of the Ca
II doublet. R and V evaluate the pseudo-continuum on both sides with flux
measured in 20 Å wide windows centered at 3900 Å and 4000 Å, respectively.
Values of α range from 1.3 Cincunegui et al. (2007) to 5 Gray et al. (2003).
Middelkoop (1982) transformed the S-index to a RHK value (chromosphere
emission ratio RHK value described in equation 1.3.2) as a function of B-V, from
a sample of 85 main sequence stars, in order to eliminate the color independence
of the S-index and the photospheric contribution of some quiescent stars in the H
and K flux measurements. Defining

RHK = 1.34 × 10−4CcfS , (1.3.2)

Rutten (1984) created a new conversion for the Ccf factor (conversion factor)
given by Middelkoop (1982) by extending the number of stars studied to 30 main
sequence stars and 27 giant stars, with improved fits via,

log Ccf = 0.25(B − V )3 − 1.33(B − V )2 + 0.43(B − V ) + 0.24 , (1.3.3)

in main sequence stars with 0.3 ≤ B − V ≤ 1.6 Rutten (1984) and,

log Ccf = −0.066(B − V )3 − 0.25(B −V )2 − 0.49(B − V ) + 0.45 , (1.3.4)

for giant stars between 0.3 ≤ B − V ≤ 1.7 Middelkoop (1982).
The use of this new relation originates from a larger sample of stars and the
relations between B - V, Teff and BC (Bolometric Correction).
Schröder et al. (2009) used the expression given by Rutten (1984) to modify the
photospheric contribution to the flux in the Ca II line cores, Noyes et al. (1984).
They obtained

log Rphot = −4.898 + 1.918(B − V )2 − 2.893(B − V )3 (1.3.5)

in the category of 0.44⟨(B − V )⟩0.82, which delivers the photospheric component
for the correction

R′
HK = RHK − Rphot . (1.3.6)
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For values of B − V > 0.82 the photospheric contribution is within the
expectation and in good agreement, but negligible for B − V ≥ 1 Noyes et al.
(1984).

⋄ Log R′
HK

It measures the chromospheric contribution of the H and K Ca lines without the
photospheric component in the lines.
Noyes et al. (1984) detected a relationship between Ro and log RHK that indicates
a smaller scatter for α values in the (1.3.1) equation. For a convective time
τc and a rotation period P, one can obtain the dimensionless Rossby number
Ro = Pobs/τc which allows a description of chromospheric activity that is better
than rotational activity alone.

⋄ X-Ray Luminosity

X-ray emissions have been detected in flares as well as in "quiet" emissions, an
example is the star HD 85945 Haisch and Schmitt (1994).
Some authors such as Mathioudakis and Doyle (1992) noted that X-ray emission
is related to Mg II emission in active stars, causing chromospheric and coronal
heating.
Other authors, such as Mullan and Johnson (1995), performed modeling of the
chromosphere of X-ray stars using the flaring loops of magnetic fields heated due
to resonant magneto-hydrodynamic absorption. They noted that these loops had
resonance times that matched the convection times.
The relationship between X-ray emission and point waves fits quite well with the
magnetic model of chromospheric and coronal heating (Kürster, 1996), proposing
that the magnetic field motions unfold as magnetic flux tubes entering and exiting
through the photosphere, tubes of material generating motions in the crosmosphere,
finally launching jets of material into the stellar corona.
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1.4 Importance of the study of the stellar rotation

period and magnetism

The rotation period of a star has turned out to be a key parameter for the
understanding of the stellar dynamo and the generation of magnetic fields in cool
stars with outward convection zones Ruediger (1989); Rüdiger and Hollerbach
(2004).
Stellar rotation measurements have proven to be essential in stellar astrophysics,
in determining the age and activity of a star.
Although rotation itself is not an activity phenomenon, it exerts a crucial role in
stellar dynamos. Differential rotation determines whether a dynamo resembles an
αΩ or α2 dynamo; for more details see Charbonneau (2010).
The Sun has well-studied and well-known parameters. Studying solar-type stars
describes how stars that resemble our Sun behave. It allows us to see how the
dynamo behaves and influences its interior.
The understanding of stellar rotation periods shows us the impact it can have
when related to the cyclic period. It has given us clues on how to change our
concept of what was understood, for example Böhm-Vitense (2007), observed that
the stars he analyzed behaved like what was obtained in Saar and Brandenburg
(1999). But he noted that there were stars that did not fit either of the two
branches of activity (active branch and inactive branch), hypothesizing that
different dynamo types were influencing a certain group of stars.
The reproduction of the calculations of the rotation periods could give us clues as
to how the different types of dynamos proposed by Böhm-Vitense (2007) behave.
It allows us to understand if the stellar rotation periods obtained by this study
are similar to those obtained in the literature. To test the effectiveness of two
frequency analysis methods, we will test: Generalized Lomb Scargle and Wavelets
(which will be discussed in more detail in the next chapter).
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Chapter 2

Methods

In this chapter we show a description of data extraction with TESS and methods
used for frequency analysis.

2.1 Methods and Data

2.1.1 Description of the TESS data

The Transiting Exoplanet Survey Satellite (TESS) Ricker et al. (2015) is a space
telescope that is part of the NASA Exploration Program led by MIT. TESS was
launched on April 18, 2018 via a SpaceX Falcon 9 rocket.
The TESS telescope uses four cameras covering each sector. These cameras have
four CCDs with a pixel scale of 21 arcseconds per pixel providing a huge field of
view of 24◦ × 96◦.
TESS observations are classified into sectors. For each sector, the pointing of
the spacecraft is kept invariant with respect to the celestial reference frame. His
oriented along a line of longitude of the ecliptic with the instrument pointing at
an ecliptic latitude of ±54◦, which centers Camera 4 at one pole of the ecliptic.
Each sector comprises two continuous orbits with a period of PTESS ≈ 13.7 d.
During each sector, the entire field of view is surveyed as full frame images (FFI)
at a cadence of 30 min, and at a cadence of 2 min for selected targets.
It is designed to search for exoplanets using the transit method by scanning
a large area of space in which it will monitor more than 200,000 stars over a
two-year period. It is sensitive to low amplitude and short duration events, such
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as flares. Its photometric bandpass (∼ 600 − 1000 nm) is more sensitive to
redder wavelengths compared to Kepler Borucki (2017).

2.1.2 Lightkurve

Lightkurve 1 Lightkurve Collaboration et al. (2018) is an open source Python
package that offers a nice way to handle analysis of astronomical flux time series
data, such as pixels and light curves obtained from NASA’s Kepler and TESS
exoplanet missions 2.

It aims to support the analysis of time series data on planets, stars and galaxies
obtained by telescopes that collect images in visible or infrared light.

Its main uses include:

• Obtaining Kepler and TESS data programmatically from their data files.

• Reading, visualizing and interacting with Kepler and TESS pipeline products.

• Extracting light curves from pixel data using custom aperture masks; perform
common light curve operations (e.g., folding, clustering, outlier removal).

• Extract different types of periodograms.

• Systematic removal using adjustable implementations of the most common
systematic removal strategies.

2.1.3 Background: The Fourier Transform

As a way to give a clear interpretation of the generalized Lomb Scargle periodogram
and wavelets, we will begin by analyzing the Fourier transform.
Given a continuous signal designated g(t), the Fourier transform is given by the
following integral,

ĝ(f) ≡
∫ ∞

−∞
g(t)e−2πiftdt , (2.1.1)

1https://docs.lightkurve.org/
2https://tess.mit.edu/

https://docs.lightkurve.org/
https://tess.mit.edu/
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where i ≡
√
−1 represents the imaginary unit.

The inverse Fourier transform is given by

g(t) ≡
∫ ∞

−∞
ĝ(f)e+2πiftdf . (2.1.2)

We will also define the Fourier transform operator F , so that

F{g} = ĝ , (2.1.3)

F−1{ĝ} = g . (2.1.4)

The functions g and ĝ are known as even Fourier functions, denote as g ⇐⇒ ĝ.

Some properties of the Fourier Transform

We will highlight some of the properties of the Fourier transform, which are useful
when analyzing signals:
i. The Fourier transform is a linear operation:

For given constant A, and given functions f(t) and g(t), we can write

F{f(t) + g(t)} = F{f(t)}+ F{g(t)} , (2.1.5)

F{Af(t)} = AF{f(t)} . (2.1.6)

ii. The Fourier transform of a sinusoid with frequency f0 is a sum of

delta functions at ±f0:
From the definition of the Dirac delta function,

δ(f) ≡
∫ ∞

−∞
e−2πixfdf , (2.1.7)

we can write
F{e2πf0t} = δ(f − f0) . (2.1.8)

According to Euler’s formula eix = cosx + i sinx, we have the following
identities:

F{cos(2πf0t)} =
1

2
[δ(f − f0) + δ(f + f0)] , (2.1.9)

F{sin(2πf0t)} =
1

2i
[δ(f − f0) − δ(f + f0)] . (2.1.10)

Therefore, for a sinusoidal signal with a frequency f0, the Fourier Transform is
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the sum of the delta functions at ±f0. The study of the Fourier Transform proves
to be effective for the study of periodic signals.

2.1.3.1 Convolution Theorem

The convolution theorem states that the Fourier Transform of a convolution is
the dotted product of the transforms, usually denoted by the symbol *

[f ∗ g](t) ≡
∫ ∞

−∞
f(τ)g(t − τ)dτ . (2.1.11)

It can be understood as an operation that "slides" one function over another
function, smoothing the resulting function.

Figure 2.1.1: Representation of the convolution between a continuous signal and
a rectangular smoothing kernel. The rectangular function is applied to each point
of the signal (upper panel), smoothing the original signal (lower panel). Scheme
taken from VanderPlas (2018).

The Fourier transform of the convolution corresponds to the product of the
individual transforms,

F{f ∗ g} = F{f} · F{g} . (2.1.12)

This equation is known as the Convolution Theorem.
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Figure 2.1.2: Visualization of the convolution theorem. The black and gray lines
show the real and imaginary parts of the Fourier transform, respectively. Scheme
taken from VanderPlas (2018).

The Fourier Transform of a product is the convolution of both transforms

F{f · g} = F{f} ∗ F{g} . (2.1.13)

2.1.4 Generalised Lomb scargle periodogram

The Lomb-Scargle Scargle (1982) periodogram was implemented as a useful tool
in the analysis of periods and frequencies of data. The method is equivalent to
sine wave fitting of the form y = a coswt + b sinwt Barning (1963).
Lomb (1976) and Scargle (1982) studied the statistical behavior of this method.
Using a time series (ti, yi) with zero mean (ȳ = 0) the Lomb-Scargle periodogram
was defined as

p̂(ω) =
1

Ŷ Y

[
Ŷ C2

τ̂

ĈCτ̂

+
Ŷ S2

τ̂

ŜSτ̂

]
(2.1.14)

=
1∑
i y

2
i

{
[
∑

i yicosw(ti − τ̂)]2∑
i cos

2 w(ti − τ̂)
+

[
∑

i yisin w(ti − τ̂)]2∑
i sin

2 w(ti − τ̂)

}
, (2.1.15)

where, the parameter τ̂ is calculated

tan 2wτ̂ =

∑
i sin 2wti∑
i cos 2wti

. (2.1.16)

However, the Lomb-Scargle periodogram does not consider measurement errors.
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For the data analysis, the difference between the mean of the data is applied,
showing that the mean of the data and the mean of the fitted sine function are
equal.
Cumming et al. (2008), by adding a constant shift c, achieved a further
generalization of this periodogram, of the form y = a coswt + b sinwt + c.

The generalised lomb scargle (GLS) periodogram Zechmeister and Kürster (2009)
is a commonly used statistical tool that allows efficient calculation of a Fourier-type
estimator power spectrum from unevenly sampled data, resulting in an intuitive
means of determining the period of oscillations. GLS considers measurement
errors and a constant variable in the wave function fit.
Let yi be the N measurements of a time series at time ti and with errors σi. The
fit of a complete sine function is then given as

y(t) = a cos ωt+ b sin ωt+ c (2.1.17)

at a certain frequency ω. Therefore, minimising the squared difference between yi
and the model function y(t),

χ2 =
N∑
i=1

[yi − y(ti)]
2

σ2
i

= W
∑

wi[yi − y(ti)]
2 , (2.1.18)

where
wi =

1

W

1

σ2
i

(W =
∑ 1

σ2
i

∑
wi = 1) (2.1.19)

corresponds to the normalised weights. The generalised Lomb-Scargle periodogram
p(ω) normalised in a range of 0 ≤ p ≤ 1 (where p = 0 means an inadequate
adjustment and p = 1 indicates a “perfect fit”, i.e, 100% of reduction of χ2 or
χ2=0), with

p(ω) =
χ2
0 − χ2(ω)

χ2
0

. (2.1.20)

After several steps, the generalised Lomb-Scargle periodogram at an arbitrary
time of reference τ (ti → ti − τ) becomes
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p(ω) =
1

Y Y

[
Y C2

τ

CCτ

+
Y S2

τ

SSτ

]
, (2.1.21)

where Y =
∑
wiyi , C =

∑
wi cos ωti and S =

∑
wi sin ωti.

Examples of statistical analyses characterizing the periodicity in time series have
been derived, among others, by Scargle (1998).

2.1.4.1 Statistical Distribution

The false alarm probability (FAP) is a metric that expresses the importance
of a period. A false alarm occurs in period analysis techniques when a period
is incorrectly found that does not actually exist. In the development of the
NASA Exoplanet Archive, the power of the periodogram is normalized by the
inverse of the variance of the original signal data. Horne and Baliunas Horne and
Baliunas (1986) showed that this scaled power has an exponential distribution for
data values with Gaussian noise and a large number of number of independent
frequencies, Ni observations. The probability p of observing a power less than or
equal to P0 in a sample when the time series is a noise signal is given by:

p = Pr {P <= P0} = 1 − e−P0 , (2.1.22)

whereas, the probability of finding a value exceeding this value is given as,

pv = 1 − pM , (2.1.23)

where M corresponds to the number of periods sampled.
The above expression ceases to be valid within a small number of observations,
Nobs. When Nobs is less than 50, the following formula is applied as in Zechmeister
and Kürster (2009):

p = Pr {P <= P0} = (1 − 2P

N − 1
)
N − 3

2 (2.1.24)

and
pv = 1 − pM , (2.1.25)
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where M equals the number of independent frequencies. The theoretical value
of independent frequencies for a given data set is between N and N · (N − 1)/2.
Therefore, the number of independent frequencies is determined as,

M =
maxf − minf

df
(2.1.26)

where df is the width (in frequency) of an upper peak in the periodogram
Zechmeister and Kürster (2009). The initial and final values of a peak are
denoted as the frequencies at which the power is half the maximum of the peak.

2.1.5 Wavelet Transform

The Wavelet transform Torrence and Compo (1998) is a method for analyzing
signals with a dynamic frequency spectrum.
The Wavelet transform has a high resolution in both the frequency and time
domain. It not only tells us what frequencies are present in a signal, but also at
what time those frequencies have been produced. This is achieved by working
with different time scales Burrus C. (1998). We can schematically summarize the
frequency resolutions by making a variation of the time series:

Figure 2.1.3: Schematic of the time and frequency resolutions between the
different transformations: Fourier Transform and Wavelet Transform. The size
and orientations of the block indicate the size of the resolution. Scheme taken
from Ahmet Taspinar (https://ataspinar.com/).



24 2.1. Methods and Data

• For small frequencies a high resolution in the frequency domain, low
resolution in the time domain.

• For large frequencies a low resolution in the frequency domain, high resolution
in the time domain.

The Wavelet transform consists of a series of functions called wavelets. We can
analogously decompose the light curve of a star by frequencies represented in the
power spectrum at different scales. The wavelet being placed in time, our signal
can be convoluted with the wavelet in different time ranges.

Figure 2.1.4: Representation of a sine wave and a wavelet. We can see that the
sine wave covers the entire time range while the wavelet is localized in the time
domain. Scheme taken from Ahmet Taspinar (https://ataspinar.com/).

We can define this scale as
fa =

fc
a
, (2.1.27)

where fa is equivalent to the pseudo-frequency, fc is the center frequency of the
mother wavelet and a is the scaling factor.
A higher scale factor (longer wavelet) allows us to visualize and analyze smaller
frequencies and therefore we obtain a higher resolution in the frequency domain.
Similarly, by applying smaller scales we will have a higher resolution in the time
domain.
Several studies have pioneered with the use of Wavelets:
Frick et al. (1997) applied a wavelet analysis to study the irregular behavior of
the chromospheric activity in the data obtained from the observations of the HK
project of the Mount Wilson Observatory. In this analysis, the wavelet transform
and energy spectra were calculated for four stars: HD 3651, HD 10700, HD 10476
and HD 201091.
Bravo et al. (2014) applied the so-called Morlet wavelet to Kepler and CoRoT
light curves, in stars with planetary transits, binary systems, a variable star
dominated by magnetic activity, and pulsating stars, where they identified
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patterns in the rotation period due to active regions affecting the light curves.

Wavelet Families

There are numerous families of wavelets. Each wavelet family is different and
has a representative shape according to its smoothness and appearance. We can
choose which type of wavelet best suits our data.
A wavelet must meet two mathematical conditions called normalization and
orthogonalization constraints:

• Finite energy:
Means that it is localized in time and frequency; it is integrable and the
inner product between the wavelet and the signal always exists.

• Zero mean:
The admissibility condition implies that a wavelet has zero mean in the time
domain, at zero frequency in the time domain. This is necessary to ensure
that it is integrable and also the inverse of the wavelet transform can be
calculated.

Figure 2.1.5: Wavelet families. Discrete wavelets are arranged in the first row
and continuous wavelets are arranged in the second row. Scheme taken from
Ahmet Taspinar (https://ataspinar.com/).
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The continuous wavelet transform is mathematically described as

Xω(a, b) =
1

∥a∥1/2

∫ ∞

−∞
x(t)ψ̄

(
t − b

a

)
dt , (2.1.28)

where ψ corresponds to the mother wavelet, "a" to the scale factor shifted by a
factor "b"; with a and b as continuous values.
For the case of the discrete wavelet transform (DWT), it uses discrete values for
both its scale and translation factor. The scale factor increases progressively in
even powers, i.e., a= 1,2,4,... and for the shift factor b, it increases in integer
values, i.e., b=1,2,3,.... .

2.1.5.1 Weighted Wavelet Z-transform (WWZ)

In 1996, Foster (1996) developed the weighted wavelet z-transform. His method
widely used in variability analysis based on the principle of the wavelet transform.
It is a very useful tool for discerning the time evolution of period and amplitude
from visual observations of long period variables. The wavelet transform can be
considered as a a projection,

y(t) =
∑
a

yaφa(t) , (2.1.29)

where the function φa(t) represents the wavelet function. The purpose of the
wavelet transform is to expand a signal into a series of coefficients with a given
energy and to retain fine and coarse details at different scales.
The weighted wavelet Z-transform corresponds to a projection of functions
y(t) =

∑
a yaφa(t), with a statistical approach to plot the response as a

function of two variables, where the X-axis represents time, the Y-axis represents
frequency and a color (Z-axis) is used to plot the WWZ response. From Foster
(1996),

φ1(t) = 1(t) , (2.1.30)

φ2(t) = cos(ω(t − τ)) , (2.1.31)

φ3(t) = sin(ω(t − τ)) , (2.1.32)
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where each WWZ projection incorporates the statistical weights and the addition
of a constant function solves the non-zero mean value problem.
We denote

wα = e−cw2(tα−τ)2 , (2.1.33)

which corresponds to a fragment of the Morlet wavelet,
φ(t) = eiw(t − τ)e−cw2(tα−τ)2 with the constant c as a factor measuring
the wavelet decay rate.
Therefore, the weighted wavelet Z-transform can be denoted as

WWZ =
Neff − 3

2(Vx − Vy)
, (2.1.34)

where

Neff =

∑
w2

α∑
w2

α

=
[
∑
e−cw2(tα−τ)2 ]2∑
e−2cw2(tα−τ)2

, (2.1.35)

where Neff is the effective number of data that represents the statistical density
of the data,

Vx =

∑
αwαx

2(tα)∑
λwλ

−

[∑
αwαx(tα)∑
λwλ

]2
, (2.1.36)

with Vx the weighted variation of the data,

Vy =

∑
αwαy

2(tα)∑
λwλ

−

[∑
αwαy(tα)∑
λwλ

]2
, (2.1.37)

and Vy the weighted variation of the model function. It follows an F distribution
with Neff − 3 and 2 degrees of freedom, and an expected value of 1.
For more mathematical details, see Foster (1996).
As visualized, the constant decay factor c measures how fast the exponential term
(− cw2(tα − τ)2) in the wavelet function decreases in a (2π/w) cycle. That is, c
defines a constraint on the width of the frequency window. Large c values allow
identifying low-frequency components in detail.
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Chapter 3

Results

In this section we show an analysis using both methods and their results, for two
star samples: one from the paper by Boro Saikia et al. (2018) and one from
Messina et al. (2022).

3.1 Analyzing the eruptive variable star EV Lac

In order to verify the effectiveness of the tested methods, we analyze a test star of
previously known rotation period.
The star EV Lac (TIC 154101678; R.A = 22:46:49.73 ,
Dec = +44:20:02.37 (J2000)), 16.5 light-years from the solar system in
the constellation Lacerta, is one of our closest stellar neighbors. Better known as
EV Lacertae, it is a common red dwarf, like most of the stars in the firmament.
Many researchers have been suspicious about the magnitude variations presented
in the quiet state of the eruptive star EV Lac.
Pettersen (1980) was the first to determine a rotation period for this star,
successfully finding a periodic light variation of 0.07 in magnitude V with a period
of 4.378 days resulting from three months of photometric observation in 1979.
This periodicity was later confirmed by Pettersen et al. (1983) and Roizman
(1984). The analogy with magnetically driven sunspots in the photosphere of
the sun directed research for observational support of the starspot theory (see
Vogt (1981); Berdyugina (2005)). Since sunspots exhibit a periodicity and their
regions are often associated with regions of active plague, which in turn are often
associated with the development of solar flares, one would expect, by analogy in
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the case of stars, a periodicity in flare activity and a correlation of flare activity
with stellar luminosity.
Mavridis and Avgoloupis (1986) have demonstrated the existence of a 5-year cycle
in EV Lac in both the mean steady-state luminosity and the level of flare activity.
Doyle (1987) has found a correlation between flare frequency and rotation period
for the years 1973 to 1976, but not for the years 1976 to 1982. Pettersen et al.
(1992) have found periodic light variations of about 0.1 in V magnitude, with a
period of 4.376 days and flat light curve periods which they have attributed to
the restructuring of starspot zones during the decade 1980-1890.
Spectroscopic analyses of flares and CMEs in M dwarf stars are shown by Priest
(2020), who found 27 active flares during 457 hours of TESS observation.
With this in mind, we can define a time series of brightness as the light curve of a
star.
The light curves of stars observed by the Kepler, K2 or TESS missions are created
from the raw images collected by these telescopes using software created for this
purpose by the mission teams.
TESS observes EV Lac in sector 16. This eruptive star has been known and
classified as a flare star since about 67 years Roques (1955). EV Lac produces
flares at X-ray (see, Schmitt (1994); Sciortino et al. (1999); Favata et al. (2000);
Huenemoerder et al. (2010)), UV (see, Ambruster et al. (1986); Pomerance et al.
(1995)), optical (see, Kodaira et al. (1976); Abdul-Aziz et al. (1995)), and radio
wavelengths (see, White et al. (1989); Abdul-Aziz et al. (1995)).
We extracted the light curve from the Mikulski Archive for Space Telescopes
(MAST) using Lightkurve Lightkurve Collaboration et al. (2018).

Figure 3.1.1: Light curve of the eruptive variable star EV Lac in the optical,
in which we can see the flares represented through these eruptions. Image taken
from Soto et al. 2022, Boletín 63 Asociación Argentina de Astronomía, accepted.
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We then used Target Pixel Files (TPF). Target Pixel File are files common to
Kepler/K2 and the TESS mission. They correspond to movies consisting of data
pixels centered on a single target. They are equivalent to stacks of images, with
one image for each timestamp at which the data were taken. Each one is called a
cadence. These images are "postage stamps" cropped from the full observation
for ease of work. Each of the pixels is 4 arc seconds wide.
The point spread function (PSF) of the telescope causes the starlight to fall
on several different pixels. Because of this scattering, it is necessary to sum a
collection of many pixels to consider all the light from the source by summing all
the pixels in an aperture. Aperture photometry is the simple act of summing the
values of all pixels of a predefined aperture, as a function of time. By carefully
choosing the shape of the aperture mask, you can avoid nearby contaminants or
improve the quality of the source signal you are trying to measure relative to the
background. By summing all aperture pixels, a single aperture photometry light
curve (SAP) is created.
In this work we applied custom apertures via
"create_threshold_mask(threshold=3)" which selects all pixels that have
a flux greater than 3 standard deviations above the mean luminosity, representing
the drawn aperture mask that is used to determine the light fraction of each star
in the Target Pixel File (TPF) (see Aller et al. (2020)).

Figure 3.1.2: Target pixel file (TPF) of the star EV Lac. The centered red circle
corresponds to the source in the field with scaled magnitudes. magnitudes. The
white cross indicates the location of the target. The aperture mask used by the
pipeline to extract the photometry was also plotted on the TPF. Image taken
from Soto et al. 2022, Boletín 63 Asociación Argentina de Astronomía, accepted.
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The aperture of the pipe is small in this case, but it avoids capturing the light
from the background star. Once the light curve is altered, we save it as a FITS
file.
The SPOC pipeline provides target pixel files, light curves from two-minute
cadence target data. It contains SAP (Single Aperture Photometry) data and
pre-search data conditioning SAP (PDCSAP) stream. For the purpose of this
research, the PDCSAP light curves are used, where the PDCSAP stream is
characterized by cleaner data than the SAP stream and fewer systematic trends.

To access the data, we made use of the Fv software 1 in order to visualize the data
and eliminate outliers (if applicable). In this way, the resulting light curve in this
study is a clean light curve without eruptions (see Figure 3.1.3 (A)), which could
interfere with the estimation of the rotation period of this star.
We applied the wavelet transform method Torrence and Compo (1998) to analyze
signals with a dynamic frequency spectrum and compared with the Generalised
Lomb-Scargle method Zechmeister and Kürster (2009).
We applied the Morlet wavelet (6th order), which proves to have high temporal
and frequency resolution. A sensitivity test on each of the wavelets of the wavelet
family indicates that a wavelet function with a higher order value generates much
smoother decomposition results than those wavelets analyzed with a lower order
Wang and Sassen (2008).
We visualize the local (B) and global wavelet power spectra (C) (see Figure 3.1.3).
The wavelet power spectrum plot interprets the energy distribution of the signal
in the time-frequency space, while the global wavelet spectrum is generated by
time integration of the local map.

1https://heasarc.gsfc.nasa.gov/ftools/fv/ :
Fv is a FITS file editor capable of manipulating virtually all aspects of a FITS file and
performing basic data analysis of its contents.

https://heasarc.gsfc.nasa.gov/ftools/fv/
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Figure 3.1.3: We developed the Wavelet analysis of the star EV Lac (TIC
154101678): (A) Time series, star light curve (solid black line) in the optical. (B)
Normalized wavelet power spectrum using the Morlet-type wavelet (ω0 = 6) as
a function of time and Fourier equivalent wavelet period (in days). Solid black
contour lines enclose regions with greater than 95% confidence relative to a random
red noise process (α = 0.77). The shaded, dashed area indicates the area affected
by the cone of influence of the parent wavelet. (C) C) Global wavelet power
spectrum (solid black line) and the power spectrum of the inverse of the Fourier
transform (solid gray line). The dashed blue line indicates the 95% confidence
level and the dashed red line represents the Fourier transform. (D) Wavelet power
averaged over the 2-10 days band (solid black line), power trend (solid black line)
and 95% confidence level (dashed black line). Plot of own authorship.

We note that the most dominant periodicity of the Global wavelet spectrum (C)
is about 4.32 days. We average within a range of 2-10 days (solid black line) due
to the expected rotation period according to the literature.
Despite the closeness of the period found with the rotation periods for EV
Lac already estimated in the literature, it has been found that this type of
analysis has not demonstrated total accuracy because for some sources, the light
curves in TESS have gaps in the measured data. This method turns out to be
quite successful for continuously measured observational data, since the code
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used, as we can see in the figure above, it integrates over a continuous range
of time, thus predicting the future values of the light curve present in the data gap.

The Peranso software 2 was used to perform a GLS analysis to determine the
rotation period of EV Lac and to obtain the rotation period of this star by means
of a wavelet analysis.
In the following figure (see Figure 3.1.4) we notice a period found for the EV Lac
star of 4.33 ± 0.13 days. It is quite close and in agreement with the periods found
in the literature.

Figure 3.1.4: Period found by the generalized Lomb-Scargle method using
Peranso software. The x-axis indicates the time interval during which the period
analysis was performed. The y-axis shows the Lomb-Scargle Theta statistic. Image
taken from Soto et al. 2022, Boletín 63 Asociación Argentina de Astronomía,
accepted.

We note that there are other periods but the most prominent is at its peak at 4.33
days. Performing an inspection of the phase window, we see the less prominent
eruptions characteristic of this eruptive star.

2https://www.cbabelgium.com/peranso/ : period and light curve analysis software.

https://www.cbabelgium.com/peranso/
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Figure 3.1.5: Phase versus PDCSAP flow window. The pink center line shows
the mean curve fit while the vertical dots indicate small, short-lived flares.

We obtain the rotation period, this time using the WWZ method, also using the
Peranso software. In it, we found a period of 4.24 days, which is close to the values
previously obtained in the literature. close to the values previously obtained in
the literature.

Figure 3.1.6: WWZ transform display. The x-axis represents time, the y-axis
represents frequency, and a color (z-axis) is used to plot the WWZ response.
The red color shows the most repetitive values indicating a period close to 4.24
days. Image taken from Soto et al. 2022, Boletín 63 Asociación Argentina de
Astronomía, accepted.
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3.2 Statistical sample

3.2.0.1 Sample of Stars from Boro Saikia et al. (2018)

A total of 53 stars were extracted from Table A.2 of the paper Boro Saikia et al.
(2018). The sample of TESS stars belong to spectral types F, G, and K, i.e.,
stars with an effective temperature range of 7000-3500 K and and have been
downloaded directly from the Mikulski Archive for Space Telescopes (MAST)
database 3 the PDCSAP FLUX values, which are the single aperture photometry,
SAP FLUX, after removing systematic trends.
The rotation period calculations shown in Table A.2 have been reproduced. As
with our reference star EV Lac, they were analyzed with Lightkurve, and then a
comparison was made between the rotation periods present in the literature with
the rotation periods obtained using the GLS, WWZ and ANOVA methods (see
Table 3.2.2). As highlighted in one table, for five stars (see Table 3.2.1) we found
a concordance with the periods given in the aforementioned paper. However, for
stars Boro Saikia et al. (2018) reported rotation periods longer than 10 days, both
methods (both GLS and WWZ) indicate shorter periods when applied to TESS
data, albeit partially with lower statistical significance. We consider this to be
a limitation due to the observational time windows of TESS and could reflect
shorter time periods, although it does not correspond to the physical rotation
period.

Name Period found using Period using GLS [d] Period from Period from Literature [d]
Wavelet method [d] Boro Saikia et al. 2018 [d]

EVLac 4.24 ± 0.46 4.33 ± 0.13 - 4.37 (P80)
HD20630 9.00 ± 0.15 9.02 ± 1.05 9.24 9.2 (B17)
HD26913 6.76 ± 0.09 6.84 ± 0.23 7.1 7.15 (SB99)
HD82443 5.32 ± 0.05 5.43 ± 0.14 5.37 5.37 (M99)
HD115043 5.68 ± 0.07 5.67 ± 0.19 5.86 5.86 (H16)
HD115383 3.52 ± 0.02 3.40 ± 0.06 3.33 3.33 (SB99)

Table 3.2.1: Table schematizing the stellar rotation periods calculated
according to the Wavelet method and the GLS method, compared with
the stellar rotation periods found in the literature. From a total of
53 stars present in Table A.2 of the article Boro Saikia et al. (2018).
References: (P80)Pettersen (1980), (B17)Brandenburg et al. (2017),(SB99)Saar
and Brandenburg (1999), (M99)Messina et al. (1999), (H16)Hempelmann et al.
(2016).

3https://archive.stsci.edu/

https://archive.stsci.edu/
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Table 3.2.2: Complete table containing the 53 analyzed stars from Table A.2 of
Boro Saikia et al. (2018). (Continuation of caption, on next page).
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The first column shows the HD name of each star. The following columns show the
rotation period obtained for each star by various methods. In the second column
we provide the rotation period obtained using the Wavelets method (WWZ).
In the third column the rotation period using the GLS method is given, in the
fourth column the rotation period for each star using the ANOVA method, in the
fifth column, the rotation periods found in Table A.2 of the article Boro Saikia
et al. (2018). Sources HD152391, HD160346, HD1835, HD149661, HD190406,
HD146233, HD155885, HD155886, HD156026, HD165341A and HD190007 have
been discarded due to missing data in TESS in Peranso software. We do not
consider the Sun within the sample of 53 stars shown in the table. Those with a
dash symbol do not indicate rotation periods in the literature. Finally in the last
column are the rotation periods found according to the literature.
References:(SB99)Saar and Brandenburg (1999),(F03)Fischer et al.
(2003),(N84)Noyes et al. (1984),(B83)Baliunas et al. (1983),(W11)Wright
et al. (2011),(D92)Dobson (1992),(M17a)Mittag et al. (2017),(B07)Böhm-Vitense
(2007),(B17)Brandenburg et al. (2017),(M16)Metcalfe et al. (2016),(B96)Baliunas
et al. (1996a),(M08)Mamajek and Hillenbrand (2008),(H16)Hempelmann et al.
(2016),(D11)Dumusque et al. (2011),(M13)Marmier et al. (2013),(G21)Gan et al.
(2021),(D19)Dragomir et al. (2019).

We have used the generalized Lomb Scargle periodogram for the 53 stars with
the Peranso software. We created window-ranges for rotation period exploration
with this method, i.e., we selected a minimum value of 1 day and a maximum
value of 100 days. Based on this, rotation period searches were performed by
assigning ranges of values closer to the most prominent peak in the curve. The
same procedure was carried out for the WWZ method and ANOVA. The values
of the rotation periods are also listed in Table 3.2.2.
In Figures 3.2.1 and 3.2.2 we reproduce the corresponding plots of the activity -
rotation period relation from Boro Saikia et al. (2018), showing in red the new
periods derived from TESS and in black the periods from their original data. We
limit ourselves here to data points consistent with the previous periods.
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Figure 3.2.2 recreated the plot present in Boro Saikia et al. (2018) (Figure 8),
wcyc/ω versus R−1

o , similar to Fig. 1 of Saar and Brandenburg (1999).
The values of τc (convective turnover or correlation time) and Ro were extracted
from Table A.2 of Boro Saikia et al. (2018). The values of τc and Ro follow the
definition given by Noyes et al. (1984), obtained empirically.
Brandenburg et al. (1998) studied the relationship between the ratio of cycle and
rotation frequencies wcyc/Ω (=Prot/Pcyc) and the inverse of the Rossby number
Ro = 2τc Ω = 4πτc/Prot. We have taken this relationship for the derivation of our
Y-axis calculations.

Figure 3.2.1: wcyc/Ω vs. R−1
o for the sample of stars in Table A.2 from Boro

Saikia et al. (2018) and for the sample obtained from the agreement between the
two method analysed: GLS and WWZ.

The figure above demonstrates the effectiveness of the methods used: Wavelets
and GLS, since the periods found coincide with the periods found in the literature.
The rotation periods in this study are very close to the stellar rotation periods
already found.
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Figure 3.2.2: wcyc/Ω vs. R−1
o . Left :(a) Sample stars from Table A.2 of Boro

Saikia et al. (2018), where CA means Cool stars with clear well defined solar-like
activity cycles, CB to refer to Cool stars with multiple cycles and CC to Cool
stars with probable activity cycles. Right :(b) Reproduction of the stellar rotation
periods of the sample of stars in Table A.2.

In Figure 3.2.2, (a) The authors studied the active and inactive branches in
the plane of the rotation-activity-cycle period, according to the Mount Wilson
program Wilson (1968). The stars were measured for their magnetic activity
and classified into an active branch, intermediate magnetic activity branch and
an inactive branch, as we can see in the diagonal dotted lines. It shows that
stars with clear activity cycles (CA) including our Sun are all on the inactive
branch, except for one star which is on the active branch Saar and Brandenburg
(1999). In 3.2.2 (a) the rotation periods taken by the authors were rotation
periods from periodograms analysis of Ca II chromospheric activity records of
lower main sequence stars obtained at the Mount Wilson Observatory (MWO)
(Horne and Baliunas (1986); Baliunas et al. (1995)). For more details see Saar
and Brandenburg (1999) and Boro Saikia et al. (2018).
On the other hand, in Figure 3.2.2 (b), we highlight the rotation periods obtained
in this study. In it, we observed an anti-correlation of the data. The rotation
periods of the stars are located at low Prot/Pcyc and high logRo ratios.
This difference could be due to observational gaps in the data acquisition, present
in the TESS light curves. Despite this difference in the obtained rotation period,
the errors associated with these rotation periods are less than 1% in most cases,
as shown in Table 3.2.2 indicating the performance of both methods for the
determination of stellar rotation periods.
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In the following figure, Figure 3.2.3, we reproduce Figure 9 of the article Boro
Saikia et al. (2018). We plot the activity-cycle period as a function of the rotation
period similar to Figure 1 in Böhm-Vitense (2007).
Figure 3.2.3 shows those stars that are in agreement with the rotation periods
found in the literature.
In red we show the new rotation periods obtained for the sample in In red we
show the rotation periods obtained in this study with TESS data, for the sample
in Table A.2. These new rotation periods are in a range between 0 and 10 days
(see Figure 3.2.4). The Pcyc values were taken directly from Table A.2 Boro Saikia
et al. (2018) as well as the rotation periods indicated in black.

Figure 3.2.3: Activity-cycle period in years as a function of rotation period in
days for the sample of stars in Table A.2 from Boro Saikia et al. (2018) and for the
sample obtained from TESS data showing agreement between the two methods
analyzed: GLS and WWZ.
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Figure 3.2.4: Prot versus Pcyc. Left : (a) Figure 9 of the Boro Saikia et al. (2018)
article is shown, for a sample of 53 stars with the same activity cycles, i.e., CA,
CB and CC. Right : (b) Recreation of the figure on the left, with the new rotation
periods found with TESS data.

Figure 3.2.4 (a) shows a graph of rotation period versus cyclic period extracted
from Boro Saikia et al. (2018). In it, the authors again see how the stars behave
according to their calculations, in the active and inactive branches. Figure 3.2.4
(b) corresponds to a reproduction of figure (a) with stellar rotation periods
analyzed with TESS data shown in Table 3.2.2. The cyclic periods were extracted
directly from Table A.2 of Boro Saikia et al. (2018).
We can observe that these periods are concentrated in a range of less than 15
days.

Histograms were made of the rotation periods obtained and a normal distribution
was applied in order to obtain a better way of visualizing the results. The
distribution function of the normal distribution is defined as follows,

Φµ,σ2(x) =

∫ x

−∞
φµ,σ2(x)(u)du (3.2.1)

=
1

σ
√
2π

∫ x

−∞
e−

(u−mu)2

2σ2 du, x ∈ R ,

where
µ corresponds to the mean,
σ is the standard deviation,
σ2 is the variance,
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φ represents the probability density function.

WWZ periods - Boro Saikia et al. (2018)
Distribution Normal

µ 7.1778
σ 2.71633

Null hypothesis 0.1653
Chi-squared distribution 5.0902

Table 3.2.3: Table of statistical data resulting from the rotation periods obtained
with TESS using wavelets (WWZ).

The mean distribution of the star sample by the wavelet method fits a normal
distribution. The rotation periods determined with the TESS data show a higher
frequency of rotation periods between 6 and 8 days, with a σ of 2.71633. The
overall sample using this method has a µ of 7.17.

Figure 3.2.5: Histogram from TESS data for rotation periods obtained with
wavelets (WWZ).

The errors associated with the wavelet method (WWZ) are centered between 0.5
and 1, with a σ of 0.54. Less frequent rotation periods of about 2 to 3 %. This
tells us that most of the rotation periods determined are reliable, because they
will tend to be values closer to the actual rotation period of each star.
The data fit the distribution used very well, taking into account only the positive
values of the errors associated with the period.
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WWZ errors - Boro Saikia et al. (2018)
Distribution Generalized Extreme Value distribution

k 0.18742
µ 0.712699
σ 0.547843

Chi-squared distribution 5.0434

Table 3.2.4: Table of statistical data resulting from the errors associated with
the rotation periods obtained with TESS using wavelets (WWZ).

Figure 3.2.6: Histogram of the TESS data for the errors associated with the
rotational periods obtained with wavelets (WWZ).

GLS periods - Boro Saikia et al. (2018)
Distribution Normal

µ 7.21098
σ 2.94307

Null hypothesis 0.0584
Chi-squared distribution 7.4678

Table 3.2.5: Table of statistical data resulting from the rotation periods obtained
with TESS using Generalised Lomb-Sacrgle(GLS) method.

Additionally, the resulting histogram for the rotation periods of the star sample
using TESS data with the GLS method indicates a mean of the periods between
6 and 8 days with a σ = 2.94 approximately. The data indicate a good fit to the
normal distribution used. The rotation periods with the highest frequency are
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found to be around 6 days, and the rotation periods found to show the lowest
frequency are around 2 days.

Figure 3.2.7: Histogram from TESS data for rotation periods obtained with
Generalised Lomb Scargle(GLS).

GLS errors - Boro Saikia et al. (2018)
Distribution Generalized Extreme Value distribution

k 0.566315
µ 0.238379
σ 0.21819

Chi-squared distribution 3.875

Table 3.2.6: Table of statistical data resulting from the errors associated with
the rotation periods obtained with TESS using Generalised Lomb Scargle(GLS).

And the histogram for the errors associated with this method indicates values
between 0 and 1, i.e., not only the errors are lower, but also the GLS method
could be more efficient than the Wavelets method in terms of the errors obtained.
The distribution function indicates a good fit to the data. The associated errors
indicate lower frequencies for values around 2%.
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Figure 3.2.8: Histogram of the TESS data for the errors associated with the
rotational periods obtained with Generalised Lomb Scargle(GLS).
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3.2.0.2 Sample of stars from Messina et al. (2022)

TESS data have been downloaded from the Mikulski Archive for Space Telescopes
(MAST) for 45 of the 168 stars in sectors (14-16) between July 18, 2019, and July
4, 2020. The light curves for each star have been manually downloaded using the
SPOC pipeline. After that, we processed the data for each star using Lightkurve
and extracted light curves from the data through a pixel file, using a custom
aperture mask in order to remove background contaminants in each star.
Finally, we used the Peranso software (Light Curve and Period Analysis Software)
where a GLS and WWZ analysis was performed.
As input data, we have used the sample of stars present in Messina et al. (2022),
which is composed of 218 stars from the list of stars published by Tang et al.
(2019), with 168 measured rotation periods by the authors (those who used GLS,
CLEAN and ACF). From these 168 values, we found rotation periods for 45 stars
and not for all of them due to the limitations imposed by the software used.
Like the authors, we used the generalized Lomb Scargle method. The FAP was
implemented according to the equation given by Horne and Baliunas (1986).
We calculated the error associated with the rotation period, following the
mechanism provided by Lamm et al. (2004).
As analyzed by Messina et al. (2022), a total of 17 periodic stars possess a visual
companion only detected with Gaia DR2 but difficult to identify with TESS
photometric data with a separation of ρ ≲ 10”. Regarding the stars analyzed
under this study, only two stars, the binary system: TIC 1102311836 and TIC
1102311837 (148⋆ and 149⋆, see Table 3.2.3) presented a secondary period in
Gaia DR2. Single periods of 4.65 ± 0.11 days and 4.66 ± 0.14 days, respectively,
were found with the GLS method, compared to 0.663 ± 0.006 days and 4.64 ±
0.45 days for the authors.

(a) (b)

Figure 3.2.9: TIC 1102311836 star. Left : (a) Light curve. Right : (b)
Periodogram using GLS.
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(a) (b)

Figure 3.2.10: TIC 1102311837 star. Left : (a) Light curve. Right : (b)
Periodogram using GLS.

The sample of analyzed stars is shown below,

Sequ. # TIC number TESS Sector Period of Messina et al. 2022 [d] Period using GLS [d] Period using wavelet (WWZ)[d]
8 0155856633 15/16/22 5.08 ± 0.16 2.75 ± 0.05 2.8 ± 0.15
21 0459221499 15/16/22 0.373 ± 0.003 0.373 ± 0.001 0.496 ± 0.002
39 0332312964 15/16/22/23 4.98 ± 0.52 / 0.363 ± 0.004 4.56 ± 0.11 4.6 ± 0.41
42 0141819826 16/15/22/23 7.1 ± 1.2 6.90 ± 0.65 6.88 ± 0.91
45 0311001628 16 0.602 ± 0.008 0.604 ± 0.007 0.604 ± 0.007
49 0310338842 15/16/22/23 7.8 ± 1.2 5.12 ± 0.27 5.08 ± 0.25
51 0141861147 15/16/22/23 1.38 ± 0.04 1.38 ± 0.01 1.4 ± 0.02
54 0141863294 16/22 8.1 ± 1.8 3.82 ± 0.16 3.96 ± 0.32
71 0233437236 15/16/22/23 6.9 ± 1.0 5.75 ± 0.28 5.68 ± 0.62
74 0198154161 16 9.3 ± 1.9 5.37 ± 0.37 5.32 ± 0.57
77 0010728867 16/22/23 7.6 ± 1.2 7.71 ± 0.74 7.66 ± 1.19
88 0310379752 22 0.561 ± 0.487 0.563 ± 0.006 0.567 ± 0.0065
91⋆a 1001276338 15/16/22/23 6.21 ± 0.80 6.22 ± 0.21 6.22 ± 0.74
93 0445859773 15/16 1.28 ± 0.03 1.24 ± 0.01 1.58 ± 0.05
95 0313322899 22 0.546 ± 0.006 0.546 ± 0.001 0.56 ± 0.006
102 0166089535 15/16/21/22 3.14 ± 0.05 1.54 ± 0.01 1.55 ± 0.05
105 0459246945 15/16/22/23 4.27 ± 0.38 4.59 ± 0.17 4.6 ± 0.41
116 0313338124 15/16/23 2.73 ± 0.15 1.36 ± 0.01 1.4 ± 0.04
122 0298162216 16/15/22/23 9.11 ± 0.58 5.37 ± 0.14 5.32 ± 0.52
124 0298163080 15/22/23 4.93 ± 0.50 4.41 ± 0.09 4.6 ± 0.41
126 0159613447 15/16/21/22/23 6.29 ± 0.82 6.33 ± 0.38 6.4 ± 0.79
127 0158462948 15/16/22/23 4.98 ± 0.51 5.07 ± 0.14 4.96 ± 0.47
133 0159631183 15/16/22/23 0.89 ± 0.01 0.89 ± 0.01 0.8 ± 0.01
135 0159636302 15/16/22/23 1.09 ± 0.02 1.09 ± 0.01 1.1 ± 0.01
139 0158541117 22/15 6.65 ± 0.88 3.71 ± 0.18 3.88 ± 0.29
143⋆ 0161024760 22/16/23 6.48 ± 0.83 3.03 ± 0.08 3.16 ± 0.20
145 0158579468 15 7.9 ± 1.3 8.72 ± 0.54 8.6 ± 0.15
146 0161029191 16/22/23 5.34 ± 0.63 5.39 ± 0.17 5.32 ± 0.57
148⋆ 1102311836 15/16/22/23 0.663 ± 0.006 4.65 ± 0.11 4.3 ± 0.35
149⋆ 1102311837 15/16/22/23 4.64 ± 0.45 4.66 ± 0.14 4.6 ± 0.41
152 0462572935 16 8.8 ± 1.4 10.84 ±0.80 10.88 ± 2.27
153 0137832480 15/16/22/23 3.57 ± 0.26 3.28 ± 0.18 3.16 ± 0.01
155 0137834492 16/22/23 0.1050 ± 0.0002 0.025 ± 0.00002 0.025 ± 0.0000014
158 0137834559 15/16/22/23 5.37 ± 0.60 5.12 ± 0.15 4.96 ± 0.47
159⋆a 0202425640 15/16/22/23 9.23 ± 0.70 5.50 ± 0.28 5.48 ± 0.61
164 0232541198 14/15/16/21/23 5.21 ± 0.54 5.31 ± 0.16 5.32 ± 0.53
165 0165628355 15/23 9.21 ± 0.80 5.51 ± 0.17 5.68 ± 0.59
182 0165719269 16 7.3 ± 1.2 7.84 ± 0.45 7.84 ± 1.25
188 0202510436 15/16/22/23 7.5 ± 1.2 4.82 ± 0.20 4.96 ± 0.47
193 0159769293 16/23 7.4 ± 1.2 4.85 ± 0.17 4.96 ± 0.50
207 0159871737 16/23/24 4.58 ± 0.46 4.64 ± 0.19 4.6 ± 0.43
209 0159873822 16/23 7.5 ± 1.2 8.17 ± 0.52 8.20 ± 1.36
211 0159879031 16/23/24 4.28 ± 0.40 4.32 ± 0.10 4.24 ± 0.36
213 0159922985 23/16/24/25 5.20 ± 0.54 2.45 ± 0.04 2.44 ± 0.12
214 0219479795 23 7.0 ± 1.0 9.7 ± 0.73 10.12 ± 1.91

Table 3.2.7: Reproduction of the star sample of Messina et al. (2022). In the first
column we note the analyzed star number of the sample, in the second column
its name in the TESS project, in the third column the TESS sector of each star,
in the fourth column the stellar rotation period found by Messina et al. (2022),
finally in the fifth and sixth columns the rotation periods in determined under
the GLS and WWZ method respectively.
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WWZ periods - Messina et al. (2022)
Distribution Normal

µ 4.37471
σ 2.60489

Null hypothesis 0.0229
Chi-squared distribution 9.5424

Table 3.2.8: Table of statistical data resulting from the rotation periods obtained
with TESS using wavelets (WWZ).

The following histogram has been obtained using the TESS data, in it we can
see the fit of the normal distribution runs through the data, with more frequent
rotation periods, in a range between 4 and 6 days, this tells us that a large part
of the stars rotate with a period of 4.37 days. The sample indicates a σ = 2.60
and rotation periods bounded between 0 and 12 days.

Figure 3.2.11: Histogram from TESS data for rotation periods obtained with
wavelets (WWZ).

WWZ errors - Messina et al. (2022)
Distribution Generalized Extreme Value distribution

k 0.402173
µ 0.206213
σ 0.24429

Chi-squared distribution 4.5358

Table 3.2.9: Table of statistical data resulting from the errors associated with
the rotation periods obtained with TESS using wavelets (WWZ).



3.2. Statistical sample 49

While the histogram of the errors associated with the wavelet method, with values
between 0 and 0.5%, being less frequent the errors with values of 2% accuracy.
This is why the errors indicate high confidence due to low uncertainty values.

Figure 3.2.12: Histogram of the TESS data for the errors associated with the
rotational periods obtained with wavelets (WWZ).

GLS periods - Messina et al. (2022)
Distribution Normal

µ 4.35758
σ 2.60299

Null hypothesis 0.0061
Chi-squared distribution 12.4213

Table 3.2.10: Table of statistical data resulting from the rotation periods
obtained with TESS using Generalised Lomb-Sacrgle(GLS) method.

We also show the histogram obtained from the TESS data using the GLS method
for the Messina et al. method for the Messina et al. 2022 sample. In the histogram,
rotation periods of higher frequency are observed between 4 and 6 days with a
frequency are observed between 4 and 6 days, with a σ of about 2.60. The normal
distribution indicates a fit, crossing the data and indicating a more frequent
rotation period in the sample, of 4.35 days.
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Figure 3.2.13: Histogram from TESS data for rotation periods obtained with
Generalised Lomb Scargle(GLS).

GLS errors - Messina et al. (2022)
Distribution Generalized Extreme Value distribution

k 0.515489
µ 0.0825341
σ 0.101191

Chi-squared distribution 1.7209

Table 3.2.11: Table of statistical data resulting from the errors associated with
the rotation periods obtained with TESS using Generalised Lomb Scargle(GLS).

Figure 3.2.14: Histogram of the TESS data for the errors associated with the
rotational periods obtained with Generalised Lomb Scargle(GLS).

Finally, we have the histogram of the errors associated with the GLS method. The
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error values are in the range between 0 and 0.9%, the most frequent errors being
between 0 and 0.2%, with less frequent errors of values greater than 0.5. This
indicates and reinforces again the effectiveness of the Generalized Lomb Scargle
method on a Wavelets analysis, due to the low errors obtained associated to the
calculated errors.



52 Chapter 4. Summary and Discussion

Chapter 4

Summary and Discussion

In this section, we show the discussion of the results and future plans of this study.

In Chapter 2, we present the Transiting Exoplanet Survey Satellite (TESS),
from which the data are extracted. We present the Lightkurve program and the
different methods used to determine the rotation period. The light curves from
each star, removing background contaminants and outliers present in the light
curves.
Two samples of stars of spectral types F, G, K are analyzed. The first sample of
stars, coming from the article Boro Saikia et al. (2018) of 53 cool stars, product
of a combination of spectra from the HARPS archive and Mount Wilson data;
and the second sample of stars extracted from Messina et al. (2022), corresponds
to a list of 168 stars coming from Tang et al. (2019), data collected by TESS in
the second year of its mission (Sectors 14-26).
Chapter 3 is devoted to the work of analyzing the accuracy of the two statistical
methods frequency analysis methods: Generalized Lomb Scargle and Wavelets
(Wavelet Z-transform) and an additional method called ANOVA provided results
that differed significantly from the previous methods.
Thorough visual searches of periodograms were performed with both methods,
i.e., GLS and Wavelets, considering the most prominent value of each curve as the
rotation period. Wavelet plots (WWZ) were analyzed for a range of frequencies
and time, for each color-delivered response.
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A brief analysis is made for the calculation of the stellar rotation period for the
eruptive variable star EV Lac, where the rotation periods found in the literature
are compared with the rotation periods obtained in this study by means of GLS
and Wavelets, reaching a great closeness in the results.
On the other hand, two samples of stars were analyzed.
The first sample comes from Boro Saikia et al. 2018 (Table A.2), which for a
total of 53 stars the rotation period was determined for 41 stars with the GLS
and Wavelets methods. The Sun was not considered in the calculations, and some
cases such as HD152391, HD160346, HD1835, HD149661, HD190406, HD146233,
HD155885, HD155886, HD156026, HD165341A and HD190007 (listed in Table
A.2 of Boro Saikia et al. (2018)) were discarded due to the limitation imposed by
the Peranso software such as difficulties in searching for TESS data, resulting in
missing data. The accuracy of the periods determined in this study for 5 stars
out of the 41 stars analyzed is distinguished, with a high closeness between the
periods found in the literature.
Possible reasons for the remaining stars to have shorter periods using TESS
data compared to the periods determined by various authors are discussed. One
possible cause could be related to data gaps in the light curves extracted from
TESS. In spite of this, the errors associated with each method were analyzed,
where GLS stands out over Wavelets due to the lower error values obtained with
this method, demonstrating that the methods used for this sample of stars are
well executed.

We also analyzed of a second sample of cool stars, extracted from Messina et al.
(2022). Star sample composed of 168 stars, of which the rotation period was
successfully determined for 45 stars. The main cause of the number of stars
analyzed is attributed to the limitations imposed by the software used, such as
the non-finding of the TESS mission/project data, among others.
Similarly, the stellar rotation periods for these stars were determined with the
GLS and Wavelets methods, and the results were compared with the rotation
periods determined in Messina et al. (2022). Good agreement was reached for
most of the rotation periods analyzed and similarly, low associated errors were
found for both methods used. Again, with the results obtained, GLS stood out
over Wavelets due to the lower associated errors, reaching a high accuracy with
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the authors.

As future work, it is proposed to achieve an analysis for a larger sample of stars
and to incorporate a survey of the magnetic cycles (cyclic period) with both
methods used.
The study of the determination of stellar rotation periods is important to be
highlighted as it could be debated in terms of the values determined in the
literature. The rotation period is often associated with calculations of different
parameters that incorporate these values. For example, the estimation of stellar
age, the study of stellar magnetism, among others.
The study of stellar magnetism leads to an understanding of associated stellar
phenomena. Many of the objects that exhibit magnetic fields have evidence
suggesting that the region of field generation is in a turbulent state, giving rise
to a theory that explains the amplification of the magnetic field caused by the
motion of a conducting fluid. These present motions are dominated by rotation, a
key ingredient in dynamo theory. While the full set of questions as to how these
phenomena are generated have not yet been fully answered, studying them may
bring us closer and closer to all the answers.
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Appendix A

A1 Sample of stars from the article by Boro Saikia

et al. (2018)

HD 3651

(a) Lightcurve of HD 3651 (b) Target Pixel File (TPF) of HD 3651

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 4628

(a) Lightcurve of HD 4628 (b) Target Pixel File (TPF) of HD 4628

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 10476

(a) Lightcurve of HD 10476 (b) Target Pixel File (TPF) of HD 10476

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 16160

(a) Lightcurve of HD 16160 (b) Target Pixel File (TPF) of HD 16160

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 26965

(a) Lightcurve of HD 26965 (b) Target Pixel File (TPF) of HD 26965

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 32147

(a) Lightcurve of HD 32147 (b) Target Pixel File (TPF) of HD 32147

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 81809

(a) Lightcurve of HD 81809
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(b) Target Pixel File (TPF) of HD 81809
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HD 103095

(a) Lightcurve of HD 103095 (b) Target Pixel File (TPF) of HD 103095

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 166620

(a) Lightcurve of HD 166620 (b) Target Pixel File (TPF) of HD 166620

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 185144

(a) Lightcurve of HD 185144 (b) Target Pixel File (TPF) of HD 185144

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 201091

(a) Lightcurve of HD 201091
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(b) Target Pixel File (TPF) of HD 201091

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 219834B

(a) Lightcurve of HD 219834B (b) Target Pixel File (TPF) of HD 219834B

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 101501

(a) Lightcurve of HD 101501 (b) Target Pixel File (TPF) of HD 101501

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 20630

(a) Lightcurve of HD 206300 (b) Target Pixel File (TPF) of HD 20630

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 10780

(a) Lightcurve of HD 10780 (b) Target Pixel File (TPF) of HD 10780

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 18256

(a) Lightcurve of HD 18256 (b) Target Pixel File (TPF) of HD 18256

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 26913

(a) Lightcurve of HD 26913 (b) Target Pixel File (TPF) of HD 26913

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 26923

(a) Lightcurve of HD 26923 (b) Target Pixel File (TPF) of HD 26923

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 37394

(a) Lightcurve of HD 37394 (b) Target Pixel File (TPF) of HD 37394

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 76151

(a) Lightcurve of HD 76151 (b) Target Pixel File (TPF) of HD 76151

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 78366

(a) Lightcurve of HD 78366 (b) Target Pixel File (TPF) of HD 78366

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 82443

(a) Lightcurve of HD 82443 (b) Target Pixel File (TPF) of HD 82443

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 82885

(a) Lightcurve of HD 82885 (b) Target Pixel File (TPF) of HD 82885

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 100180

(a) Lightcurve of HD 100180 (b) Target Pixel File (TPF) of HD 100180

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 115043

(a) Lightcurve of HD 115043 (b) Target Pixel File (TPF) of HD 115043

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 115383

(a) Lightcurve of HD 115383 (b) Target Pixel File (TPF) of HD 115383

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 201092

(a) Lightcurve of HD 201092 (b) Target Pixel File (TPF) of HD 201092

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 20003

(a) Lightcurve of HD 20003 (b) Target Pixel File (TPF) of HD 20003

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 20619

(a) Lightcurve of HD 20619 (b) Target Pixel File (TPF) of HD 20619

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 21693

(a) Lightcurve of HD 21693 (b) Target Pixel File (TPF) of HD 21693

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 45184

(a) Lightcurve of HD 45184 (b) Target Pixel File (TPF) of HD 45184

(c) Rotation period using GLS (d) Rotation period using WWZ



80 A1. Sample of stars from the article by Boro Saikia et al. (2018)

HD 7199

(a) Lightcurve of HD 7199 (b) Target Pixel File (TPF) of HD 7199

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 82516

(a) Lightcurve of HD 82516 (b) Target Pixel File (TPF) of HD 82516

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 89454

(a) Lightcurve of HD 89454 (b) Target Pixel File (TPF) of HD 89454

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 157830

(a) Lightcurve of HD 157830 (b) Target Pixel File (TPF) of HD 157830

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 361

Lightcurve of HD 361

(a) Rotation period using GLS (b) Rotation period using WWZ

HD 12617

(a) Lightcurve of HD 12617 (b) Target Pixel File (TPF) of HD 12617

(c) Rotation period using GLS (d) Rotation period using WWZ



A1. Sample of stars from the article by Boro Saikia et al. (2018) 83

HD 166724

(a) Lightcurve of HD 166724 (b) Target Pixel File (TPF) of HD 166620

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 21749

(a) Lightcurve of HD 21749 (b) Target Pixel File (TPF) of HD 21749

(c) Rotation period using GLS (d) Rotation period using WWZ
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HD 154577

(a) Lightcurve of HD 154577 (b) Target Pixel File (TPF) of HD 154577

(c) Rotation period using GLS (d) Rotation period using WWZ

HD 88742

(a) Lightcurve of HD 88742 (b) Target Pixel File (TPF) of HD 88742

(c) Rotation period using GLS (d) Rotation period using WWZ
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A2 Sample of stars from the article by Messina et

al. (2022)

TIC 155856633

(a) Lightcurve of TIC 155856633
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(b) Target Pixel File (TPF) of TIC
155856633

(c) Rotation period using GLS (d) Rotation period using WWZ
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TIC 459221499

(a) Lightcurve of TIC 459221499
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TIC 332312964

(a) Lightcurve of TIC 332312964
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(b) Target Pixel File (TPF) of TIC
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TIC 141819826

(a) Lightcurve of TIC 141819826
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TIC 311001628

(a) Lightcurve of TIC 311001628
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(b) Target Pixel File (TPF) of TIC
311001628
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TIC 310338842

(a) Lightcurve of TIC 310338842
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(b) Target Pixel File (TPF) of TIC
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(c) Rotation period using GLS (d) Rotation period using WWZ

TIC 141861147

(a) Lightcurve of TIC 141861147
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(b) Target Pixel File (TPF) of TIC
141861147

(c) Rotation period using GLS (d) Rotation period using WWZ
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TIC 141863294

Lightcurve of TIC 141863294

(a) Rotation period using GLS (b) Rotation period using WWZ

TIC 233437236

(a) Lightcurve of TIC 233437236
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TIC 198154161

(a) Lightcurve of TIC 198154161
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TIC 10728867

(a) Lightcurve of TIC 10728867
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(b) Target Pixel File (TPF) of TIC 10728867
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TIC 310379752

(a) Lightcurve of TIC 310379752
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(b) Target Pixel File (TPF) of TIC
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(c) Rotation period using GLS (d) Rotation period using WWZ

TIC 1001276338

Lightcurve of TIC 1001276338

(a) Rotation period using GLS (b) Rotation period using WWZ
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TIC 445859773

(a) Lightcurve of TIC 445859773
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TIC 313322899

(a) Lightcurve of TIC 313322899
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313322899

(c) Rotation period using GLS (d) Rotation period using WWZ



A2. Sample of stars from the article by Messina et al. (2022) 93

TIC 166089535

(a) Lightcurve of TIC 166089535
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TIC 459246945

(a) Lightcurve of TIC 459246945
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TIC 313338124

(a) Lightcurve of TIC 313338124
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(b) Target Pixel File (TPF) of TIC
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TIC 298162216

Lightcurve of TIC 298162216

(a) Rotation period using GLS (b) Rotation period using WWZ
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TIC 298163080

Lightcurve of TIC 298163080

(a) Rotation period using GLS (b) Rotation period using WWZ

TIC 159613447

(a) Lightcurve of TIC 159613447
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TIC 158462948

(a) Lightcurve of TIC 158462948
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TIC 159631183

(a) Lightcurve of TIC 159631183
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TIC 159636302

(a) Lightcurve of TIC 159636302
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TIC 158541117

(a) Lightcurve of TIC 158541117
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TIC 161024760

(a) Lightcurve of TIC 161024760
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TIC 161029191

(a) Lightcurve of TIC 161029191
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TIC 1102311837

Lightcurve of TIC 1102311837
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TIC 137832480

(a) Lightcurve of TIC 137832480
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TIC 137834559

(a) Lightcurve of TIC 137834559
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TIC 232541198

(a) Lightcurve of TIC 232541198
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TIC 165719269

(a) Lightcurve of TIC 165719269
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TIC 159769293

(a) Lightcurve of TIC 159769293
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TIC 159871737

(a) Lightcurve of TIC 159871737
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TIC 159922985

(a) Lightcurve of TIC 159922985
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(a) Lightcurve of TIC 219479795
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Resumen / Algunos aspectos del origen de la actividad magnética en las estrellas aún no se conocen suficiente-
mente bien. Aunque las primeras investigaciones que exploraban la relación entre el periodo de rotación estelar y
la actividad magnética indicaban la posible existencia de una rama activa y otra inactiva, con datos más recientes
no está tan claro si se trata realmente de dos reǵımenes distintos. Se cree que esto es una consecuencia de la
acción de la dinamo dependiente de la rotación, que produce campos magnéticos que intervienen en la actividad
estelar. Durante este estudio, investigamos si se puede utilizar datos de TESS para determinar los peŕıodos de
rotación mediante los métodos de Lomb-Scargle Generalizado y Wavelet, y comprobaremos si ambos métodos
arrojan resultados coherentes.

Abstract / Some aspects of the origin of magnetic activity in stars are still not sufficiently understood. While
initial investigations exploring the relationship between the stellar rotation period and magnetic activity indicated
the possible existence of an active and an inactive branch, with more recent data it is less clear whether these
are two distinct regimes. This could be a consequence of rotation-dependent dynamo action, which produces
magnetic fields that are involved in stellar activity. In this study, we explore whether TESS data can be used to
derive stellar rotation periods using the Generalised Lomb-Scargle and Wavelet methods, and test whether the
two methods yield consistent results.

Keywords / stars: activity — stars: rotation — stars: solar-type

1. Introduction

The stellar rotation has been a key parameter in deriv-
ing stellar ages and is closely related to magnetic activ-
ity. One widely used technique for deriving rotation pe-
riods has been photometry. Another technique was pre-
sented by Eberhard & Schwarzschild (1913), where they
first proposed the measurement of stellar activity in cool
stars through the emission of the Ca II H+K core from
the nucleus. In an attempt to demonstrate this hypoth-
esis, the Mount Wilson project measured the chromo-
spheric activity of over a thousand stars (Wilson, 1968);
(Duncan et al., 1991), discovering that cool stars have
cycles of magnetic action, classifying the stars into an
Active Branch and an Inactive Branch. Baliunas et al.
(1995) concluded that there are different stellar popu-
lations with three different activity cycles. Noyes et al.
(1984) noted that the calcium emission flux depends on
the Rossby number Ro, of the form Ro = Prot/4πτc,
with Prot the stellar rotation period and τc the stellar
convection timescale. This relation was subsequently
studied by Bohm-Vitense (2007)), where Ro ≡ Prot/τc.
In a recent study, Boro Saikia et al. (2018) have deter-
mined activity for a larger sample of stars, finding that
potentially the relation between rotation and activity
period may form a continuum between the active and
inactive branches, rather than a strict relation to them.
The present work provides an analysis of two methods
to estimate the rotation period of a star, the Generalised
Lomb Scargle method, and the Wavelet transforms, to

recognize which method is more accurate in obtaining
rotation periods.

2. Methodology

We consider the star EV Lac (TIC 154101678; α2000 =
22 : 46 : 49.73, δ2000 = +44 : 20 : 02.37) as a reference.
EV Lac is a common red dwarf of the known period.
Pettersen (1980) was the first to determine a rotation
period for this star, successfully finding a period of 4.378
days. The TESS data have been downloaded directly
from the Mikulski Archive for Space Telescopes (MAST)
database ?. With the Kepler space mission (Borucki
et al., 2010) led to the discovery of flares in several F-,
G- and A-type stars (Balona, 2012).

Figure 1: EV Lac light curve (TIC 154101678)

?https://archive.stsci.edu/

Poster contribution

https://archive.stsci.edu/


Exploring the magnetism of stars using TESS data

We use Lightkurve’s Target Pixel File (TPF)
??. We have applied custom apertures “cre-
ate threshold mask(threshold=3)” which selects all
pixels that have a flux greater than 3 standard devia-
tions above the average luminosity. The tube aperture
is small in this case but avoids capturing light from the
background star. Once the light curve is modified, we
save it as a FITS file.

Figure 2: Target pixel file (TPF) of the star EV Lac. The
centered red circle corresponds to the source in the field with
scaled magnitudes. magnitudes. The white cross indicates
the location of the target. The aperture mask used by the
pipeline to extract the photometry was also plotted on the
TPF.

In addition, we applied Peranso’s LOWESS
(Locally-Weighted Scatterplot Smoothing) ??? tech-
nique. This method estimates the slope of each point by
plotting a line of intersection. It creates a smooth best-
fit curve and eliminates outliers to avoid incorporating
them in subsequent period analysis calculations.

2.1. The Generalised Lomb-Scargle periodogram

In this work, we have used the Generalised Lomb-
Scargle periodogram (GLS) from Zechmeister & Kürster
(2009). GLS is a commonly used statistical tool that
allows the efficient calculation of a Fourier-type power
spectrum estimator from unevenly sampled data to de-
termine the oscillation period. The Peranso software
was used to perform an analysis with the GLS method
and determine the rotation period of EV Lac. The fol-
lowing figure (see Figure 3) shows a period found for the
EV Lac star of 4.33±0.13 days. This is a period quite
close and in agreement with the periods found in the
literature.

2.2. The wavelet transform

The wavelet transform is a method for analyzing signals
with a high resolution in both the frequency and time
domain (Torrence & Compo, 1998). This is achieved by
working with different time scales Burrus et al. (1998).
The Wavelet transform consists of a series of functions
called wavelets. We can analogously decompose the

??https://docs.lightkurve.org/
???https://www.cbabelgium.com/peranso/

light curve of a star by frequencies represented in the
power spectrum at different scales. With the wavelet be-
ing placed in time, our signal can be convoluted with the
wavelet in different time ranges. Bravo et al. (2014) ap-
plied the so-called Morlet wavelet to Kepler and CoRoT
light curves, in stars with planetary transits, binary sys-
tems, a variable star dominated by magnetic activity,
and pulsating stars, where they identified patterns in
the rotation period due to active regions affecting the
light curves.
We have analyzed the obtaining of the period using the
Weighted Wavelet Z-transform (WWZ) method, also
with the Peranso software. The WWZ is based on the
Morlet wavelet (see (Grossmann et al., 1989)). In it, we
found a period of 4.24 days, which is close to the values
previously obtained in the literature.

Figure 3: Top panel: Rotation period found for EV Lac by
the Generalised Lomb Scargle method. Bottom panel: The
rotation period found by the WWZ method is 4.24 days for
the EV Lac star. The x-axis represents time, the y-axis rep-
resents frequency, and a color (z-axis) is used to plot the
WWZ response.

3. Results

A total of 53 stars have been extracted from Table A.2
of the Boro Saikia et al. (2018) article. For five stars (
see Tab. 1), we found a concordance with the periods
given in the aforementioned paper. However, for stars
where Boro Saikia et al. (2018) reported rotation peri-
ods larger than 10 days, both methods indicate shorter
periods when applied to the TESS data, though typi-
cally with a lower statistical significance. We consider
this likely to be a limitation due to the observing time
windows of TESS and to potentially reflect shorter pe-
riodicities or time variations, though not to correspond
to the physical rotation period. In Figs. 4, we repro-
duce the corresponding plots on the activity - rotation
period relation from Boro Saikia et al. (2018), showing
in red the new periods derived from TESS and in black
the periods from their original data. We limit ourselves
here to data points consistent with the previous periods.

BAAA, 63, 2021
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Name Period found using Period using GLS [d] Period from Period from Literature [d]
Wavelet method [d] Boro Saikia et al. (2018) [d]

EV Lac 4.24 ± 0.46 4.33 ± 0.13 - 4.37 ((Pettersen, 1980))
HD20630 9.00 ± 0.15 9.02 ± 1.05 9.24 9.2 (Brandenburg et al. (2017))
HD26913 6.76 ± 0.09 6.84 ± 0.23 7.1 7.15 (Saar & Brandenburg (1999))
HD82443 5.32 ± 0.05 5.43 ± 0.14 5.37 5.37 (Messina et al. (1999))
HD115043 5.68 ± 0.07 5.67 ± 0.19 5.86 5.86 (Hempelmann et al. (2015))
HD115383 3.52 ± 0.02 3.40 ± 0.06 3.33 3.33 (Saar & Brandenburg (1999))

Table 1: Table schematizing the stellar rotation periods calculated according to the Wavelet method and the GLS method,
compared with the stellar rotation periods found in the literature. From a total of 53 stars present in Table A.2 of the
article (Boro Saikia et al., 2018), it has been obtained closely the rotation period for 5 stars listed in the table.

Figure 4: Top panel: ωcyc / Ω vs. R−1
o for stars from Ta-

ble A.2 Boro Saikia et al. (2018), which closely match the
rotation periods obtained with TESS data. Bottom panel:
Activity-cycle period in years as a function of rotation pe-
riod in days for stars in Table A.2 from Boro Saikia et al.
(2018)

4. Conclusion

We find that stellar rotation periods can be derived
from the TESS data if the stars have sufficiently
short periods of less than 10 days. In these cases,
both the generalized Lomb Scargle method and the
Wavelet method provide results consistent with each
other, showing low statistical error highlighting the
effectiveness of both methods analyzed.
We propose that the reason for this is that the light
curves provided by TESS have gaps that could interfere
with the actual calculation of the rotation period. It
is proposed that the obtained periods are far from

most of the rotation periods present in Table A.2 of
(Boro Saikia et al., 2018) due to the limitation of the
software used. Handling two competent and innovative
methods allows us to recognize their effectiveness of one
over the other, apply them to different astrophysical
phenomena related to signal analysis.
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