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Maǵıster en Ciencias con Mención en F́ısica

por

Alejandro Ignacio Rojas Castro

Abril, 2022

Director de Tesis: Dr. Aldo Delgado Hidalgo



Agradecimientos

Ocho han sido la cantidad de años que he permanecido en esta universidad, siendo

las personas que he conocido en este lugar la más grata de las experiencias que la

etapa universitaria me ha otorgado.

Partiendo por agradecer a Jorge Gidi, por una amistad de ocho años de vida,

rebosante de recuerdos alegres e irreemplazables la cual es uno tesoros más grandes

encontrados a lo largo de este recorrido.
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Resumen

En este trabajo se propone un método para estimar un estado cuántico descono-

cido con alta precisión mediante la minimización del error cuadrático de las ampli-

tudes de probabilidad complejas entre el estado desconocido y su estimador. Primero

se demuestra como medir f́ısicamente el error cuadrático usando un interferómetro,

mostrándose que una realización f́ısica es posible para setups ópticos actuales. La

técnica de minimización usada para obtener el estimador es una concatenación de

Complex Simultaneous Perturbation Stocastic Approximation (CSPSA), un algo-

ritmo iterativo estocástico que trabaja en el campo de los números complejos y

Maximum Likelihood Estimation (MLE), un método de inferencia estad́ıstica. Ha-

ciendo uso de simulaciones numéricas se evalúa el desempeño del método propuesto,

encontrando que su precisión alcanza un valor dos veces mas grande que la cota in-

ferior de Gill-Massar, la cual expresa el mı́nimo valor posible de alcanzar. Más aún,

esta precisión es independiente del estado desconocido, haciendo el método alta-

mente consistente para todos los estados. La última parte de este trabajo se dedica

a extender el método propuesto a la tarea de estimar transformaciones unitarias

desconocidas actuando sobre un qudit y a exponer los resultados de las correspondi-

entes simulaciones numéricas, las cuales entregan resultados similares a los obtenidos

en estimación de estados

viii



Abstract

This work proposes a method to estimate a quantum state with high accuracy

through the minimization of the squared error of the complex probability amplitudes

between the unknown state and its estimate. We first demonstrate how to physically

measure the squared error using a multi-arm interferometer array, showing that a

physical realization is plausible for actual optics setups. The minimization technique

used to obtain the estimate is a concatenation of Complex Simultaneous Perturba-

tion Stochastic Approximation (CPSA), an iterative stochastic algorithm that work

within the field of complex numbers and Maximum Likelihood Estimation (MLE),

an statistical inference method. By making use of numerical simulation we evaluate

the performance of the proposed method, finding that its accuracy achieves twice the

value of the Gill-Massar lower bound, which is the lowest attainable value. Further-

more, this accuracy is independent of the unknown state, making the method highly

consistent. The remainder of this thesis is dedicated to extend the proposed method

to the task of estimating unknown unitary transformations acting on a qudit, the

corresponding simulations for this case yield similar results to the ones obtained in

state estimation.
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Introduction

Recently, the estimation of unknown quantum states has been studied from the

point of view of the estimation accuracy achievable by means of an ensemble of NT

identically prepared copies of the state to be estimated [28, 40, 22, 34, 41, 18, 53].

The ultime mixed-state estimation accuracy is given by the Gill-Massar lower bound

[17], which establishes the highest possible accuracy achievable by means of separable

measurements on the members of the ensemble. For instance, the mean value Ī of

the Uhlmann-Josza infidelity I = (Tr
√√

ρρ̃
√
ρ)2 [24, 44] on the set of estimates ρ̃

of the unknown state ρ can be employed as a metric for the estimation accuracy. In

this case the Gill-Massar lower bound for a density matrix of dimension d becomes

Ī ≥ I
(mixed)
GM = (d2 − 1)(d+ 1)/4NT [17].

On the other hand, for the case of pure states it has been shown that a much

better accuracy can be obtained. In this case, the Gill-Massar lower bound for the

infidelity is I
(pure)
GM = (d − 1)/NT . The 5-bases based quantum tomographic method

[18] produces an infidelity that lays in between I
(mixed)
GM and I

(pure)
GM [53]. This method

employs an adaptive scheme where measurements on the canonical base are employed

to define four new measurement bases. The five bases determine univocally any pure

state of a single qudit and allow to certify the purity assumption.
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An estimation accuracy closer to I
(pure)
GM can be achieved by means of formulating

the problem of quantum state determination as an optimization problem [16] and

solving it by means of a combination of stochastic optimization on the field of the

complex numbers and maximum likelihood estimation (MLE) [45, 54]. In this ap-

proach the infidelity is considered a real function of complex arguments where the

unknown state plays the role of a set of fixed and unknown complex parameters.

This function is optimized by means of the Complex simultaneous stochastic ap-

proximation (CSPSA) method, which allows to handle non-holomorphic functions

with unknown parameters. This optimization method requires the measurement of

the infidelity at each iteration. The information provided by the sequence of mea-

surements can be employed to enhance the rate of convergence of the optimization

method when processed via maximum likelihood estimation.

Here, we study the estimation of pure quantum states using the mean-squared

error (MSE) as figure of merit for the accuracy. It has been theoretically proven

and experimentally demonstrated that states with a small infidelity might lead to

very different physical properties [6, 10, 29]. Consequently, the infidelity might turn

to be inadequate to assess the estimation of high-dimensional quantum systems.

Therefore, it is advisable to explore other accuracy metrics. We resort to the mean-

squared error mainly because it can be inferred from experimentally acquired data, it

is inexpensive to compute, it is an excellent metric in the context of optimization, and

it is a desirable measure in statistics and estimation theory [27]. We first show that

the squared error (SE) between the probability amplitudes of two pure quantum

states of a single qudit can be measured by means of a multi-arm interferometric

array. This allows us to employ the CSPSA method to optimize SE. This iterative

method and MLE are then combined to drive a sequence of measurements in such a
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way that the SE rapidly decreases at each iteration. Due to the intrinsic stochasticity

of CSPSA, the estimation procedure generates, for a fixed unknown state, a sample of

estimates. Via Monte Carlo numerical experiments we show that the accuracy of the

estimation procedure, that is, the mean of SE on the sample of estimates (or MSE),

is nearly independent of the state to be estimated. Moreover, mean and median of

SE agree on the sample of estimates, which indicates a symmetric distribution of

estimates without outliers. Numerical simulations show that after a few iterations

the estimation of unknown states enters into an asymptotic regime that follows very

closely twice the Gill-Massar bound for the MSE.

We also apply our previous result to the estimation of unknown unitary transfor-

mations. This is an important application since the successful realization of quantum

information protocols and quantum devices requires the use of efficient characteriza-

tion tools. Among these, the most widely employed is Quantum process tomography

(QPT). This is based on a selection of probe states that undergo the process to be

estimated, which is followed by the estimation of the states generated by the pro-

cess. QPT has been applied to multi-qubit processors [33], quantum communications

channels [48], coherent transport in biological mechanisms [52], ion traps [36], nu-

clear magnetic resonance [12], superconducting circuits [8], nitrogen-vacancy color

centers [23], and few-photon linear-optical systems [31, 14, 4].

A quantum process is described as a completely-positive, trace preserving (CPTP)

map, which requires d4−d2 real numbers to be completely characterized. If we know,

however, that the process is unitary, then the number of independent parameters can

be further reduced. For instance, d2 +d measurement outcomes are necessary to dis-

tinguish among unitary transformations [5]. Unitarity can be certified, for example,
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through randomized benchmarking.

We can try to estimate a unitary transformation U with the help of the Uhlmann-

Josza fidelity by applying U to the elements of an orthonormal base and estimat-

ing the generated states. This procedure, however, does not allow obtaining a

set of d phases of the unitary transformation because the Uhlmann-Josza fidelity

is insensitive to global phases. Thereby, it is necessary to increase the number

of states onto which the unitary transformation acts in order to obtain the miss-

ing complex phases. Thus, the use of the Uhlmann-Josza fidelity for estimating

unitary transformations becomes equivalent to the problem of estimating d pure

states and d unknown phases. Alternatively, it is possible to define an infidelity-

guided figure of merit to compare two unitary transformations U1 and U2. This is

given by I(U1, U2) = 1 − |Tr(U1U
†
2)|2/d2 [3]. This can be shown to be equal to

I(U1, U2) = 1 − |〈ψ|(U †1 ⊗ I)(U2 ⊗ I)|ψ〉|2, where |ψ〉 is the two-qudit maximally

entangled state
∑

k(1/
√
d)|k〉 ⊗ |k〉 [2]. Therefore, the measurement of I(U1, U2)

requires the capability of preparing maximally entangled two-qudit states and to

project onto two-qudit states, which separates the estimation of states from that of

unitary transformations. Instead, we apply our results on the estimation of pure

states to the estimation of unitary transformations via the optimization of SE. This

allows us to handle the estimation of states and unitary transformations within the

same theoretical framework, avoid the use of maximally entangled two-qudit states,

avoid increasing the number of measurements, and improve the estimation accuracy

given a fixed number of particles interacting with the unknown unitary process. This

is important, for instance, for measuring biological samples [42] and materials [50]

in scenarios where the number of samples (photons) must be low to avoid sample

damage Our method estimates the columns of an unknown unitary transformation

5



separately, which after post-processing leads to an estimation accuracy for the uni-

tary transformations close to 2d times the Gill-Massar bound for the MSE of a single

unknown pure state. Let us note that our estimation method for states and unitary

transformations, unlike the recent proposals [55], measures all photons in the ensam-

ble size independently, that is, no entanglement is used between photons. Also, most

methods employed to estimate unitary transformations employ tomographic meth-

ods that are designed to estimate mixed states, which has an estimation accuracy

limited by the Gill-Massar lower bound for mixed states.

This thesis is organized as follows: Chapter 1 contains the mathematical frame-

work necessary to understand this work, linear algebra, probability theory, point

estimation theory and optimization methods. Chapter 2 is dedicated for the prin-

ciples of quantum mechanics and quantum tomography. Finally the results of our

work regarding state tomography and unitary process tomography are exposed in

Chapter 3 and Chapter 4 respectively.

6



Chapter 1

Mathematical Concepts

The following chapter consists of a review on the fundamental concepts needed

to understand this work. It starts by showing the central pillar in which quantum

mechanics is funded, linear algebra. The next section shows the preliminary concepts

of probability theory, which allow us to work with the non-deterministic nature of

quantum mechanics. The following section is dedicated to point estimation theory,

the framework that studies the concepts that are necessary in the task of finding

unknown parameters. Finally the chapter is closed with a section of optimization

methods, introducing the algorithms used in this work.

1.1 Linear Algebra

Linear algebra is the study of vector spaces and of linear operations on those

vectors [32].

7



1.1.1 Vector Spaces

Definition 1 A non empty set V is called a vector space over K (where K is a

scalar field), if there are defined two operations,

• A internal one: a sum of vectors + : V ×V → V ,which for any |ψ 〉, |φ 〉, |ϕ 〉 ∈

V satisfies:

1. Commutativity |ψ 〉+ |φ 〉 = |φ 〉+ |ψ 〉.

2. Associativity (|ψ 〉+ |φ 〉) + |ϕ 〉 = |ψ 〉+ (|φ 〉+ |ϕ 〉).

3. There is a unique element 0V ∈ V such that |ψ 〉+ 0V = 0V + |ψ 〉 = |ψ 〉.

4. For each vector |ψ 〉 ∈ V , exist (−|ψ 〉) ∈ V such that |ψ 〉 + (−|ψ 〉) =

(−|ψ 〉) + |ψ 〉 = 0V s.

• an exterior one: the product by a scalar · : K×V → V . which for any k, k′ ∈ K

and |ψ 〉, |φ 〉 ∈ |ψ 〉 satisfies:

1. (k + k′)|ψ 〉 = k|ψ 〉+ k′|ψ 〉.

2. k(|ψ 〉+ |φ 〉) = k|ψ 〉+ k|φ 〉.

3. k(k′|ψ 〉) = (kk′)|ψ 〉.

4. 1K|ψ 〉 = |ψ 〉.

8



For vector spaces of finite dimension d, the vectors are represented as

|ψ 〉 =



c1

c2

...

cd


. (1.1)

A basis for a vector space V is a set of vectors B = {| ei 〉 ∈ V }di=1 that allows to

express all vectors in V as a linear combination of the elements of the basis, that is,

for any vector |ψ 〉 ∈ V there exist a set of numbers {ψi ∈ K}di=1 such that

|ψ 〉 =
n∑
i=1

ψi| ei 〉.

If
∑
αi| i 〉 = 0 implies that αi = 0 for all i, then we say that the basis B is linearly

independent, otherwise it is called linearly dependent. The number of elements in an

independent basis defines the dimension of the vector space.

Over a vector space we can define an inner product, which is a function whose

inputs are two vectors and return a value over the scalar field K, more specifically

[21]

Definition 2 Let K be the field of real or complex numbers, and V be a vector space

over K. An inner product on V is a function (·, ·) : V × V → K which assigns to

each ordered pair of vectors |ψ 〉, |φ 〉 ∈ V a scalar (|ψ 〉, |φ 〉) ∈ K in such a way

that for all |ψ 〉, |φ 〉, |ϕ 〉 ∈ V and all scalar c

• (|ψ 〉+ |φ 〉, |ϕ 〉) = (|ψ 〉, |ϕ 〉) + (|φ 〉, |ϕ 〉).

• (c|ψ 〉, |φ 〉) = c(|ψ 〉, |φ 〉).
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• (|ψ 〉, |φ 〉) = (|φ 〉, |ψ 〉)∗, where ∗ denotes complex conjugate.

• (|ψ 〉, |ψ 〉) ≥ 0 with equality if and only if |ψ 〉 = 0.

In a space provided with an inner product, the norm 1 induced by the inner

product can be defined as

‖ |ψ 〉 ‖ =
√

(|ψ 〉, |ψ 〉).

Two vectors are said to be orthogonal if their inner product is 0, that is, (|ψ 〉, |φ 〉) =

0. It is also said that |ψ 〉 is a unit vector if ‖ |ψ 〉 ‖ = 1. A basis B = {| i 〉}ni=1 of V

is orthonormal if all the vectors on B are unitary and (| i 〉, | j 〉) = δij for any i, j.

Now for any pair of vectors |ψ 〉, |φ 〉 ∈ V there is an adjoint 〈ψ | such that

(|ψ 〉, |φ 〉) = 〈ψ |φ 〉. (1.2)

The set of all adjoints vectors is a space denoted as the dual space V ∗. Usually in

quantum mechanics the operation that transforms a vector from V to the adjoint in

V ∗ is denoted by 〈ψ | = |ψ 〉†, and the operation depends on the type of space being

treated. For example in a vector space of finite dimension, the adjoint vector 〈ψ |

correspond to the conjugate transpose of |ψ 〉.

Being V a vector space provided with a inner product (·, ·), and hence an induced

norm || · ||, then we can define successions {|ψi 〉}∞i=1 of V and the convergence of

1From this definition it can be seen that in every vector space with an inner product we can
define a norm, but the converse is not true, that is, not every normed vector space has an inner
product, but we are not going to dwell more deep into this, nor remark the differences from those
two kinds of spaces in the future since it is not relevant for our works
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them.

Definition 3 A succession {|ψi 〉}∞i=1 of elements in V is said to converge (strongly)

to |ψ0 〉, if limn→∞ ‖ |ψi 〉 − |ψ0 〉 ‖ = 0.

An important type of succession are the Cauchy successions, since it has been

proven that every convergent succession on a set V is a Cauchy succession [38]. These

successions are defined as follows.

Definition 4 A succession {|ψi 〉}∞i=1 of elements in V is said to be a Cauchy suc-

cession if limn,m→∞ ‖ |ψn 〉 − |ψm 〉 ‖ = 0, that is

∀ε > 0,∃N > 0; ‖ |ψn 〉 − |ψm 〉 ‖ < ε, ∀m,n > N.

If every Cauchy succession in V is also convergent in V , then we say that V is

complete.

All these previous definitions allow us now to define a Hilbert Space, the one in

which quantum mechanics are defined over.

Definition 5 A Hilbert space H is a vector space V with an inner product (·, ·),

which is complete under the norm induced by the inner product.

11



1.1.2 Linear Operators

Definition 6 A linear operator is a function A : V → V ′ that satisfies

A

(∑
i

αi|wi 〉

)
=
∑
i

αiA(|wi 〉). (1.3)

we say that A is defined on V if A is an operator from V to V . Among the operators

defined on any vector space V , an important one is the identity IV , which satisfy

IV | v 〉 = | v 〉 for any | v 〉. The space of all operators acting on V is denoted as L(V ).

In the case of vector spaces of finite dimension, the operators acting on them can

be represented as matrices of the form

A =



A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

...
...

An1 An2 · · · Anm


. (1.4)

A convenient way to represent a linear operator is based on the outer product,

which is an application between a pair of vectors | v 〉 ∈ V and |w 〉 ∈ W , such that

(|w 〉〈 v |) | z 〉 = 〈 v | z 〉|w 〉 ∀| z 〉 ∈ V. (1.5)

We notice that |w 〉〈 v | is a linear operator that maps a vector in V into another one

in W . Meaning that any linear operator can be written as a superposition of |w〉〈v|.

The identity IV can be expressed, given any basis {| i 〉} of V , as IV =
∑

i | i 〉〈 i |. To

12



prove this, let | v 〉 =
∑

i vi| i 〉 be an arbitrary vector, then

IV | v 〉 =
∑
i

| i 〉〈 i | v 〉 =
∑
i

vi| i 〉 = | v 〉. (1.6)

Which demonstrates the completion relation IV =
∑

i | i 〉〈 i |, an equation that all

complete basis should satisfy.

Definition 7 Let V be a vector space and A,B ∈ L(V ) be a pair of operators, then

the commutator between them is defined as

[A,B] = AB −BA. (1.7)

The notion of commutator appears since the product between two different opera-

tors may not be commutative, implying the importance of the order when applying

multiple operators

Definition 8 Let A ∈ L(V ) be any operator, then the sets of numbers λi ∈ R and

vectors |λi 〉 ∈ V are called eigenvalues and eigenvectors of A respectively if they

satisfy

A|λi 〉 = λi|λi 〉. (1.8)

The eigenvalues can be found by using the characteristic equation defined as

c(λ) = det (A− λIV ) = 0, (1.9)

This equation can be easily derived from Eq.(1.8) and it is equivalent to a poly-

nomial with a degree equal to the dimension d of the space, meaning that there

13



are at most d different complex eigenvalues. It is possible that the characteristic

polynomial has a root with a multiplicity m higher than one, which means that the

corresponding eigenvalue is associated to m different eigenvectors. The eigenvectors

are orthonormal and they form a complete basis of the space V .

Definition 9 Let H be a Hilbert space and A ∈ L(H). The norm of A is defined as

‖A ‖ = sup
|ψ 〉∈V−{0}

‖A|ψ 〉 ‖
‖ |ψ 〉 ‖

(1.10)

An operator A is said to be bounded if the norm ‖A ‖ does not diverge.

Definition 10 Let A be a bounded linear operator acting on a Hilbert space H, then

there is a unique operator A† defined as the adjoint or Hermitian conjugate of A,

such that for any pair of vector | v 〉, | z 〉 ∈ V ,

(| v 〉, A| z 〉) = (A†| v 〉, | z 〉). (1.11)

If the operator is defined on a vector space of finite dimension, then the adjoint A†

is equivalent to the conjugate transpose of A.

An operator A is defined as hermitian or self-adjoint, if A is equal to its own

adjoint A†. The eigenvalues of hermitian operators are real numbers, in effect

λ = 〈λ |A|λ 〉 = 〈λ |A†|λ 〉 = 〈λ |A†|λ 〉∗ = λ∗. (1.12)

An hermitian operator A is said to be positive definite if all the eigenvalues of A

are positive. This is commonly denoted as A > 0.
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Let V have a vector subspace V1 ⊂ V . An operator P ∈ L(V ) is called a projector

if P : V → V1. An important remark about projectors is that they are hermitian.

Indeed, for any basis B1 = {|wi 〉}ki=1 of V1 the projector can be written as

P =
k∑
i=1

|wi 〉〈wi |, (1.13)

and then by calculating the adjoint the expression remains the same.

Another important class of linear operators outside hermitians are the unitary

operators U ∈ L(H), defined as the ones satisfying

U−1 = U †, (1.14)

therefore preserving the inner product. In effect, for any pair of vectors |w 〉, | v 〉 ∈ H

the inner product between U |w 〉 and U | v 〉 is given by

(U |w 〉, U | v 〉) = 〈w |U †U | v 〉 = 〈w | v 〉. (1.15)

An immediate consequence is that unitary operators preserve the norm of a vector.

The eigenvalues of a unitary operator are complex numbers of modulus 1. To see

this, lets suppose that |λ 〉 ∈ H is an eigenvector, then U |λ 〉 has the same norm as

|λ 〉, therefore they can only differ on a phase, meaning that there exist φ ∈ R such

that

U |λ 〉 = eiφ|λ 〉. (1.16)

Unitary operators preserving the inner product implies that any unitary U ∈

L(H) acting on an orthonormal basis B of H returns a different orthonormal basis
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B′, if the elements of B are not the eigenvectors of B. Effectively, if B = {| vi 〉} and

U | vi 〉 = |wi 〉, then the inner product between any pair |wi 〉, |wj 〉 ∈ H is

〈wi |wj 〉 = 〈 vi |U †U | vj 〉 = 〈 vi | vj 〉 = δij, (1.17)

An operator A ∈ L(H) is said to be normal if AA† = A†A, or equivalently

[A,A†] = 0.

Theorem 1 (Spectral Decomposition[32]) LetH be a finite dimensional Hilbert space.

Then any normal operator A ∈ L(H) with eigenvalues λi and eigenvectors |λi 〉 can

be expressed as

A =
d∑
i=1

λi|λi 〉〈λi |. (1.18)

This means that A is diagonal with respect to some orthonormal basis on H.

The spectral decomposition expresses an useful and easy way of writing a normal

operator. Besides, has a major importance since any function f : H → H that can

be expanded as a Taylor series is defined to be applied as follows

f(A) =
d∑
i=1

f(λi)|λi 〉〈λi |. (1.19)

Another consequence of the spectral decomposition theorem is that the com-

mutator between two operators A,B with the same eigenvectors is 0, or stated in

other way, any pair of operators with a non-zero conmutator do not share a common

eigenbasis.

Definition 11 Let V be a finite dimensional space and A ∈ L(V ) a matrix. Then
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the trace is a function Tr : L(V )→ C defined as the sum over the diagonal elements

of A, that is

Tr(A) =
∑
i

Aii =
∑
〈 i |A| i 〉, (1.20)

where {| i 〉} can be an arbitrary basis of V , and is invariant of the choice.

Some of the properties of the trace are being linear Tr(γA + βB) = γTr(A) +

βTr(B), cyclic Tr(AB) = Tr(BA) and invariant under unitary similarity transfor-

mations A→ UAU †, meaning Tr(A) = Tr(UAU †).

Since the trace Tr(A) =
∑
〈 i |A| i 〉 is invariant of the chosen basis {| i 〉}, then

by taking the eigenvectors {|λi 〉} of A as the basis, it can be proven that the trace

is equal to the sum of the eigenvalues, that is Tr(A) =
∑
λi.

Definition 12 Let L(V ) be the set of linear operators defined on a finite dimensional

vector space. Then the Hilbert-Schmidt product is an inner product 〈·, ·〉 : L(V ) ×

L(V )→ C defined as

〈A,B〉 = Tr(A†B) (1.21)

Since L(V ) is a vector space on itself, and it has an inner product defined. Then

the norm induced by the inner product is

‖A ‖HS =
√
〈A,A〉 =

√
Tr(A†A) =

√∑
i,j

|Ai,j |2 (1.22)

and is known as the Hilbert-Schmidt norm. Furthermore, given two operators A,B ∈

L(V ), the distance between them can be obtained using

‖A−B ‖HS =
√

Tr [(A−B)†(A−B)]. (1.23)
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1.1.3 Direct Sum and Tensor Product

Definition 13 Let V be a vector space and V1, V2 ⊂ V the subspaces. Then V is

said to be the direct sum of V1 and V2, denoted as V = V1~⊕V2 if any vector | v 〉 ∈ V

can be written uniquely as | v 〉 = | v1 〉+ | v2 〉, meaning that there is only one vector

| v1 〉 ∈ V1 and only one vector | v2 〉 ∈ V2 satisfying the condition.

If the sub-spaces V1 and V2 are orthogonal, then the direct sum is denoted as

V1 ⊕ V2 and is called orthogonal direct sum.

In a vector space V = V1~⊕V2 the action of a projector P1 : V → V1 returns the

only vector | v1 〉 of the decomposition described on definition 13, and equivalently

for a projector P2 : V → V2.

Definition 14 Given the vector spaces V and W , the tensor product space V ⊗W

is the vector space composed of all the ordered pairs | v 〉 ⊗ |w 〉 where | v 〉 ∈ V and

|w 〉 ∈ W and all the linear combination

α1| v1 〉 ⊗ |w1 〉+ α2| v2 〉 ⊗ |w2 〉+ · · · (1.24)

Let {| vi 〉}mi=1 and {|wj 〉}nj=1 be complete bases for V and W respectively, then

{| vi 〉 ⊗ |wj 〉 | i = 1,m ∧ j = 1, n} is a complete basis for the mn dimensional

vector space V ⊗W .

The tensor product space is linear in each of the arguments, that is

(α1| v1 〉+ α2| v2 〉)⊗ |w 〉 = α1| v1 〉 ⊗ |w 〉+ α2| v2 〉 ⊗ |w 〉 (1.25)

| v 〉 ⊗ (β1|w1 〉+ β2|w2 〉) = β1| v 〉 ⊗ |w1 〉+ β2| v 〉 ⊗ |w2 〉. (1.26)
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The linear operators C defined on a tensor product space V1 ⊗ V2 have the form

C = A ⊗ B with A : V1 → V ′1 and B : V2 → V ′2 , or linear combinations C =∑
γiAi ⊗Bi. Their action on vectors | v1 〉 ⊗ | v2 〉 is given by

(A⊗B)(| v1 〉 ⊗ | v2 〉) = A| v1 〉 ⊗B| v2 〉. (1.27)

In a finite dimensional vector space, the tensor product translates to the Kro-

necker product, which for vectors is computed as

| v 〉 ⊗ |w 〉 =



v1

v2

...

vn


⊗ |w 〉 =



v1|w 〉

v2|w 〉
...

vn|w 〉


, (1.28)

and for operators is

A⊗B =


A1,1 · · · A1,n

...
...

...

Am,1 · · · Am,n

⊗B =


A1,1B · · · A1,nB

...
...

...

Am,1B · · · Am,nB

 . (1.29)

1.1.4 Gram-Schmidt Orthonormalization Procedure

In a vector space V of finite dimension, several bases can be defined and all

of them are complete, but there are basis that are not orthonormal, which some-

times is inconvenient. However, there is a procedure to transform any basis into an

orthonormal one, this algorithm is known as the Gram-Schmidt procedure.

Given any non-orthonormal basis B = {| vi 〉}di=1 of V , the objective is to trans-
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form B into an orthonormal basis B′ = {| zi 〉}di=1 with a one-to-one map. So, first lets

define |w1 〉 = | v1 〉. The following step is to define |w2 〉 as |v2〉 minus the projection

of | v2 〉 over |w1 〉, meaning

|w2 〉 = | v2 〉 −
〈 v2 |w1 〉
〈w1 |w1 〉

|w1 〉. (1.30)

And the rest of the algorithm is to repeat this step for the following vector of the

basis. Summarizing

|w1 〉 = | v1 〉

|w2 〉 = | v2 〉 −
〈 v2 |w1 〉
〈w1 |w1 〉

|w1 〉

|w3 〉 = | v3 〉 −
〈 v3 |w1 〉
〈w1 |w1 〉

|w1 〉 −
〈 v3 |w2 〉
〈w2 |w2 〉

|w2 〉

...

|wk 〉 = | vk 〉 −
k−1∑
i=1

〈 vk |wi 〉
〈wi |wi 〉

|wi 〉. (1.31)

Since the basis {|wi 〉} is orthogonal by construction, and is generated as a biyect

map from B, the orthonormality can be easily accomplished by defining

B′ = {| zi 〉} =

{
|wi 〉
‖ |wi 〉 ‖

}
. (1.32)

The Gram-Schmidt procedure is useful in many ways, one of them is to generate

unitary matrices for any random matrix. In effect, since UU † = IV , it can be

concluded that any column of an unitary matrix is a unitary vector and the inner

product between two different columns is 0, hence a method to generate a unitary

matrix from a random one would be to apply the Gram-Schmidt procedure to the
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column vectors of the original matrix.

1.1.5 Nearest Unitary Matrix

In section 1.1.4 was proven that a unitary matrix U ∈ L(H) can be generated

from any random matrix A ∈ H, but not necessarily the nearest to the original

operator A.

Given any invertible matrix A ∈ L(H), the problem is to find a unitary matrix

U that solves the optimization problem

min ‖A− U ‖2
HS

subject to: U †U = I (1.33)

where ‖ · ‖HS is the Hilbert-Schmidt norm introduced in Eq. (1.22). To solve this

optimization problem we use the hermitian Lagrangian multiplier Λ and search for

stationary points on the Lagrangian

L(U,Λ) = Tr
[
(A− U)†(A− U)

]
+ Tr[Λ(U †U − I)]. (1.34)

The stationary points are determined by the equation

d

dU
L(U,Λ) = 0, (1.35)

where the derivative with respect to an operator is carried out with the Fréchet

derivative [7] of a function f : H → H ′, defined as
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d

dX
f(X)(V ) = lim

t→0

d

dt
f(X + tV ). (1.36)

In order to find a solution it is useful to notice that for A ∈ L(H) a constant matrix

d

dX
Tr(AX†X)(V ) = lim

t→0

d

dt
Tr
[
A(X + tV )†(X + tV )

]
(1.37)

=Tr
[
AV †X + AX†V

]
. (1.38)

Now, using the result of Eq. (1.38) and replacing it into Eq. (1.35) gives the expression

d

dU
L(U, λ)(V ) =Tr[V †(U − A) + (U − A)†V ] + Tr[ΛV †U + ΛU †V ] (1.39)

=Tr[V †(U − A+ UΛ)] + Tr[(U − A+ UΛ)†V ] = 0. (1.40)

Remembering that Tr(A†B) = 〈A,B〉 is the Hilbert-Schmidt product introduced in

definition 12, and it satisfies Tr(B†A) = 〈B,A〉∗, then Eq. (1.40) can be written as

Tr[V †(U − A+ UΛ)] + Tr[V †(U − A+ UΛ)]∗ = 0. (1.41)

It can be seen that Eq.(1.41) holds trivially for the imaginary part, but the real part

does not hold. Therefore, Eq. (1.41) is true for any matrix V if U −A+UΛ = 0, or

equivalently

A = U(Λ + I). (1.42)

Then the Lagrange multiplier Λ can be found by computing A†A, yielding

Λ = (A†A)
1
2 − I. (1.43)
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Replacing this into Eq.(1.42) and clearing U , using the fact that A is invertible by

definition results in

U = A(A†A)−
1
2 , (1.44)

which is the nearest unitary U to the arbitrary invertible matrix A.

1.2 Probability Theory

Probability theory is the mathematical framework that studies rigorously non-

deterministic or uncertain behaviors that are present in nature.

1.2.1 Axioms

Consider an experiment in which the possible outcomes are well know, but it

is impossible to predict the specific outcome beforehand. The set of all possibles

outcomes ω defines the sample space Ω, and the subsets E ⊂ Ω are the events of the

experiment [37].

Definition 15 Let Ω be an arbitrary nonempty space. A class Fof subsets of Ω is

called a field if [9]

1. Ω ∈ F .

2. E ∈ F implies Ec ∈ F .

3. E1, E2 ∈ F implies E1 ∪ E2 ∈ F , or equivalently E1 ∩ E2 ∈ F

Thus, F usually is the set that contains all possible events of the experiment. In

order to establish a relation between an event E with its probability of occurrence,

is necessary to introduce a function P : F → [0, 1]. Any proper probability function
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or measure P has to satisfy the following axioms.

• Axiom 1: 0 ≤ P (E) ≤ 1.

• Axiom 2: P (Ω) = 1.

• Axiom 3: For any sequence of mutually exclusive events E1, E2, . . . (meaning,

events for which Ei ∩ Ej = φ when i 6= j),

P

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

P (Ei), (1.45)

By looking at the axioms, it can be noticed that if E1 = Ω and Ei≥2 = φ, then by

using axiom 3

P (Ω) =
∞∑
i=i

P (Ei) = P (Ω) +
∞∑
i=2

P (φ), (1.46)

implies that P (φ) = 0, meaning that the empty set φ is a set of null probability.

1.2.2 Random Variables and Expected Values

A function X : Ω→ R is called random variable, and is used to assign numerical

values to every outcome of an experiment, if X can take at most a countable2 number

of values it is said to be discrete. For example, in the experiment of tossing a fair

coin, the possible outcomes are Ω = {H,T}, therefore the random variable X could

be defined as 0 for heads and 1 for tails, and the probabilities P (X = 0) = P (X =

1) = 1/2 are the distribution of the random variable.

Definition 16 For a discrete random variable X, the probability mass function of

2A set is said to be countable if there is a one-to-one map with any subset I of the natural
numbers N.
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X, p : R→ [0, 1], is defined by

p(a) = P (X = a). (1.47)

In the discrete case, let {xi}i∈I⊆N be the set of values of the random variable X,

then the probability mass function must satisfy

∑
i∈I

p(xi) = 1, (1.48)

since the experiment has to have an outcome represented by X.

The expected value E(X) of the random variable X is defined by

E[X] =
∑
i∈I

xip(xi) =
∑
ω∈Ω

X(ω)P ({ω}). (1.49)

As it can be seen, the expected value is basically the weighted average of X, each

weight being the probability of each value xi. In the same way, any function of a

random variable g(X) is on itself a random variable, with an expectation value [37]

E[g(X)] =
∑
i∈I

g(xi)p(xi). (1.50)

As it was explained before, the expected value of a random variable X is the

weighted average, therefore, it defines the mean µ = E[X] of a random variable.

The variance of X, is defined by

Var(X) = E[(X − µ)2]. (1.51)
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For a random variable X, the variance Var(X) represent the dispersion or spread

with respect to the mean µ, and both quantities serve as a useful manner to give

information about the probability function of the random variable. The variance can

be computed also as

Var(X) =E[(X − µ)2] (1.52)

=E[X2 − 2Xµ+ µ2] (1.53)

=E[X2]− 2µE[X] + µ2 (1.54)

=E[X2]− µ2. (1.55)

On the other hand, a random variable with an uncountable3 set of possible values

is said to be continuous. Let B = {X(ω) ∈ R|ω ∈ E} ⊂ R be the set of values of the

random variable associated with the event E, then the probability density function

is a non-negative function f : R→ R+ defined by

P (X = B) =

∫
B

f(x)dx, (1.56)

and is the counterpart of the probability mass function for the discrete case. There-

fore, since X must take some value after the experiment, f must satisfy

∫ +∞

−∞
f(x)dx = 1. (1.57)

In this manner, the equations defined for a discrete variable are now replaced by

their equivalents with integrals. In this way, the expected value of a function g in

3A set A such that there does not exist a bijection between A and any subset I of the natural
numbers
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the continuous case is

E[g(X)] =

∫ +∞

−∞
g(x)f(x)dx. (1.58)

The probability of an event that has a dependency on the occurrence of another

known event is defined as conditional probability. For example, the probability that

tomorrow rains if it is known that today and yesterday has already rained. Condi-

tional probabilities offer a more accurate description of events by using more relevant

information. In the previous example, the probability of rain tomorrow obtained

from a more naive calculation, as it could be the probability of rain on any given

day of the year, is likely to yield a different prediction, and less accurate, than the

probability of rain conditioned to the weather on the previous days, and the current

season.

Therefore, the conditional probability [46] of an event A, given that an event B

has occurred is equal to

P (A|B) =
P (A ∩B)

P (B)
(1.59)

provided P (B) > 0

1.2.3 Joint Distributions

Up to this point, the study of the probability of multiple events has been left un-

touched, since every definition until now has been for single events, or more formally,

for probability distributions of single randoms variables.

An example of multiple events could be the experiment of throwing a pair of

coins, and asking what is the probability of obtaining two tails. The function that

deals with such probabilities is called joint probability distribution which is the main
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topic of this section.

Thus, the joint probability function is defined as

p(x1, · · · , xn) = P (X1 = x1, · · · , Xn = xn) (1.60)

and it computes the probability that all the events labeled by xi may happen in a

given experiment altogether.

For simplicity, suppose that p is the joint probability distribution of two random

variables X and Y , then, the marginal probability distribution of X is defined by

pX(x) =
∑
y

p(x, y) =
∑
y

P (X = x, Y = y), (1.61)

and it is equivalent to the probability function of X.

An especial case of multivariate distributions is when the random variables are

independent between them. For example, if a dice is thrown several times, each

individual result does not depend on the previous output of the dice, making each

throwing independent.

By definition, a set of random variables {Xi} are said to be independent if and

only if their joint probability distribution p(x1, · · · , xn) satisfies

p(x1, x2, · · · , pn) = p1(x1)p2(x2) · · · pn(xn) (1.62)
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1.3 Point Estimation

This section present the basic concepts and tools from the theory of point estima-

tion, which is of vital importance in the task of constructing a model whose behavior

resembles closely the data obtained from the experiments perform on a system, this

is usually achieved by estimating a set of parameters that describe the system.

1.3.1 Estimators

In scenarios in which there is a given data-set, and our task is to find a probability

density function that can originate the data, an important step is to propose a model.

A model in this section is defined as a probability density function p(x|θ) in which

x ∈ R is the random variable, and θ ∈ Θ are the parameters that characterize the

density function.

Since p(x|θ) is a density function, it must satisfy the conditions specified in the

section 1.2. An example of a model can be the normal distribution

p(x|σ, µ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (1.63)

where µ and σ are the parameters of the function, it can be noted that different

values of µ and σ generate different density functions.

Once the model is proposed, the next step is to find a good guess of the unknown

parameters through the analysis of the data. Said guess, denoted by θ̃(x), is called

estimator and is defined over the sample space Ω (Section 1.2.1), meaning that

is a random variable, and it is used to estimate the unknown parameter θ called

estimand [27].

29



An estimator is said to be unbiased if it satisfy the following condition

E
[
θ̃(x)

∣∣∣x] = θ. (1.64)

This condition ensures that the estimated value will be correct on average.

Another important quantity that can be computed from an estimator is the mean

squared error, which quantifies the spread of the estimator θ̃(x) around the target

parameter θ [15]. It is defined as

MSE
(
θ̃(x)

)
= E

[(
θ̃(x)− θ

)2
∣∣∣∣x] , (1.65)

which by defining µ̃ = E(θ̃) can then be rewritten as

MSE
(
θ̃(x)

)
=E

[(
θ̃ − θ

)2
]

(1.66)

=E
[(
θ̃ + µ̃− µ̃− θ

)2
]

(1.67)

=E
[(
θ̃ − µ̃

)2
]

+ (µ̃− θ)2 + 2E
[
θ̃ − µ̃

]
(µ̃− θ) (1.68)

=E
[(
θ̃ − µ̃

)2
]

+ (µ̃− θ)2 (1.69)

=Var(θ̃) + (E(θ̃)− θ)2. (1.70)

Where Var(θ̃) is the variance defined in Eq. (1.51). The term E(θ̃)−θ in Eq. (1.70) is

defined as the bias of the estimator, since it is related to the expression in Eq. (1.64)

when it does not hold, serving as a quantifier of the estimator biasedness.

The result of Eq.(1.70) shows that the mean squared error is the dispersion,

represented in the variance, plus the bias of the estimator. Therefore an estimator
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with a low mean squared error is more accurate and efficient than one with a high

MSE[15].

1.3.2 Maximum Likelihood Estimation

An important tool in statistics and point estimation theory is the Likelihood

function, as it measures in some way how well a theoretical model can adjust to a

data acquired from a unknown probability distribution.

The likelihood function is defined as the model of the joint density function

evaluated at the observed data [30]. That is, being f(x|θ) the proposed model for

the data, and y = (y1, · · · , yn) the value which the random variable x takes at the

observed data, then the likelihood function L : Θ→ R is

L(θ) = f(y|θ). (1.71)

The maximum likelihood estimation method is then based on the maximum like-

lihood principle, which states that the estimator θ̃ of the parameter θ should be

chosen such that

θ̃ = arg max
θ∈Θ

L(θ). (1.72)

Interestingly, in a vast amount of cases the available data y correspond to the

values of a set of independent random variables {Yi}ni=1, then according to Eq. (1.62)

the likelihood can be expressed as

L(θ) =
n∏
i=1

f1(y1|θ). (1.73)
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However, the likelihood is not frequently used for calculations, instead people

often recur to the log-likelihood defined as

l(θ) = logL(θ). (1.74)

This because of mainly two reasons; the log-likelihood and likelihood achieve their

maximum at the same parameter value, and the log-likelihood is a more simple

function to make calculations (and consequently easier to optimize).

To have a better understanding of the last affirmation, consider the set {Yi}i of

independent random variables, then l(θ) takes the form

l(θ) =
n∑
i=1

log fi(yi|θ), (1.75)

which is a more simple expression to minimize than Eq.(1.73).

As a final remark, the scenarios in which maximum likelihood estimation is used,

are often of independent random variables with identical distributions, therefore, the

function Eq.(1.75) is frequently used. In fact since the distributions are identical,

the subscript i of f is dropped, leaving the log-likelihood as

l(θ) =
n∑
i=1

f(yi|θ) (1.76)

1.3.3 Fisher Information Matrix

The fisher information matrix is used to quantify the amount of information that

we have of a given data-set, which makes it a valuable tool in many applications, one
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for example, being the computation of bounds for merit figures, such as the MSE[20].

Let θ̃ = (θ̃1 · · · θ̃m)t be an unbiased estimator of θ, and v = (v1 · · · vn)t a set of

outcomes of a probability density function p(v|θ). Since the estimators θ̃(v) are

unbiased, then we have the equality

∂

∂θk
E[θ̃j|θ] =

∫
Rn
θ̃j(v)pk(v|θ)dnv =

∂

∂θk
θj = δjk, (1.77)

where we have defined pk(v|θ) = ∂
∂θk
p(v|θ). Using the fact that the probability is

normalized, we can find the following relation

∫
Rn

(θ̃j(v)− θj)pk(v|θ)dnv = δjk. (1.78)

Finally, we multiply this expression by the arbitrary vectors yj and zk, then do the

sum over both indexes, getting

∑
j,k

∫
Rn
yj(θ̃j(v)− θj)zkpk(v|θ)dnv = E[g(v)f(v)|θ] = ytz.4 (1.79)

Where we have conveniently defined the functions

f(v) =
∑
j

yj

(
θ̃j(v)− θj

)
, (1.80)

and

g(v) =
∑
k

zk
∂

∂θk
ln(p(v|θ)). (1.81)

4yt stands for the transpose of y
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If we apply the Cauchy-Schwartz inequality to Eq. (1.79), then

(ytz)2 = E[g(v)f(v)|θ]2 (1.82)

=

(∫
Rn
f(v)g(v)p(v|θ)dnv

)2

(1.83)

≤
(∫

Rn
f 2(v)p(v|θ)dnv

)(∫
Rn
g2(v)p(v|θ)dnv

)
(1.84)

= E[f 2(v)|θ]E[g2(v)|θ]. (1.85)

Analyzing these terms separately we have

E[f 2(v)|θ] =

∫
Rn

∑
j

yj(θ̃j(v)− θj)
∑
k

yk(θ̃k(v)− θk)p(v|θ)dnv (1.86)

=
∑
j,k

yjyk

∫
Rn

[θ̃j(v)− θj][θ̃k(v)− θk]p(v|θ)dnv (1.87)

=
∑
j,k

yjE
[

(θ̃j − θj)(θ̃k − θk)
∣∣∣θ] yk (1.88)

=
∑
j,k

yjCjkyk (1.89)

= ytCy, (1.90)

where we have defined the covariance matrix

Cjk = E
[

(θ̃j − θj)(θ̃k − θk)
∣∣∣θ] . (1.91)
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On the other hand we have

E[g2(v)|θ] =

∫
Rn

∑
k

[
zk

∂

∂θk
ln(p(v|θ))

]∑
j

[
zj

∂

∂θj
ln(p(v|θ))

]
p(v|θ)dnv (1.92)

=
∑
j,k

zjzk

∫
Rn

∂

∂θk
ln(p(v|θ))

∂

∂θj
ln(p(v|θ))p(v|θ)dnv (1.93)

=
∑
j,k

zjzkE
[
∂

∂θk
ln p(v|θ)

∂

∂θj
ln p(v|θ)

∣∣∣∣θ] (1.94)

= ztIz, (1.95)

Here we have introduced the matrix I whose components are given by the expression

Ijk = E
[
∂

∂θk
ln p(v|θ)

∂

∂θj
ln p(v|θ)

∣∣∣∣θ] , (1.96)

which is known as the Fisher Information Matrix, and is a function whose only

dependency is on p(v|θ).

Now by replacing Eq. (1.90) and Eq. (1.95) back into Eq. (1.85) we get the

inequality

(zty)2 ≤ ytCyztIz. (1.97)

And by occupying the particular choice z = I−1y we get

C − I−1 ≥ 0, (1.98)

which is known as the Cramér-Rao inequality. From here we can multiply by a

weight matrix W and take the trace of the expression, which yields

WMSE(θ̃) ≤ Tr[WI−1]. (1.99)
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Hence, from the Cramér-Rao inequality Eq. (1.98) we can derive a fundamental

bound on error measures, such as the weighted mean squared error (WMSE) in

Eq. (1.99), or other ones by performing different operations on Eq. (1.98). Further-

more, this bound depends solely on the Fisher Information Matrix, which implies

that said matrix contains the amount known information of the system, as it is a

function solely of the probability function evaluated at the available data v. Finally,

the use of the Fisher Information Matrix is more wide than bound calculations,

however it escapes the scope of this work so they will not be included.

1.4 Optimization Methods

Optimization is the branch of mathematics that focuses on finding the maximum

(or minimum) value of a target function.

Formalizing the problem, let f : Θ → R be the objective function. Then the

optimization problem can be formally represented [39] as finding the set

Θ∗ = arg min
θ∈Θ

f(θ) = {θ∗ ∈ Θ : f(θ∗) ≤ f(θ) ∀ θ ∈ Θ}, (1.100)

Even through the solution Θ∗ is expressed as a set, it is completely plausible that

the set contains only one point, or a finite amount of points or could even be a set

containing infinite elements, however, no matter the case we will always restrict to

finding only one solution, at least in the current work.

An important distinction between the solutions of a problem is if they are global

or local, that is, if f(θ∗) is the optimal value of f in all the domain Θ or if it is
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only the optimal value in the neighborhood of θ∗. A global solution is the ideal to

achieve through any optimization method, however in many cases the shape of the

target function is too hard to handle and only a local solution is available. Gladly,

local solutions are often more than enough.

The attempts at estimating θ∗ are done in an iterative manner, starting with an

initial estimator θ̃0 to final one θ̃k that is expected to be closer to θ∗ that the initial.

The remark of the section will consist on describing three optimization methods;

Steepest Descent, as one of the oldest optimization techniques, from which the re-

maining two methods can be understood. SPSA an stochastic algorithm based on

the estimation of the gradient. Finally, SPSA extension to complex field of numbers,

CSPSA.

1.4.1 Steepest Descent

Steepest descent, being one of the first introduced formal methods for optimiza-

tion, relies in a very simple but fundamental principle; Given a value θ, the best

direction to search is the one that produces the largest local change in the target

function f : Θ → R [39], said direction determined by the gradient of the function

g(θ) = ∇f(θ). Thus, the iterative algorithm to construct a guess (estimator) for

the optimum parameter is given by the actualization rule

θ̃k+1 = θ̃k − akg(θ̃k) (1.101)

where k is the iteration step, θ̃k is a guess of θ∗ for said step and ak is called a gain

coefficient and determines the size of the step at each iteration.
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In practice there is no unique way of defining the gain coefficient ak, it could be

constant or be a function of the current step, however it is more convenient to have

a step that declines with each iteration. By giving bigger steps at the start we can

approach faster to a neighborhood of the solution, and give small steps later to move

more delicately towards the desired solution instead of getting further from it.

1.4.2 Simultaneous Perturbation Stochastic Approximation

The steepest descent method presented in Section 1.4.1 is one of the oldest and

more popular algorithms for optimization, but there are a varied range of practical

cases where it can not be applied or it is known to perform poorly. Specifically, if the

gradient g(θ) is not directly available. Furthermore, if the measures on the target

function are noisy, then steepest descent is known to perform poorly.

Here we present a technique to work in those cases known as Simultaneous Per-

turbation Stochastic Approximation (SPSA). It only needs direct measures of the ob-

jective function, and the search direction can be computed from them by estimating

the gradient. The measures performed on the target function are chosen randomly

(hence Stochastic Approach). Said randomness is why Stochastic Approach methods

can work even under noisy measurements and still be robust.

The algorithm is performed by the following iteration rule for the guesses

θ̃k+1 = θ̃k − akg̃k(θ̃k). (1.102)

It is very clear that the actualization rule Eq (1.102) is almost identical to the one

for steepest descent Eq (1.101), but there is a little difference of utmost importance,

the quantity g̃k(θ̃k) is the estimate of the gradient, which can be calculated solely
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from measurements of the target function, in contrast to the gradient gk(θ̃k). Thus,

let F (θ̃k) be the target function and f(θ̃k) = F (θ̃k) + εk a measurement of F (θ̃k)

with noise εk, then the estimate of the gradient is computed as

g̃k,α(θ̃k) =
f(θ̃k + ck∆k)− f(θ̃k − ck∆k)

2ck∆k,α

(1.103)

where g̃k,α is the α component of the vector g̃k, ck is another gain coefficient and

∆k is vector whose components ∆k,α are independent and identically distributed

random variables, with a probability distribution chosen by the user. The quantity

θk± = θ̃k ± ck∆k is known as a perturbation on the parameter θ̃k.

An important conclusion from Eq (1.103) is that in order to estimate the gradient

at a given point θ̃k is necessary to measure two times the target function in the

perturbed parameters θ̃±, then for a number k of iterations of the algorithm 2k

measurements are needed.

The standard coefficients used in the literature are

ak =
a

(k + 1 + A)s
ck =

b

(k + 1)t
, (1.104)

meanwhile the probability distribution commonly used for the components of ∆k is

to choose uniformly from the set {1,−1}.

1.4.3 Complex Simultaneous Perturbation Stochastic Ap-

proximation

The existence of functions f : Cn → R that do not satisfy Cauchy-Riemann con-

ditions is an inconvenience to SPSA, as one of the requisites for certified convergence
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is that f ∈ L3 [39]. A simple example of such case is the non-holomorphic func-

tion f(z) = ‖z‖. Therefore a method designed to work with complex parameters is

needed.

Here we present the Complex Simultaneous Perturbation Stochastic Approach

(CSPSA) algorithm [45] that restates SPSA within the complex numbers. This

is achieved by making use of Wirtinger Calculus [49], specially the definitions of

Wirtinger derivatives

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
∂f

∂z∗
=

1

2

(
∂f

∂x
− i∂f

∂y

)
, (1.105)

which can still exist even if the Cauchy-Riemann conditions are not satisfied, as it

happens for the example f(z) = ‖z‖.

The fact that Wirtinger derivatives may be well defined does not directly imply

that one can look for stationary points using them. However, let f(µ) with µ =

(z, z∗) be a complex-valued function, and δµ = (δz, δz∗) be a infinitesimal change,

then the variation δf induced is

δf = (∂µf)δµt. (1.106)

If f is real-valued, we can write

δf = 2Re[(∂zf)δzt]. (1.107)

Therefore, the stationary points are given by ∂zf = 0, or ∂z∗f = 0 [45]

To reformulate the SPSA over the complex numbers, let ζ be the space of the

40



complex parameters and z̃k ∈ ζ an estimator for the parameter that maximizes the

target function F (z, z∗). If we consider f(z̃k, z̃
∗
k) = F (z̃k, z̃

∗
k) + εk a measure of

F (z̃k, z̃
∗
k) with noise εk, then the update rule is given by

z̃k+1 = z̃k − akg̃k(z̃k, z̃∗k) (1.108)

where now g̃k(z̃k, z̃
∗
k) is the estimate of the complex derivative ∂z∗f(z, z∗), which is

computed from

g̃k,α(z̃k, z̃
∗
k) =

f(z̃k+, z̃
∗
k+)− f(z̃k−, z̃

∗
k−)

2ck∆∗k,α
, (1.109)

with z̃k± = z̃k±ck∆k and ∆k a vector whose components ∆k,α ∈ C are independent

and identically distributed random variables drawn from a user defined distribution.

The standard definition for the gain coefficients are the same as the ones used

for SPSA in Section 1.4.2. On the other hand, the components of the vector ∆k are

usually drawn from the set {1,−1, i,−i}.
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Chapter 2

Quantum Mechanics

Quantum mechanics is the area of physics that emerged in the XX century when

trying to explain a series of phenomena (black body radiation, photoelectric effect,

etc.) in which classical mechanics predicted wrong behaviors. What was found after

studying those cases is that, contrary to classical mechanics and all sense of reason,

considering the energy and other quantities to be discrete gave the correct predic-

tions, therefore a new theory was necessary an the revolutionary field of quantum

mechanics was born.

Henceforth quantum mechanics has given an accurate description of a plethora of

phenomena that far surpasses the initial studied cases and has become fundamental

in the research of microscopic system and many other areas.

In this chapter we will review the postulates of quantum mechanics, study quan-

tum tomography which is the area that focuses on estimating accurately quantum

states and finalize with the quantum fisher information matrix.
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2.1 Postulates of Quantum Mechanics

The postulates of quantum mechanics as we know them today are a set of state-

ments and together they provide a mathematical framework [32] to study any physi-

cal system within the quantum formalism. The postulates themselves are of a math-

ematical nature rather than a physical one, them being the result of a trial and error

derivation performed in the past century.

2.1.1 State space

Postulate 1 Associated to any isolated physical system is a complex vector space

with inner product H (that is, a Hilbert space) known as the state space of the system.

The system is completely described by its state vector, which is a unit vector in the

state space of the system.

Among all state spaces, of particular interest are physical systems with a 2-

dimensional state space, called qubit, as they provide a counterpart for the bit used

in classical computation and can be written as

|ψ 〉 = α| 0 〉+ β| 1 〉. (2.1)

The fact that a state is a unit vector (‖ |ψ 〉 ‖ = 1), implies |α|2 + |β|2 = 1, and is

usually referred as the normalization condition.

Any linear combination of states, satisfying the normalization condition, is said

to be a superposition of states. Another important terminology is that d-dimensional

state spaces are called qudits.

Quantum mechanics, up to this point, have been formulated in terms of vec-
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tors, but in an scenario where the state of the system is not completely known is

more convenient to use the density matrix or density operator, a formalism which is

mathematically equivalent to the one already taken in postulate 1.

Let us suppose a quantum system that, with probability pi, is in a state |ψi 〉

belonging to an ensemble {pi, |ψi 〉}ni=1 of possible states with their respective prob-

ability. The system is then described by the density matrix

ρ =
n∑
i=1

pi|ψi 〉〈ψi |. (2.2)

The reason to introduce this formalism is that mixtures of states, called mixed

states, can only be written in the density matrix formalism and not as a vector. On

the other hand, states that can be written as a vector are defined as pure states.

To demonstrate that a mixed state can not be written as a vector |ψm 〉, let us

consider ρm and ρp be a mixed and pure state respectively. It can be easily seen by

definition that ρp can be expressed as

ρ2
p = |ψ 〉〈ψ | = ρp, (2.3)

which implies that ρ2
p = ρp, and Tr(ρ2

p) = 1.

Conversely, for a mixed state ρm the equality between ρm and ρ2
m does not hold,

moreover, Tr[ρ2
m] < 1. This statement can be proven by noting that any density
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matrix ρ is a positive definite operator. In effect, for any unit vector |λ 〉

〈λ |ρ|λ 〉 =
n∑
i=1

pi〈λ |ψi 〉〈ψi |λ 〉 (2.4)

=
n∑
i=1

pi|〈λ |ψi 〉|2 > 0. (2.5)

On another hand, if we suppose that ρm is a mixture of n ≥ 2 different states,

meaning

ρm =
n∑
i=1

pi|ψi 〉〈ψi |, (2.6)

and apply the Gram-Schmidt procedure to the set of states {|ψi 〉}ni=1, we obtain a set

of orthonormal states {|λi 〉}ni=1, each of them with probability p(λi) = 〈λi |ρm|λi 〉,

where p(λi) < 1.

Now ρ2
i =

∑n
i=1 p(λi)

2|λi 〉〈λi |, where it can be seen that

Tr(ρ2
m) =

n∑
i=1

p(λi)
2 < 1. (2.7)

Thus a mixed state can not be expressed as a pure state vector |ψ 〉.

2.1.2 Evolution

Postulate 2 The evolution of a closed quantum system is described by a unitary

transformation. Meaning that the state of a system at time tf is related to the state

at time t0 by a unitary transformation U(t0, tf ) that depends only in the initial and

final times t0 and tf respectively in the following way:

|ψ(tf ) 〉 = U(t0, tf )|ψ(t0) 〉 (2.8)
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The postulate as it is, does not tell how to obtain the unitary transformation U ,

nor the physics which the matrix represents, but only that in a closed system there is

an unitary transformation such that the system in the state |ψ(t0) 〉 becomes |ψ(tf ) 〉

through the application of U .

In this context, the Schrodinger equation, provides a version of this postulate

with a physical interpretation and a description of the system in continuous time.

Thus the postulate can be rewritten as:

Postulate 3 The time evolution of the state of a closed system is described by the

Schrodinger equation

i~
d|ψ 〉
dt

= H|ψ 〉. (2.9)

Where H is the Hamiltonian operator of the system.

For the density matrix formalism, the evolution of ρ can be easily inferred from

Eq. (2.8), yielding

ρ(tf ) = Uρ(t0)U †. (2.10)

Meanwhile the Schrödinger equation in this formalism reads

i~
dρ

dt
= [H, ρ], (2.11)

where [H, ρ] is the commutator Eq. (1.7) between the operators.

2.1.3 Measurements

Postulate 4 Quantum measurements are described by a collection {Mm}Nm=1 of

measurement operators. This operators are defined on the state space of the sys-
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tem being measured. The index m refers to the possible outcome in the experiment

that may occur in the process of measurement. If before the measurement the state

of the system is |ψ 〉, the probability that result m occur is

p(m) = 〈ψ |M †
mMm|ψ 〉, (2.12)

and the state after the system is measured is given by

Mm|ψ 〉√
〈ψ |M †

mMm|ψ 〉
. (2.13)

The measurement operators satisfy the completeness relation

∑
m

M †
mMm = I. (2.14)

One interesting thing to notice in the postulate, is that the state of the system

after measurement is, in fact, not necessarily an unitary transformation of the initial

state. The interaction between the system of interest, and any measuring device,

makes the system no longer closed, therefore, making postulate 2 no longer applicable

to the situation.

Another important remark is that in quantum mechanics any measurable quantity

is called observable, and is represented by an hermitian operator. It is important to

notice that M †
mMm is hermitian.

It can be seen from Eq (2.12) that any pair of states |ψ 〉 and |φ 〉 that differ

only on a phase, that is |ψ 〉 = eiα|φ 〉, will yield the same statistics, no matter the

measurement Mm being performed. Therefore all the states that differs solely on a
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phase are defined to be the same state since they are all physically indistinguishable.

A very powerful implication of this postulate is that only linear operation can

be performed on quantum states, and only hermitian operators can be physically

measured. This is usually a difficulty when trying to measure physical quantities

that have a nonlinear dependency of the state.

Furthermore, it is relevant to say that the measurements expressed in the pos-

tulate are known as general measurements. From this point, two special cases of

the general measurements are going to be explained; Projective Measurements and

POVMs.

Projective measurements are described by an observable M . As observables are

by definition hermitian, then the spectral decomposition of M (described in Theorem

1) is

M =
∑
m

λmPm, (2.15)

where Pm are projectors (see Subsection 1.1.2). Each of this projectors is associated

with an eigenvalue λm of M , where each λm represent a possible outcome of the

observable M in an experiment.

By remembering that projectors are hermitian and satisfy P 2
m = Pm, it can be

seen that Pm is a measure operator and an observable. Therefore, the probability of

measuring the outcome labeled by m is

p(m) = 〈ψ |Pm|ψ 〉. (2.16)

The POVM formalism (Positive Operator-Valued Measure), on the other hand,
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does not necessarily satisfy M †
mMm = Mm in contrast to projectors. This formalism

is a mathematical tool to work on scenarios where the post-measurement state is no

longer relevant, or destroyed.

In this way a POVM is defined as a set of positive-definite operators {Em} such

that ∑
m

Em = I. (2.17)

Thus, the probability of measuring the event labeled by m is p(m) = 〈ψ |Em|ψ 〉.

The measurement operators Mm described in Postulate 4 can be obtained from

the POVM elements Em by computing Mm =
√
Em.

The Expected value of an observable, denoted by 〈M〉 can be computed by fol-

lowing the definition given in Eq. (1.49), yielding

〈M〉 := E[M ] =
∑
i

xip(xi) (2.18)

=
∑
m

λm〈ψ |Mm|ψ 〉 (2.19)

=〈ψ |

(∑
m

λmMm

)
|ψ 〉 (2.20)

=〈ψ |M |ψ 〉. (2.21)

By looking at postulate 4 we can infer how the measurements should be on mixed

states. Let ρ = |ψ 〉〈ψ | be a pure state, then the probability of measuring Mm by

49



definition is

p(m) =〈ψ |M †
mMm|ψ 〉 (2.22)

=〈ψ |M †
mMm|ψ 〉〈ψ |ψ 〉 (2.23)

=〈ψ |M †
mMmρ|ψ 〉+

∑
⊥

〈ψ⊥ |M †
mMmρ|ψ⊥ 〉 (2.24)

=Tr(M †
mMmρ) (2.25)

where the set of {|ψ⊥ 〉} is a complete basis for the Hilbert space if |ψ 〉 is added,

and 〈ψ |ψ⊥ 〉 = 0 for all |ψ⊥ 〉. It can be easily checked for a mixed state ρ that the

previous result also holds, since a mixed state can be written as linear combination

of pure states.

The post-measurement state ρpm can be trivially computed now that the proba-

bilities have been sorted, yielding

ρpm =
∑
j

pj|ψjpm 〉〈ψjpm | (2.26)

=
Mm

∑
j pj|ψj 〉〈ψj |M †

m

p(m)
(2.27)

=
MmρM

†
m

tr(M †
mMmρ)

. (2.28)

Finally, the expected value of an observable A over the mixed state ρ =
∑

i piρi =
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∑
i pi|ψi 〉〈ψi | is

〈A〉ρ =
∑
i

pi〈A〉ρi (2.29)

=
∑
i

pi〈ψi |A|ψi 〉 (2.30)

=
∑
i

piTr(Aρi) (2.31)

=Tr(Aρ). (2.32)

In Eq. (2.29) the fact that the expected value is a linear quantity has been used.

2.1.4 Composite systems

Postulate 5 The state space of a composite physical system is the tensor product of

the state spaces of the component physical systems.

As the postulate enunciated, the state space of the composite system is given by

HComp = H1 ⊗H2 ⊗ · · · ⊗ Hn. (2.33)

Thus, any operator to be performed on the system, be it a measurement or a evolution

operator, must belong to the space

L(HComp) = L(H1)⊗ · · · ⊗ L(Hn). (2.34)

For example, let |ψAB 〉 be the composite state

|ψAB 〉 = |ψA 〉 ⊗ |ψB 〉, (2.35)
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and let MiA,MjB be a pair of measurement operators acting on the systems A and

B respectively. Then, the probability of measuring i on system A and j on system

B at the same time is

p(i, j) =〈ψAB |
(
M †

iA ⊗M
†
jB

)
(MiA ⊗MjB) |ψAB 〉 (2.36)

=〈ψA |M †
iAMiA|ψA 〉〈ψB |M †

iBMiB|ψB 〉. (2.37)

Meanwhile the post-measurement state is

|ψAB 〉 →
MiA ⊗MjB|ψAB 〉√

p(i, j)
(2.38)

=
MiA|ψA 〉 ⊗MjB|ψB 〉√

p(i, j)
. (2.39)

From this point is not hard to generalize how any operation previously defined should

act on a composite system.

The density matrix of a composite system also belong to the space defined in

Eq. (2.34). An example to a density operator could be

ρ = ρ2 ⊗ ρ2 ⊗ ρ3. (2.40)

Up to this point, it is important to remark that not every state can be expressed

in a separable way like Eq.(2.40)1 or like Eq. (2.35). States that can not be written

in those ways are said to be entangled, which is one of the most important concepts

in quantum theory, however it is not the main topic of this work and we will not

dwell further into this.

1A density matrix is defined to be separable if it can be written as ρ =
∑

i piρ
A
i ⊗ ρBi
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The reduced density operator for a subsystem is defined as the quantum state

that describes said subsystem. Mathematically speaking, for a bipartite state ρAB,

the reduced density matrix for system A is given by

ρA = TrB(ρAB), (2.41)

where TrB is the partial trace over B, defined as

TrB(| a1 〉〈 a2 | ⊗ | b1 〉〈 b2 |) = | a1 〉〈 a2 |Tr(| b1 〉〈 b2 |). (2.42)

2.2 Quantum State Tomography

Quantum state tomography is the field of study whose focus is the reconstruction

of a density matrix or state vector. This is done by making measures of interest on

the target state, followed by an analysis of the collected data.

2.2.1 Quantum Standard Tomography

Quantum standard tomography [43] is based on the fact that any density matrix

describing a qubit can be written as

ρ =
1

2

(
I +

3∑
i=1

riσi

)
(2.43)

=
1

2

4∑
i=0

riλi, (2.44)
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where r0 = 1, r = (r1, r2, r3) is a real valued vector satisfying r · r ≤ 1, λ0 = I and

λi = σi for i = 1, 2, 3 are the Pauli matrices

σ1 =

1 0

0 −1

 (2.45)

σ2 =

0 1

1 0

 (2.46)

σ3 =

 0 i

−i 0

 . (2.47)

It is important to remark that this decomposition can be made since the Pauli

matrices and the identity are a complete basis for hermitian matrices, and since

the Pauli matrices are traceless the condition Tr(ρ) = 1 can only be satisfied if the

coefficient of the identity is equal to 1/2.

From the parametrization given by Eq.(2.44) it can be easily deducted that the

vector r fully describes a quantum state. Now if the observables σi are measured,

the expected values obtained are

〈σi〉 = Tr(ρσi) = ri, (2.48)

directly suggesting that a reasonably tomography scheme is to choose as estimators

r̃ of r the measured values of the observables σi, and the estimated state resulting

is

ρ̃ =
1

2

(
I +

3∑
i=1

r̃iσi

)
. (2.49)

The same approach can be taken for qudits of dimension d, by using the SU(d)
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generators {λi}d
2−1
i=1 instead of the Pauli matrices. A qudit of dimension d is then

written as

ρ =
1

d

(
I +

d2−1∑
i=1

riλi

)
, (2.50)

where now the vector r must satisfy
∑d2−1

i=1 r2
i = d(d− 1)/2.

The method previously described is known as standard tomography. However the

main problem with this scheme is that in a real application, the obtained estimator

r̃ is not always bounded by 1, and some other times the estimated density matrix

has negative eigenvalues, which in both cases yields a nonphysical state.

To sort these problems, one solution is to recur to maximum likelihood estimation

(Section 1.3.2). Therefore, if the K operators {λi}Ki=1 are measured on a unknown

target state ρ with a occurrence of n = (n1, · · · , nk) each, then the likelihood function

defined in Eq.(1.73) for this scenario is

L(ρ̃|n) =
K∏
i=1

tr(λiρ̃)ni =

{
K∏
i=1

tr(λiρ̃)ni/N

}N

, (2.51)

where ρ̃ is the estimator of the unknown target state ρ and N =
∑

i ni is the number

of repetitions of the experiment. The log-likelihood described in Eq.(1.76) after

defining fi = ni/N and dropping the remaining N is given by

l(ρ̃|n) =
K∑
i=1

fi log [tr(λiρ)] . (2.52)
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Thus the estimator state ρ̃ can be obtained by solving the following optimization

min− l(ρ̃|n) (2.53)

subject to:
K2−1∑
i=1

r̃i ≤ 1 (2.54)

which solves the problems of r being unbounded and the non-physicality of the

estimated state ρ̃.

2.2.2 Self-Guided Quantum Tomography

As the name indicates, self-guided quantum tomography is a method that pro-

vided an initial guess | ψ̃0 〉 can guide itself towards the real state of the system

|ψ 〉.

What the algorithm do is minimize a distance function d(| ψ̃0 〉, |ψ 〉) that can

be directly measured in an iterative manner. For each step of the algorithm a new

estimator | ψ̃k 〉 will be constructed with information of the previous step. In the

original proposition SPSA was used as the optimization method (Section 1.4.2), and

the infidelity was chosen as the distance function [16].

To use the tomography method, the first step is to give the estimator state a

parametrization, that is

| ψ̃ 〉 = |ψ(θ̃) 〉. (2.55)

Let |ψ(θ̃k) 〉 be the kth guess, in order to construct the next guess we compute the

perturbations

|ψ(θ̃k±) 〉 = |ψ(θ̃k ± ck∆k) 〉 (2.56)
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depicted in Section 1.4.2. Then we measure (directly from the system) the distances

d± = d(|ψ 〉, |ψ(θ̃k±) 〉), (2.57)

and use them to calculate an estimate of the gradient gk, by using the formula

g̃k.α(θ̃k) =
d+ − d−
2ck∆k,α

. (2.58)

Finally, the next estimator state is given by

|ψ(θ̃k+1) 〉 = |ψ(θ̃k + akg̃) 〉 (2.59)

The coefficients ak, bk are detailed in Section 1.4.2 and can be chosen as

ak =
a

(k + 1 + A)s
ck =

c

(k + 1)t
. (2.60)

The components of the vector ∆k (also explained in Section 1.4.2) can be drawn from

the set {1,−1} randomly, such that the choice is independent from each component

and iteration.

2.3 Quantum Fisher Information

In the derivation of the Fisher information matrix in Section 1.3.3, we never

used the quantum theory formalism in order to write the probabilities. Hence, the

objective of this chapter is to find a new Fisher matrix, called the quantum Fisher

information matrix [20, 17],by incorporating the quantum theory.

Since the value of the estimator θ̃ is obtained from the result of an experiment,
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then it is an observable which quantum mechanics dictates is associated with an

hermitian operator. In this way, we can think of an experiment to estimate the

unknown parameters θ of a state ρ(θ) by measuring of projectors

dΠ(θ̃) = Π(θ̃)dnθ̃ (2.61)

whose outcomes are the observable quantity dnθ̃. Thus the probability density func-

tion p(θ̃) can be written in the following form

p(θ̃|θ)dnθ̃ = Tr[ρ(θ)dΠ(θ̃)], (2.62)

where ∫
Θ

dΠ(θ̃) = I. (2.63)

The expected value of a function f(θ̃) is given by

E[f(θ̃)|θ] =

∫
Θ

f(θ̃)Tr[ρ(θ)dΠ(θ̃θθ)]. (2.64)

Assuming that the estimators are unbiased then we have

∂

∂θj
E[θ̃k|θ] =

∫
Θ

θ̃kTr

[
∂

∂θj
ρ(θ)dΠ(θ̃)

]
= δjk, (2.65)

and because the probability function is normalized

∫
Θ

[
∂

∂θj
ρ(θ)dΠ(θ̃)

]
= 0. (2.66)

Then, let z,y be some random real vectors and multiply Eq. (2.65) by yj, zk and
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Eq. (2.66) by θk, yj, zk to finally obtain

∑
j,k

Tr

∫
Θ

{
yj

[
θ̃j − θj

]
zk

∂

∂θk
ρ(θ)dΠ(θ̃)

}
= ytz. (2.67)

By introducing the symmetrized logarithmic derivatives (SLD) Lk(θ) defined im-

plicitly as

∂

∂θk
ρ(θ) =

1

2
(Lk(θ)ρ(θ) + ρ(θ)Lk(θ)) =

1

2
{Lk, ρ}. (2.68)

It can be proven, for any hermitian operator A that the SLD’s satisfies

Tr

[
∂ρ

∂θk
A

]
=

1

2
Tr [LkρA+ ρLkA] (2.69)

=
1

2
Tr
[
LkρA+ (AL†kρ)†

]
(2.70)

=
1

2

[
Tr(LkρA) + Tr(L†kρA)∗

]
(2.71)

=Re [Tr(ρLkA)] . (2.72)

Now, from Eq. (2.67) we can obtain

(ytz)2 = Re

(
Tr

{∑
j,k

∫
Θ

yj

[
θ̃j − θj

]
ρzkLkdΠ

})2

(2.73)

= Re

(
Tr

∫
Θ

TθρTLdΠ

)2

(2.74)

≤
∣∣∣∣Tr

∫
Θ

TθρTLdΠ

∣∣∣∣2 (2.75)

where we have defined Tθ = I
∑

j yj

[
θ̃j − θj

]
, and TL =

∑
k zkLk. By applying

inequality [19]
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Tr

[
ρ

∫
Θ

T †θ dΠTθ

]
Tr

[
ρ

∫
Θ

T †LdΠTL

]
≥
∣∣∣∣Tr

[
ρ

∫
Θ

T †LdΠTθ

]∣∣∣∣2 (2.76)

to Eq (2.75) and taking into account that Tθ and TL are both hermitian, we can

compute the traces on the left side of Eq (2.76), obtaining

Tr

[
ρ

∫
Θ

TθdΠTθ

]
=
∑
j,k

yjykTr

[
ρ

∫
Θ

(
θ̃j − θj

)(
θ̃k − θk

)
dΠ

]
(2.77)

=
∑
j,k

yjyk

[∫
Θ

(
θ̃j − θj

)(
θ̃k − θk

)
p(θ̃|θ)dnθ̃

]
(2.78)

=
∑
j,k

yjCjkyk (2.79)

= ytCy. (2.80)

And

Tr

[
ρ

∫
Θ

TLdΠTL

]
=
∑
j,k

zjzkTr

[
ρ

∫
Θ

LjLkdΠ

]
(2.81)

=
∑
j,k

zjzkTr[ρLjLk] (2.82)

=
∑
j,k

zjzkHjk (2.83)

= ztHz. (2.84)

In these calculations we have left out of the integral the logarithmic derivatives L

because they only depend on θ and not in the random variable θ̃. Also we have

introduced the matrix

Hjk = Tr[ρLjLk] =
1

2
(Tr[ρLjLk] + Tr[ρLkLj]), (2.85)
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which is known as the quantum Fisher information matrix.

Finally we get the inequality between the covariance matrix and the quantum

Fisher matrix

(ytz)2 ≤ ytCyztHz (2.86)

from where we can derive the quantum Cramér-Rao inequality

c−H−1 ≥ 0. (2.87)

Now, in order to estimate the parameters θ, we have N quantum system prepared

equally in the state ρ(θ), then the state of the whole system is given by

ρ⊗N(θ) = ρ(θ)⊗ ρ(θ) · · · ⊗ ρ(θ). (2.88)

Thus, the symmetrized logarithmic derivative is defined implicitly by the equation

∂

∂θk
ρ⊗N(θ) =

1

2

(
L

(N)
k (θ)ρ⊗N(θ) + ρ⊗N(θ)L

(N)
k (θ)

)
, (2.89)

where the derivative of the density matrix can be calculated by using the Leibniz

rule, obtaining

∂

∂θk
ρ⊗N(θ) =

∂ρ

∂θk
⊗ ρ · · · ⊗ ρ+ · · ·+ ρ⊗ · · · ⊗ ∂ρ

∂θk
, (2.90)

hence the SLD of the entire system can be written as a superposition of the SLD’s

of each individual subsystem as follows

L
(N)
k (θ) = Lk ⊗ I · · · ⊗ I + · · ·+ I⊗ · · · ⊗ Lk. (2.91)
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Now the Helstrom matrix can be easily computed

H
(N)
lm =Tr

[
∂ρ⊗N

∂θl
L(N)
m

]
(2.92)

=
N∑
i=1

Tr

[
∂ρ

∂θl
Lm

]
(2.93)

=NTr

[
∂ρ

∂θl
Lm

]
(2.94)

=NHlm. (2.95)

Here we point out that the Fisher and Helstrom matrices are not equals, in fact

they are related as follows (see Apendix A)

C(N) ≥ 1

I(N)
≥ 1

H(N)
=
H−1

N
. (2.96)

This result is rather confusing, since it gives the wrong idea that quantum mechanics

allows for more precision. The correct interpretation is that the inequality can be

saturated, that is I(N) = NH, if the performed measures happens to be optimal

ones.

To understand the last affirmation we remember that the Fisher information

matrix is explicitly dependent on the projectors to be measured, contrary to the

quantum version. Thus the classical information matrix achieves its maximum just

for a few (or one) set of projectors, meaning

max
Π

I(N) = NH. (2.97)

This means that the quantum matrix gives the optimum bound for any distance
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function, but does not tell us what is the set of projectors that achieve the optimum.

However, it has been proven that the Fisher information matrix has to satisfy another

bound, implying that reaching the quantum Cramér-Rao bound is in general not

possible. This constrain is shown in the following theorem.

Theorem 2 (Gill-Massar) [17] When ρ(θ) = |Ψ(θ)〉〈Ψ(θ)| is a pure d-dimensional

state, then the Fisher and Helstrom information matrices satisfy the relation.

Tr[H−1IN ] ≤ N(d− 1). (2.98)

Given this new limitation, in order to obtain a correct bound for the WMSE we must

solve the following optimization problem

min
θ∈Θ

Tr(WC(N)(θ)),

Tr(I(N)(θ)H−1(θ)) = N(d− 1). (2.99)

Which has the following solution

Tr[WC(N)(θ)] =

(
Tr
[√

H−1/2WH−1/2
])2

N(d− 1)
. (2.100)

In the particular case of our work, we are interested in the bound for the Mean

Squared Error, hence we choose the weight matrix as the identity. Thus, for pure

states the bound yields (See Appendix B)

MSE(θ̃) =
d− 1

N
. (2.101)
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Chapter 3

State Estimation Via Squared

Error Minimization

Our main aim is to obtain an estimate |ψ̃〉 =
∑

i z̃i|i〉 of an unknown quantum

state |ψ〉 =
∑

i zi|i〉, where {zi} and {z̃i} are properly normalized. In order to do

this we consider the squared error

SE(z, z̃) =
d∑
i=1

|zi − z̃i|2, (3.1)

which is a function of the probability amplitudes z̃i of |ψ̃〉. The probability ampli-

tudes zi of |ψ〉 play the role of unknown fixed parameters. The unknown state |ψ〉

can be characterized as

z = Arg{min
z̃
SE(z, z̃)}, (3.2)

that is, SE achieves a global minimum when z̃ = z.
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To solve the minimization of SE(z, z̃) we employ a concatenation between the

CSPSA (Section 1.4.3) and MLE (Section 1.3.2) methods, in order to accelerate con-

vergence. This requires the capability to obtain the value of SE(z, z̃) for all z̃. In the

simplest case of estimating the polarization state of a single photon, a Mach-Zehnder

interferometer whose arms are supplemented with unitary transformations acting on

the polarization degree of freedom allows us to infer the value of SE(z, z̃). In this

setup, the initial state |ψ〉in of a single photon before entering the interferometer is

given by |ψ〉in = |h〉1, where |h〉1 describes a horizontally polarized single photon.

After the interaction of the photon with the first beam splitter, the quantum state

of the photon becomes (|h〉a + |h〉b)/
√

2, which corresponds to an equally weighted

coherent superposition of the two possible propagation paths a and b for the photon

inside the interferometer. The polarization state of the photon changes conditional

on the path, that is,

Ua|h〉a = zh|h〉a + zv|v〉a = |ψ〉, (3.3)

which is the unknown state to be estimated, and

Ub|h〉b = z̃h|h〉b + z̃v|v〉b = |ψ̃〉, (3.4)

which is the estimate of |ψ〉. Thereby, the state of the photon before the second

beam splitter becomes [(zh|h〉a + zv|v〉a) + (z̃h|h〉b + z̃v|v〉b)]/
√

2. After the second

beam splitter, the state is given by

|ψ〉out =
1

2
[(zh + z̃h)|h〉1 + (zv + z̃v)|v〉1]

+
1

2
[(zh − z̃h)|h〉2 + (zv − z̃v)|v〉2], (3.5)
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where the sub-indexes 1 and 2 indicates the output ports of the interferometer. The

probability P2 of detecting a photon at output port 2 is

P2 =
1

4
(|zh − z̃h|2 + |zv − z̃v|2), (3.6)

which can be identified with the squared error of the complex probability amplitudes

as

SE(z, z̃) = 4P2. (3.7)

Thus, in the setup above described the unitary transformation Ua is employed to

create the unknown polarization state |ψ〉 defined by the pair of complex probability

amplitudes (zh, zv). The unitary transformation Ub is employed to generate an es-

timate |ψ̃〉, which is defined by the pair of complex probability amplitudes (z̃h, z̃v).

Equation (3.7) indicates that the transformation Ub has to be changed in such a way

that no photon is detected at output port 2, in which case |ψ̃〉 = |ψ〉. We employ

CSPSA and MLE to drive the sequence of choices of Ub toward the unknown state.

Let us note that if the output ports of the interferometer are supplemented with

polarizing beam splitters and single-photon detectors it is possible to measure inde-

pendently the four combinations of coefficients |zh − z̃h|2, |zv − z̃v|2, |zh + z̃h|2, and

|zv + z̃v|2.

The case of higher dimensions can be realized by considering a spatial qudit,

that is, a qudit encoded in the propagation paths of a single photon. The initial

state of the qudit is given by |k〉, where the state |k〉 describes a single photon

propagating along one of several distinguishable paths k = 1, . . . , d. On path k a

beam splitter transforms the state |k〉 into the superposition (1/
√

2)(|k1〉 + |k2〉),
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where the subindexes i = 1, 2 distinguish the propagations paths at the exit ports of

the beam splitter. Thereafter, on paths k1 and k2 the unitary transformations U and

Ũ are applied, respectively. These transformations create a superposition of path

states, that is, U |k1〉 =
∑

k zk|k1〉 and Ũ |k2〉 =
∑

k z̃k|k2〉. This leads to the state

(1/
√

2)(U |k1〉 + Ũ |k2〉). Finally, paths k1 and k2 for each k = 1, . . . , d are merged

together by beam splitters, which leads to the state (1/2)[
∑

k(zk+ z̃k)|k1′〉+
∑

k(zk−

z̃k)|k2′〉)] with i = 1′, 2′ the output ports of each beam splitter. The probability of

detecting a photon on any path k2′ is given by

P2 =
1

4

d∑
k=1

|zk − z̃k|2. (3.8)

Thereby, we have that

SE(z, z̃) = 4P2, (3.9)

which generalizes Eq. (3.7) to the case d > 2.

We have formulated our proposal to measure the SE in terms of bulk optics

based setup. However, this proposal can easily be translated to other experimental

platforms, such as, for instance, integrated quantum photonics [47] and space-division

multiplexing optical fibres [51, 11]. On this platforms unitary transformations can

be implemented by means of sequences composed of beam splitters and controlled

phase transformations [35, 13].

Our estimation method is based on the optimization of the SE with the help

of CSPSA concatenated to MLE. The concatenation is motivated by the hope of

achieving the Gill-Massar bound or at least approach as much as possible, since it is

impossible to get near the bound without exploiting all the information accumulated
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through the measurements. Alternatively, we can reinterpret the method considering

SE optimization through CSPSA to accelerate the MLE convergence rate. That is,

MLE is calculated with the data obtained through SE measurements. These are

chosen with the help of CSPSA in such a way that they increase the convergence

of MLE towards the estimate. In this scenario, the existence of a linear regime is

consistent with the efficiency and asymptotic normality of MLE estimators [26].

The main steps of the MSE-based method for estimating pure quantum states are

summarized as pseudocode in Algorithm 1, where we have considered the proposals

to estimate the SE with the help of a multi-arm interferometer. An implementation

of the pseudocode in the Julia programming language can be found in the GitHub

repository [1].

The minimization of SE via CSPSA requires an initial guess (or estimate) of the

unknown state. Since no a priori information about the unknown state is available,

the initial guess is also generated according to a uniform distribution. At each

iteration, CSPSA generates the ∆ vector whose components are randomly chosen.

Also, at each iteration CSPSA uses the value of SE on the states zk±. According

to Eq. (3.7), the value of the SE can be inferred from a probability, which requires

an ensemble of N independently and identically prepared copies. Thereby, the total

number of copies employed after k iterations of CSPSA is given by NT = 2Nk.

Since this ensemble is finite, the value of SE will be affected by finite statistics

effects. Thus, the estimation process for a fixed unknown state has three sources

of randomness: the choice of the initial guess, the choice of the ∆ vector, and the

measurement process of SE. Thereby, each time that CSPSA is employed to obtain

an estimate of a fixed unknown state z, a different estimate z̃ is generated. In this
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Algorithm 1 MSE-based estimation of pure states

1: Consider a known pure state |ψ〉, which is prepared on the upper arm of the
interferometer by means of the transformation U .

2: Choose an initial guess |ψ̃0〉 and define z̃0,i = 〈i|ψ̃0〉.
3: Set gain coefficients a, A, s, b and r.
4: for k = 1, . . . , kmax do
5: Set

ak =
a

(k + 1 + A)s
, ck =

b

(k + 1)r
.

6: Choose ∆k,i randomly in the set {±1,±i}.
7: Calculate |ψk±〉 =

∑
i z̃k±,i|i〉/|z̃k±|, with z̃k± = z̃k ± ck∆k.

8: Prepare the states |ψk±〉 on the lower arm of the interferometer by means of
the transformation U ′

9: Estimate experimentally the square errors SE(z, z̃k±) with a sample of size
N .

10: Estimate the gradient as

g̃k,i =
SE(z, z̃k+)− SE(z, z̃k−)

2ck∆∗k,i
.

11: Actualize the guess z̃k+1 = z̃k − akg̃k.
12: Maximize the cumulative logarithmic likelihood function using |φ〉 =∑

i z̃k+1,i|i〉/|z̃k+1| as starting point,

|ψ̃k+1〉 = arg max
|φ〉

logP (Dk; |ψ〉, S), s. t. 〈φ|φ〉 = 1,

and update the estimate as z̃k+1,i = 〈i|ψ̃k+1〉.
13: end for

scenario the estimation accuracy for a fixed state z is given by

MSE(z) = E[SE(z, z̃)|z̃], (3.10)

where the expectation is calculated over the set of all possible estimates z̃ of z. The

mean-squared error can also be cast as

MSE(z) =

∫
p̃(z̃)SE(z, z̃)dz̃, (3.11)
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where p̃(z̃) probability density function of obtaining the estimate z̃ that characterizes

the estimation procedure.

In order to study the properties of the estimation procedure we create the set

Ωd = {zi} (with i = 1, . . . ,m) containing m unknown pure quantum states in

dimension d. The states in Ωd are independently generated according to a uniform

distribution. Each state in Ωd is estimated by minimizing SE by means of CSPSA

concatenated to MLE. This creates the set Ω̃i = {z̃i,j} (with j = 1, . . . , n) for each

zi, which is formed by n estimates z̃i,j of zi. The estimation accuracy of zi is given

by the expectation value of SE(zi, z̃) over the set of all estimates z̃ of zi, which is

approximated by the expression

MSE(zi) =
1

n

n∑
j=1

SE(zi, z̃i,j). (3.12)

On the other hand the expectation of MSE(z) over the Hilbert space of unknown

states is given by

MSE = E[MSE(z)|z], (3.13)

which can also be approximated as the average of the MSE(z) over Ωd, meaning

MSE =
1

m

m∑
i=1

MSE(zi). (3.14)

Insets 3.1(a), 3.1(b), 3.1(c), and 3.1(d) show the behavior of MSE as a function

of the number k of iterations for dimension d =2, 4, 8, and 16, respectively, and for

several ensemble sizes. As is apparent from these figures, the expectation of MSE(z)

over the Hilbert space of unknown states exhibits a rapid estimation accuracy gain
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followed by a linear regime. The latter arises after a number of iterations that

depends on the particular dimension. In particular, the higher the dimension the

more iterations are needed for the emergence of the linear regimen. The insets also

depict the lower bound MSEGM(2d,NT ) as a function of the iteration number k

and the ensemble size N , for various dimensions. As the insets show, the estimation

accuracy characteristic of our method becomes very close to MSEGM(2d,NT ) as N

increases. In fact, the accuracy of the estimates seems to be asymptotically close to

MSEGM(2d,NT ). Insets 3.1(e), 3.1(f), 3.1(g), and 3.1(h) illustrate the median of

MSE(zi) over Ωd. This exhibits a behavior similar to that of MSE, but the linear

regime emerges earlier. Once the optimization method enters into the linear regime,

the mean and the median of MSE(zi) reach values that cannot be distinguished.

Furthermore, the interquartile range becomes extremely narrow. This indicates that

in the linear regime the minimization of SE via the concatenation of CSPSA and

MLE leads to an estimation procedure characterized by a state-independent MSE.

Insets 3.1(e), 3.1(f), 3.1(g), and 3.1(h) also show twice the Gill-Massar lower bound

for the MSE. As is apparent in all insets, in the linear regime the median of the

estimation accuracy is also very close to MSEGM(2d,NT ).

To study the linear regime we fitted the numerical data obtained from the Monte

Carlo simulations to the function p/Na
T , as suggested by the observation that behavior

of MSE is close to MSEGM(2d,NT ) = (2d− 1)/NT , where NT = 2kN , p = 2d− 1

and a = 1. The best fits for the values of p and a are shown in Table 3.1, where two

sets of p and a values are indicated for each dimension d and ensemble size N . The

first set of values is obtained fitting data from iteration k = 10 until k = 20. The

second set of values is obtained fitting data from iteration k = 21 until k = 30. With

the exception of the first dataset for d = 16, Table 3.1 indicates that the value of a
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N = 103 N = 104 N = 105

d=2 p=6.34 a=1.03 p=9.97 a=1.03 p=6.52 a=1.02
p=7.41 a=1.04 p=4.21 a=0.99 p=3.57 a=0.99

d=4 p=10.56 a=1.00 p=9.12 a=0.99 p=8.77 a=0.99
p=10.18 a=1.00 p=8.12 a=0.99 p=8.50 a=0.99

d=8 p=56.69 a=1.09 p=25.76 a=1.02 p=19.66 a=0.99
p=21.30 a=1.00 p=20.16 a=1.00 p=17.41 a=0.99

d=16 p=4.80 a=2.21 p=1.18 a=2.09 p=8.84 a=2.93
p=147.62 a=1.10 p=39.13 a=0.99 p=33.87 a=0.99

Table 3.1: Fit MSE = p/(2kN)a in asymptotic regime. MSEGM(2d, 2kN) is ob-
tained with p = 2d− 1 and a = 1. For d and N fixed, the first pair (p, a) is obtained
fitting iterations from k = 10 until k = 45. The second pair is obtained fitting
iterations from k = 46 until k = 100.

are in the range [0.99, 1.1] with an average value ā to 1.01. The anomalous behavior

of the first dataset for d = 16 can be attributed to the fact that for d = 16 more

than 10 iterations are required for the onset of the linear asymptotic regime. The

first dataset exhibits values of p that are larger than the values of p of the second

dataset. In both datasets, the values of p decrease with an increase in the ensemble

size N . This indicates an increase in the rate at which the algorithm approaches the

minimizer. Finally, the values of p for N = 104 and 105 in the second dataset are

close to the value of 2d, specially the latter. Thus, for larger values of N and k, we

can approximate MSE as

MSE =
2d+ α

2kN
, (3.15)

where α is a small quantity in comparison to 2d.
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Figure 3.1: Mean (upper row) and median (lower row) of MSE(zi) on Ωd as a
function of the iteration number k, for dimension d=2, 4, 8, and 16 (from left to
right) and ensemble size N = 103 (light blue down threes), 104 (solid red triangles),
and 105 (solid yellow circles) per iteration. Straight lines depict the Gill-Massar lower
bound MSEGM(2d,NT ) for the respective total ensemble size NT = 2Nk. Shaded
areas represent interquartile range.
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Chapter 4

Estimation of Unitary

Transformations Via Squarred

Error Minimization

The estimation of processes acting on quantum states is a much more demanding

problem than the estimation of quantum states. For instance, the estimation of an

unknown process acting onto a single qudit requires the characterization of d4 − d2

real parameters [32]. In the case of a unitary transformation, only d2 parameters

must be determined.

In general, the estimation of a quantum process is carried out by carefully choos-

ing a set of states, letting the process act on them, and reconstructing the output

states by means of a quantum tomographic method [5]. We will employ this strategy

to estimate an unknown unitary transformation U . This is suggested by Eq. (3.8),
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which can be cast in the form

P2 =
1

4

d∑
j=1

|Uj,k − Ũj,k|2. (4.1)

Thus, the probability P2 is proportional to the squared error between the k-th

columns of the matrices U and Ũ , where k is controlled by the initial path state

|k〉 followed by the single photon. Clearly, we can reconstruct each column of U by

minimizing the squared error by CSPSA and MLE. After estimating all columns of

U independently, we obtain an estimate Ũ of U .

However, the present estimation method cannot guarantee that the estimate Ũ is

really unitary. We consider two transformations to be implemented at each iterations

in order to convert any estimate into a unitary one. One of those methods is given

by the expression [25]

Ũc = Ũ(Ũ Ũ †)−1/2, (4.2)

which is the closest unitary operator (Section 1.1.5) to the transformation Ũ . In

order to quantify how close Ũc is from U we employ the Hilbert-Schmidt distance

D(U, Ũc) = Tr[(U − Ũc)(U − Ũc)†]. Another method to generate a unitary estimate

Ũgs consists in the application of the Gramm-Schmidt orthogonalization procedure

to the columns Ũj,k.

Figure 4.1 shows the mean and median mean-squared error achieved in process of

estimating unknown unitary transformations acting onto a 2-dimensional quantum

system. The left (right) column exhibits the mean (median) achieved with the es-

timates Ũ , Ũc, and Ũgs from top to bottom, respectively. The typical behavior of a

rapidly increasing estimation accuracy followed by a linear regimen is clearly present.
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This exhibits in the linear regime a mean and a median that cannot be distinguished

from each other and an extremely narrow interquartile range, which indicates that

after 10 iterations all unitary transformations are estimated with the same accuracy.

This is almost twice the accuracy obtained in estimating a 2-dimensional pure state,

as expected. The three estimates lead to very similar accuracies, but the estimate

Ũc generates a marginally better performance. Figure 4.2 exhibits similar results in

the case d = 4.

In Algorithm 2 we present a basic pseudocode for implementing the MSE-based

estimation of unitary transformations. An implementation of the pseudocode in

the Python programming language can be found in the GitHub repository [1]. We

consider the different choices for the post-processing of the estimates. According

to option 1 we project the possibly non-unitary estimate onto the set of unitary

transformations and evaluate the infidelity. These projections are used in option 2

to provide a better update of the estimate.

Since each of the d columns of U is estimated with an accuracy close to (2d +

α)/NT , where NT is the total ensamble size used in the estimation of each column,

we have that the unitary transformations are estimated with an accuracy MSE(U)

given approximately by

MSE(U) ≈ d(2d+ α)

NT

. (4.3)

Thereby, the estimation accuracy of our procedure becomes

MSE(U) ≈ d2(2d+ α)

N∗T
, (4.4)

where N∗T = dNT is the total number of copies used in the estimation of all d columns
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of U .
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Algorithm 2 MSE-based estimation of unitary transformations

1: Consider a known unitary transformation U on the upper arm of the interferom-
eter.

2: Choose initial estimate Ũ0 and define z̃j0,i = Ũ0,ij.
3: Set gain coefficients a, A, s, b and r.
4: for k = 1, . . . , kmax do
5: Set

ak =
a

(k + 1 + A)s
, ck =

b

(k + 1)r
.

6: for j = 1, . . . , d do
7: Choose ∆j

k,i randomly in the set {±1,±i}.
8: Calculate |ψjk±〉 =

∑
i z̃

j
k±,i|i〉/|z̃

j
k±|, with z̃jk± = z̃k ± ck∆k.

9: Feed the interferometer in the mode |j〉.
10: Prepare the states |ψjk±〉 on the lower arm of the interferometer with the

transformation U ′.
11: Estimate experimentally the square errors SE(zj, z̃jk±) of the j-column of

U with a sample of size N .
12: Estimate the gradient as

g̃jk,i =
SE(zj, z̃jk+)− SE(zj, z̃jk−)

2ck∆∗k,i
.

13: Actualize the guess z̃jk+1 = z̃jk − akg̃
j
k.

14: Maximize the cumulative Likelihood function using |φj〉 =∑
i z̃

j
k+1,i|i〉/|z̃

j
k+1| as starting point,

|ψ̃jk+1〉 = arg max
|φ〉

logP (Dj
k; |U |j〉, S), s. t. 〈φ|φ〉 = 1,

and update the estimate as z̃jk+1,i = 〈i|ψ̃jk+1〉.
15: end for
16: Option 1: In order to guarantee the unitarity of the estimator, we consider

two postprocessing methods:
• Ũc: Project Ũ into its closest unitary matrix.
• Ũgs: Apply the Gram-Schmidt procedure to the columns of Ũk+1.

17: Option 2: Re-update the estimates {z̃jk+1} with the postprocessed unitary
matrix,

z̃jk+1,i = (Ũc)k+1,ij or z̃jk+1,i = (Ũgs)k+1,ij.

18: end for
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Figure 4.1: Mean (left column) and median (right column) of MSE for randomly
generated unitary transformations as a function of the iteration number k for di-
mension d=2 and ensemble size N = 103 (light blue down threes), 104 (solid red
triangles), and 105 (solid yellow circles) per iteration. Shaded areas represent in-
terquartile range. From the top row to the bottom row: estimates provided by
CSPSA, estimates provided by CSPSA updated at each iteration by projection to
the closest unitary transformation, and estimates provided by CSPSA updated at
each iteration with the Gramm-Schmidt orthogonalization procedure.
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Figure 4.2: Mean (left column) and median (right column) of MSE for randomly
generated unitary transformations as a function of the iteration number k for di-
mension d=4 and ensemble size N = 103 (light blue down threes), 104 (solid red
triangles), and 105 (solid yellow circles) per iteration. Shaded areas represent in-
terquartile range. Estimates are updated after each iteration. From the top row
to the bottom row: estimates provided by CSPSA, estimates provided by CSPSA
updated at each iteration by projection to the closest unitary transformation, and
estimates provided by CSPSA updated at each iteration with the Gramm-Schmidt
orthogonalization procedure.
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Chapter 5

Conclusions

In this work we have presented the tomography of quantum states based on the

minimization of the squared error, along with a plausible manner to measure this

quantity in polarization qubits and path-encoded qudits. The used optimization

methods were the CSPSA algorithm, which was concatenated with MLE in order

to drastically increase the convergence rate and make use of all the available infor-

mation. We study the behavior of the algorithm by making Monte-Carlo numerical

simulations in states of dimension d = 2, 4, 8 and 16.

The simulations display a fast decrease of the metric in the early iterations fol-

lowed by a seemingly linear regime. In the later regime, for all the treated dimen-

sions, both mean and median become indistinguishable from one another and the

interquartile range becomes extremely narrow, implying that one can expect in av-

erage a uniform performance of the algorithm in all the states, meaning, that there

are no special states with a different demeanor. Furthermore, from the numerical

results it seems that the linear regime approaches the Gill-Massar bound for states
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of a dimension twice as large. This can be attributed to the fact that in order to

measure the squared error between two states we need to work on a bigger space, of

size two times larger than the original target state, however we do not have proof

for this claim.

The mixing of CSPSA and MLE is introduced in order to exploit all the informa-

tion available and it is known that this concoction achieves the Gill-Massar bound

for tomographic schemes based on the minimization of the infidelity [54], which is

why it was hoped that this work could accomplish the same feat. However, the rate

of convergence being twice the bound is still a good result, as standard tomography

has a convergence rate of the order O(1/
√
N) for dimensions higher than that of a

qubit, and adaptative tomography has been proven to yield a convergence rate on

the order of O(1/N) [34] which is the standard for high accurate methods and where

we currently stand.

We also extended our method to the case of the estimation of unitary transfor-

mations. The approach taken is to estimate the unitary matrix column by column

and enforce the unitarity by applying the Gramm-Schmidt procedure or project onto

the closest unitary at each iteration. What was found on the numerical simulations

performed for dimensions d = 2, 4 is a demeanor similar to the state estimation

case, to no surprise since the extension relies heavily on the proposed method to

estimate states. The likeliness can also be appreciated in the narrow interquartile

range and the similarity between mean and median, and hence, the independence of

the unitary to be estimated. On the other hand, closest unitary projection proved

to reach a higher accuracy between the two tried methods, but it is also drasti-

cally more computational demanding than Gramm-Schmidt ortogonalization, and
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for larger dimensions the projection could become infeasible.

Finally we would like to point out that the tomography of unitary processes is

the area where this work has more prospect, as the studies of self-guided process

tomography are still new. Which is why in the future we will focus on minimizing

the amount of input states to make implementations on high dimensional systems

more plausible, and research a way to extend the method to process tomography of

CPTP transformations.
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Appendix A

Relationship Between the

Quantum and Classical Fisher

Matrices

The classical Fisher matrix can be written as

Iij =

∫
Θ

dnθ̃
1

p(θ̃|θ)

∂p(θ̃|θ)

∂θi

∂p(θ̃|θ)

∂θj
. (A.1)

On the other hand the probability function can be expressed in terms of measure

operators as

p(θ̃|θ)dnθ̃ = tr(ρ(θ)dΠ(θ̃)) = tr(ρ(θ)Π(θ̃))dnθ̃. (A.2)
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Let v be any real non-null vector, then

vtIv =
∑
i,j

∫
Θ

dnθ̃
1

p
vi∂θipvj∂θjp (A.3)

=
∑
i,j

∫
Θ

dnθ̃
1

4p
vivjtr(ρLiΠ + LiρΠ)tr(ρLjΠ + LjρΠ) (A.4)

=

∫
Θ

dnθ̃
1

p

∑
i,j

Re(tr(viρLiΠ))Re(tr(vjρLiΠ)) (A.5)

≤
∫

Θ

dnθ̃
1

p
|tr(ρLΠ)|2, (A.6)

where L =
∑
viLi has been defined. Since the density matrix ρ and the projector Π

are positive defined, then

vtIv ≤
∫

Θ

dnθ̃
1

p
|tr(
√

Πρ
†√

ρΠL)|2 (A.7)

=

∫
Θ

dnθ̃
1

p
|〈
√
ρΠ,

√
ρΠL〉HS|2, (A.8)

where 〈, 〉HS is the Hilbert-Schmidt inner product. By applying the Cauchy-Schwartz

inequality to Eq (A.8) we get

vtIv ≤
∫

Θ

dnθ̃
1

p
||
√
ρΠ||2HS||

√
ρΠL||2HS (A.9)

=

∫
Θ

dnθ̃
1

p
tr(ρΠ)tr(LρΠL) (A.10)

=

∫
Θ

dnθ̃
∑
i,j

vivjtr(LiLjρΠ) (A.11)

= vtHv. (A.12)

Thus, it has been proven that

I ≤ H (A.13)
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Appendix B

Gill Massar Bound Derivation

The objective problem is given by

min Tr(WCN) (B.1)

subject to: Tr(INH−1) = N(d− 1) (B.2)

which we are going to solve by using Lagrange multipliers. Therefore we use the

Frechet directional derivative defined as

Df(A)(B) =
d

dt
f(A+ tB)

∣∣∣∣
t=0

. (B.3)

On the other hand, since our task is to find the minimum value of Tr(WCN) we

can suppose that CN saturates the Cramér-Rao bound, that is C = 1
IN

, where we

have dropped the N index in order to make the notation more easier. Thus, the
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objective Lagrangian to minimize is

L(C) = Tr(WC) + λTr(CH−1) = f(C) + λg(C), (B.4)

where f(C) = Tr(WC), g(C) = Tr(CH−1) and λ is the Lagrange multiplier. The

minimum value will then be given by

Df(C)(B) + λDg(C)(B) = 0. (B.5)

Now we compute the Frechet derivatives of each function

Df(C)(B) =
d

dt
Tr[WC +WBt]

∣∣∣∣
t=0

(B.6)

= Tr[WB], (B.7)

and

Dg(C)(B) =
d

dt
Tr[(C +Bt)−1H−1]

∣∣∣∣
t=0

(B.8)

= Tr[D(C−1)(B)H−1]. (B.9)

To calculate D(C−1)(B) we use the fact that CC−1 = I, thus

D(C−1)(B)C + C−1D(C)(B) = 0, (B.10)

which implies that D(C−1)(B) = −C−1D(C)(B)C−1, from here is not hard to see

that D(C)(B) = B. Now we replace this results into the Lagrange equation (B.5),
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getting

Tr[WB]− λTr[C−1BC−1H−1] = 0. (B.11)

What we have to do now is find some relation between C, λ and the other operators,

assuming that (B.11) holds for any operator B, and finally find the value of λ. So,

we see that we can rewrite eq. (B.11) in the following form

Tr[WB − λC−1H−1C−1B] = 0, (B.12)

since this has to be satisfied for any matrix B, then we get the condition for the

Lagrange multiplicators

W = λC−1H−1C−1, (B.13)

amplifying by H−1/2 from left and right we get

H−1/2WH−1/2 = λH−1/2C−1H−1C−1H−1/2 (B.14)

= λ(H−1/2C−1H−1/2)2, (B.15)

from here is easy to find

C−1 =
1√
λ
H1/2
√
H−1/2WH−1/2H1/2. (B.16)

And now we find λ from the condition g(C) = 0, getting

0 = Tr[C−1H−1]−N(d− 1) (B.17)

=
1√
λ

Tr
[
H1/2
√
H−1/2WH−1/2H1/2H−1

]
−N(d− 1) (B.18)

=
1√
λ

Tr
[√

H−1/2WH−1/2
]
−N(d− 1), (B.19)
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from here we find

λ =

Tr
[√

H−1/2WH−1/2
]

N(d− 1)

2

. (B.20)

Now we can calculate the bound by replacing this into the function f , getting

Tr[WC] =
Tr
[√

H−1/2WH−1/2
]

N(d− 1)
Tr
[
WH−1/2(H−1/2WH−1/2)−1/2H−1/2

]
(B.21)

=
Tr
[√

H−1/2WH−1/2
]

N(d− 1)
Tr
[√

H−1/2WH−1/2
]

(B.22)

=

(
Tr
[√

H−1/2WH−1/2
])2

N(d− 1)
. (B.23)

Since our work is estimating states through MSE optimization, we choose W as the

identity, then the bound becomes

MSE(θ̂) =
Tr[
√
H−1]2

N(d− 1)
. (B.24)

In order to compute the calculate the explicit bound for a pure state we need to

compute the elements of the Helmstrom matrix H. Therefore lets consider a fixed

point θ0 in the parameter space. At this point we choose a basis such that

ρ0 = ρ(θ0) = |1〉〈1| (B.25)

ρN = ρ0 ⊗ ρ0 ⊗ · · · ⊗ ρ0. (B.26)

On the other hand, let’s consider another point θ in the neighborhood of θ0, such that

a density matrix ρ(θ) at this point may be expressed as a first order approximation
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of ρ0, that is,

ρ = ρ(θ) = ρ0 +
∑
k,±

(θk± − θ0
k±)ρk±. (B.27)

where θk± are the parameters that we wish to estimate and ρk± are 2(d−1) traceless

hermitian matrices for 2 ≤ k ≤ d defined by

ρk± = i(1∓1)/2(|1〉〈k| ± |k〉〈1|). (B.28)

The reason for choosing this parametrization can be seen from the fact that a state

|ψ〉 in the neighborhood of |1〉 can be written as

|ψ〉 = |1〉+
d∑

k=1

αk|k〉+ i
d∑

k=1

βk|k〉, (B.29)

then the density matrix of the state at first order in α and β is

ρ =|1〉〈1|+
∑

αk(|1〉〈k|+ |k〉〈1|) +
∑

βki(|1〉〈k| − |k〉〈1|) (B.30)

=ρ0 +
∑
k,±

γk±ρk± (B.31)

from where we can identify γk± with (θk±−θ0
k±). Now it is easy to see that ∂ρ

∂θk±
= ρk±,

hence we have Lk± = 2ρk±. No we can calculate the quantum fisher information

Hk±k′±′ = Tr[ρj±Lk±′ ] (B.32)

= 2(i)(1∓1)/2(i)(1∓′1)/2Tr[(|1〉〈k| ± |k〉〈1|)(|1〉〈k′| ±′ |k′〉〈1|)] (B.33)

= 2(i)(1∓)/2(i)(1∓′1)/2Tr[±|k〉〈k′| ±′ |1〉〈1|δkk′ ] (B.34)

= 2(i)(1∓1)/2(i)(1∓′1)/2(±δkk′ ±′ δkk′) (B.35)

= 4δkk′δ±±′ . (B.36)
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By replacing this into (B.24) we finally get

MSE(θ̂) =
(2d− 2)2

4N(d− 1)
(B.37)

=
d− 1

N
. (B.38)
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