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Resumen

Las estrellas de tipo temprano tienen envolturas radiativas con núcleos convectivos
debido a un fuerte gradiente de temperatura producido por el ciclo CNO. Las
estrellas químicamente peculiares Ap y Bp poseen campos magnéticos de gran
escala desde 200 G hasta 34 kG. El origen de estos campos magnéticos es incierto,
pero se han desarrollado algunas hipótesis. En la primera parte de esta tesis,
presentamos simulaciones magnetohidrodinámicas (MHD) en 3D de una estrella
con 2M⊙ totalmente convectiva, como una forma de modelar su fase protoestelar
y encontrar campos magnéticos fósiles, que eventualmente podrían permanecer
estables durante su vida en la secuencia principal. Encontramos configuraciones
de dínamo en su mayoría estacionarias con rotación diferencial anti-solar, similar
a lo que se ha encontrado previamente en estrellas totalmente convectivas. En
la segunda parte de este trabajo, presentamos simulaciones numéricas en 3D
de una estrella con 2M⊙ de secuencia principal con un núcleo convectivo que
ocupa el 20% su extensión radial, rodeado por una envoltura radiativa, como
una forma de estudiar el magnetismo producido por el dinamo del núcleo, y por
primera vez, la relación entre su cíclo magnético y el periodo de rotación de la
estrella. Exploramos periodos de rotación de 8 a 20 días, y definimos tres sets de
simulaciones, cuyas principales diferencias son el perfil radial de las difusividades,
y el tamaño de la caja, lo que nos permite explorar no sólo el magnetismo en el
núcleo, sino también en la superficie. Todos los modelos con núcleos convectivos
tienen rotación diferencial solar y generan dínamos hemisféricos con valores del
campo magnético toroidal muy fuertes de hasta 200 kG. En los rotadores rápidos
la energía magnética es cercana a la energía cinética, alcanzando un régimen
cercano a la equipartición. La superficie estelar también tiene campos magnéticos,
sin embargo, son débiles en todas partes excepto en los polos, lo que al igual que
resultados anteriores, parece indicar que un dínamo en el núcleo no es suficiente
para explicar los campos magnéticos observados en estas estrellas. Finalmente,
este modelo se puede utilizar para estudiar cómo un campo fósil inicial cambia la
naturaleza del dínamo hemisférico en el núcleo, y también el campo magnético a
gran escala resultante.

Keywords – Campos magnéticos, estrellas de tipo temprano,
magnetohidrodinámica (MHD), dínamos
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Abstract

Early-type stars have radiative envelopes and convective cores due to a steep
temperature gradient produced by the CNO cycle. The chemically peculiar
Ap and Bp stars host large-scale magnetic fields in the order of 200 G to
34 kG. The origin of these magnetic field remains uncertain, although, some
hypotheses have been developed. In the first part of this thesis, we present 3D
magnetohydrodynamical (MHD) simulations of a fully convective 2M⊙ star, as
a way to model the protostellar phase of the star and find fossil magnetic field
configurations, that could eventually remain stable during the main-sequence life of
the star. We find mostly steady dynamo configurations with anti-solar differential
rotation, similar to what has been found previously in fully convective stars. In
the second part of this work, we present 3D numerical simulations of a 2M⊙

main-sequence star with a convective core of 20% its radial extent, surrounded by
a radiative envelope, as a way to study the magnetism produced by a core dynamo,
and for the first time, the relation between its magnetic cycle and the rotation
period of the star. We explore rotation periods from 8 to 20 days, and defined
three sets of simulations, whose main differences are the radial profiles of the
diffusivities, and the size of the box, allowing us to explore not only the magnetism
in the core, but also at the surface. All the convective core models have solar-like
differential rotation and drive dynamos which are hemispheric with very strong
toroidal magnetic fields up to 200 kG. In the fast rotators the magnetic energy
is close to the kinetic energy, reaching a nearly equipartition regime. The stellar
surface also has magnetic fields, however, they are weak everywhere except at the
poles, which similarly to previous results, seems to indicate that a core dynamo is
not enough to explain the observed magnetic fields of these stars. Finally, this
model can be used to study how an initial fossil field changes the nature of the
hemispheric core dynamo, and also the resulting large-scale magnetic field.

Keywords – Magnetic fields, early-type stars, magnetohydrodynamics (MHD),
dynamos
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Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Context

Magnetic fields are everywhere in the Universe. It is possible to infer them in a
lot of astrophysical systems, like terrestrial and gas planets, galaxies, accretion
disks, and in the interstellar medium. They can also be found in a wide variety
of stars, and there is a general consensus that most of them are amplified and
maintained via self-excited dynamos. In this context, these processes typically
require rotation and convection, and therefore are most likely to occur inside
convection zones (see Brandenburg and Subramanian 2005). The most obvious
example is the Sun, which has a cyclic large-scale magnetic field driven by a self-
excited dynamo operating in its convective envelope. This field can be measured
directly from the surface of the Sun with the Zeeman effect in the sunspots spectra
(see Section 1.2.1). Like the Sun, other late-type stars (M, K, F) have convective
envelopes, and the observed magnetic field in these stars also has a convective-
driven origin. An interesting example are M dwarfs, which are believe to be fully
convective with masses below M ≈ 0.35 M⊙ (see Kochukhov, 2021). Numerical
simulations have reproduced different dynamos coming from these stars (Dobler
et al., 2006; Browning, 2008; Brown et al., 2020; Käpylä, 2021; Ortiz-Rodríguez
et al., 2023).

Early-type stars are main-sequence stars with higher masses (M > 1.5M⊙) and
temperatures than late-type stars and only roughly 5% are magnetic (Kochukhov
and Bagnulo, 2006). According to our understanding of stellar evolution, stars



2 1.1. Context

M star

K star
G star

M < 0.35 M 0.35 - 1.5 M

A star
B star

M > 1.5 M

Figure 1.1.1: Internal structure of main-sequence stars, where closed curves
represent convection and open arrows radiation. The diagrams of each spectral
type (mentioned above the star) are examples of stars inside the corresponding
mass range.

with masses above ∼ 1.5 M⊙ have stably stratified envelopes, this means that they
are stable against convection and therefore, energy is transported by radiation
(see Figure 1.1.1). This might explain why a dynamo can not usually operate
at the surface of these stars, since in principle vigorous convective motions are
required (see Section 2.2.1). However, some stars in the range of 1.5 M⊙ − 6 M⊙

host observable large-scale magnetic fields. A good example is the subgroup of
chemically peculiar main-sequence stars, classified as Ap/Bp. These stars host
magnetic fields with mean field strengths ranging from 200 G to 30 kG (Aurière
et al., 2007), while the highest magnetic field detected, coming from HD 215441,
reached 34 kG (Babcock, 1960). Roughly 10% of A-type stars belong to the
sub-classification Ap and have detectable strong fields (Moss, 2001). Furthermore,
Grunhut et al. (2017) analyzed 108 individual O-type stars finding a magnetic
incident rate of 7± 3%, which might indicate a similar distribution as in Ap/Bp
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stars, although magnetic fields of O-type stars are much weaker. This is one of the
reasons of why we will focus more in Ap/Bp stars in this thesis. More information
about these stars is given in Section 1.2.2.

Unlike late-type stars, whose magnetic fields (believed to be dynamo originated)
have complex surface structures and evolve on relatively short time scales, early-
type stars have simple fields, usually dipoles with a magnetic axis misaligned
with the rotational axis (Landstreet and Mathys, 2000), and they are very stable
over long timescales, at least several decades (Briquet, 2015). The origin of
these large-scale magnetic fields remains uncertain. Nevertheless some theories
have been proposed. In Section 1.3 we will review the main theories, including
numerical results from previous work, and then, describe our own approach to
this question in Section 1.4.

In order to strengthen the context and the objectives of this thesis, we will provide
an overview of astrophysical magnetic fields. Starting with the most well-known
example, the Sun, followed by the chemically peculiar magnetic stars, i.e. Ap and
Bp, and the contrast with their non-magnetic counterparts.

1.2 Magnetic fields

1.2.1 Solar magnetism

The most direct proof of an astronomical object with a large-scale magnetic field
is our planet, the Earth, whose magnetic field has a maximum value in the surface
of roughly 0.6 G (Choudhuri, 1998). However, although it is possible to study the
geodynamo over geological times, it is an approximately static field over short
timescales (decades). On the other hand we have the Sun, which works as the
gateway to stellar magnetism, and due to its well-known magnetic cycle it is useful
to improve and test our theories about astronomical magnetic fields.
The main observational evidence of the Sun’s magnetic field are the sunspots,
which have been registered from at least 800 BC. The first time it was discovered
that they are associated with magnetic fields, was in the study of Hale (1908), who
directly measured strong fields in the sunspots spectra using the Zeeman effect.
Sunspots are regions with a very strong magnetic field. Due to this, the convective
heat transport is inhibited, producing darker areas with lower temperature than
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the rest of the photosphere. From the observation of the sunspots we can infer
that the magnetic field of Sun is in fact quasi-cyclic.

Figure 1.2.1: Solar butterfly diagram showing sunspots as a function of time
and latitude (with EQ being the equator). Courtesy of Dr. David Hathaway and
NASA.

In Figure 1.2.1 we show the position of sunspots on the Sun’s surface from 1870
to 2020. It is possible to observe that sunspots appear at latitudes ±40◦ and then
they migrate towards the equator in roughly 11 years, subsequently repeating the
cycle. Nevertheless, this cycle also includes changes in the polarity of the magnetic
field, as we can see from Figure 1.2.2. Notice that after one cycle of 11 years, the
large-scale magnetic field changes its polarity, so the solar magnetic cycle has in
fact an average length of 22 years, while the sunspot cycle has a length of half
of it. These magnetic cycles occur due to a dynamo operating in the convective
zone of the Sun (see e.g. Charbonneau, 2020), above its radiative core. A detailed
overview about the energy transportation mechanisms is given in Section 2.1.

1.2.2 Ap/Bp stars magnetism

As discussed in Chapter 1.1, a good example of magnetized early-type stars are
Ap/Bp stars. Since the Zeeman effect observations by Babcock (1947), we know
that they can host strong large-scale magnetic fields. The p comes from their
chemical composition, because they show peculiar abundances of rare earths and
some lighter elements such as silicon, as well as surface patterns of these elements,
which are linked to the magnetic field. These may originate from gravitational
settling and radiative levitation (Michaud, 1970). It is worth noting that there is
a clear bimodality in this spectral type; Ap stars have magnetic fields that range
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Figure 1.2.2: Time evolution of the averaged solar surface magnetic field
(Butterfly diagram) from 1975 to 2015. Image adapted from Charbonneau (2014).

from 200 G to 34 kG, while their non-magnetized counterparts (“normal” A-type
stars) usually have very weak fields below the detection limit. Nevertheless, weak
magnetic fields have even been detected in the normal population, for example in
Sirius and Vega. In the case of Vega, Zeeman polarimetry measured a magnetic
field strength of 0.6± 0.3 G (Lignières et al., 2009; Petit et al., 2010, 2022), and
0.2±0.1 G in Sirius (Petit et al., 2011). A-type stars are fast rotators (Royer et al.,
2007), however, Ap stars rotate more slowly than their non-magnetic counterparts
(Abt and Morrell, 1995). Indeed, Mathys (2008) have shown that non-magnetic A
stars have rotation periods ranging from a few hours to a day, while most Ap stars
have periods between one and ten days. The most extreme cases have periods of
the order of 300 years, and some of them possibly around 1000 years (Mathys,
2015). This could be an indication of magnetic braking, however, there is no clear
correlation between rotation and magnetic fields (Kochukhov and Bagnulo, 2006).

Interestingly, there seems to be a cutoff around 300 G in the Ap/Bp population.
This is clearly visible in Figure 1.2.3, which corresponds to the dipole field strength
(as mentioned, this is a good approximation for early-type stars) of a sample of 27
Ap/Bp stars, from Aurière et al. (2007). The dotted vertical line represents the
cutoff at 300 G; below this value there are only 2 stars of the sample (HD 32650
and HD 96707), even though the sensitivity of the observations was much lower.

This also shows the previously mentioned bimodality of A-type stars. It is
worth mentioning that a possible explanation of this could be fossil fields (see
Section 1.3.2). In this context, the intensity of the magnetic field in the progenitor
molecular cloud will determine if the star has a strong field during the main
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Figure 1.2.3: Histogram of best fit dipole field strengths, from the sample of 27
Ap/Bp stars described in Aurière et al. (2007).

sequence or not. However, it is unclear how or at which point specifically this
magnetic seed is formed.

1.3 Possible explanations of magnetism in early-

type stars

1.3.1 A dynamo driven in the convective core

Figure 1.1.1, shows that massive stars have a convective core. Indeed, it can
be roughly 30% of the stellar radius in stars with masses higher than 5 M⊙.
This happens essentially because the main energy production mechanism in these
stars is the CNO cycle, which is very temperature dependent. Therefore, the
energy production is more concentrated in the center of the star, leading to a
steep temperature gradient and a large energy flux, driving convection (for more
information about the occurrence of convection, see Section 2.1.2.1). In A-type
stars, it has been suspected that this convective core may host dynamo action
(Krause and Oetken, 1976). Indeed, simulations by Browning et al. (2004) noted
that these cores have differential rotation, and strong regions of shear that makes
dynamo activity almost inevitable. This was reported by Brun et al. (2005),
performing numerical simulations of the inner 30% by radius (where 15% is the
core) of a 2 M⊙ A-type star, obtaining magnetic fields with typical strengths
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around the equipartition value with the kinetic energy. In B-type stars, magnetic
activity has been found as well. Simulations by Augustson et al. (2016) of the core
of a 10 M⊙ B-type star, reported vigorous dynamo action, generating magnetic
fields with peaks exceeding a megagauss in the fast rotators, and reaching super-
equipartition values. However, although these studies show that a convective core
can lead to strong dynamo action, the nature of these dynamos has not been
explored in details. The relation between the magnetic cycle period of the core
dynamo and the rotation of the core is unknown.

However, the natural question is if these magnetic fields can reach the surface of the
star. In principle, this could happen under the action of buoyancy. Nevertheless,
the timescale of this process has been estimated to be longer than the main-
sequence life of these stars (Schuessler and Paehler, 1978; Parker, 1979; Moss, 1989),
unless the magnetic structures are very small. This was reported by MacGregor
and Cassinelli (2003), modelling a buoyant magnetic flux ring in the radiative
interior of an early-type star (with M < 10 M⊙), finding reasonable transport
times from the core to the surface of the star (less than the star main-sequence
life). Nonetheless, MacDonald and Mullan (2004) re-examined the conclusions of
MacGregor and Cassinelli (2003), but adding more realistic parameters (based
on detailed evolutionary models), like differential rotation, and realistic strong
compositional gradients in the radiative layers. This slows down the buoyancy
process considerably, and magnetic fields higher than the equipartition values
are required to make this process feasible. One mechanism that could counter
this situation, is convective overshooting. This could allow mixing in the stably
stratified zone above the convective core, reducing the compositional gradient.
Also, the field that penetrates the radiative envelope might be strengthened by
the shearing produced by the differential rotation, making it strong enough to
reach the surface via buoyancy.

It is worth mentioning that stellar models have predicted thin convective layers
close to surface of early-type stars (Richard et al., 2001; Cantiello et al., 2009).
This happens due to bumps in the stellar opacities, i.e. the so-called Iron-peak
(Iglesias et al., 1992), and often another peak related to Helium ionization. These
layers could host dynamo action very close to the stellar surface. Cantiello and
Braithwaite (2011) reported that the resulting magnetic field can easily rise
buoyantly to the surface due to the low density in the radiative layer, giving
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a very short thermal timescale. However, the surface fields are expected to be
smaller than a few hundred Gauss, which makes it unlikely that these layers are
responsible for the large scale magnetic fields of these stars.

1.3.2 Fossil fields

Magnetic fields of late-type stars coming from dynamo processes evolve on relatively
short timescales, while the large-scale fields in early-type stars seem to be very
stable over long timescales (see Section 1.2.2 for more observed properties). Also,
as we discussed, all these stars seem to have stably stratified envelopes. These
observations suggest that the origin of these magnetic fields are indeed fossil
fields, i.e. magnetic configurations that were originated at some early evolutionary
phase of the star. The idea behind this, is that forces that contribute to the
momentum equation (2.2.7) may eventually reach an equilibrium, including the
Lorentz force and therefore one may expect a magnetic field in the star, and
no flow velocity u ∼ 0. This would transform the induction equation, i.e. the
equation that describe the evolution of the magnetic field, into a diffusion equation
(see Section 2.2.1 for more information). Therefore, the magnetic field will evolve
on a diffusive timescale, the Ohmic diffusion time tdiff = R2/η, where η = (µ0σ)

−1

is the magnetic diffusivity (or resistivity), a quantity inversely proportional to the
electric conductivity σ of the star, and µ0 is the vacuum magnetic permeability.

Cowling (1945) realized that in the radiative core of the Sun, this timescale is
of the order of 1010 years, and therefore, a field in equilibrium inside this zone
could last for the whole main-sequence lifetime of the star. However, the problem
is to find stable configurations. Analytical techniques have had limited success
in order to convincingly demonstrate the existence of these stable equilibria, and
some methods seem to indicate possible instabilities rather than demonstrating
stability. For example, the energy method of Bernstein et al. (1958) showed that
purely poloidal and purely toroidal fields in highly ideal conditions are unstable
under perturbations (Tayler, 1973; Markey and Tayler, 1973, 1974; Wright, 1973).

Numerical MHD simulations by Braithwaite and Nordlund (2006), produced stable
configurations in the radiative interior of a 2 M⊙ A-type star starting from an
initially random field, which relaxed to a stable roughly axisymmetric torus inside
the star, with poloidal and toroidal components of comparable strength. This
solution leads to a roughly dipolar surface field. Non-axisymmetric configurations
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consisting of twisted flux tubes lying horizontally below the surface of the star were
found by Braithwaite (2008), starting from turbulent initial conditions. Mitchell
et al. (2015) performed simulations of a barotropic (isentropic) star, testing
random disordered magnetic fields, and mixed toroidal-poloidal axisymmetric
fields. None of these configurations were stable in this type of star, indicating
that stable stratification is an essential ingredient for the stability of magnetic
fields. Becerra et al. (2022) modelled a stably stratified and barotropic stars,
confirming previous results. No stable configurations were found for the barotropic
model, while initially random fields evolved to stable equilibrium in the radiative
model. However, the final state of the equilibrium depends directly on the chosen
dissipation mechanisms.

It is worth mentioning that this idea is not mutually exclusive with the dynamo
driven by the convective core of the star. In fact, a fossil field in the radiative
envelope might affect the nature of the core dynamo (see Boyer and Levy 1984, in
the context of the Sun). Featherstone et al. (2009) performed MHD simulations of
the inner 30% by radius of a 2 M⊙ A-type star, and they found an equipartition
dynamo-originated field in the core. However, the inclusion of a twisted toroidal
fossil field can lead to a super-equipartition state in the core dynamo, where the
magnetic energy is roughly 10 times stronger than the kinetic energy of convection.

1.3.3 Dynamo in the radiative zone

As discussed in Section 1.1, dynamo action typically requires convection and
rotation. These are the required ingredients for a stellar convective dynamo. In
this context, the field lines from an initially poloidal magnetic field get stretched
by differential rotation producing a toroidal magnetic field (Ω effect). Furthermore,
a new poloidal magnetic field can be created by twisting the field lines from the
existing toroidal field, closing the dynamo loop. As initially proposed by Parker
(1955), this can be done via helical fluid motions, typical of rotating convection
in the solar convection zone. After the work by Steenbeck et al. (1966) with
mean-field dynamo theory, this process is commonly known as the α effect.

However, this is one of the possibilities, but in principle, convection is not really
necessary. A magnetic instability in the toroidal magnetic field can generate a
poloidal field, replacing the role of convection and closing the dynamo loop. Such
an instability is the Tayler instability (Tayler, 1973) which can also take place in
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the stably stratified zones inside a star. This instability combined with differential
rotation is the Tayler-Spruit dynamo scenario, proposed by Spruit (2002).

It is worth mentioning that recently Petitdemange et al. (2023a,b) modelled
the dynamics of a stably stratified, differentially rotating, magnetized fluid in
a spherical shell. Reporting the first numerical simulations of the Tayler-Spruit
dynamo, verifying theoretical assumptions made by Spruit (2002).

1.4 This project

The objective of this project is to perform 3D magnetohydrodynamic simulations
using the star-in-a-box model, adapted from Käpylä (2021, 2022), as a way to
understand the origin of the large-scale magnetic fields in A-type stars.

In order to do this, we explore two scenarios:

• Protostellar phase: In the first part, we perform numerical simulations
of a fully convective 2 M⊙ star, which is believed to be representative of
the pre-main-sequence evolution of chemically peculiar Ap subclass as they
descend their Hayashi tracks (Hayashi et al., 1962; Siess et al., 2000). In
principle, using realistic resistivities only a small fraction of the generated
magnetic flux is able to survive turbulent decay during this phase (Moss,
2003; Schleicher et al., 2023). However, if the magnetic field is strong enough
this small fraction could be enough to be a representative fossil field once
the star reaches the main sequence, i.e. the magnetic field configurations
produced by these models could be potential inputs to look for stable
configurations in a main-sequence stellar model. These fully convective
simulations explore rotation periods from 20 to 280 days, which gives a
range of Coriolis numbers from 1 to ∼ 30 (see Section 2.2.3). The dynamo
solutions, as well as the analysis of the large-scale flows, energies, and
differential rotation, are described in Chapter 4.

• Main-sequence phase: The second part consists of numerical simulations
of the main-sequence phase of a 2 M⊙ star. This model has a convective core
of roughly 20% of the stellar radial extent surrounded by a stably stratified
envelope. These simulations allow us to explore dynamos generated by
convection in the core of the star, not only in the interior of it but also in the
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stellar surface. Additionally, like the models of Browning et al. (2004), Brun
et al. (2005) and Featherstone et al. (2009), we develop a “zoom” model
which encompasses the convective core and a part of the radiative zone. This
is convenient to explore the core with more resolution, however, the surface
of the star is outside the domain of the simulation. Data from this setup will
be used to characterize the relation between rotation period and magnetic
activity period of the core dynamo for the first time. This relation and an
analysis similar to the protostellar model is presented in Chapter 5, with
the addition that this analysis was done at r = R and at r = 0.2R, where R

is the stellar radius. Rotation periods from 8 to 20 days are explored.

The models mentioned above are described more extensively in Section 3.3.1. In
both, the compressible non-ideal magneto-hydrodynamics equations are solved
using the Pencil Code (Pencil Code Collaboration et al., 2021).
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Chapter 2

Stellar structure and

magnetohydrodynamics

As discussed in Section 1, stars have a very wide range of magnetic fields, depending
on their internal structure and possibly also on pre-main-sequence mechanisms
(like in the fossil field theory). However, there are some key elements that are
required in order to have a dynamo, or to study if an existing magnetic field can
survive in a stable configuration. In this chapter, a brief description of stellar
physics will be given, including the energy transport mechanisms, and how to
establish the stability against convection in a specific layer. Furthermore, non-
ideal magnetohydrodynamics is also discussed, as well as its equations, and useful
dimensionless parameters to characterize the system.

2.1 Energy transport mechanisms

The energy that a star radiates away from its surface comes from its central region.
The energy transport between the core and the surface is possible because the
star has a non-zero temperature gradient. This is a key factor in both transport
mechanisms that will be reviewed in this section, radiation and convection. The
local physical situation inside the star will determine which one occurs. A general
overview will be given, and then a criteria that determines if a layer is stable or
not against convection.
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2.1.1 Radiation

Inside a star, photons that carry the energy from the core are constantly scattered,
absorbed, and re-emitted in random directions by particles such as electrons. This
is because stellar matter is very opaque, and therefore, photons have a very short
mean free path of lph ∼ 2 cm ≪ R⊙ (Kippenhahn et al., 2013). The radiation
field inside a star is extremely close to a black-body radiation. However, it is still
possible to find a small anisotropy due to tiny temperature differences, e.g. for
the Sun the temperature variation over a distance lph is ∆T ∼ 10−4 K. This gives
a temperature difference of ∆T/T ∼ 10−11, quite small but enough to carry the
whole energy flux of the Sun (Pols, 2011).

These considerations allow us to simplify the physical description of radiation as
a diffusion process, obtaining:

Frad = −Krad∇T, (2.1.1)

for the radiative energy flux, where Krad is known as radiative heat conductivity
(for a detailed formulation, see e.g. Weiss et al., 2004). It works as a coefficient of
conduction for the radiative (diffusive) transfer, formally defined as:

Krad =
1

3
vlphcV. (2.1.2)

For photons, we have the mean velocity as the speed of light v = c, the mean free
path is given by lph ∼ 1/κρ, where κ is the opacity, ρ is the density, and cV is the
heat capacity at constant volume:

cV =
dU

dT
=

d

dT

[
1

c

∫ ∞

0

I(ν, T )dν

∫
dΩ

]
=

d

dT

[
4

c

(
2π5k4

B

15c2h3

)
T 4

]
= 4aT 3,

where I(ν, T ) is the intensity of a radiation beam at a frequency ν and temperature
T , and a ≡ 4

c

(
2π5k4B
15c2h3

)
is the radiation density constant. Therefore, replacing this

in equation (2.1.2), we obtain:

Krad =
4

3

acT 3

κρ
. (2.1.3)

Then, expressing the energy flux in terms of the local luminosity Lr = 4πr2Frad(r),
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and also considering spherical symmetry, i.e. ∇T = (∂T/∂r)r̂, we obtain:

∂T

∂r

∣∣∣∣
rad

= − 3

16πac

κρLr

r2T 3
. (2.1.4)

Using this expression and dm = 4πρr2dr, where m is the mass coordinate, we can
define the radiative temperature gradient:

∇rad =

(
d lnT

d lnP

)
rad

=
3

16πacG

κLrP

mT 4
, (2.1.5)

a dimensionless parameter that will be very useful to establish a criterion that
determines when the star (or a certain zone of it) is in radiative equilibrium, i.e.,
stable against convection.

Finally, notice that this is valid as long as lph ≪ R. If the medium is optically
thin, then the diffusion approximation is not valid anymore and we will have to
solve the complete radiative transfer equations. This, for example, is required in
the photosphere where photons escape, and therefore lph ≥ R.

2.1.2 Convection

The temperature gradient required to carry a luminosity Lr by the radiation, is
given by equation (2.1.4). The larger the luminosity that has to be carried, the
larger the temperature gradient required. However, the temperature gradient has
an upper limit given by the adiabatic temperature gradient (see Section 2.1.2.1),
and if this value is exceeded then the region will become dynamically unstable,
producing cyclic macroscopic motions known as convection.

Inside convection zones, we clearly expect to have a lot of movement in the
fluid, and therefore a non-zero flow velocity. In section 2.2.1, we describe
the equation that describes the temporal evolution of the magnetic field in
magnetohydrodynamics, noticing that one of the key ingredients in order to
have a growing magnetic field, is a non-zero flow velocity, this is why these
amplification processes are most likely to occur where convection happens (see
Brandenburg and Subramanian, 2005).
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2.1.2.1 Convective stability

As a first approximation, it is possible to estimate where convection happens in
simulations by checking some of variables, like flow velocity or entropy. Convection
zones are expected to be nearly isentropic (nearly constant), while on the other
hand, radiative zones are expected to have entropy gradients. However, there is
an analytic way to check this stability with some gradients previously defined,
and also considering the chemical composition of the star.

A layer inside a star will be stable against convection if the Ledoux criterion is
fulfilled, this is:

∇rad < ∇ad −
χµ

χT

∇µ, (2.1.6)

where ∇rad is the radiative temperature gradient (2.1.5), and ∇ad is the adiabatic
temperature gradient:

∇ad =

(
d lnT

d ln p

)
ad

. (2.1.7)

Note that adiabatic here implies changes in T with respect to p at constant
entropy s, and therefore no heat Q is added or extracted in the system (dQ = 0).
Furthermore, ∇µ is the mean molecular weight gradient, defined as:

∇µ =
d lnµ

d lnP
. (2.1.8)

Also:

χT =

(
∂ lnP

∂ lnT

)
ρ,Xi

=
T

P

(
∂P

∂T

)
ρ,Xi

, χµ =

(
∂ lnP

∂ lnµ

)
ρ,T

=
µ

P

(
∂P

∂µ

)
ρ,T

,

where Xi means that the composition is held constant. If the layer is chemically
homogeneous, we have ∇µ = 0, and therefore, the Ledoux criterion is reduced to:

∇rad < ∇ad, (2.1.9)

which is known as Schwarzschild criterion. From this expression, and also (2.1.5),
we can infer that a large value of κ or regions with a large energy flux (Lr/m) can
drive convection. Finally, we can write down an equivalent expression to (2.1.9)
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in terms of the radial temperature gradients:(
∂T

∂r

)
rad

>

(
∂T

∂r

)
ad

, (2.1.10)

where ∂T
∂r
|rad is given by (2.1.4). As both gradients are negative it is common to

express (2.1.10) with absolute values, obtaining:∣∣∣∣∂T∂r
∣∣∣∣
rad

<

∣∣∣∣∂T∂r
∣∣∣∣
ad

. (2.1.11)

From here, we notice that the layer will be stable against convection as long as
the radiative temperature gradient is shallower than the adiabatic temperature
gradient.

2.1.2.2 Mixing length theory

Despite the importance of convection in stellar structure, a formal and rigorous
mathematical description of it has not been developed yet, and it is a poorly
understood process in stellar physics. However, as a basic approach to formulate
an analytic theory to treat convection, we have the mixing length theory. Initially
formulated independently by Taylor (1915), Schmidt (1917) and Prandtl (1925),
and later applied in the stellar context by Biermann (1932), Vitense (1953) and
Böhm-Vitense (1958), its basic idea is that the fluid movements inside convection
zones can be approximated as blobs in pressure equilibrium with its surroundings,
moving up (or down) in a straight line before dissolving into a new environment.
The blobs are not in thermal equilibrium with the environment, so a relatively
hot blob will move a distance lm (known as the mixing length) to the colder
environment, where it will merge adding energy to it. On the other hand, cooler
blobs will move towards hotter regions, dissolving itself and reducing the energy
of the new environment. This happens because hot blobs are less dense than the
surrounding, and therefore buoyancy forces cause them to rise and expand, while
cooler blobs shrink and compress.

Using this formulation, we can obtain an expression for the convective energy flux,
analogous to equation (2.1.1) for the radiative case, given by (Kippenhahn et al.,
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2013; Schleicher and Mennickent, 2017):

Fconv = ρcPT

(
lm
Hp

)2
√

1

2
gHp(∇−∇ad)

3/2, (2.1.12)

where cP is the heat capacity at constant pressure, g is the gravitational
acceleration, Hp is the local pressure scale height, where a common assumption is
lm ∼ Hp (Pols, 2011), ∇ad is the adiabatic temperature gradient (2.1.7), and:

∇ =
d lnT

d ln p
(2.1.13)

is the actual temperature gradient.

For a complete review of mixing length theory see Gough (1977) and Joyce and
Tayar (2023).

2.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD), also known as magneto-fluid dynamics, is a
branch of physics dedicated to the study of the magnetic properties in plasma,
treated as an electrically conducting and magnetized fluid. In this context,
the one-fluid model is used, therefore, the formalism is valid only when charge
separation is negligible, i.e. when electrons and ions do not respond very differently
(Choudhuri, 1998). The full description of the set of MHD equations depends
on the characteristics of the astrophysical system (viscosity, compressible or
incompressible flows, resistivity, etc), but basically, it consists in a combination of
Maxwell’s equations of electromagnetism and the hydrodynamics equations (see
Section 2.2.2 for a overview of the non-ideal MHD equations).

2.2.1 The induction equation

The microscopic interpretation of Ohm’s law establishes that currents inside a
material are proportional to the electric field, this is J = σE, where the constant
of proportionality σ is known as the conductivity of the material. However, this
is a stationary situation. If we consider a moving charge with velocity u, and a
co-moving frame of reference K ′, then the Ohm’s law in this frame can be written
as J = σE′. We also can express E′ in terms of the electric field in a fixed frame
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(E), obtaining:
J = σ(E + u×B). (2.2.1)

Now, the Ampère-Maxwell law is given by:

∇×B = µ0J +
1

c

∂E

∂t
. (2.2.2)

In the classic MHD model it is assumed that fluid flows are non-relativistic (u ≪ c),
and from equation (2.2.1) it is easy to prove that E ∼ u/cB (see e.g. Schekochihin,
2021), and therefore the displacement current can be neglected:∣∣1

c
∂E
∂t

∣∣
|∇×B| ∼

1
c
E
t

B
l

∼ u2

c2
≪ 1.

Thus, equation (2.2.2) reduces to the original pre-Maxwell form of the Ampère’s
law:

∇×B = µ0J . (2.2.3)

Now, inserting (2.2.3) into (2.2.1) and solving for E, we find:

E =
∇×B

µ0σ
− u×B.

Finally, replacing this expression into Faraday’s law ∇ ×E = −∂tB, and also
defining η = (µ0σ)

−1 as the magnetic diffusivity, we obtain:

∂B

∂t
= ∇× (u×B − η∇×B) , (2.2.4)

which is known as the induction equation.

Notice that if η is constant, using the relation ∇× (∇×B) = ∇(∇·B)−∇2B,
and the solenoidal constrain of the magnetic field (∇ ·B = 0), we can reduce the
expression (2.2.4) into:

∂B

∂t
= ∇× (u×B) + η∇2B (2.2.5)

and this expression is useful, because if the solenoidal condition was satisfied
initially, then any solution of (2.2.5) will have the solenoidal constraint too, i.e. be
divergence-free. Another way of keeping this constraint, is to write the induction
equation in terms of the magnetic vector potential B = ∇ ×A, and therefore
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∇ · (∇×A) = 0.

Notice that the first term of (2.2.5) is an advection term that quantifies the
evolution of the magnetic field by the flow of a fluid, and the second one is a
diffusive term, which quantifies the diffusion of the magnetic field.

If we have η = 0, then the fluid will become a perfect conductor (σ → ∞), and
we will obtain the ideal MHD case. In this regime any fluid element that lies on
a magnetic field line in a certain time t will remain on that field line for every
other time, so the fluid will drag the field lines, or in other words, the field lines
are “frozen” into the fluid. This has an implication: if the fluid tries to compress
or bend the field lines, the field will resist as if it possesses a restoring force.
This property gives elasticity to MHD fluids and is known as Alfvén’s theorem
(Davidson, 2002).

Also, notice that if we have a fluid at rest (u = 0), then we can neglect the
advection term, and equation (2.2.5) reduces to:

∂B

∂t
= η∇2B,

which is a diffusion equation. This is a direct proof that magnetic field decays in
the absence of motions, i.e., every fluid requires u ̸= 0 to amplify a magnetic field.

2.2.2 Full set of non-ideal MHD equations

The non-ideal MHD equations that will be reviewed in this thesis provide a
description of the fluid evolution (including diffusivities) with compressible flows
(∇ · u ̸= 0), and the evolution of magnetic fields. First, we have the continuity
equation, that describes the conservation of mass, given by:

D ln ρ

Dt
= −∇ · u, (2.2.6)

where D/Dt = ∂/∂t + u · ∇ is the advective (or material) derivative, ρ is the
density of the fluid, and u is the flow velocity. Considering a non-inertial co-
rotating frame of reference with angular velocity Ω, the Navier-Stokes equation
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(which describes the conservation of momentum) is given by:

Du

Dt
= −1

ρ
∇p− g + Fvisc + Fcor + Fcent + FLor + F , (2.2.7)

where p is the pressure, and g is the gravitational acceleration, which is usually
written in terms of the Newtonian gravitational potential g = −∇Φ that fulfills
the Poisson equation:

∇2Φ = 4πGρ, (2.2.8)

where G is the gravitational constant. The additional forces acting on the fluid are
viscosity, fictional forces related to the non-inertial frame of reference i.e. Coriolis
and centrifugal force, the Lorentz force, and F denotes any other external force
per unit acting on the fluid. Therefore:

Fvisc =
1

ρ
∇ · [2µS + ξ(∇ · u)I] ,

Fcor = −2Ω× u,

Fcent = −Ω× (Ω× x),

FLor =
1

ρ
J ×B,

where µ = νρ is the dynamical viscosity, I = δij is the identity matrix defined
as the Kronecker delta, ξ is the bulk (or second) viscosity, which describes the
irreversible resistance, over and above the reversible resistance to changes of
volume (Hoover et al., 1980). At least in the context of this thesis, we will assume
the Stokes’ hypothesis (ξ = 0), and thus, this parameter will be neglected. Usually
high values of ∇·u make this assumption wrong, e.g. inside a shock wave (Sharma
and Kumar, 2019), but otherwise, this approximation is usually valid. Also, it has
been proven that for monatomic gases, ξ can be totally neglected (see Buresti,
2015). S is the trace-less rate-of-strain rank-2 tensor, defined as:

Sij =
1

2
(∂jui + ∂iuj)−

1

3
δij∂kuk. (2.2.9)

Note that the viscous term can as well be written in terms of the viscous stress
tensor, where τij = 2µ0Sij , and also, some sources combine that term with pressure,
expressing both in terms of the Cauchy stress tensor, following ∇·σ = ∇·τ −∇p.
In the rotational forces, the rotation rate is denoted by Ω, and x is the distance
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from the axis of rotation. Finally, J is the current density, given by Ampère’s law
(2.2.3).

The energy equation is usually expressed in terms of the entropy per mass unit s,
and it is given by:

ρT
Ds

DT
= −∇ · F rad + 2µ0S

2 + ξ(∇ · u)2 + ηµ0J
2 +H− C, (2.2.10)

where T is the temperature, µ0 is the vacuum magnetic permeability, and F rad

represents the radiative energy flux. In principle, the radiative energy transfer
equations could be solved here, however, as we already discussed in Section 2.1.1,
small temperature variations and lph ≪ R∗ allow us to approximate the radiative
energy transport as a diffusion process, obtaining:

F rad = −Krad∇T. (2.2.11)

In principle Krad can be described with equation (2.1.3), but the opacity κ is not
an easy quantity to determine, because it tends to be a complicated function of
the density, chemical composition, and temperature. This is why, in numerical
simulations it is convenient to define an specific profile for Krad, e.g. constant,
vertical or radial, or based on Kramers opacity law:

Krad(ρ, T ) = K0

(
ρ

ρ0

)a−1(
T

T0

)b+3

. (2.2.12)

When most of the opacity comes from free-free and bound-free transitions, we have
a = −1 and b = 7/2 (Brandenburg et al., 2000; Weiss et al., 2004; Käpylä, 2021).
The last terms, H and C represent explicit heating and cooling (respectively) of
the system due to other sources or sinks of energy.

Finally, we need to add an equation for the evolution of the magnetic field, i.e.
the induction equation (2.2.5), which will be written again in its most common
formulation for completeness (with constant η):

∂B

∂t
= ∇× (u×B) + η∇2B.

Also, note that the solenoidal constrain ∇ ·B = 0 must be fulfilled the whole
time, so in principle (if it is not imposed to the induction equation as we discussed
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in section 2.2.1) it is part of the equations that must be solved as well.

To fully characterize the fluid, it is necessary to add an equation of state which
relates the thermodynamic variables. This is not easy to formulate, but in the
most simple cases, we can relate p and ρ using a polytropic equation of state
(Bartelmann, 2021):

p = Kργ, (2.2.13)

where K is a constant of proportionality, γ = 1
n
+ 1 is the adiabatic index, and n

is the polytropic index.

The ideal gas law can also be used as an idealized and simple scenario:

p = (γ − 1)ρe = RρT, (2.2.14)

where e = cVT is the internal energy of the gas, cV is the heat capacity at constant
volume, and R is the ideal gas constant.

2.2.3 Dimensionless numbers

To characterize an astrophysical system it is very useful to define dimensionless
parameters that are ratios of terms that describe different processes in an equation.
Related to fluids and plasmas, we can define:

• The Reynolds number (Re), is the ratio between inertial and viscous forces.
It is formally defined as:

Re =
uL

ν

where u is the typical velocity of the fluid, L is the typical length scale of the
system, and ν the kinematic viscosity. This number determines if the flow
is laminar (low values of Re) or turbulent (high values of Re) (Choudhuri,
1998).

• The Coriolis number (Co), is the inverse of the Rossby number (Rossby,
1939) and it is the ratio between the Coriolis force and the acceleration of
the fluid, formally defined as:

Co =
Lf

u

where f = 2Ω is the Coriolis frequency, given by the angular speed Ω.
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• The magnetic Reynolds number (ReM), is the ratio between the advection
term and the diffusion term in the induction equation, formally defined as:

ReM =
|∇× (u×B)|

|η∇2B| ∼ uL

η
.

This means that if ReM ≫ 1 then the evolution of the magnetic field on the
fluid will be due to flow. Otherwise, if ReM ≪ 1 then the evolution will be
mainly due to diffusion and the energy will be lost via Ohmic dissipation.

• The Prandtl number (Pr), is the ratio between the kinematic viscosity ν

(also known as momentum diffusivity) and the thermal diffusivity χ:

Pr =
ν

χ
,

Therefore, it gives the relation between the momentum transport and the
thermal transport capacity of a fluid. In other words, if Pr ≪ 1 then the
heat transfer is most likely to occur by fluid conduction rather than by fluid
momentum. Notice that this number is not related to the flows, so it can be
understood as an intrinsic property of the plasma.

• The magnetic Prandtl number (PrM), is the ratio of the magnetic Reynolds
number and the Reynolds number:

PrM =
ReM

Re
=

ν

η

so it can also be defined as a ratio between the kinematic viscosity ν and
the magnetic diffusivity η. It is also an intrinsic property of the plasma.
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Chapter 3

Numerical models and methods

In this chapter, we describe the numerical models used in this project, starting
from the MESA code, which was used to obtain the stellar parameters of the star,
and the Pencil Code, which was used to produce the MHD simulations. A brief
description of the output files, the setups, the simulation strategy, the physical
units and diagnostic quantities are given.

3.1 MESA code

Modules for Experiments in Stellar Astrophysics (Paxton et al., 2011, 2013, 2015,
2018, 2019)1 is an open source one-dimensional stellar evolution code, that allows
to model a wide range of stars, ranging from very low mass to massive stars, and
advanced evolutionary phases. It provides adaptive mesh refinement, sophisticated
timestep control, and OpenMP-based shared memory parallelism.

3.1.1 Online version

Here, we use the online version MESA-Web2 created by Rich Townsend, which is
a re-implementation of a previous version hosted in the Arizona State University
created by Carl Fields and Frank Timmes, based on the original MESA code.

1https://docs.mesastar.org/en/release-r22.11.1/
2http://user.astro.wisc.edu/~townsend/static.php?ref=mesa-web

https://docs.mesastar.org/en/release-r22.11.1/
http://user.astro.wisc.edu/~townsend/static.php?ref=mesa-web
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3.1.2 Input parameters

The input parameters of the model must be introduced in the calculation
submission page. The input are divided as follows:

• Initial properties, where we have to specify the initial mass of the star in
solar masses. Metallicity expressed as the mass fraction of metals, and the
rotation rate of the star, in terms of ΩZAMS/Ωcrit, which corresponds to
ratio between the angular velocity of the star in the zero-age main sequence
(ZAMS), and the critical angular velocity, given by Ωcrit =

√
GM/R3.

• Nuclear reactions, where the chemical reactions inside the core of the star are
defined (e.g. General H/He burning, H/He/C/O burning, evolved massive
stars, etc).

• Mixing, which contain parameters of stellar convection based on the mixing
length formulation, including overshooting and thermohaline.

• Stellar winds.

• Numerical resolution, where we can define the mass and time resolution for
the global simulation.

• General. Here, we can define the frequency of the output files, and the
version of MESA that will be used.

3.1.3 A-type star model

In order to model a main-sequence A-type star, we used a stellar mass of
2 M⊙, and a metallicity of 0.02. For the rotation rate we tried a non-rotating
model (ΩZAMS/Ωcrit = 0), and two rotating models with ΩZAMS/Ωcrit = 0.05 and
ΩZAMS/Ωcrit = 0.5. Nuclear reactions contain the isotopes 1H, 3He, 4He, 12C,
14N, 16O, 20Ne, 24Mg for general H/He burning. For convection we assumed
αMLT = 2, which defines the mixing length as lm = αMLTHp (in units of the local
pressure scale height Hp), and the prescription described in Cox and Giuli (1968).
Overshoot is described with the coefficient DOD, given by:

DOD = Dconv,0 exp

(
− 2z

fHp

)
,
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where Dconv,0 is the MLT derived diffusion coefficient, z is the distance in the
radiative layer away from the overshoot zone, and f = 0.0001 is an adjustable
parameter (see Heger et al. 2000). Semi-convection follows equation (12) of Paxton
et al. (2013), with αsc = 0.01. Thermohaline mixing is approximated as a diffusion
process, whose diffusion coefficient is given by equation (14) of Paxton et al. (2013)
with an efficiency of αth = 1.0 following the prescription of Kippenhahn et al.
(1980). The implementation of Red Giant Branch winds is not necessary, as we
are looking for main-sequence parameters.

The required stellar parameters from this model are the luminosity L∗, the mass
density ρ∗ and temperature T of the stellar center, and the radius R∗. These
quantities averaged over a representative main-sequence phase of the star are
given in Table 3.1.1.

Table 3.1.1: Stellar parameters obtained from the 2 M⊙ MESA-Web model,
averaged over a time range from t = 2.5 · 106 years to t = 4.5 · 108 years.

Model ΩZAMS/Ωcrit R∗ [R⊙] ρ∗ [kgm−3] T [K] L∗ [L⊙]

A 0 2.18 5.59 · 104 2.29 · 107 24.20
B 0.05 2.17 5.65 · 104 2.27 · 107 24.30
C 0.5 2.22 5.50 · 104 2.25 · 107 22.79

It is clear that rotation does not seem to affect very much these parameters (as
expected). Therefore, based on these results, the final parameters that will be
used are M∗ = 2 M⊙, R∗ = 2 R⊙, ρ∗ = 5.6 · 104 kgm−3, T∗ = 2.25 · 107 K and
L∗ = 23 L⊙.

Using these models it is also possible to estimate the size of the convective core ∆r,
information that will be useful to the setup of the MHD simulations. The upper
panel of Figure 3.1.1 shows the superadiabaticity ∇−∇ad with the Schwarzschild
criterion, and the lower panel the convective velocity of all models. These radial
profiles correspond to tage = 2.26 · 108 year. From both methods we can conclude
that all models shows convection at roughly 13% of the normalized radius r/R,
i.e. ∆r ∼ 0.13 R. At other times during the main-sequence lifetime this value
does not seem to change significantly.
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Figure 3.1.1: The superadiabaticity ∇ − ∇ad, where the dashed line is the
Schwarzschild criterion (upper panel) and the convective velocity (lower panel) of
the MESA-Web models for a 2 M⊙ A-type star, at tage = 2.26 · 108 year.

3.2 The Pencil code

The Pencil Code3 (Brandenburg and Dobler, 2002; Pencil Code Collaboration
et al., 2021) is a high-order finite-difference code written in Fortran 95, primarily
designed for turbulent flows, but well suited to deal with many dynamo
problems, solving the non-ideal compressible magnetohydrodynamic equations.
The code runs efficiently under MPI (Message Passing Interface) on multiprocessor
computers with shared memory. Its first and second derivatives are defined as
sixth order centered differences, giving it a high numerical accuracy. Furthermore,
it uses an RK-2N time step, which refers to the third order Runge-Kutta scheme
(Williamson, 1980), and it is defined in terms of the coefficients cδt, cδt,v and cδt,s

3http://pencil-code.nordita.org/

http://pencil-code.nordita.org/
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(which are inputs of the code) as:

δt = min

(
cδt

δxmin

umax

, cδt,v
δx2

min

Dmax

, cδt,s
1

Hmax

)
, (3.2.1)

where:

δxmin = min(δx, δy, δz),

umax = max(u+
√

c2s + v2A),

Dmax = max(ν, γχ, η,D),

Hmax = max

(
entropyrhs

cVT

)
.

Here, cs is the speed of sound, vA is the Alfvén speed, ν is the kinematic viscosity,
χ is the thermal diffusivity, γ is the adiabatic index, η is the magnetic diffusivity,
and D is the passive scalar diffusivity. The quantity entropyrms describes the
terms on the right side of the entropy equation.

3.2.1 Modularity

The Pencil Code is flexible to model many kinds of different systems. This
is because individual physical processes are contained in modules, and they can
be switched on or off depending on the modeled system. All the modules are
contained in the file src/Makefile.local, inside the folder of the run. As an
example, we have:

MPICOMM = mpicomm

IO = io_dist

FILE_IO = file_io_f95

HYDRO = hydro

DENSITY = density

ENTROPY = entropy

MAGNETIC = magnetic

RADIATION = noradiation

PSCALAR = nopscalar

EOS = eos_idealgas
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GRAVITY = gravity_r

FORCING = noforcing

SHEAR = noshear

TIMEAVG = notimeavg

REAL_PRECISION = double

INITIAL_CONDITION = initial_condition/star_in_a_box_poly

which are the settings for the runs presented in Section 5.1. Here, the first line
indicates that MPI communication will be used, for single processor runs we should
use the module nompicomm. The 2nd line indicates that the input/output will be
distributed, and the 3rd one states that a Fortran95-compatible input/output is
used. The following lines are physics modules, where we have hydrodynamics (the
equation of motion), density, the entropy equation, and magnetic field activated,
while radiation and the passive scalar transport are not. Furthermore, the equation
of state (EOS) is that of an ideal gas, the gravity will use the radial module, forcing
and shear are switched off, and time averages are disabled. Double precision is
used, i.e. 8-byte floating point numbers, and the last line corresponds to the
polytropic initial condition for the star-in-a-box model.

3.2.2 Files in the run directories

As discussed, all the selected modules are contained in the file
src/Makefile.local (from the run directory). The grid of the simulation
and the total number of processors as well as how they are distributed along
different directions (nprocx, nprocy and nprocz) is contained in the file
src/cparam.local.

The initial conditions of the selected modules, along with the boundary conditions
of the simulation, which are implemented through three layers of ghost points,
are contained in the file start.in. The run parameters, like the mentioned
coefficients to define the RK-2N time step, the time intervals to write the output
files, and some physical quantities such as the rotation rate, diffusivities, and heat
conductivity are defined in run.in.

Finally, the list of diagnostic variables that will appear in the time series and in the
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phi-averages outputs (see section 3.2.3) are written in print.in and phiaver.in,
respectively.

3.2.3 Output files

As an output of the code we have the time series, a text file which collects the
evolution of the diagnostic quantities listed in print.in. Some useful variables to
check the time evolution of the simulation, are:

• it: the current iteration of the run (where the step is defined as it1 in
run.in).

• t: the simulation time.

• dt: the simulation timestep.

• urms: the root-mean-square velocity
√

⟨u2⟩.

• umax: the maximum velocity max |u|.

• brms: the root-mean-square magnetic field
√

⟨B2⟩.

• rhom: the mean mass density ⟨ρ⟩.

• ethm: the mean thermal (internal) energy ⟨ρe⟩.

The snapshot files contain the most primary quantities of the run (i.e. logarithmic
density, flow velocity, magnetic vector potential and entropy), enough to restart
the simulation at that specific time where the snapshot was written. There are
two types of snapshots:

• The permanent ones data/proc*/VARN , where ∗ denotes a folder per
processor, and N is the number of the snapshot. The code writes them at a
frequency dsnap indicated in run.in.

• The current one data/proc*/var.dat. This file will be overwritten with
a frequency isave, indicated in run.in. The simulation as a default will
start from this point if the run continues after some stop.

The slice files (also known as video files), contain the time evolution of specific
variables on a specific plane. In run.in, the frequency of this output can be
changed with dvid, and for spherical coordinates the parameters r_rslice,
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nth_rslice and nph_rslice determine the position and the resolution of the
slice.

Averages can be one- or two-dimensional, and they contain averaged quantities
along one (or two) direction(s). For example, the variables contained in the files
xyaver.in, xzaver.in and yzaver.in, are averaged over the direction of the first
letters of each file. Finally, the Azimuthal averages (or phi-averages) correspond
to quantities averaged over the azimuthal direction. In cylindrical coordinates,
this is:

f(ϖ, z, t) =
1

2π

∫
f(ϖ,ϕ, z)dϕ, (3.2.2)

where ϖ = r sin θ is the cylindrical radius. As mentioned earlier, the variables
that are azimuthally averaged are listed inside phiaver.in.

3.3 The models

3.3.1 Whole star setup

The model used here is based in the star-in-a-box setup presented by Käpylä
(2021), which is based in the setup by Dobler et al. (2006). The computational
domain corresponds to a box of side l = 2.2R, where R is the stellar radius
and all coordinates (x, y, z) range from −l/2 to l/2. The boundary conditions
are impenetrable and stress-free conditions for flow (un = 0, ∂nutan = 0, with
n = x, y, z). The magnetic field is assumed to be perpendicular to the boundary
(∂nBn = 0, Btan = 0). We further assume a vanishing second derivative for ln ρ,
and an assumed symmetric temperature across the exterior boundaries of the box.
For the initial conditions, we considered low amplitude Gaussian noise for the
flow and the magnetic field (which works as a magnetic initial seed).

We created two models, the first one corresponds initially to an isentropic polytrope
i.e., with constant entropy, and therefore, it has a fully convective initial state.
This model can be considered as an early pre-main-sequence evolutionary phase
of an A-type star. This means it can work as a way of studying possible dynamos
created during this phase, that in principle could become fossil fields later in
its evolution. The results of this model are discussed in Chapter 4. The second
model corresponds to a main-sequence A-type star. Here, we assumed a piecewise
polytropic initial state between the gas pressure and density. A polytrope is
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defined by:
p(ρ) = K0ρ

γ, (3.3.1)

where K0 is a constant, and:

γ =
d ln p

d ln ρ
= 1 +

1

n
(3.3.2)

is the adiabatic index written in terms of the polytropic index n. Usually, values
of n between 1 and 1.5 are used to describe unstable stratification, while values
around 3 to describe stable layers (Braithwaite and Nordlund, 2006; Käpylä et al.,
2010, 2020; Becerra et al., 2022). For this model, we defined a smooth profile for
n given by:

n =


1.5 if r < 0.2R

3.25 if r > 0.2R

, (3.3.3)

where the convective core is assumed to encompass 20% of the stellar radius.
Numerical studies seem to agree that the convective core in A-type stars
corresponds to ∼ 15% of the stellar radius (see e.g. Browning et al., 2004; Brun
et al., 2005; Featherstone et al., 2009). Also, as discussed in Section 3.1.3, our
MESA models seem to indicate that this happens at roughly 13% of the stellar
radius. Here, the choice of 20% represents a compromise between the size based
in our MESA results (also, previous simulations), and computational feasibility,
because modeling the whole star with a smaller core would require a higher
resolution, and therefore more computational resources. The results of this model
are discussed in Chapter 5.

The non-ideal fully compressible MHD equation set that is solved in each run (for
both models) is given by:

∂A

∂t
= u×B − ηµ0J , (3.3.4)

D ln ρ

Dt
= −∇ · u, (3.3.5)

Du

Dt
= −∇Φ− 1

ρ
(∇p−∇ · 2νρS + J ×B)− 2Ω× u+ fd, (3.3.6)

T
Ds

Dt
= −1

ρ

[
∇ · (Frad + FSGS) +H− C + µ0ηJ

2
]
+ 2νS2, (3.3.7)

where A is the magnetic vector potential. It is worth to mention that writing the
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induction equation (3.3.4) in terms of A allows to ensure the solenoidal conduction
(∇·B = 0) during the whole run. u is the flow velocity, B = ∇×A is the magnetic
field, η is the magnetic diffusivity, µ0 is the magnetic permeability of vacuum,
J = ∇×B/µ0 is the current density given by Ampère’s law, D/Dt = ∂/∂t+u·∇
is the advective (or material) derivative, ρ is the mass density, p is the pressure,
Φ is the gravitational potential, that is fixed in space and it is given by the Padé
approximation obtained from a spherically symmetric, hydrostatic, selfgravitating
model (see Appendix A of Dobler et al., 2006):

Φ(r) = −GM

R

a0 + a2r
′2 + a3r

′3

1 + b2r′2 + b3r′3 + a3r′4
, (3.3.8)

where r′ = r/R, G is the gravitational constant, M is the mass of the star, and
for an A0-type star the coefficients are given by a0 = 4.3641, a2 = −1.5612,
a3 = 0.4841, b2 = 4.0678 and b3 = 1.2548. S is the traceless rate-of-strain tensor,
given by:

Sij =
1

2
(∂jui + ∂iuj)−

1

3
δij∇ · u (3.3.9)

that corresponds to equation (2.2.9). T is the temperature, Ω = (0, 0,Ω0) is the
rotation rate of the star along the z axis. fd describes damping of flows exterior
to the star, given by:

fd = − u

τdamp
fe(r), (3.3.10)

where τdamp ≈ 1.4 days is the damping timescale, which is short compared to
other timescales in the simulation. The function fe(r) is defined as:

fe(r) =
1

2

(
1 + tanh

r − rdamp

wdamp

)
, (3.3.11)

where rdamp = 1.03R is the damping radius and wdamp = 0.02R its width.
Radiation inside the star is approximated as a diffusion process. Therefore,
the radiative flux is given by:

Frad = −K∇T, (3.3.12)

where K is the radiative heat conductivity, a quantity that is assumed to
be constant. In addition, it is convenient to introduce a subgrid-scale (SGS)
entropy diffusion that does not contribute to the net energy transport, but damps
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fluctuations near the grid scale. This is given by the SGS entropy flux:

FSGS = −χSGSρ∇s′, (3.3.13)

where χSGS is the SGS diffusion coefficient, and:

s′ = s− ⟨s⟩t

is the fluctuating entropy, where ⟨s⟩t is defined as a running temporal mean of the
specific entropy. H and C describe additional heating and cooling, respectively,
and we adopted similar expressions as Dobler et al. (2006) and Käpylä (2021),
where

H(r) =
Lsim

(2πw2
L)

3/2
exp

(
− r2

2w2
L

)
is a normalized Gaussian profile given by the parameterization of the nuclear
energy production inside the core of the star, where Lsim is the luminosity in the
simulation, and wL = 0.1R is the width of the Gaussian. And C(x) models the
radiative losses above the stellar surface, and it is given by:

C(x) = ρcP
T (x)− Tsurf

τcool
fe(r),

where cP is the heat capacity at constant pressure, Tsurf = T (R) is the temperature
on the surface of the star, τcool = τdamp is a cooling timescale, and fe(r) is given
by equation (3.3.11), with the same parameters. We assume an ideal gas equation
of state:

p = RρT = (γ − 1)ρe, (3.3.14)

where R is the ideal gas constant, and e is the internal energy of the gas.

Following Käpylä (2022), in order to avoid diffusive spreading of magnetic fields
and flows from the core to the envelope, the convective core model has radial
profiles for the diffusivities ν and η, where the radiative layers have values 102

times smaller than the core. The disadvantage of this implementation is that we
already had low diffusivities in the convective core, otherwise the Reynolds number
would have been too low. This produces values in the radiative envelope that are
hard to resolve using our current resolution. However, a way to deal with this issue,
is adding artificial sixth-order hyper diffusivity terms in the dynamical equations.
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This works as a numerical tool which smooths out the smallest scales, dissipating
the energy and preventing instabilities (for some examples, see Brandenburg and
Sarson, 2002; Johansen and Klahr, 2005). In this context, the momentum equation
(3.3.6) requires an additional term, given by the hyperviscosity force. To define
it, we used the resolution-independent mesh hyper-Reynolds number method
described in Appendix A of Lyra et al. (2017). The idea of this method is to keep
the (3rd-order) quantity:

Re
(3)
grid =

urms

νmesh
3 k5

Ny

=
urms∆q5

νmesh
3 π5

constant with resolution, where kNy = π/∆q is the Nyquist wavenumber, and ∆q

is the line element. Now, the coefficient νmesh
3 can be obtained as:

νmesh
3 =

urms∆q5

Re
(3)
gridπ

5
.

Furthermore, the hyperviscous force is given by:

f
(hyper)
visc = νmesh

3

∆6ν

∆q6
=

urms

Re
(3)
gridπ

5

∆6ν

∆q
.

Analogously, the induction equation (3.3.4) requires an additional term related to
the magnetic hyperdiffusivity. Using the same approach we obtained:

f
(hyper)
diff = ηmesh

3

∆6η

∆q6
=

urms

Re
(3)
Mgridπ

5

∆6η

∆q

3.3.2 Zoom setup

Modelling the whole star allows us to study the convective core and also the
surface of the star. However, this also reduces the number of grid points available
to resolve convection inside the core. The result of this is that slow rotators might
not be dynamos due to the too low ReM in the core.

As a way to deal with this problem without increasing the resolution, and
computation time, we ran some simulations using a zoom model, which is otherwise
essentially the same as the polytropic model, but the box has a side of l = 1.1R.
This excludes the surface of the star, and gives higher resolution and Reynolds
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numbers in the core.

The radius of the damping of flows was changed to rdamp = 0.45R with τdamp ≈ 0.15

days, and wdamp = 0.01R. Finally, as a way to preserve the thermal equilibrium of
the star, the cooling now starts at rcool = 0.52R, inside the radiative zone. Both
radii were conveniently modified to give stability to the model. However, this
does not affect the main results as we are not interested in what is happening far
away from the core.

This model is denoted as “zMHD” in Chapter 5, while the model of the whole star
is “MHD”.

3.3.3 Physical units and relation to reality

The Pencil Code expresses all the output variables in dimensionless code units.
Therefore, in order to analyze the results in physical units it is necessary to do a
relation to reality through scale factors. This requires the stellar parameters of
the star to be known. For the stellar radius R∗, the luminosity L∗, the mass M∗,
and the central density ρ∗ we will be using the values computed from our MESA
models in Section 3.1.3. These models also give the surface gravity:

g∗ =
GM∗
R2

∗
≈ 2

22
GM⊙
R2

⊙
≈ 150

m

s2
. (3.3.15)

However, using realistic parameters we would notice a gap between the acoustic
(dynamic) and the Kelvin-Helmholtz (thermal) timescales:

τdyn =

√
R3

GM
, τKH =

GM2

RL
,

so in principle, both could not be resolved in one single simulation (running it for a
feasible amount of time). A solution to this problem was originally pointed out by
Chan and Sofia (1986), and it consists of exaggerating the luminosity in numerical
simulations. Here we use the enhanced luminosity approach, originally defined by
Dobler et al. (2006), where the dimensionless luminosity (which corresponds to
the ratio between τdyn and τKH) is given by:

L =
L√

G3M5/R5
. (3.3.16)
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This allows to define the luminosity ratio Lratio = Lsim/Lstar, and therefore, now
the Kelvin-Helmholtz timescale scales as τKH ∝ L−1

ratio. The temperature scales
as T ∝ L

−2/3
ratio (Käpylä et al., 2020), and therefore, this produces a rescaling

proportional to L
−1/3
ratio for the sound speed cs. For a star close to hydrostatic

equilibrium, τdym can be also estimated by the time it takes for a sound wave to
travel from the centre to the stellar surface if the gravity suddenly disappears.
Therefore, we assume that τdym ∝ L

1/3
ratio. Now, the gap between both timescales is

reduced by a cumulative factor of L4/3
ratio.

We used the mentioned stellar parameter for both models, which implies that the
fully convective protostar is close to entering the main sequence. However, the
pre-main sequence model has a different input luminosity, and therefore the values
of Lratio between both models are different; as we can see in Table 3.3.1. This is
why a comparison between both should be made with caution. Notice that both
values of L are smaller than the unity, which in principle is good because it is
something that we might expect from realistic models.

Table 3.3.1: Dimensionless luminosities computed with the simulation and stellar
parameters, for the protostar (fully convective) and the main-sequence (partially
convective) models. The third column gives the ratio between both.

Model Lsim Lstar Lratio

Protostar 8.64 · 10−4 2.98 · 10−11 2.90 · 107
A-type star 2.59 · 10−4 2.98 · 10−11 8.69 · 106

Numerical simulations have reported that the convective velocity scales with the
luminosity as uconv ∝ L1/3 (Jones et al., 2017; Andrassy et al., 2020; Käpylä
et al., 2020; Baraffe et al., 2023). This implies uconv ∝ L

1/3
ratio in our simulations.

Therefore, in order to have a consistent rotational influence on the flow, we need
to enhance the rotation rate by the same factor. Following Appendix A of Käpylä
et al. (2020), we have:

Ωsim = L
1/3
ratio

(
gsim
g∗

R∗
Rsim

)1/2

Ω. (3.3.17)

For length, time, and velocity we have the following conversions:

[x] =
R∗
Rsim

, [t] =
Ωsim

Ω∗
, [u] =

[x]

[t]
=

R∗Ω∗
RsimΩsim

, (3.3.18)
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and for the density and the magnetic field:

[ρ] = ρ∗, [B] =

[
µ0ρ∗(Ω∗R∗)2

µsimρsim(ΩsimRsim)2

]1/2
. (3.3.19)

Note that the subindex sim corresponds to the values chosen in the simulation
(code units), and in this model Rsim = µsim = ρsim = gsim = 1.

3.3.4 Diagnostic quantities

The dimensionless parameters described in Section 2.2.3 are used to characterize
the system in our simulations, more specifically:

Re =
urms

νkR
, ReM =

urms

ηkR
,

for the fluid and magnetic Reynolds numbers, respectively, where kR = 2π/∆r is
the scale of largest convective eddies. The Coriolis number is given by:

Co =
2Ω0

uurmskR
.

The magnetic and SGS Prandtl number are:

PrM =
ν

η
, PrSGS =

ν

χSGS

,

and the SGS Péclet number is defined as:

Pe =
uurms

χSGSkR
.
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Chapter 4

Three-dimensional MHD simulations

of a fully convective star:

protostellar phase

In this Chapter, the results of the fully convective model described in Section 3.3.1
are listed, including dynamo solutions with time-latitude diagrams of the averaged
toroidal magnetic field, the analysis of large-scale flows, energies, i.e., kinetic (total,
differential rotation, and meridional circulation) and magnetic (total, toroidal, and
poloidal), and the spherical harmonics decomposition. Some of these results were
published in Hidalgo et al. (2023). The analysis of the magnetic field was made
during the saturated phase of the simulations, i.e., we start with a magnetic field
seed (∼ 1 G) which is amplified exponentially during the kinematic phase, and
once this growth ceases we perform the analysis (for an example, see Figure 5.1.1
and Chapter 5).

4.1 Simulations

As discussed before, this fully convective setup has an isentropic initial state
(∆r = 1). This is a useful scenario to test the setup, and also as we discussed in
Section 3.3.1, it is representative of the pre-main-sequence evolution of the star.

These simulations were divided into two groups. The first group (A) corresponds
to a set with heat conductivity K = 0.01K0, where K0 is the value required to
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obtain a fully radiative saturated configuration. The diffusivities are given by
ν = 2.08 · 109 [m2/s], and η = χSGS = 1.04 · 109 [m2/s], except in Ar3* where
diffusivities where diminished by a factor of 10. The second group (B) has an
enhanced heat conductivity K = 0.04K0, which also gives a fully convective
configuration once relaxed, and diffusivities given by ν = 1.19 · 109 [m2/s], and
again, η = χSGS = 1.04 · 109 [m2/s]. This gives PrM = PrSGS = 2 for group A and
PrM = PrSGS = 1.14 for group B. The runs, as well as the diagnostic quantities,
are listed in Table 4.1.1. All simulations were run on a grid of 1283.

Table 4.1.1: Summary of all the fully convective model runs. From left to right
the columns correspond to the rotation period Prot = 2π/Ω0, the volume-averaged
root-mean-square flow velocity ⟨urms⟩, the volume-averaged root-mean-square
magnetic field ⟨Brms⟩, the Coriolis number, the Reynolds number and the magnetic
Reynolds number (which equals the SGS Péclet number in both groups).

Run Prot [days] ⟨urms⟩ [m/s] ⟨Brms⟩ [kG] Co Re ReM

Ar0 - 165 no dynamo 0 18 35
Ar1 192 126 84 1.3 14 27
Ar2 38 82 50 10.2 9 18
Ar3 20 53 127 31.6 6 11
Ar3* 20 57 152 29.4 61 121
Br0 - 117 no dynamo 0 22 25
Br1 280 113 56 1 21 24
Br2 140 98 83 2.5 18 20

The density and entropy profiles of Ar1 and Br1 are shown in Figure 4.1.1. Both
thermodynamic quantities are averaged in time and azimuth over the thermally
saturated phase. The density stratification is ρcenter/ρsurface ≈ 9.5 in both groups.
And both entropy profiles have a gradient close to zero inside the star, which is
the expected configuration for a fully convective star. The temperature profiles of
the same runs are shown in Figure 4.1.2. Here, we used [T ] = T∗ = 2.25 · 107 K

(see Section 3.1.3) to obtain the physical units. Again, T is azimuthally and
temporally averaged, and the ratio between the temperature at the center and at
surface is T center/T surface ≈ 5.

4.2 Dynamo solutions

All rotating runs (Ar[1-3] and Br[1-2]) generate large-scale magnetic fields. The
azimuthally averaged toroidal magnetic field Bϕ following equation (3.2.2), at the
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Figure 4.1.1: Top panel : Density profile from Ar1 and Br1. Bottom panel :
Entropy profiles from the same runs. Both quantities are time-averaged over the
thermally relaxed times.

.
0.0 0.5 1.0 1.5 2.0

r[R�]

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

T
[1

07
K

]

Ar1

Br1

Figure 4.1.2: Temperature profile from Ar1 and Br1. T is averaged over the
thermally relaxed times.

surface of the star (r = R) are shown in Figure 4.2.1 as time-latitude diagrams.
The upper left panel shows Bϕ(R, θ, t) from run Ar1. A quasi-stationary magnetic
field with no cyclic sign reversals is visible. Furthermore, the field has a dipolar
structure where both polarities are located in the northern hemisphere, more
specifically, the positive is located between 60◦ < θ < 90◦, and the negative
roughly between −20◦ < θ < 60◦. Interestingly, steady dipolar configurations
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Figure 4.2.1: Time-latitude diagrams of the azimuthally averaged toroidal
magnetic field Bϕ(R, θ, t), where the run is indicated in the upper left, and the
minimum and maximum field strength at the bottom of each panel.

have been found in slow rotators previously (Käpylä, 2021; Ortiz-Rodríguez et al.,
2023), but with no single-hemispheric behavior. The upper right panel shows the
results for Ar2. Here we present 400 years in order to address a relevant portion
of the magnetic evolution. The magnetic activity seems to be concentrated at the
equator, having a polarity change after ∼ 100 years, although it is not clear if
this behavior is cyclic or not. Structures at different latitudes seem to migrate
towards the equator in short periods of time. The diagrams of Ar3 and Ar3* are
given in the middle panels, left and right, respectively. Ar3 has no clear cycle nor
a steady solution; however, the magnetic activity seem to be stronger close to the
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pole, with some sign reversals and structures which move to the equator before
vanishing. On the other hand, Ar3* is similar to Ar2, with stronger values in the
equator, and structures that come from regions close to the poles. Run Ar3* has a
polarity change in the equator after roughly 40 years, which in principle seems to
happen faster than in Ar2, but this behavior is most likely random, so a conclusion
based on the global time is not very relevant. The lower panels of Figure 4.2.1
represent the rotating runs from group B. On the left side, we find a quasi-steady
configuration for Br1, which corresponds to a single-hemispheric dipole similar to
Ar1 but with opposite polarity. In the first years of the simulation the activity is
more concentrated in the northern hemisphere, and after ∼ 50 years it migrates
towards the southern hemisphere, keeping the negative polarity at the pole. On
the right side of the lower plots, we can also find a quasi-stationary large-scale field
without sign reversals for Br2, unlike Ar1 and Br1, this field is not hemispheric.
This configuration is similar to the slow rotator in the fully convective model of
Käpylä (2021).

4.3 Large-scale flows

The time- and azimuthally-averaged rotation rate is given by:

Ω(ϖ, z) = Ω0 + Uϕ(ϖ, z)/ϖ, (4.3.1)

where ϖ = r sin θ is the cylindrical radius. The profiles of this quantity are given
in Figure 4.3.1 for simulations from group A, and in Figure 4.3.2 for group B.
Each plot includes the maximum value of the averaged meridional flow, which is
given by:

Umer(ϖ, z) = (Uϖ, 0, U z). (4.3.2)

Also, the plots are clipped for a better display of the zones with rotation different
than Ω0. The vertical axis of the plots represents the z axis of the simulations, that
is the direction where the rotation axis is pointing, as mentioned in Section 3.3.1.
The dashed line at z = 0 on each plot represents the equator.

The differential rotation parameters ∆
(r)
Ω and ∆

(θ)
Ω (Käpylä et al., 2013; Käpylä,

2021; Ortiz-Rodríguez et al., 2023) are used to quantify the amplitude of the radial
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and latitudinal differential rotation, given by:

∆
(r)
Ω =

Ω(rtop, θeq)− Ω(rbot, θeq)

Ω(rtop, θeq)
, ∆

(θ)
Ω =

Ω(rtop, θeq)− Ω(rtop, θ)

Ω(rtop, θeq)
, (4.3.3)

where rtop = 0.9R and rbot = 0.1R are the radius near the top and bottom of
the star, respectively. θeq corresponds to the latitude at the equator, and θ is an
average of Ω between latitudes −θ and θ. These parameters are summarized in
Table 4.3.1.

Table 4.3.1: Differential rotation parameters for all simulations, obtained from
the averaged (azimuthally and temporally) angular velocity Ω(r, θ).

Run ∆
(r)
Ω ∆θ

Ω(60
◦) ∆θ

Ω(75
◦)

Ar1 -1.0119 -0.0225 -0.0915
Ar2 -0.1336 0.0088 0.0265
Ar3 -0.0475 0.0085 0.0072
Ar3* -0.0225 0.0091 0.0181
Br1 -1.8823 -0.5047 -0.9792
Br2 -0.4099 0.0871 0.1089

From this table we find that all the runs have anti-solar differential rotation in the
equator. This is described by negative values of ∆(r)

Ω , that indicate that the star is
rotating faster near the center than near the surface. This result is similar to the
one reported in Dobler et al. (2006), where all the runs have anti-solar differential
rotation. Moreover, the slowest rotators from both groups (Ar1 and Br1) have
also negative ∆

(θ)
Ω , and the biggest differential rotation amplitudes (|∆(r)

Ω | and
|∆(θ)

Ω |). This is something that can be also found in the slowest rotator from
Käpylä (2021). Besides, run MHD1 from that work has a very similar rotation
profile to Br1 (see the left panel of Figure 4.3.2), i.e., symmetric with respect
to the equator, even though its large-scale magnetic field seems to be closer to
Br2, as we already discussed. However, the rotation profile of Br2 seems to be
hemispheric and asymmetric, there is no clear reason of why this is happening,
but something similar was found by Dobler et al. (2006) (see the rotation profiles
of their runs 2d and 2e). It is worth mentioning that their run 2b also has a
similar rotation profile to Br1.

From the upper left panel of Figure 4.3.1, we notice that the differential rotation
of Ar1 at rtop is more prominent in the southern hemisphere. This is in agreement
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Figure 4.3.1: Profiles of the temporally and azimuthally averaged rotation rate
Ω(ϖ, z) for runs from group A. The colorbar was clipped in some cases to highlight
different features in the plot. The maximum and minimum values are indicated
in parenthesis above and below the colorbar. The streamlines indicate the mass
flux due to meridional circulation and the dotted line is the equator.

with the time-latitude diagram of B(R, t) showed in Figure 4.2.1; the magnetic
field is mostly located in the northern hemisphere, and this might be quenching
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Figure 4.3.2: Rotation profiles Ω(ϖ, z). Same as Figure 4.3.1, but for runs from
group B.

the differential rotation in this zone. The rest of runs can be considered fast
rotators, because in all the remaining cases (Ar[2-3] and Ar3*) the Coriolis number
is exceeding 10. From Table 4.3.1 we can see that ∆

(θ)
Ω is very close to zero in all

these runs, which means that the star is rotating almost as a rigid body, with
very small variations of Ω(ϖ, z). Furthermore, from Figure 4.3.1, we can see
that the maximum and minimum values of Ar3 and Ar3* are very close to Ω0.
Moreover, the differential rotation seems to quench even more as a consequence of
reducing the diffusivities. Also, these runs seem to follow the Taylor-Proudman
state, because the fluid tends to be aligned parallel to the axis of rotation, due to
the Coriolis force. This is more visible in snapshots of the runs (see Figure 4.3.3).

Finally, we notice that as we increase the rotation rate, the maximum value of the
averaged meridional flow decreases. However, decreasing the diffusivities seems
to also affect this value, as we can see from Ar3*, where the maximum value is
slightly higher than in Ar3.
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Figure 4.3.3: Snapshot from run Ar3 at t = 115 [yr]. The left plot corresponds
to the equatorial plane, and the middle and right plots to the planes that contain
the axis of rotation (zx and zy respectively). The colorbar represents the radial
component of the flow velocity ur.

4.4 Energy analysis

The total kinetic and magnetic energies, respectively, are given by:

Ekin =
1

2

∫
⟨ρU 2⟩dV, Emag =

1

2µ0

∫
⟨B2⟩dV, (4.4.1)

where the brackets denote volume average for radii r < R. The energies for the
differential rotation (DR) and meridional circulation (MC), are defined as:

EDR
kin =

1

2

∫
⟨ρU2

ϕ⟩dV, EMC
kin =

1

2

∫
⟨ρ(U2

ϖ + U
2

z)⟩dV. (4.4.2)

The toroidal and poloidal magnetic energies are given by:

Etor
mag =

1

2µ0

∫
⟨B2

ϕ⟩dV, Epol
mag =

∫
1

2µ0

⟨(B2

ϖ +B
2

z)⟩dV. (4.4.3)

These energies from both sets of simulations are listed in Table 4.4.1.

The slowest rotators Ar1 and Br1, have the highest kinetic energies, and also
the highest energies for the differential rotation, i.e, 21% and 31%, respectively.
This is consistent with the values shown in Table 4.3.1. Also, the meridional
circulation energy is also the highest in these runs. The ratio EDR

kin /Ekin = 0.312

of Br1 is comparable to the ratio of MHD1 (0.306) from Käpylä (2021). This
is an expected result, as we already discussed how the rotation profiles of these
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Table 4.4.1: Kinetic and magnetic energies, averaged over time and volume. The
total kinetic and magnetic energies have units of 1035J, while the rest of energies
are written as fractions of these quantities.

Run Ekin EDR
kin /Ekin EMC

kin /Ekin Emag Etor
mag/Emag Epol

mag/Emag

Ar1 11.53 0.211 0.077 2.84 0.182 0.116
Ar2 6.23 0.113 0.021 0.65 0.057 0.050
Ar3 2.89 0.085 0.022 5.96 0.035 0.041
Ar3* 3.58 0.052 0.040 11.24 0.072 0.064
Br1 11.94 0.312 0.070 1.59 0.190 0.114
Br2 8.46 0.216 0.068 2.92 0.224 0.100

runs are very similar. Notice that Coriolis numbers are similar, with Co = 0.7

and Co = 1 for MHD1 and Br1, respectively. Br2 has the highest toroidal energy
(22%), and 10% of the magnetic energy corresponds to poloidal energy. This is
the highest value after Ar1 and Br1. Futhermore, Ar2 has the lowest value of the
total magnetic energy. This is consistent with the latitude-diagram of the run. In
Figure 4.2.1 it is visible that the lowest maximum and minimum (in amplitude)
values of the averaged toroidal field correspond to Ar2. The fast rotators, Ar3
and Ar3* have the lowest values of the total kinetic energy; as rotation increases
the flow velocity reduces (see Figure 4.3.1). However, Ar3* shows the highest
value of magnetic energy, and this is an expected result, because diffusivities
are lower in this run. This can be confirmed in Table 4.1.1, where Ar3* has the
highest value of ⟨Brms⟩ with 95 kG; and in Figure 4.2.1, where Ar3* has also the
highest amplitude values for the maximum and minimum Bϕ(R, t), with -159.7
kG and 172.4 kG respectively. Finally, analyzing columns 2 and 5 of Table 4.4.1,
we find that the slow rotators have magnetic energies below equipartition (where
equipartition is Emag/Ekin = 1), with 0.247 for Ar1, 0.105 for Ar2, 0.133 for Br1
and 0.345 for Br2. However, the fast rotators reach super-equipartition, where the
magnetic energy is roughly twice the kinetic energy in Ar3, and thrice in Ar3*.

4.5 Spherical harmonic decomposition and power

spectra

In principle, an astrophysical dynamo can operate on large scales, but also on
small scales. This is something that can be analyzed using the spherical harmonic
decomposition. These functions come originally from the solution of the Laplace



4.5. Spherical harmonic decomposition and power spectra 49

equation, and they are given by:

Y m
l (θ, ϕ) = (−1)m

√
2l + 1

4π
·
√

(l −m)!

(l +m)!
· Pm

l (cos θ) · eimϕ, (4.5.1)

where Pm
l (cos θ) are the associated Legendre polynomials, and e the exponential

function. The advantage of the spherical harmonics, is that any function F (θ, ϕ)

whose integral converges, i.e.:∫
|F (θ, ϕ)|2dΩ < ∞, (4.5.2)

evaluated over the surface of a sphere can be expanded via Laplace series, i.e.:

F (θ, ϕ) =
∞∑
l=0

l∑
m=−l

Fm
l Y m

l (θ, ϕ), (4.5.3)

where the coefficients Fm
l are given by:

Fm
l =

∮
F (θ, ϕ)Y m∗

l (θ, ϕ)dΩ, (4.5.4)

with
∫
dΩ =

∫ 2π

0

∫ π

0
sin θdθdϕ for spherical coordinates.

Here, we decompose the velocity and magnetic fields following Krause and Rädler
(1980). The idea is that a vector field F can be represented in terms of three
scalar fields F1, F2 and F3 that fulfil:

F = r ×∇F1 + rF2 +∇F3.

These three functions can be expanded using equation (4.5.3), where the coefficients
F1

m
l , F2

m
l and F3

m
l have to be found. This can be done assuming F1,2,3

m∗
l = F1,2,3

−m
l ,

because F1,2,3 should be real. Using the orthogonality relation:

∮
Y m
l Y −µ

ν dΩ =

{
Am

l if l = ν and m = µ

0 otherwise
,

with:
Am

l =
4π(l + |m|)!

(2n+ 1)(l − |m|)! .
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And the differential equation:

Y m
l dΩ + n(n+ 1)Y m

l = 0.

Finally, we obtain:

F1
m
l = − 1

n(n+ 1)Am
l

∮
r · (∇× F )Y −m

l dΩ.

F2
m
l =

1

n(n+ 1)Am
l

∮
r ·∇× (∇× F )Y −m

l dΩ.

F3
m
l = − 1

n(n+ 1)Am
l

∮
r ·∇× (r × F )Y −m

l dΩ.

These are the coefficients that are computed numerically. The contribution of
l = 0 for the magnetic field was dropped due to the solenoidal condition.

For more information, see the Chapter 13 of Krause and Rädler (1980), and the
Chapter about Legendre Functions of Arfken et al. (2013).

Now, using the coefficients Fm
l of the spherical harmonic decomposition, we can

compute the corresponding power spectra as follows:

E(ℓ) ∝
l∑

m=−l

|Fm
l |2. (4.5.5)

We computed the power spectra from l = 1 to lmax = 50, because this is enough
to capture all the relevant scales in the simulations.

The power spectra of the velocity and the magnetic field at r = 0.98R from all
simulations are shown in Figure 4.5.1.

All the runs have the peak of the horizontal magnetic field (the green dotted line )
and the non-axisymmetric (dark green dashed line) magnetic field contribution at
l = 1, which represents the largest possible scale, and then both decay at smaller
scales. In group A, the maximum value of the radial magnetic field seems to move
to larger scales as we increase the rotation, starting from l = 4 for Ar1, l = 3 for
Ar2 and l = 2 for Ar3. However, Ar3* has this peak at l = 4, which might be
a consequence of smaller diffusivities. The power spectra of the radial velocity
moves to smaller scales as we increase the rotation of the star. Ar1 and Ar2 have
their peak at l = 9 and l = 11 respectively, while Ar3 and Ar3* have this peak
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Figure 4.5.1: Power spectra of the velocity (EK) and the magnetic field (EM).
The solid line represents the radial component, the dotted line the horizontal, and
the dashed (slightly darker) line the non-axisymmetric contributions (m ̸= 0).

at l = 12 and l = 14. From the middle panels of Figure 4.5.1 it is visible how
the magnetic field dominates at bigger scales, and then it decays when the flow
velocity rises at smaller scales. This is not visible in group B or in Ar1, where
the horizontal velocity and its non-axisymmetric contributions have their peak
at l = 1 (except for Br2, that has the horizontal peak at l = 2). Then, in group
B the radial velocity gets its peak around l = 5, and in Br2 this peak is close to
the peak of the radial magnetic field, which happens at l = 4, so both seem to
operate at similar scales.
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Simulations of the dynamo driven by

the convective core of the star:

main-sequence phase

In this Chapter, the results of the convective core model described in Section 3.3.1
are presented. This includes a similar analysis as in Chapter 4, but now, most
of the analysis is done not only at the surface of the star, but also at 20% of
the stellar radius, where the convective core ends. This allows us to study how
the core dynamo, differential rotation, and energies behave in this zone. As
mentioned in Section 3.3.1, the group “MHD” models the whole star, while the
group “zMHD” model the convective core and only a portion of the radiative
envelope (see Section 3.3.2). In both cases, the analysis was made during the
thermally and magnetically relaxed state of the simulations.

A publication presenting the results of this chapter is in preparation.

5.1 Simulations

This setup has a convection zone spanning 20% of the radial extent, i.e., in the
core of the star. The heat conductivity coefficient K = 0.1K0 leads to such
configuration in the thermally relaxed state (see Figure 1 of Hidalgo et al. 2023).
The diffusivities are given by ν = 5.45 · 107 [m2/s], η = 7.78 · 107 [m2/s], and
χSGS = 2.61 · 108 [m2/s] in the core, and therefore PrM = 0.7 and PrSGS ≈ 0.21.
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However, ν and η have radial jumps around 0.35R, with a smooth transition over
a width of 0.06R. Above such jump, diffusivities are 102 times smaller, as a way
to avoid the spreading of flows and magnetic fields into the radiative envelope.
The runs indicated by * (the group MHD*) also have this profile, but the jump is
at 0.3R and the width is 0.03R. Runs in this group start already from saturated
snapshots of the respective simulation with the same rotation rate in the MHD
group. The runs, as well as the diagnostic quantities (computed from the time
series), are listed in Table 5.1.1. All simulations were run on a grid of 2003.

Table 5.1.1: Summary of all the "main-sequence" model runs. From left to
right the columns correspond to the rotation period Prot = 2π/Ω0, the volume-
averaged (over the convective zone) root-mean-square flow velocity ⟨urms⟩, the
volume-averaged root-mean-square magnetic field ⟨Brms⟩, the Coriolis number,
the SGS Péclet number, the fluid and magnetic Reynolds numbers.

Run Prot [days] ⟨urms⟩ [m/s] ⟨Brms⟩ [kG] Co Pe Re ReM

MHDr1 20 179 no dynamo 1.8 31 146 102
MHDr2 15 82 113 5.3 14 67 47
MHDr2* 15 80 114 5.4 14 65 46
MHDr3 10 62 111 10.4 11 51 36
MHDr3* 10 61 122 10.7 10 50 35
MHDr4 8 56 110 14.4 10 46 32
MHDr4* 8 56 103 14.5 10 46 32
zMHDr1 20 138 no dynamo 2.3 24 113 79
zMHDr2 15 77 97 5.6 13 63 44

5.1.1 Root-mean-square magnetic fields

In Figure 5.1.1 the temporal evolution of the volume-averaged (over the convective
zone) root-mean-square magnetic field Brms from three simulations corresponding
to the MHD group is shown.

For MHDr2, the period between roughly 7 and 23 years corresponds to the
kinematic phase, where the magnetic fields grow exponentially, and after 23 years
we have the relaxed phase, where the magnetic field saturates. The faster rotators
MHDr3 and MHDr4, have shorter kinematic phases. However, MHDr4 starts this
phase almost at the same time as MHDr2, while for MHDr3 this happens a few
years before.

From Table 5.1.1, it is visible that all simulations have very similar ⟨Brms⟩. It is
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Figure 5.1.1: Time evolution of the volume-averaged root-mean-square magnetic
field from the runs in MHD group that generate core dynamos.

worth mentioning that all runs from groups MHD and MHD* have maximum
Brms values around ∼ 160 kG, where the highest is given by MHDr3* with 169
kG.

5.1.2 Stratification

The density and entropy profiles of three of the “whole star” simulations are shown
in Figure 5.1.2. More specifically, we choose the run with no dynamo, and the
slowest rotators from groups MHD and MHD*. The density stratification between
the center and the surface of the star is ρcenter/ρsurface ≈ 13 in all runs. From the
lower panel of Figure 5.1.2, we can infer an entropy gradient close to zero from
r = 0 to r ≈ 0.5R⊙ and a positive gradient at the rest of the radius, which is
the expected configuration for a A-type main-sequence star. Furthermore, the
stratification between the center and the surface of the convective core is given by
ρcenter/ρsurfcore ≈ 1.3 in all simulations.

The temperature profiles of the same simulations are shown in Figure 5.1.3. The
same physical units as in Chapter 4 are used here. The ratio between the averaged
temperature in the core and at the surface of the star is given by T center/T surface ≈ 2,
while the ratio between the value of the center and the surface of the convective
core is given by T center/T surfcore ≈ 1.25.
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Figure 5.1.2: Top panel : Density profile from the slowest rotating run (with
no dynamo), and the magnetic slowest rotators. Lower panel : Entropy profiles
from the same runs. Both quantities are time-averaged over the thermally relaxed
phase.
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Figure 5.1.3: Temperature profile from same runs as in Figure 5.1.2. T is
averaged over the thermally relaxed phase.

The density, entropy, and temperature profiles for both runs from group zMHD
are shown in Figure 5.1.4. The density ratio between the center of the star and
the outer edge of the radiative zone inside our domain is ρcenter/ρedge ≈ 4.15 for
both runs, and ρcenter/ρsurfcore ≈ 1.27, similar to the value obtained from group
MHD. Finally, the ratio between the temperature at the center and at the edge of
our domain is given by T center/T edge ≈ 1.6, while T center/T surfcore ≈ 1.22 in both



56 5.2. Dynamo solutions

runs, again, similar to group MHD.
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Figure 5.1.4: Density, entropy (upper panel) and temperature (lower panel)
profiles from the simulations from group zMHD. All the quantities are averaged
over the thermally relaxed phase.

5.2 Dynamo solutions

Run MHDr1 did not generate a dynamo. This is likely an issue related to too low
resolution. However, its counterpart zMHDr1 has a growing magnetic field, but in
practical effects it is not relevant in this study. This is because after the magnetic
field seed decayed to its lowest value, it began to be amplified with a growth rate
close to marginal, therefore, it never saturated. During the whole running time
the Brms increased 0.01 kG, which is still 100 smaller than the initial Brms of the
seed field. It is worth mentioning that this slow increasing field was not seen in
MHDr1 at all. Here, the magnetic field only decayed.

All the remaining runs in all groups act as dynamos. In this section the azimuthally
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averaged toroidal magnetic field Bϕ(r, θ, t) was analyzed at two different radii.
First at r = 0.2R, in order to have a better understanding of the magnetic field
generated in the core. And then at r = R, same as in Chapter 4, as a way to
study the magnetic field at the surface of the star.

5.2.1 Dynamos driven in the core

The azimuthally averaged toroidal magnetic field at r = 0.2R as a function of
time and latitude for the runs in group MHD is shown in Figure 5.2.1. It is clearly
visible that all the generated magnetic fields are cyclic and hemispheric. MHDr2
and MHDr3 are similar, and the magnetic field is concentrated in the southern
hemisphere, however, the sign reversals of MHDr2 seem to happen faster than in
MHDr3, for example, in MHDr2 there are many reversals between 60 and 70 years,
while in MHDr3 there are fewer inside this same range of time. This behavior
is related with the magnetic cycle period of the dynamo and it is discussed in
Section 5.4.

All these core dynamos have roughly the same field strength, as we can see in
Table 5.2.1. These Bϕ values have the same order of magnitude as in the fully
convective runs.

The azimuthally averaged toroidal magnetic field at r = 0.2R for group MHD*
is shown in Figure 5.2.2. The generated magnetic fields are again hemispheric.
In MHDr2*, the magnetic field is concentrated in the southern hemisphere, same
as in MHDr2, but then it moves to the northern hemisphere. This is a unique
behavior in these runs and it is unclear why it is happening. This kind of behavior
was also found by Brown et al. (2020), in spherical simulations of fully convective
M dwarfs, with no conclusive reason either. However, in Brown et al. (2020) the
run continued as a northern-hemisphere dynamo during the rest of the simulated
time (see their Fig. 1). It is unclear if MHDr2* will follow this pattern or not, as
more running time is required to make a proper comparison between both runs.
Interestingly, this run is the only one that has higher maximum and minimum
Bϕ values compared to their counterpart in the MHD group, but the root-mean-
square B

rms

ϕ is slightly smaller than in MHDr2 (see Table 5.2.1). MHDr3* is very
similar to MHDr3, a dynamo operating in the southern hemisphere, the main
difference is that its maximum, mean, and minimum values differ. MHDr4* seems
to have a cyclic dynamo acting in both hemispheres, during the early part of



58 5.2. Dynamo solutions

Figure 5.2.1: Time-latitude diagrams of the azimuthally averaged toroidal
magnetic field Bϕ(r = 0.2R, θ, t) of the MHD group, where the run is indicated in
the upper left of each plot.

the simulation. But then, the activity in the southern hemisphere vanishes, and
the resulting magnetic field is similar to MHDr4, but with slightly smaller values
for the maximum, mean, and minimum. Something similar was found by Brown
et al. (2020), where their hemispheric dynamos are initially symmetric on both
hemispheres, but after some time strong southern-hemisphere fields replace the
original symmetric configuration.
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Figure 5.2.2: Time-latitude diagrams of the azimuthally averaged toroidal
magnetic field Bϕ(r = 0.2R, θ, t) of the MHD* group, where the run is indicated
in the upper left of each plot.

Finally, the azimuthally averaged toroidal magnetic field at the surface of the
convective core for zMHDr2 is shown in Figure 5.2.3. In principle, it is very
similar to its counterpart in the MHD group, showing a dynamo in the southern
hemisphere. However, roughly between 75 and 85 years, it exhibits some activity
in the northern hemisphere as well, which seems to slightly reduce the activity in
the southern hemisphere. This behavior is also visible in MHDr2 more frequently



60 5.2. Dynamo solutions

Table 5.2.1: Maximum, root-mean-square, and minimum value of the averaged
toroidal magnetic field at r = 0.2R from groups MHD, MHD* and zMHD.

Run B
min

ϕ [kG] B
rms

ϕ [kG] B
max

ϕ [kG]
MHDr2 -182.1 31.6 178.0
MHDr3 -216.9 35.2 175.7
MHDr4 -162.0 35.8 197.9
MHDr2* -171.7 30.0 185.0
MHDr3* -152.5 29.2 164.7
MHDr4* -150.7 31.8 152.4
zMHDr2 -182 26.3 179.5

though not very prominent. As we can see from Table 5.2.1, the maximum and
minimum values from both runs are basically the same. The root-mean-square
values are slightly different, although it is not a big difference. Therefore, we can
conclude that at least in terms of the toroidal magnetic field, there are no major
differences between the zoom and the whole star models.

Figure 5.2.3: Time-latitude diagrams of the azimuthally averaged toroidal
magnetic field Bϕ(r = 0.2R, t) from run zMHDr2.

5.2.2 Surface magnetic fields

As expected, and as we briefly discussed in Section 1.3.1, the magnetic field
generated by a core dynamo is unable to create large-scale structures that reach
the surface of the star. This is something that we can see in Figure 5.2.4, where
the time-latitude diagrams of the averaged toroidal magnetic field at r = R from
some of the runs are shown. In the two leftmost panels, we have the surface fields
from MHDr2 and MHDr3. The field is nearly zero on almost the whole surface
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of the star, except at the poles, where the highest amplitudes appear in MHDr4,
with ∼ 0.3 kG, and an absolute minimum of −3.8 kG. This magnetic field in the
poles is probably being transported by the vertical flows generated in these runs,
given by the high Coriolis numbers in these simulations (see Section 5.3). The
surface field of MHDr3 is not shown, because it is very similar to that of MHDr2
and it does not add relevant information to this analysis.

Figure 5.2.4: Time-latitude diagrams of the azimuthally averaged toroidal
magnetic field Bϕ(r = R, θ, t) of the groups MHD (left) and MHD* (right), where
the run is indicated in the upper left of each plot.

In the right panels of Figure 5.2.4 we have the toroidal surface fields from MHDr2*
and MHDr4*. In these runs, we have a similar result to the MHD group. The
magnetic field is almost zero everywhere at the surface except near the poles.
However, changing the radial profile of the diffusivities seems to reduce the
magnetic fields at the surface significantly. This is clearly visible in the colorbar
from these plots, where the maximum and minimum values do not have an
amplitude greater than 0.0 kG, and this Bϕ ∼ 0 kG behavior is more intense in
the fast rotator MHDr4*. Again, the run MHDr3* was not included because its
surface magnetic field is very similar to that of MHDr2*.
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5.3 Large-scale flows

In Chapter 4 we studied the large-scale flows using the averaged rotation rate given
by equation (4.3.1). Here, we use the same approach but with a reduced domain,
showing the star up to r = 1R⊙. This is to analyze better the motions inside the
convective zone. Moreover, as we can see from Figure 5.3.1, the radiative zones in
these models have Ω(ϖ, z) ∼ Ω0, and thus, showing the whole star does not add
relevant information to the analysis.

Figure 5.3.1: Profile of the temporally and azimuthally averaged rotation rate
Ω(ϖ, z) for MHDr3 in the whole star.

Differential rotation was studied using the differential rotation parameters (4.3.3).
However, it is relevant to also analyze the rotation of the convective core, as it has
been reported to have differential rotation in previous studies (Browning et al.,
2004). Therefore, we introduced the following quantities:

∆
CZ(r)
Ω =

Ω(rCZ, θeq)− Ω(rbot, θeq)

Ω(rCZ, θeq)
, ∆

CZ(θ)
Ω =

Ω(rCZ, θeq)− Ω(rCZ, θ)

Ω(rCZ, θeq)
. (5.3.1)

These are the equivalent to the parameters (4.3.3), but rCZ = 0.2R is the outer
radius of the convective core. Also, here rbot was slightly decreased to ∼ 0.05R
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due to the coarse grid inside the core. The definition of θeq and θ remain the same
as before. Both parameters, (4.3.3) and (5.3.1), are summarized in Table 5.3.1.

Table 5.3.1: Differential rotation parameters for all simulations, obtained from
the averaged (azimuthally and temporally) angular velocity Ω(r, θ).

Run ∆
CZ(r)
Ω ∆CZθ

Ω (60◦) ∆CZθ
Ω (75◦) ∆

(r)
Ω ∆θ

Ω(60
◦) ∆θ

Ω(75
◦)

MHDr1 0.3870 0.2785 0.4132 0.1539 -0.0002 -0.0018
MHDr2 0.1131 0.0699 0.1142 0.0505 -0.0001 -0.0006
MHDr2* 0.1101 0.0683 0.1133 0.0485 -0.0001 -0.0006
MHDr3 0.0538 0.0295 0.0484 0.0251 -0.0000 -0.0004
MHDr3* 0.0489 0.0283 0.0438 0.0224 -0.0001 -0.0006
MHDr4 0.0405 0.0213 0.0350 0.0197 -0.0000 -0.0003
MHDr4* 0.0387 0.0208 0.0333 0.0169 -0.0001 -0.0006
zMHDr1 0.3742 0.2442 0.3729 - - -
zMHDr2 0.1291 0.0739 0.1294 - - -

From columns 5,6 and 7 of Table 5.3.1, we can clearly see that the stellar surface
rotates nearly as a rigid body, because |∆θ

Ω| is ∼ 10−4 for both latitudes. This
implies no difference between the averaged rotation at the chosen latitudes and the
equator. This is similar of what happens with the Sun, whose radiative interior
has approximately rigid rotation (see Howe 2009). ∆

(r)
Ω has positive values, this is

because the innermost part of the core is rotating slower than the stellar surface, as
we can see in Figure 5.3.3. Columns 2,3, and 4, list the parameters related to the
core. Positive values of ∆CZθ

Ω indicate that the convective core is rotating faster in
the equator than in other latitudes, and therefore, we have a solar-like differential
rotation in all the runs. This is also visible in Figure 5.3.2, and Figure 5.3.3.

In Figure 5.3.2, the averaged Ω(ϖ, z) profiles for group MHD are shown. As
already discussed, all the runs have solar-like differential rotation. Also, we
can see vertical structures that are parallel to the axis of rotation, due to the
Taylor-Proudman theorem. This is similar to what happened to fast rotators
in Chapter 4, and to the fast rotator from Brun et al. 2005 (see their Fig. 9).
However, these flows are not very prominent in a single snapshot. For example, in
Figure 5.3.4 we show a snapshot of the radial component of the flow velocity from
MHDr3. The vertical flows, although visible, do not stand out in the same way as
the core motions. However, it seems that these flows influence the rotation profile
of the star, and also, they are probably the reason why we have magnetic fields
at the stellar surface, especially at the poles. The radial profiles of the viscosity
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Figure 5.3.2: Profiles of the temporally and azimuthally averaged rotation rate
Ω(ϖ, z) for runs from the MHD group. The streamlines indicate the mass flux due
to meridional circulation and the maximum averaged meridional flow is indicated
in the lower left side of each plot. The dashed line represents the equator.

should reduce the intensity of these flows, but we are limited by the resolution,
and the high rotation rates that we are exploring.

Notice that, MHDr1 in the left upper panel of Figure 5.3.2 is symmetric with
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Figure 5.3.3: Profiles of the temporally and azimuthally averaged rotation rate
Ω(ϖ, z). Same as Figure 5.3.2 but for runs from the MHD* group.

respect to the equator. This is because this run does not have a core magnetic
field. MHDr2 and MHDr3 are asymmetric with respect to the equator. This is
because the hemispheric dynamos visible in Figure 5.2.1, are reducing the intensity
of the differential rotation in the zone where they are located. In MHDr3 the same
is happening, but the plot was not included because it is very similar to MHDr2,
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Figure 5.3.4: Snapshot from MHDr3 at t = 82 [yr]. The left plot corresponds to
the equatorial plane, and the middle and right plots to the planes that contain
the axis of rotation (zx and zy respectively). The colorbar represents the radial
component of the flow velocity ur.

but with a maximum and minimum of 1169 nHz and 1043 nHz respectively, as we
can see in Figure 5.3.1.

For the MHD* group something similar happens, as can be seen from Figure 5.3.3.
The rotation profile of MHDr2* looks very similar to that of MHDr1, even though
this run has a core dynamo. This is probably because the magnetic field of this
run starts in the southern hemisphere, quenching the differential rotation below
the equator, but then, the magnetic field moves to the northern hemisphere, and
the differential rotation is affected above the equator. What we observe in the
plot is the result of an averaging over this process, because Ω(ϖ, z) is temporally
averaged during a period that include this behavior in the magnetic field. MHDr3*
is very similar to MHDr3 and MHDr2, while MHDr4* is similar to MHDr4. The
mass flux due to meridional circulation seems to be slightly different in both
groups.

From Figure 5.3.5 we see that similarly to what happened with the toroidal
magnetic field in the core of the star, the rotation profiles for the group zMHD
are very similar to their MHD counterparts, with similar maximum and minimum
values of Ω/2π, and slightly higher maximum values of the averaged meridional
flow. However, in the zMHD set we can clearly distinguish more structures than
in the MHD group. This is due to the increase of grid points inside the convective
core, allowing to resolve flows on smaller scales. There seems to be a radius outside
the convective core where all the streamlines stop moving parallel to the axis of
rotation and change direction. This is a consequence of modifying the radius of
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Figure 5.3.5: Profiles of the temporally and azimuthally averaged rotation rate
Ω(ϖ, z). Same as Figure 5.3.2 but for runs from the zMHD group.

Figure 5.3.6: Snapshot from zMHDr2 at t = 68 [yr]. The left plot corresponds
to the equatorial plane, and the middle and right plots to the planes that contain
the axis of rotation (zx and zy respectively). The colorbar represents the radial
component of the flow velocity ur.

where the damping of flows starts. As we discussed in Section 3.3.2, we defined
rdamp = 0.45R∗ = 0.9R⊙ as a way to give stability to the model and also for
convenience. Therefore, unlike the full model where rdamp starts near the surface,
in the group zMHD it starts inside the radiative zone, vanishing the streamlines
and the vertical flows. This is something clearly visible in Figure 5.3.6, which
corresponds to a snapshot of zMHDr2 at t = 68 yr, showing the radial component
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of the flow velocity analogously to Figure 5.3.4.

5.4 Rotational scaling of magnetic cycles

As discussed in Section 5.2.2, the magnetic field is nearly zero on almost the whole
stellar surface, so here there is no magnetic cycle to analyze. However, the core
does indeed exhibit cyclic magnetic fields. As a way to estimate the magnetic cycle
period Pcyc,c of the core dynamo we computed the spectral density of an average
of the magnetic field from the active hemisphere using the Welch’s method (Welch,
1967). The peak value of this power spectrum corresponds to the frequency of the
magnetic cycle.

Now, to obtain a consistent relation between the magnetic cycle and rotation
periods, we have to compute the rotation period at the surface of the core. As
discussed in Section 5.3, the convective core has differential rotation, so we take
the average value of Ω at r = 0.2R. The obtained values of Pcyc,c and Prot,c are
listed in Table 5.4.1.

Table 5.4.1: Magnetic cycle period Pcyc,c, and the averaged rotation period
Prot,c = 2π/Ω at r = 0.2R.

Run Pcyc,c [years] Prot,c [days]
MHDr2 1.43 15.45
MHDr3 2.36 10.12
MHDr4 3.21 8.07
MHDr2* 2.00 15.44
MHDr3* 2.58 10.09
MHDr4* 3.47 8.05
zMHDr2 1.95 15.58

The values of Prot,c from the core do not differ significantly from Prot shown in
Table 5.1.1, that was computed directly using Ω0, increasing ∼ 3.8% in the most
extreme case (zMHDr2). This is because, as seen in Section 5.3, the differential
rotation of the core is not very strong, so Ω(ϖ, z) does not differ very much from
Ω0.

There is a clear trend that Pcyc,c increases as Prot,c decreases. This is visible in
Figure 5.4.1. Furthermore, our best power-law fit shows Pcyc,c ∝ P−1.26±0.06

rot,c in
the MHD group, and Pcyc,c ∝ P−0.87±0.20

rot,c in the MHD* group. The zMHD group
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Figure 5.4.1: The magnetic cycle period Pcyc,c as a function of the averaged
rotation period of the core Prot,c. The dashed lines are the best power-law fits to
the data.

does not have enough data to do a fit. However, the periods of zMHDr2 are very
similar to those of their MHD* counterpart, this is visible in Table 5.1.1 and in
Figure 5.4.1. The relation between the magnetic cycle of the dynamo driven in the
convective core and its rotation has not been studied before. However, simulations
of solar-like stars have also shown a similar relation. Data from Warnecke (2018)
indicate Pcyc ∝ P−0.33±0.05

rot whereas data from Strugarek et al. (2018) indicate
Pcyc ∝ P−1.06

rot .

In Figure 5.4.2, we show the ratio between the magnetic cycle period to the rotation
period of the core as a function of the Coriolis number. Notice that although
this relation is from the core of the star, we dropped the “,c” in the notation to
avoid confusions in the comparison with other studies. We present a relation
Prot/Pcyc ∝ Coβ in the core dynamo of an A-type star for the first time, with
β = −1.41± 0.05 for the MHD group, and β = −1.11± 0.12 for the MHD* group.
This has been found by other studies; simulations of a fully convective M dwarf
from Ortiz-Rodríguez et al. (2023) report β = −1.30± 0.26 and β = −2.98± 1.13.
Furthermore, data from simulations of solar-like stars from Warnecke (2018) and
Strugarek et al. (2018) show β = −0.99± 0.05 and β = −1.58± 0.11 respectively,
as visible in Figure 5.4.2. However, stellar observations suggest inactive and active
branches with β > 0 (Brandenburg et al., 1998, 2017), which fits with the results
reported by Guerrero et al. (2019) and Käpylä (2022). Nevertheless, the exact
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orange respectively. Additional data are from (Strugarek et al., 2018, red), and
(Warnecke, 2018, purple). The dashed lines are the best power-law fits to the
data.

nature of these branches is unclear.

5.5 Energy analysis

5.5.1 Global and core energies

Here we analyze the kinetic and magnetic energies from the simulations using the
same expressions defined in Section 4.4. All the equations were defined using a
volume average inside r < R. In this analysis, we compute the energies following
this definition as a way to study them inside the whole star. However, to have
representative values for the energies inside the convective core, we compute the
same expressions averaged inside r < 0.2R. These values from all (magnetic)
simulations are listed in Table 5.5.1.

Similarly to what happens in Chapter 4, the slowest rotators have the highest
kinetic energies. In this set of simulations, all the differential rotation energies
are very similar with EDR

kin /Ekin ∼ 0.3. This is an expected result considering that
in Section 5.3 we showed that all the runs have a similar rotation profile, i.e. a
quasi-rigid radiative envelope and a differentially rotating convective core.
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Table 5.5.1: Kinetic and magnetic energies, averaged over time and volume. The
total kinetic and magnetic energies have units of 1033J, while the rest of energies
are written as fractions of these quantities.

Run Ekin EDR
kin /Ekin EMC

kin /Ekin Emag Etor
mag/Emag Epol

mag/Emag

Whole star
MHDr2 61.79 0.398 0.017 19.91 0.294 0.061
MHDr2* 61.95 0.391 0.018 20.49 0.277 0.059
MHDr3 35.43 0.323 0.011 19.62 0.226 0.077
MHDr3* 36.34 0.315 0.010 25.31 0.264 0.074
MHDr4 28.91 0.323 0.008 19.73 0.300 0.086
MHDr4* 29.73 0.317 0.006 22.04 0.266 0.069
Core
MHDr2 6.88 0.349 0.026 1.30 0.136 0.100
MHDr2* 6.94 0.343 0.028 1.16 0.127 0.101
zMHDr2 7.02 0.375 0.035 0.89 0.131 0.096
MHDr3 3.99 0.297 0.017 1.53 0.143 0.111
MHDr3* 3.79 0.249 0.016 1.40 0.136 0.105
MHDr4 3.25 0.313 0.012 1.30 0.185 0.121
MHDr4* 3.06 0.261 0.009 1.19 0.168 0.110

The magnetic and kinetic energies considering the whole star are always larger in
the group MHD* than in MHD. However, this behavior disappears after averaging
the values over the core, as we can see in the final rows of Table 5.5.1. With
r < 0.2R the values of the magnetic energy in group MHD* are smaller than in
group MHD, while the values of the kinetic energy, although quite close, do not
seem to show any difference between groups. Similarly to the differential rotation
energies, the toroidal magnetic energies are very similar, with values of Etor

mag/Emag

between 0.226 and 0.3 for r < R, and between 0.127 and 0.185 for r < 0.2R.
In both cases, the highest value is given by MHDr4, same as with the poloidal
magnetic energy. This makes sense, because MHDr4 has the largest averaged
toroidal magnetic field at the surface (∼ 0.3 kG) and in the core with 197.9 kG;
see Table 5.2.1. However, the maximum Emag occurs in MHDr3* for the whole
star, and in MHDr3 for the core.

There does not seem to be a big difference between the kinetic energies of MHDr2
and its zoom version zMHDr2 except in the meridional circulation energy, where
the ratio EMC

kin /Ekin is higher in zMHDr2. However, the total magnetic energy of
zMHDr2 is lower, being the lowest in this set of simulations, while the values of
the toroidal and poloidal energies from both simulations are close to each other.
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Figure 5.5.1: Temporal evolution of the magnetic (blue) and kinetic (orange)
energies extracted from the time series of the runs MHDr2 (left) and MHDr4
(right).

Similarly to what happened in Chapter 4, the slow rotators have magnetic energies
below equipartition. However, although still sub-equipartition, the values of the
ratio Emag/Ekin are larger when considering the whole star instead of just the
core. As the rotation rate increases, this ratio also gets closer to unity, with 0.741

for MHDr4*. This behavior is visible in Figure 5.5.1, where the total magnetic
and kinetic energies are shown according to equations (4.4.1) with the variables
given by the time series. In MHDr2, we can see that the magnetic energy has
smaller values than the kinetic energy, while in MHDr4 the energies are closer to
each other. This near equipartition regime was also found by Brun et al. (2005),
and later in Featherstone et al. (2009). MHDr3 was not added to the figure,
because (as expected from Table 5.5.1) it shows a behavior in between MHDr2
and MHDr4.

5.5.2 Energy fluxes and luminosities

The luminosities can be studied in terms of their respective energy flux. The
luminosities related to the radiative, enthalpy, kinetic energy, viscosity, cooling
and heating fluxes, are defined as (Käpylä, 2021):

Lrad = −4πr2⟨K⟩θϕt
∂⟨T ⟩θϕt

∂r
, Lenth = 4πr2cP⟨(ρur)

′T ′⟩θϕt,

Lkin = 2πr2⟨ρu2ur⟩θϕt, Lvisc = −8πr2ν⟨ρuiSir⟩θϕt,

Lcool = −
∫ r

0

4πr2⟨C⟩θϕtdr, Lheat =

∫ r

0

4πr2⟨H⟩θϕtdr,
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where the prime indicates fluctuations from the mean value, index r denotes the
radial component, and ⟨.⟩θϕt horizontal and temporal averaging. Notice that the
total convective luminosity is given by Lconv = Lkin + Lenth.

Figure 5.5.2: Luminosity contributions from kinetic energy, enthalpy, radiative,
cooling and heating fluxes from MHDr2* (left panel) and MHDr3 (right panel).

The contributions to the total luminosity from runs MHDr3 and MHDr2* are
shown in Figure 5.5.2. The luminosity due to the viscous energy flux is not
included in the figure, because these values are negligible, reaching maximally
0.06% of the total flux at r ≈ 0.16R⊙. The luminosity due to the enthalpy flux
has its highest values from 0 to ∼ 0.5R⊙. This is because, as we mentioned
before, this luminosity is related to convection, and the convective core of the
star has a radial extent up to roughly these values. In the majority of the star,
the contribution due to the radiative energy flux dominates. This is also due to
the internal structure of the star, where the main energy transfer mechanism is
radiation (where the radiative zone is roughly 80% of the radial extent). However,
near the surface of the star the cooling becomes effective and it starts to dominate
the total luminosity. The rest of the runs from groups MHD and MHD* have
almost the same luminosity profile, as we can already notice from MHDr2* and
MHDr2, that have no significant differences. These profiles are similar to those
of Augustson et al. (2016) and Brun et al. (2005), see their Fig. 3 and Fig. 13,
respectively.

The luminosity contributions from runs zMHDr1 and zMHDr2 are shown in
Figure 5.5.3. These profiles are also very similar to the ones shown in Figure 5.5.2,
having a non-zero enthalpy flux where the convective core is, whereas the rest
of the radius is dominated by the radiative energy flux. However, these profiles
only show the radius up to r ≈ 1.1R⊙, that is the domain of these simulations.
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Figure 5.5.3: Luminosity contributions from zMHDr1 (left panel) and zMHDr2
(right panel).

Also, the cooling becomes effective already around r ≈ R⊙. This is an artificial
consequence of modifying the starting point of the cooling inside the radiative
zone, as the surface is no longer included (see Section 3.3.2).

5.6 Power Spectra

Following Section 4.5, the power spectra is computed using the coefficients of the
Spherical harmonics decomposition, as described in equation (4.5.5), from l = 1

to lmax = 50, because as in Chapter 4, this is enough to capture all the relevant
scales in the simulations.

The power spectra of the velocity and the magnetic field at r = 0.20R from all
runs from groups MHD and MHD* are shown in Figure 5.6.1.

As can be seen from the first four plots, MHDr2, MHDr2*, MHDr3, and MHDr3*
have the same peaks in the magnetic field spectra (EM ), more specifically, the radial
magnetic field (solid green line) peaks at l = 3, and the horizontal (dotted green
line) and non-axisymmetric (dashed dark green line) magnetic field contributions
peak at l = 1, which is the largest possible scale. However, the power spectra
of the velocity (EK) from the mentioned runs is different. In MHDr2 all the
contributions peak at l = 3, similarly to MHDr2* where this peak is also visible for
the horizontal (dotted blue line) and non-axisymmetric (dashed dark blue) velocity
contributions, while the radial velocity (solid blue line) peaks at l = 4. MHDr3* is
very similar to MHDr2, sharing all the peaks except for the horizontal contribution,
which peaks at l = 1. However, after this maximum value a secondary peak occurs
at l = 3. In MHDr3 the situation is slightly different, with a radial peak at l = 5,
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Figure 5.6.1: Power spectra of the velocity (EK) and the magnetic field (EM).
The solid line represents the radial component, the dotted line the horizontal, and
the dashed (slightly darker) line the non-axisymmetric contributions (m ̸= 0).

and an horizontal and non-axisymmetric peaks at l = 1 and l = 4 respectively.
Here, we also highlight that on small scales the radial velocity almost matches the
radial magnetic field. In the rest of the mentioned plots, this behavior seems to
happen with the non-axisymmetric contributions of the velocity and the magnetic
field.

In the fast rotators MHDr4 and MHDr4*, the radial magnetic field has its peak
at l = 6, and the horizontal and non-axisymmetric magnetic field contributions
have their peaks at l = 1, similarly as earlier runs. Nevertheless, the peaks of the
velocity of MHDr4* are exactly the same as MHDr3, and the only difference with
MHDr4, is that in this run the horizontal velocity has its peak at l = 3, which
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as discussed, is the second peak of MHDr3*, but also of MHDr3, and MHDr4*.
Notice that in Chapter 4, the power spectra of the fast rotators have a clear
scale difference, with the magnetic field appearing at large scales, and the velocity
in small scales. In these runs that behavior is not so clearly visible, and both,
magnetic field and velocity, seem to have similar scales, with almost the same
values in small scales.

Figure 5.6.2: Same as Figure 5.6.1, but for run zMHDr2.

Finally, the power spectra of zMHDr2 is shown in Figure 5.6.2. This run is similar
to its counterpart MHDr2, having the same peaks for the velocity contributions,
except for the radial velocity which has its peak at l = 2. And the radial
contribution of the magnetic field peaks at l = 5, while the horizontal and the
non-axisymmetric contributions peak at l = 1, the largest scale, same as all of the
previous runs.
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Chapter 6

Summary and conclusions

The origin of the magnetism in Ap/Bp stars is a long-standing problem. In this
thesis, we performed 3D magnetohydrodynamic simulations using the star-in-a-
box model adapted from Käpylä (2021, 2022) as a way to understand possible
explanations of the magnetism in these stars, solving the fully-compressible non-
ideal MHD equations using The Pencil Code (Pencil Code Collaboration et al.,
2021).

To model a star representative of the late pre-main-sequence evolution of an Ap
star, we develop a setup of a 2 M⊙ fully convective star (descending the Hayashi
track). We explore rotation periods from 20 to 280 days, to study the protostellar
phase of the star. We find strong toroidal magnetic fields, with maximum values
in the range of ∼ 80 − 180 kG, and root-mean-square magnetic fields in the
range of 50− 152 kG. Also, we find mostly steady dynamo configurations with
anti-solar differential rotation, similar to what has been found in low mass fully
convective slowly rotating stars (Dobler et al., 2006; Käpylä, 2021; Ortiz-Rodríguez
et al., 2023). These resulting magnetic fields could be potential inputs in our
main-sequence model, as a way to test their stability inside the radiative envelope
and study them as fossil fields. It is worth mentioning that no cyclic solutions are
found. This could be a consequence of not exploring the intermediate rotation
regime. In the A group there is a gap in the explored Coriolis numbers, jumping
from 10 to ∼ 30, while in the B group only slow rotation is explored.

We also develop a main-sequence model consisting of a 2 M⊙ A-type star with
a convective core covering 20% of its radial extent, surrounded by a radiative
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envelope. Similar to the spherical simulations presented by Browning et al. (2004),
Brun et al. (2005) and Featherstone et al. (2009), but using the star-in-a-box setup,
including the stellar surface in our domain. Our main objective is to study and
characterize the core dynamo of such stars, including the first quantitative analysis
of the relation between magnetic activity cycle and rotation period. We explore
rotation periods from 8 to 20 days, and did three different sets of simulations.
First, the MHD and the MHD* groups, that differ in the radial profiles of the
kinematic viscosity and the magnetic diffusivity. Both groups model the whole
star as a way to study the magnetism from the core to the surface. We also
develop the zMHD group, that is a zoom-in version of the MHD group, taking
into account the core and a part of the radiative envelope at higher resolution. All
the dynamos driven in the convective core of the star are hemispheric and have a
cyclic behavior, with toroidal magnetic fields with maximum values in the range
of 150 to 200 kG, with root-mean-squares Brms

ϕ around ∼ 30 kG. In MHDr2*, the
magnetic activity migrated from the southern to the northern hemisphere. This
behavior was reported by Brown et al. (2020) in fully convective M drawfs, and
the reason behind it is not clear. There is some magnetic activity at the surface of
the star. However, it is weak everywhere except at the poles, where the maximum
value is in MHDr4 with ∼ 0.3 kG. In the group MHD* the surface magnetic
fields are even weaker, and none of the maximum values is higher than 0.02 kG,
which seems to indicate the relevance of the radial profiles of diffusivities in the
simulations. These weak magnetic fields might be transported from the core to
the surface by the vertical flows produced by the Taylor-Proudman theorem, due
to the high Coriolis numbers in our simulations.

We find that at the surface of the convective core the magnetic cycle period
is related to the rotation period as Pcyc ∝ P−1.26±0.06

rot for the MHD group, and
Pcyc ∝ P−0.87±0.20

rot for the MHD* group. Furthermore, we found a scaling of
Prot/Pcyc ∝ Coβ, with β = −1.41± 0.05 and β = −1.11± 0.12 for the MHD and
MHD* groups respectively, being the first time that this has been done in the
core dynamo of an A-type star. It is worth mentioning that negative values of β
have been found in data from simulations of other types of stars (Warnecke, 2018;
Strugarek et al., 2018; Viviani et al., 2018; Ortiz-Rodríguez et al., 2023).

All the simulations have an approximately rigidly rotating radiative envelope,
like the radiative interior of the Sun, and a solar-like differential rotation in the
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convective core. The location of the hemispheric dynamo seems to affect the
location of the maximum values of the averaged rotation rate, i.e., the magnetic
field is quenching the differential rotation. There is no clear difference between
the MHD and MHD* groups in their rotation profiles. Furthermore, the zoom
zMHD group has similar results as the MHD group as well. However, due to the
higher spatial resolution inside the convective core, more and smaller structures
are visible, but without changing the main conclusions. Similarly, the magnetic
activity of zMHDr2 is very similar to that of MHDr2, having roughly the same
configuration and maximum and minimum values. As we increase the rotation
rate, the magnetic energy gets closer to the equipartition values with the kinetic
energy, and in the fast rotators MHDr4 and MHDr4* both energies are comparable.
This nearly equipartition regime was found by Brun et al. (2005), and later in
Featherstone et al. (2009). Unlike Augustson et al. (2016), none of our runs
reached super-equipartition values. This might be a consequence of the different
values of the dimensionless diagnostic parameters in their simulations, e.g. ReM

and Re are higher than those of our study. All groups have almost the same
luminosity profile, which is similar to those presented in Brun et al. (2005) and
Augustson et al. (2016). However, it is important to take into account that in
the zMHD group the cooling was manually moved within the radiative zone to
preserve the thermal equilibrium of the star, because the stellar surface is no longer
in the model and therefore, we can not include radiative losses there. Finally, it is
worth mentioning that this study contributes to increase the number of available
simulations of core dynamos, allowing the first proper assessment of the magnetic
activity cycles, with a clear visualization as time-latitude diagrams.

Our simulations indicate that the magnetic field created by a core dynamo is not
enough to explain the large-scale structures observed at the surface of Ap/Bp
stars. This makes sense considering the wide range of magnetic field strengths
observed at the surface of stars whose convective cores are predicted to be of
similar size. In future studies, different mechanisms should be included. Although
the presence of a strong core dynamo should not be omitted.

As already mentioned, the zoom model has very similar results compared to
the whole star model, i.e., no dynamo in the slowest rotator, and a solar-like
differential rotation core with a cyclic hemispheric magnetic field in the run with a
rotation period of 15 days. However, in the zoom model the magnetic field seems
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to be slightly weaker, this is visible from root-mean-square magnetic field ⟨Brms⟩
and the magnetic energy Emag. This might be something completely related with
the resolution. Therefore, although the main results were not affected, performing
these simulations in a higher grid might capture some details that change the
intensity of the magnetic field.

A logical step to follow in the future is to add a fossil field into our main-sequence
model, and study how these magnetic configurations affect the nature of the
hemispheric dynamo that was obtained in practically all the magnetic runs.
Ideally, as discussed, the input field can be one of the steady configurations found
in our protostellar models in Chapter 4. However, different configurations can be
implemented as well as a way to test their stability and how they interact with an
existing core dynamo, similarly to Featherstone et al. (2009) but also modelling
the whole star and seeing how the resulting magnetic field behaves at the stellar
surface. Furthermore, more rotation rates can be explored, although it is true
that Ap stars can rotate very slow (Prot = 300 years), most of them have rotation
periods between 1 and 10 days (Braithwaite and Spruit, 2017), so the “fast rotator
regime” remains unexplored.

As we already mentioned, the star-in-a-box setup has been used to model fully
convective M dwarfs (Käpylä, 2021; Ortiz-Rodríguez et al., 2023), solar-like stars
(Käpylä, 2022), and A-type stars. However, in the future it can be used to model
different types of stars, like other early-type stars with a bigger convective core,
like B-type stars, as well as low mass partially convective stars, and red giants.
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