
Universidad de Concepción

Dirección de Postgrado

Facultad de Ingenierı́a - Programa de Magı́ster en Ciencias de la Computación

ADVERSARIAL VARIATIONAL DOMAIN ADAPTATION FOR

SEMI-SUPERVISED IMAGE CLASSIFICATION

Tesis para optar al grado de

MAGÍSTER EN CIENCIAS DE LA COMPUTACIÓN

POR

Manuel Ignacio Pérez Carrasco

CONCEPCIÓN, CHILE

Septiembre, 2019

Profesor guı́a: Guillermo Felipe Cabrera Vives

Departamento de Ingenierı́a Informática y Ciencias de la Computación

Facultad de Ingenierı́a

Universidad de Concepción

c©

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier

medio o procedimiento, incluyendo la cita bibliográfica del documento.

ii

iii

ACKNOWLEDGMENTS

iv

Abstract

For success fully training deep neural networks, we usually need a large amount of an-

notated data in order to avoid the overfitting and being able to generalize to new data.

In most of real cases, getting labels is difficult and time consuming. In this work we

address the problem of transferring knowledge obtained from a vast annotated source

domain to a low labeled or unlabeled target domain, reducing the efforts to get la-

bels on the target. We propose Adversarial Variational Domain Adaptation (AVDA), a

semi-supervised domain adaptation method based on deep variational embedded rep-

resentations. The idea of AVDA is to use a mixture of Gaussian distribution as a prior

for the latent space, mapping samples that belong to the same class into the same

Gaussian component, independently of the domain membership, using approximate

inference. We use adversarial methods to align source and target distributions in la-

tent space for each class independently. We tested our model using the digits dataset,

which contains images of handwritten digits and images of number of houses. We

empirically show that on a semi-supervised scenario, our approach improved the state

of the art for digits dataset from 0.3 to 1.5% of accuracy using only 1 and 5 labels per

class. Also, we tested out model using images of galaxies from the Cosmic Assembly

Near-infrared Deep Extragalactic Legacy Survey (CANDELS, [23]) as source and the

Cluster Lensing and Supernova Survey with Hubble (CLASH, [62]) as target. We em-

pirically show that using few labels our model presents a significant speed-up in terms

of the increase in accuracy, and the model keeps improving as more labels we add.

1

Chapter 1

INTRODUCTION

Deep neural networks have become the state of the art for a lot of machine learning

problems. However, these methods usually imply the need for a large amount of la-

beled data in order to avoid overfitting and be able to generalize. Furthermore, it is

assumed that train and test data come from the same distribution and feature space.

This becomes a huge problem in cases when labeling is costly and/or time-consuming.

One way to address this challenge is to use a source domain which contains a vast

amount of annotated data and reduce the differences in distribution (domain shift) be-

tween this domain and a different, but similar, target domain in which we have few or

even no annotations.

Domain adaptation (DA) methods aim at reducing the domain shift between datasets

[58], allowing to generalize a model trained on source to perform similarly on the target

domain by finding a common shared space between them. Deep DA uses deep neural

networks to achieve this task. Previous works in deep DA have addressed the problem

of domain shift by using statistical measures [48, 46, 83, 87, 94, 78, 60] or introducing

class-based loss functions [81, 15, 51, 52] in order to diminish the distance between

domain distributions. Since the appearance of Generative Adversarial Networks [21]

new approaches have been developed focused on using adversarial domain adapta-

tion (ADA) techniques [14, 13]. The goal of adversarial domain adaptation [82] is to

learn from the source data distribution a model to predict on the target distribution by

finding a common representation for the data by using an adversarial objective with

respect to a domain discriminator. This way, a domain-invariant feature space can be

used to solve a classification task on both the source and the target.

Despite ADA methods being good at aligning distributions even in an unsupervised

domain adaptation (UDA) scenario (i.e. with no labels from the target), they have

2

problems when facing some domain adaptation challenges. First, since most of these

methods were made to tackle UDA problems, they usually fail when there is a signif-

icant covariate shift between domains [95]. Second, these methods are not able to

take advantage of the semi-supervised scenario in order to produce more accurate

models when a few amount of labels are available from the target, generating poor

decision boundaries near annotated target data [71]. This behavior has been studied

in different works, which tried to adapt domain-invariant features from different classes

independently [72, 37].

In this work, we propose Adversarial Variational Domain Adaptation (AVDA), a do-

main adaptation model which works on unsupervised and semi-supervised scenarios

by exploiting target labels when they are available by using variational deep embed-

ding (VaDE, [34]) and adversarial methods [21]. The idea behind AVDA is to correct

the domain shift of each class independently by using an embedded space composed

by a mixture of Gaussians, in which each class correspond to a Gaussian mixture

component. Specifically, for the source domain we map samples that belong to the

same class into the same gaussian mixture component in latent space optimizing the

Kullback-Leibler (KL) divergence, while for target domain, we use the discriminator and

KL divergence to force samples to map into the Gaussian mixture component associ-

ated to the objects classes. By doing this, we aim find a common shared feature space

for each class independently of the domain membership.

The performance of AVDA was validated on benchmark digit recognition tasks us-

ing MNIST [43], USPS [9], and SVHN [55] datasets and on a real case consisting in

galaxy images using the Cosmic Assembly Near-infrared Deep Extragalactic Legacy

Survey (CANDELS, [23]) as source and the Cluster Lensing and Supernova Survey

with Hubble (CLASH, [62]) as target. We demonstrate competitive results among other

methods in the state-of-the-art for the digits task and then show the potential of our

model obtaining speed-up in performance when few target labels are available even in

a high domain shift scenario.

3

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Deep Neural Networks

2.1.1 Perceptron

The idea of deep neural networks [66] is to mathematically model the human neuron

function. In the particular case of feed-forward neural networks, the modeling is made

through a unit base called perceptron [66]. The perceptron is defined as

ŷ = f(
n∑
i=1

wixi + b), (2.1)

where wi represents the parameters of the perceptron, xi represents the input and b

is an scale factor called bias. The activation function f is a non-linear function which

determines the output of the perceptron. The scheme of a perceptron is displayed in

Figure 2.1

Using the perceptron we are able to obtain differentiable non-linear functions by

using the activation function. The parameters w are fitted during training. At the same

time, this non-linear functions allow us to generate new representations of the data in

order to perform machine learning tasks.

2.1.2 Feed-forward Neural Network

The connection of many perceptrons generates a feed-forward neural network (FNN).

FNN are modeled by layers in which the data sequentially pass through it, generating

a final output. Figure 2.2 shows a feed-forward neural network model. The perceptron

units are grouped by layers which receive as input the output of the previous layer,

generating a new activation. The last layer, called output layer, generates the final

4

Figure 2.1: Perceptron model, the base unit of a feed-forward neural network. xi is the input
of the model, which is weighted by the parameters wi of the model and summed with a bias
b. The results is passed through an activation function which determines the output of the
perceptron.
Source: Harsh Pokharna, For Dummies: The Introduction to Neural Networks we all need.
https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-

networks-we-all-need-c50f6012d5eb

output ŷ of the model.

The parameters wi of the model are iteratively learned by minimizing a loss function

between the desired output and the output given by the model. In the classification

case, the categorical cross entropy loss function is commonly used, this function is

defined by the Equation 2.2:

J(w) =
n∑
i=1

yi log ŷi(x), (2.2)

where ŷi correspond to the output of the model for data i, yi correspond to the

desired real output for data i and n is the total number of data used to compute the

loss function.

The parameters are updated using the backpropagation algorithm [44], which com-

putes the partial derivatives of the loss function with respect to the parameters of each

layer of the model, iteratively modifying the parameters using an iterative optimization

algorithm such as gradient descent. For example, the Stochastic Gradient Descent al-

gorithm (SGD, [65]) updates the parameters in the opposite direction of the gradients,

controled by a learning rate. SGD is defined as

5

https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-c50f6012d5eb
https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-c50f6012d5eb

Figure 2.2: Feed-forward neural network model. In this model, perceptron units are grouped by
layers called hidden layers, which takes as input the output of the previous layers, generating a
new activation. Then, a final layer generates the output ŷ of the model.
Source: Virtual Labs, Multilayer feedforward neural networks.
http://cse22-iiith.vlabs.ac.in/exp4/index.html

wt+1 = wt − η∇wJ(wt), (2.3)

where wt are the parameters at iteration t, η correspond to the learning rate, and

∇wJ(wt) represents the gradient of the loss function with respect to the parameters

w.

2.1.3 Convolutional Neural Networks

Convolutional neural networks [12, 44] are deep learning models commonly used when

data exhibit a topological structure to preserve (e.g. pixels in an image). The objective

is to model the data using different abstraction levels through layers using convolution

and statistical operations (e.g. maxpooling [53]).

The convolutions are operations realized by a kernel which slides through the en-

tire input and computes the dot product between the input and the parameters of the

kernel. The result of this operation is a tensor that represents an abstraction of the

original data. This representation will give us important features in order to perform the

machine learning task using a predictive model, as for example, a feed-forward neural

6

http://cse22-iiith.vlabs.ac.in/exp4/index.html

network [92] .

Despite convnets being invented in 1987 [12], the lack of computational power,

enough amount of data and efficient regularization algorithms to avoid overfitting, did

not allow successful implementations until a few time ago. In 2012, thanks to the ReLU

[54] activation functions, dropout regularization [26, 76] and graphic processing units

(GPU’s), Krizhevsky et al. 2012 [42] obtained an important advantage over the rest of

competitors in the Large Scale Visual Recognition Challenge [68]1 (ILSVRC) of Ima-

geNet, one of the most important challenges in the computer vision field, positioning

convolutional neural networks as the best alternative for processing images in ma-

chine learning tasks. Since then, the most succesfull algorithms have been based on

this kind of architectures [75, 79, 25] using some variations and increasing the number

of the convolutional layers, thanks to algorithms that allow a better backpropagation of

the errors (e.g. batch-normalization [31])

2.2 Autoencoders

2.2.1 Vanilla Autoencoder

Autoencoders [67, 85] are unsupervised models which learn a function fw(x) ≈ x.

In other words, they generate an output x̂ that looks similar to the original input x.

To do that, autoencoders use a compressed representation of the data in a latent

space. Autoencoders can be decomposed in two parts that look as mirorred connected

networks. The first part (a.k.a. encoder) maps the data into the latent space, while

the second part (a.k.a. decoder) reconstructs the original data using the information

contained in the latent space. By doing that, the latent space, captures important

features that characterize an underlying representation of the data. We can optimize

the parameters w of the model by minimizing the average reconstruction error

J(w) =
1

n

n∑
i=1

L(xi, fw(xi)), (2.4)

1http://www.image-net.org/challenges/LSVRC/

7

http://www.image-net.org/challenges/LSVRC/

Figure 2.3: Representation of a vanilla autoencoder. The idea is to generate an output x̂ that
looks similar to the input x using a compressed representation of the data in a latent space.
The encoder tries to maps the data x into the latent space, while the decoder generates a
reconstruction x̂ from this latent space.

where L is a loss function such as the mean squared error if the input x has a

continuous representation or binary crossentropy if x is a binary vector. The scheme

of a vanilla autoencoder is shown in Figure 2.3.

2.2.2 Variational Autoencoder

Variational Autoencoders (VAE, [41, 35]) are deep generative models. Similar as vanilla

autoencoders, VAEs learn a function fw(x) ≈ x, generating data that looks like the input

data using a latent representation. The idea of variational autoencoders is to encode

data into a latent space that follows a known distribution from which we can sample

new data.

Formally, given data x and a probability distribution of the data p(x), we encode the

data into latent variables z that follow a probability distribution p(z) and generate new

data following a given distribution p(x|z). If we knew p(x|z) and p(z) we could find the

probability distribution of the data p(x) that generates new data x, by marginalizing over

z

p(x) =

∫
z

p(x|z)p(z)dz. (2.5)

8

Given that the calculation of Equation 2.5 is intractable due the difficulty of ap-

proximating p(z) in high dimensionensions through sampling, the idea is to infer p(z)

through p(z|x), which is likely to produce values of p(x|z) for which x is non-zero, using

variational inference. In variational inference we approximate the posterior distribution

p(z|x) with a family of simpler distributions q(z|x) minimizing the difference of both dis-

tributions using Kullback-Liebler (KL) divergence, which measure the lost information

when using q(z|x) instead of p(z|x). The KL divergence can be defined as follows:

DKL[q(z|x)||q(z|x)] = Eqφ(z|x)
[
log

q(z|x)
p(z|x)

]
,

= Eqφ(z|x)[log q(z|x)− log p(z|x)]. (2.6)

Applying Bayes rule

DKL[q(z|x)||p(z|x)] = Eqφ(z|x)[log q(z|x)− log p(x|z)− log p(z)] + log p(x), (2.7)

using Equation 2.7 we can approximate the probability distribution of p(x) via maxi-

mizing the variational lower bound as follows:

log p(x) ≥ Eqφ(z|x)[log p(x|z)− (log q(z|x)− log p(z))],

= Eqφ(z|x)[log p(x|z)]−DKL[q(z|x)||p(z)]. (2.8)

In this Equation, qφ(z|x)[log p(x|z)] correspond to a maximum likelihood estima-

tion, which can be easily optimized by minimizing a statistical measure like the mean

squared error between the input x and the output x̂ of the network. ForDKL[q(z|x)||p(z)],
we have to use a prior probability distribution p(z) in order to compute the KL diver-

gence and optimize it. Assuming p(z) = N (0, I) as a prior probability distribution, there

is an analytical solution given two function approximators µ(x) and σ(x), which can be

9

Figure 2.4: Representation of a variational autoencoder. Similar to a vanilla autoencoder, is
composed by an encoder and a decoder. The data is mapped into a latent space that follows
a known distribution. We are able to sample from this know distribution, generating new data
through the decoder.

computed as

DKL[N (µ(x), σ(x))||N (0, I)] =
1

2

J∑
i

(σ(xi) + µ2(xi)− log σ(xi)− 1), (2.9)

where J is the dimension of the latent space. Using Equation 2.9, we can use

the outputs µ and σ of the encoder as the function approximator to minimize the KL

divergence. The scheme of variational autoencoders is shown in Figure 2.4.

2.3 Semi-supervised Learning

In most of real cases, unlabeled data is abundant and easy to obtain, while labeling

data is expensive and time-consuming. On the other hand, deep neural networks

models need a huge amount of labeled data in order to avoid the overfitting and be

able to generalize to test data

The idea of semi-supervised learning is to take advantage of the unlabeled data

on top of labeled samples [4]. Intuitively, the key ideas for the success of a semi-

supervised classification models is to have an internal representation of the data that

meets the following characteristics: 1) have samples from the same class nearby each

10

Figure 2.5: In a semi-supervised learning scenario we aim to find low density zones that divide
samples from different classes, performing accurate decision boundaries around them.

other, 2) have samples from different classes in different regions, 3) create decision

boundaries around the zones in which the density of points is lower. By doing this, we

aim to find boundaries that better separate the points that belong to different classes.

As we can see in Figure 2.5, when we take into account unlabeled samples and we

learn the decision boundaries around low density zones, we are able to create better

decision boundaries as compared to using only the limited labeled data.

2.4 Semi-supervised Variational Autoencoders

A promising approach to deal with labeled and unlabeled data during training are semi-

supervised variational autoencoders [40, 64, 49]. These models aim at learning a latent

space which depends on the labeled data. As the latent space is shared between

labeled and unlabeled data, points from the same class are expected to be closer in

the latent space. The generative semi-supervised model described in [40] defines a

generative process as follows:

p(y) = Cat(y|π), p(z) = N (z|0, I), pθ(x|z, y) = p(x; z, y, θ), (2.10)

where Cat(y|π) is modeled by a categorical distribution parametrized by π, the prior

probability for class y, π ∈ RK
+ ,
∑K

i=1 πi = 1, where K is the number of classes. z and

11

y are treated as latent variables if no class is available. If labels are available, only z

is treated as a latent variable. p(x; z, y, θ) is the likelihood of x, defined as a non-linear

transformation of the variable z and y with parameters θ. In this work, we use deep

neural networks as a non-linear function approximation for f(x; z, y, θ).

Similar as in variational autoencoders, we approximate the posterior distribution

p(z, y|x) by another function qφ(z, y|x), as an inference model. The inference model is

defined as follows:

qφ(y|x) = Cat(y|πφ(x)), qφ(z|y, x) = N (z|µφ(y, x), σ2
φ(x)I) (2.11)

where µφ(x) and σ2
φ(x) are the mean and variance outputed by the neural network

with parameters φ. Cat(y|πφ(x)) is a categorical distribution with prior π which is given

by a probability vector that depends on x. For this model we can derive two variational

lower bounds, one for the labeled data and other for unlabeled data. For a single

labeled datapoint the variational lower bound is given by:

log p(x, y) ≥ Eqφ(z|x,y)[log pθ(x|y, z) + log pθ(y) + log p(z)− log qφ(z|x, y)],

= Eqφ(z|x,y)[log pθ(x|y, z)] + C +DKL[qφ(z|x, y)||p(z)],

= −L(x, y).

(2.12)

For a single unlabeled datapoint, we treat both z and y as latent variables. The

variational lower bound is given by:

12

log p(x) ≥ Eqφ(z,y|x)[log pθ(x|y, z) + log pθ(y) + log p(z)− log qφ(y, z|x)],

= Eqφ(z,y|x)[log pθ(x|y, z) + C + log p(z)− log qφ(y|x)− log qφ(z|x)],

= Eqφ(y|x)[Eqφ(z|x)[log pθ(x|y, z) + C + log p(z)− log qφ(y|x)− log qφ(z|x)]],

= Eqφ(y|x)[Eqφ(z|x)[log pθ(x|y, z)] + C +DKL[qφ(z|x)||p(z)]− log qφ(y|x)],

= −U(x),
(2.13)

where log pθ(y) = C is a constant which represent class proportions. The final

objective function be defined as the summation of the lower bounds for labeled and

unlabeled data as

J =
∑

(x,y)∼p̃l(x,y)

L(x, y) +
∑

x∼p̃u(x)

U(x). (2.14)

Notice that a distribution qφ(y|x) was defined in Equation 2.11. This distribution will

help the labeling process when labels are missing. In order to improve the labeling

process for unlabeled data, we can take advantage of the labeled data points adding

an extra discriminative term to the objective. Also, this discriminative term will be en-

charged of enforce the separation of the gaussians into the latent space. The overall

objective can be defined as:

J =
∑

(x,y)∼p̃l(x,y)

L(x, y) + αEp̃l(x,y)[− log qφ(y|x)] +
∑

x∼p̃u(x)

U(x), (2.15)

where p̃l(x, y) and p̃u(x) are the empirical distributions over labeled and unlabeled

data respectively, and α is an hyperparameter that controls the relative importance

between the discriminative and generative process of the model.

In recent works, the latent space is often extended to an embedding in which the

latent space corresponds to an embedding representantion [34] and each class is

mapped into an embedding component. Our proposed Adversarial Variational Domain

Adaptation framework is based on semi-supervised variational autoencoders using a

13

Figure 2.6: Overall process of GANs. The generator generates data that look like the real data
using noise as input. On the other hand, the discriminator tries to distinguish if the data is real
or was generated. Doing that, we aim to capture the underlying data distribution.
Source: Thalles Silva, An Intuitive Introduction to Generative Adversarial Networks.
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-

adversarial-networks-gans-7a2264a81394/

variational deep embedding representation.

2.5 Adversarial Learning

Generative adversarial networks (GAN, [21]) are models composed of two networks: a

generator and a discriminator. The idea of GANs is to find the underlying distribution

behind the data by using these two networks under a two-player game. The generator

tries to generate data that looks like the real one, while the the discriminator tries to

distinguish if the data is real or if it was generated. The network is trained in a minimax

fashion, forcing the generator to fool the discriminator, while the discriminator learns

how to not be fooled. The overall process is shown in Figure 2.6.

The optimization of a GAN process is shown in Equation 2.16:

min
G

max
D

V (D,G) = min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log 1−D(G(z))] (2.16)

14

https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/

where D(·) and G(·) repreents the discriminator and generator respectively and z rep-

resents the noise from which the input of the generator is sampled.

2.6 Transfer Learning

Consider a problem in which we have a large amount of data in one domain (source)

and a limited amount of data on another domain (target) and they do not have the

same feature space or data distribution. The goal of transfer learning is to improve the

performance on the target domain by exploiting similarities between the source and

target domains.

Formally, consider a domain D composed of a d-dimensional feature space X ⊆ Rd

and a marginal probability distribution p(x). For this domain, a task T is defined by a

label space Y. A conditional probability p(y|x) is learned from the pairs {xi, yi} (where

xi ∈ X and yi ∈ Y). Given a source domain Ds and a target domain Dt, the goal

of transfer learning is to learn p(yt, xt) exploiting previous learned probability p(xs, ys),

given that p(xs, ys) 6= p(xt, yt) [59].

Several approaches have been developed in classical machine learning in order

to learn the conditional probability p(yt|xt) [7]. For example the instance re-weighting

methods propose to estimate the likelihood of being source or target in order to de-

crease the importance of the missclassified source examples [11] [5] [90]. Parameter

adaptation methods try to directly modify the classifier trained on source domain in

order to perform better on the target domain [36] [88] [6].

Due to the capability of deep networks to learn transferable [2, 91, 57] and invariant

[20] representations of the data, deep transfer learning techniques have become in a

wide and successful area of research [80]. These methods use deep neural architec-

tures designed to exploit similarities betweeen domains. Deep transfer learning can be

grouped in three categories: Shallow transfer learning considers a deep architecture

for feature extraction and these features can be used in any of the methods described

before (e.g. [10], [8], [77]). Fine-tuning deep CNN architectures is used to retrain some

layers of a deep architecture trained on source, with target samples [91, 57]. Better

15

results in deep transfer learning have been achieved by Deep domain adaptation ar-

chitectures, which are methods designed for aligning source and target distribution into

a shared internal representation.

2.6.1 Domain Adaptation

Domain adaptation methods deal with the challenge of transfer learning by reducing

the domain shift between the source and target domains [58]. This is achieved by

aligning the data in a common intern representation for them.

Some statistical metrics have been proposed in order to align source and target

distributions, such as maximum mean discrepancy (MMD) [48, 46, 83, 87], Kullback

Leibler (KL) divergence [94] or correlation alignment (CORAL) [78, 60]. Since the ap-

pearance of Generative Adversarial Networks [21] significant work has been devel-

oped around adversarial domain adaptation (ADA) techniques [14, 13, 16]. The idea

of ADA methods is to use a domain classifier which discriminates if a sample belongs

to the source or target domain, while a generator learns how to create indistinguish-

able representations of data in order to fool the domain classifier. By doing this, a

domain-invariant representation of the data distribution is produced in a latent space.

Despite ADA models achieving good results either by matching distributions in a

feature representation (i.e. feature-level) [13, 45, 47, 74, 69] or generating target im-

ages that look as if they were part of the source dataset (i.e. pixel-level) [32, 93, 28,

30, 29], when they are used in a UDA scenario, they have difficulties dealing with big

covariate shifts between domains [95]. Furthermore, when a few number of annotated

target samples are included, these models often do not improve performance relative to

just training with labeled target samples [71]. In order to deal with few labels, few-shot

domain adaptation methods have been created [51, 52], which are not meant to work

with unlabeled data, often producing overfitted representations and having problems to

generalize on the target domain [86].

Semi-supervised domain adaptation (SSDA) deal with these challenges using both

labeled and unlabeled samples during training [19, 22, 18, 73, 1, 72]. Usually for SSDA

16

we are interested on finding a space in which labeled and unlabeled target samples

belonging to the same class have a similar internal representation [10, 89, 95, 71].

Our proposed AVDA framework uses a variational deep embedding [34] represen-

tation, in which both source and target samples that belong to the same class are

mapped into an embedding component, allowing the model to obtain a significant

speed-up in performance as more labels are used from the target domain.

17

Chapter 3

THE METHOD

In this work we propose Adversarial Variational Domain Adaptation (AVDA), a model

based on semi-supervised variational deep embedding (SSVaDE) and adversarial meth-

ods. We use a Gaussian mixture model as a prior for the embedded space and align

samples from source and target domains that belong to the same class into the same

Gaussian component.

3.1 Problem Definition

In a semi-supervised domain adaptation scenario, we are given a source domain Ds =
{xsi , ysi }n

s

i=1 with ns number of labeled samples and a target domain Dt = {(xti, yti)}n
t

i=1

with nt number of labeled samples. Also, for the target domain we have a subset Du =
{(xui)}n

u

i=1 of nu unlabeled samples. For both domains we have the same K classes, i.e.

ysi ∈ {1, ..., K}, yti ∈ {1, ..., K}. Source and target data are drawn from unknown joint

distributions ps(xs, ys) and pt(xt, yt) respectively, where ps(xs, ys) 6= pt(xt, yt).

The goal of this work is to build a model that provides an embedding space z in

which source and target data have the same representation for each of the K classes.

We propose the use of a Semi-supervised Variational Deep Embedding [20]. This

model is composed by the inference models qsφ(z
s|xs) and qtψ(z

t|xt) that encodes source

and target data into this latent representation, which we set to be a mixture of Gaussian

distribution depending on the labels y and they are parametrized by φ and ψ, for source

and target respectively. Also, the generative model psθ(x
s|zs) describes the data as if

they were generated from a latent variable zs and is parametrized by θ. A discriminative

process qsφ(y
s|xs) is included to enforce the separability between the Gaussian mixture

components. The overall model is displayed in Figure 3.1.

18

Figure 3.1: Overall architecture for Adversarial Variational Domain Adaptation. The model
works in three steps. First, source data Ds is encoded into an embedded space zs using the
inference model with parameters φ and decoded using the generative model with parameters
θ. Each data point is mapped to an embedded component associated to its class. Second,
a classifier with parameters w is trained to discriminate if a sample comes from the source
domain and its class, or comes from the target domain. Third, the target inference model is
trained in an adversarial fashion using target data Dt and Du, generating an aligned embedding
representation for source and target domains.

3.2 Adversarial Variational Domain Adaptation Model

For the source domain, we define a generative process as follows:

p(y) = Cat(y|π) p(z|y) = N (z|µ(y), σ2(y)) pθ(x
s|z) = p(xs; z, θ) (3.1)

where Cat(y|π) is a multinomial distribution parametrized by π, the prior probability

for class y, π ∈ RK
+ ,
∑K

y=1 πi = 1. At the same time, µ(y) and σ2(y) are the mean

and variance of the embedded normal distribution corresponding to class labels y.

p(xs; z, θ) is a likelihood function whose parameters are formed by non-linear transfor-

mations of the variable z using a neural network with parameters θ. In this work, we

use deep neural networks as a non-linear function approximation.

For source and target domains, we define two inference models. We use variational

19

inference to find an approximation for the true posterior distribution p(y, z|x) using the

approximated posterior distributions qφ(y, z|x) and qψ(y, z|x) which are parametrized

by a deep neural networks with parameters φ for the source domain and ψ for the

target domain. We assume the approximate posterior can be factorized as q(y, z|x) =
q(z|x)q(y|z), and model it by using normal and categorical distributions as follows:

qφ(z
s|xs) = N (z|µφ(xs), σ2

φ(x
s)) qφ(y

s|zs) = Cat(ys|πφ(zs)) (3.2)

qψ(z
t|xt) = N (z|µψ(xt), σ2

ψ(x
t)) qψ(y

t|zt) = Cat(yt|πψ(zt)) (3.3)

where (µφ(x
s), σφ(x

s)) and (µψ(x
t), σψ(x

t)) are the outputs of the source and target

deep neural networks with parameters φ and ψ respectively, and are then used to sam-

ple z from a Gaussian mixture distribution by using the reparametrization trick defined

in [41]. qφ(y
s|zs) and qψ(y

t|zt) represent the source and target processes modeled

through independent neural networks. These networks take the latent variables and

return the parameters πφ(z
s) and πψ(z

t) to sample a categorical variable by using a

Gumbel-Softmax distribution [34]. With this estimator, we can generate labels y and

backpropagate through this sampled categorical variable by using the continuous re-

laxation defined by Jiang et al. 2016 [34], avoiding the marginalization over all the

categorical labels introduced in [40, 34], significantly reducing computational costs.

3.3 Variational Objectives

The supervised variational lower bound on the marginal likelihood for a single source

data point can be derived similarly to a deep generative model [41, 40] as follows:

log pθ(x
s) ≥ Eqφ(zs|xs)

[
log pθ(x

s|zs)
]
−DKL

(
qφ(z

s|xs)||pθ(zs)
)

(3.4)

where the labels y are used to map each sample to their correspondent embedding

in latent space. At the same time, a predictive function qφ(y
s|xs) is included in order

to enforce the separability between the embedding components. The lower bound for

20

source domain can be optimized by minimizing the following objective:

Lssup = DKL

[
qφ(z

s|xs)||pθ(zs)
]
− Eqφ(zs|xs)

[
log pθ(x

s|zs)
]
− αs log qφ(ys|xs) (3.5)

where αs is the hyper-parameter that controls the relative importance between the

generative and discriminative processes of the model.

On the other hand, for the target domain, we would like that the inference model

will be able to map the samples into the same embedding obtained by the source

generative model. Taking this into account, the objective can be decomposed in two

parts. One for labeled data and other for unlabeled data. For a single target labeled

data point we can obtain the supervised objective as follows:

Ltsup = DKL

(
qψ(z

t|xt)||p∗θ(zt)
)
− αt log qψ(yt|xt) (3.6)

where p∗θ(z) is the optimized prior distribution for the source. αt is the hyper-parameter

that controls the relative importance of the discriminative process in the model. For a

single target unlabeled data point we can derive the unsupervised objective as follows:

Ltunsup = DKL(qψ
(
zt, yt|xt)||p∗θ(zt, yt)

)
= Eqψ(z|x)

[
DKL(qψ(y

t|zt)||p∗θ(yt))
]
+ Eqψ(y|z)

[
DKL(qψ(z

t|xt)||p∗θ(zt|yt))
] (3.7)

The minimization of this term helps generating the mapping of each unlabeled target

sample component into the correspondent embedding space using a predicted cate-

gorical variable.

3.4 Adversarial Objective

We would like the agglomerative distribution over the approximated posterior distribu-

tion q(z) = Ep∗(x) [q(z|x)] to be the same for source and target domains (i.e qψ(z
s) =

qφ(z
t)). These distributions are embedded spaces which depend on the labels, hence

we use the semi-supervised generative adversarial model proposed by Odena A. 2016

21

[56] in order to encourage the alignment between these distributions. In particular, we

use a discriminator Dw(·) with parameters w which takes the form of a classifier distin-

guishing between K + 1 classes, where the first K classes correspond to the source

classes and the class K + 1 correspond to a class representing the data was gener-

ated by the target inference model. By doing this, we encourage the discriminator to

learn the underlying distribution of each class independently. This discriminator, can

be optimized using the following objective:

LD =
∑

(xi,yi)∈Ds
H(D(qsφ(z

s
i)), y

s
i) +

∑
(xi)∈Du∪Dt

H(D(qtψ(z
t
i)), y

′ = K + 1) (3.8)

where H(·, ·) is the cross entropy loss. On the the other hand, we try to confuse D via

an adversarial loss which forces the inference model of the target to learn a mapping

from the samples to their correspondent embedding component. We can optimize the

parameters of the target inference model using the following objective:

LA =
∑

(xi)∈Du
H(D(qtψ(z

t
i)), ỹi

t)) +
∑

(xi,yi)∈Dt
H(D(qtψ(z

t
i)), y

t
i)) (3.9)

where ỹt are the predicted categorical variables sampled from the Gumbel-Softmax

distribution for unlabeled target samples and yt the real class for labeled target sam-

ples.

3.5 Overall Objectives and Optimization

In this section we describe the overall objective of the model and how this objective

can be optimized. The training process is done in three steps: train the source model,

train the discriminator, and train the target model.

Source Step: The first step consists in optimizing the source model. By doing this,

we can obtain an embedding space which will be used later to map target samples

into the same embedding components. The overall objective for the source domain

is defined in Equation 3.5 and it is composed of three terms. The first term can be

22

computed analytically by following the proof of [34] as follows:

DKL

[
qφ(z|x)||pθ(z)

]
=

ns∑
i=1

(
− J

2
log (2π) +

1

2

J∑
j=1

(
log (2πσ2

j (y)) +
σ2
φ(xij)

σ2
j (y)

+
(µφ(xij)− µj(y))2

σ2
j (y)

− 1− log σ2
φ(xij)

))
(3.10)

where µφ(x) and σ2
φ(x) are the approximated mean and variance given by the neural

network. µ(y) and σ2(y) are the mean and variance of each embedding component.

J is the dimensionality of µφ(x) and σ2
φ(x). The second term can be optimized by

computing the expectation of gradients using the reparametrization trick defined in [41,

35] as follows:

∇{θ,φ} Eqφ(z|x)
[
log pθ(x|z)

]
= EN (0,I)

[
∇{θ,φ} log pθ(x|µφ(x) + σ2

φ(x)� ε)
]

(3.11)

where ∇ denotes simple gradients over the parameters φ and θ. � is the element-

wise product. The third discriminative term can be trivially optimized by minimizing

the cross entropy loss between real labels and predicted labels as estimated by the

predictive function.

Discriminative Step: The discriminative step is done by minimizing Equation 3.8

with respect to the parameters w of the discriminator Dw(·). The goal of this step is

to encourage the discriminator to learn the embedding representation generated by

using the source domain. Then, we minimize the target inference model in order to fool

the discriminator mapping samples into the same embedding. For this purpose, the

discriminative step and later introduced target step are performed alternately.

Target Step: The overall objective for the target domain can be written as follows:

Lt = γLtsup + (1− γ)Ltunsup + LA (3.12)

where γ is a hyperparameter that controls the relative importance between labeled and

unlabeled samples. In this Equation, Ltsup can be optimized using Equation 3.10. Ltunsup

23

can be decomposed into two terms as in Equation 7. Following the derivation of [1],

we can compute the derivatives of the second term using expectation of gradients and

the reparametrization trick defined in [33] to derive a Monte Carlo estimator as follows:

∇φ Eqφ(y|z)
[
DKL(qφ(z|x)||pθ(z|y))

]
= EGumbel(g|0,1)[∇φDKL(qφ(z|x)||pθ(z|ỹ))] (3.13)

where ỹ is a predicted categorical variable sampled using the Gumbel-softmax relax-

ation defined as:

ỹ = argmax(f(φ, g, τ)), f(φ, g, τ)1≤k≤K =
exp((α̃k + gk)/τ)∑K
i=1 exp((α̃i + gi)/τ)

(3.14)

where α̃k are parameters outputed by the neural network πφ(z), g is a random variable

sampled from g ∼ Gumbel(0, 1) and τ is a hyperparameter that regulates the entropy of

the sampling. This reparametrization trick allows us to discretize y during the forward

pass, while we can use a continuous approximation in the backward pass. The KL

divergence of Equation 3.13 is similar to the one introduced for source optimization,

hence we can use the analytical solution introduced in Equation 3.10. The derivatives

of the second term of Equation 3.12 can be computed as:

∇φ Eqφ(z|x)
[
DKL(qφ(y|z)||pθ(y))

]
= EN (ε|0,1)[∇φDKL(qφ(y|z)||pθ(y))] (3.15)

The third term of Equation 3.12 can be optimized by minimizing Equation 3.9 with

respect to the parameters ψ. The overall training process is sumarized in Algorithm 1.

24

Algorithm 1 Training procedure for Adversarial variational Transfer
1: Pretrain the model finding {θ, φ} by minimizing Ls
2: while not converge do:
3: Ds ← getSupervisedMiniBatchSource()
4: Dt ← getSupervisedMiniBatchTarget()
5: Du ← getUnsupervisedMiniBatchTarget()
6: LD ← Equation 3.8, ∀{xi, yi} ∈ Ds ∧ ∀{xi} ∈ Du
7: wt+1 ← wt − η∇wt

8: Lt ← Equation 3.12, ∀{xi, yi} ∈ Dt ∧ ∀{xi} ∈ Du
9: ψt+1 ← ψt − η∇ψt

10: end while

25

Chapter 4

EXPERIMENTS

We evaluate our framework on the digits dataset composed of MNIST [43], USPS [9],

and Street View House Numbers (SVHN) [55]. We then apply it to a real case sce-

nario using galaxy images from the Cosmic Assembly Near-infrared Deep Extragalac-

tic Legacy Survey (CANDELS, [23]) as source and the Cluster Lensing and Supernova

Survey with Hubble (CLASH, [62]) as target.

4.1 Digits

We use three benchmark digits datasets: MNIST (M), USPS (U), and Street View

House Numbers (SVHN) (S). Theses datasets contain images of digits from 0 to 9 in

different environments: M and U contain handwritten digits while, S contain natural

scene images. Each dataset is composed of its own train and test set: 60, 000 train

samples and 10, 000 test samples for MNIST; 7, 291 train samples and 2, 007 test sam-

ples for USPS; and 73, 257 train samples and 26, 032 test samples samples for SVHN.

For adaptation purposes we used, the evaluation protocol proposed in CyCADA [28],

i.e. three domain adaptation task are performed: from MNIST to USPS (M→ U), from

USPS to MNIST (U→ M), and from SVHN to MNIST (S→ M).

4.1.1 Implementation Details

For all the tasks, images were rescaled to [−1.0, 1.0] and resized to 32x32. The SVHN

dataset contains RGB images, so for S → M, the MNIST images were repeated in

each of the three filters in order to use the same input tensor size to the network.

The hyperparameters were empirically selected by measuring the performance on 100

randomly selected samples from the training set, performing 5 cross-validated exper-

iments. Specifically, for all scenarios αs was set as 1000 and αt as 10. γ was set as

26

1.0 and linearly decreased to 0.90 after 25 unsupervised batches, τ was set as 3. Our

embedding is created on a 20-dimensional space, where the means µφ and standard

deviations σφ of each Gaussian component are learnt via backpropagation. The means

are initially set along different axes so that ||µφ|| = 10 and σφ = ~1 (all-ones vector). Our

training was performed using the Adam optimizer [39] with parameters β1 = β2 = 0.5

and a learning rate of 0.001 using mini-batches of 128 samples. For fair comparison,

we used similar network architectures as the ones proposed in [45, 30].

4.1.2 Results

We compare our results with state-of-the-art methods in UDA and SSDA scenarios. In

the UDA scenario, we use a fully labeled source and a fully unlabeled target to perform

the adaptation. In Table 4.1, we show our results and compare them to previous ap-

proaches as obtained from their papers. We report the mean accuracy and its standard

deviation across ten random experiments and the accuracy obtained by our best run.

Even though our method is not designed for an unsupervised scenario, it is competitive

on M→ U and U→M. Our method performs poorly on S→M, which presents a higher

domain shift, and ACAL performs the best by matching features at a pixe-level adding

a relaxation on the cycle consistency, replacing it by a task-specific loss.

For the SSDA scenario, we perform experiments using one label per class on the

target (denoted as 1-shot) and five labels per class on the target (denoted as 5-shot).

The rest of the training samples are used in an unsupervised fashion. We compare our

results against other methods that utilize the same number of labels per class. Notice

that CCSA [52] and FADA [51] do not utilize unlabeled samples during training while we

do. The results are computed using the same procedure as before and are displayed

in Table 4.2. Here, we outperform all previous approaches. Our approach has a higher

speed of adaptation in the sense that by using a small number of labels in the target

domain we are able to obtain competitive results.

27

Unsupervised
Method M→ U U→ M S→ M
UNIT [45] 95.97 93.58 90.53
SBADA-GAN [69] 97.6 95.0 76.1
CyCADA [28] 95.6± 0.2 96.5± 0.1 90.4± 0.4
CDAN [47] 95.6 98.0 89.2
DupGAN [30] 96.01 98.75 92.46
ACAL [29] 98.31 97.16 96.51
CADA [95] 96.4± 0.1 97.0± 0.1 90.9± 0.2

AVDA (ours) best 97.63 97.68 76.80
AVDA (ours) random 96.92 96.59 76.98

±0.92 ±0.80 ±1.36

Table 4.1: Results on Digits dataset for unsupervised task. All the results are reported using
accuracy by performing 10 random experiments.

1-shot 5-shot
Method M→ U U→ M S→ M M→ U U→ M S→ M
CCSA [52] 85.0 78.4 - 92.4 88.8 -
FADA [51] 89.1 81.1 72.8 93.4 91.1 86.1
F-CADA [95] 97.2 97.5 94.8 98.3 98.6 95.6

AVDA (ours) best 98.63 98.41 95.80 98.68 98.62 97.19
AVDA (ours) random 98.36 98.25 95.13 98.5 98.59 96.93

±0.14 ±0.27 ±0.47 ±0.19 ±0.028 ±0.18

Table 4.2: Results on Digits dataset for semi-supervised task. All the results are reported using
accuracy by performing 10 random experiments.

4.1.3 Ablation Study

We examined the performance of AVDA adopting three different training strategies, in

which we change critical components of our framework. First, we investigate the use of

fixed priors during training (i.e they are not updated via backpropagation). We denoted

this experiment as AVDAFP. Second, we investigate the model in a classical adversarial

domain adaptation scenario (i.e the discriminator tries to distinguish between samples

generated by source or target). We denote this experiment as AVDAADA. Third, we

investigate the model when a target generative model is included. We denote this

experiment as AVDAGT. The experiments were performed in the most difficult digit

scenario S→ M using five labels per class. For the first experiment, AVDAFP obtained

28

an accuracy of 92.17± 1.88, hence lowering the accuracy of our model. For the second

experiment, AVDAADA obtained an accuracy of 95.13± 1.03, increasing the variance of

the model performance. For the third experiments, AVDAGT obtained an accuracy of

91.76 ± 0.39, decreasing the discriminative capability of our model. In consequence,

AVDA components obtain the best performance as compared to these three slightly

variant frameworks.

4.1.4 Visualization

In order to visualize the alignment between source and target domains, we visualize

the embedding space by using t-distributed stochastic neighbor embedding (t-SNE,

[84]) for the task S→ M considering a 5-shot scenario. Figure 4.1 shows this visualiza-

tion. On the left, we show each class in a different color, demonstrating the classifying

capability of the model. On the right, we show the source and target in different colors,

demonstrating the ability of the model to generate good alignments between the data

labels and the embedded components for both domains. In figure 4.2 we visualize

some predictions of the model over target considering the same 5-shot scenario. For

this experiment we achieve 96.44% of accuracy.

Figure 4.1: Visualization of the embedding space using t-SNE for the S→ M task considering
a 5-shot scenario. Colors on the right panel represent the data labels, showing the capability
of the model to generate good discriminative boundaries. Colors on the right panel represent
source and target data showing the capability of the model to align source and target domains
into the same embedding components.

29

Figure 4.2: Visualization of predictions over target for the S→ M task considering a 5-shot
scenario. On top of each image is displayed the real class and the class predicted by the
model.

4.2 Galaxies

We use galaxy images from CANDELS [23] and CLASH [62] and address the problem

of classifying them according to their morphologies: smooth, features, irregular, point

30

source, and unclassifiable1. To train our baseline model, we used HST images from a

CANDELS field taken with WFC3 in the F160W band, GOODS-S [17]2. Labels were

created by expert as described in Kartaltepe et al. 2014 [38]. To these images we

added the mosaic from Hubble Legacy Fields (HLF) Data Release 1.5 for the GOODS-

S region (HLF-GOODS-S) [3]. We used the 0.06′′/pixel resolution version in the filter

F160W, selecting galaxies with F160W magnitudes Hmag < 24.5. We created postage-

stamp images from the GOODS-S mosaic setting the size to four times the galaxy

radius as reported in the catalog of Guo et al. 2013 [24]. We obtain a final sample of

7, 567 galaxies.

For the transfer learning sample we used images from the CLASH Multi-Cycle Trea-

sury program [63]. CLASH observed 25 clusters of galaxies with WFC3 over a period

of 3 years, in up to 16 filters, namely F225W, F275W, F336W, F390W, F435W, F475W,

F606W, F625W, F775W, F814W, F850W, F105W, F110W, F125W F140W and F160W,

covering the ultra violet (UV), optical (OPT) and NIR regions of the spectrum. La-

bels for CLASH were also created by experts as described in Perez-Carrasco et al.

2018 [61], containing 1, 600 labels in total. Molino et al. 2017 [50] published accurate

multiwavelength photometric catalogs for these clusters which also provide the galaxy

radius. We created postage-stamp images for each filter separately following the same

criterion for the magnitude cut and the size that we adopted for CANDELS.

For both datasets, labels are described as the probability for the galaxy to have a cer-

tain morphological type. This probability is defined as:

PT =
NT

Ntot

, (4.1)

where NT is the number of people who assigned a type T to the galaxy and Ntot is the

total number of people who classified that galaxy. We used as the sample class the

class given by PT if PT ≥ 0.5

1Data is public available at:
https://drive.google.com/open?id=1BSc42VfAb2Mw0zlQShTFUnbCQaf11q4q

2The Great Observatories Origins Deeps Survey

31

https://drive.google.com/open?id=1BSc42VfAb2Mw0zlQShTFUnbCQaf11q4q

4.2.1 Implementation Details

For this task, images were rescaled to [0.0, 1.0] and resized to 32x32. The hyperparam-

eters were empirically selected by measuring the performance on 3 randomly selected

samples from the training set. αs was set as 1000 and αt as 10. γ was set as 1.0 and lin-

early decreased to 0.85 after 25 unsupervised batches, τ was set as 3. Our embedding

is created on a 20-dimensional space, where the means µφ and standard deviations σφ
of each Gaussian component are learnt via backpropagation. The means are initially

set along different axes so that ||µφ|| = 10 and σφ = ~1 (all-ones vector). Our training

was performed using the Adam optimizer [39] with parameters β1 = β2 = 0.5 and a

learning rate of 0.001 using mini-batches of 128 samples. We used similar network

architectures as the proposed in [45].

4.2.2 Results

For the morphology classification task, we trained 6 different models using 0, 1, 5, 10,

25 and 50 labeled target samples per class. Also, a model using full labeled target was

trained. As in a classical semi-supervised setting, all unlabeled target images were

used for training and evaluation. We show the results in Figure 4.3. We can notice

that just a few number of labeled samples are enough to make important corrections

in the domain shift, observing a significant speed-up in performance when labels are

included.

We can notice that there is a difference of ∼ 8% between a model trained with 50

labeled samples and a model trained using all the labels. Given that the classes are

computed using PT if PT ≥ 0.5, for the classes exist a probability of 1 − PT that this

galaxy does not belong to the right class implying that the galaxy could should has

a doubtful morphology. In this sense, the galaxies with lower PT should be close to

another class in latent space. Using full labeled source, we are able to perform better

decision boundaries around the galaxies with doubtful morphologies.

32

Figure 4.3: Performance in terms of accuracy in morphology recognition task using 0, 1, 5,
10, 25 and 50 number of labeled target samples per class represented by a black solid line.
Performance by using full labeled target is presented by a red dashed line. Results are reported
by performing 5 random experiments.

4.2.3 Visualization

We visualize the embedding space by using t-SNE [84] for the task CANDELS→
CLASH considering a 50-shot scenario. Figure 4.4 shows this visualization. On the

left, we show each class in a different color. On the right, we show the source and

target in different colors. In figure 4.5 we visualize some predictions of the model over

target considering the same 50-shot scenario. For this experiment we achieve 62.06%

of accuracy.

We can notice that in latent space some classes are very close, this is because for this

experiment we do not have hard classes, instead we are using as the object class, the

given by PT if PT ≥ 0.5. Objects from different classes that look similar, should be close

in latent space too given the reconstruction term.

33

Figure 4.4: Visualization of the embedding space using t-SNE for the CANDELS→ CLASH
task considering a 50-shot scenario. Colors on the left panel represent the data labels. Colors
on the right panel represent source and target data.

34

Figure 4.5: Visualization of predictions over target in the CANDELS→ CLASH task considering
a 50-shot scenario. On top of each image is displayed the real class and the class predicted by
the model.

35

Chapter 5

CONCLUSION

In this work we present Adversarial Variational Domain Adaptation (AVDA), a semi-

supervised approach for domain adaptations problems were a vast annotated source

domain is available but none or few labels from a target domain exist. Unlike previous

methods which align source and target domains into a single common feature space,

we use a variational embedding and align samples that belong to the same class into

the same embedding component using adversarial methods.

Experiments on digits and galaxy morphology classification problems are used to val-

idate the proposed approach. Despite we do not achieve competitive results in all

the tasks in an unsupervised fashion on digits classification, we outperform previous

state of the art methods from 0.3 to 1.5% of accuracy in a semi-supervised fashion us-

ing 1 and 5 labels per class. Our model presents a significant speed-up in terms of

the increase in accuracy as more labeled examples are used from the target domain,

increasing the accuracy more than 15% using only one label per class for the morphol-

ogy classification task, demonstrating the capability of the model to align embedding

spaces in high domain shift scenarios.

One of the difficulties of this work was finding the prior distribution parameters for the

variational model. In some low-domain shift tasks (such as M↔ U), the chosen of fixed

parameters µ and sigma for each class achieve good results, while in high domain shift

it was necessary to learn these parameters of the distributions during training. For fu-

ture work we investigate better ways to find the prior distribution parameters. By finding

better prior distributions we will be able to align difficult tasks such as Office-31 [70].

Also, we investigate the using of deeper architectures for encoding complex data into

embedding representations.

Finally, we intend to extend the present work in order to be useful for semi-supervised

36

domain adaptation using videos by mixing VaDE [34] and LSTM [27]. The idea is to

generate a hidden representation of the data that correspond to an embedding distri-

bution depending on the class, being able to map target samples that belong to the

same class into the same distribution into the LSTM’s latent representation, as AVDA

does.

37

Bibliography

[1] Marouan Belhaj, Pavlos Protopapas, and Weiwei Pan. Deep variational trans-
fer: Transfer learning through semi-supervised deep generative models. CoRR,
abs/1812.03123, 2018.

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A
Review and New Perspectives. arXiv e-prints, page arXiv:1206.5538, Jun 2012.

[3] R. J. Bouwens, G. D. Illingworth, P. A. Oesch, I. Labbé, P. G. van Dokkum,
M. Trenti, M. Franx, R. Smit, V. Gonzalez, and D. Magee. UV-continuum Slopes
of 4000 z ˜ 4-8 Galaxies from the HUDF/XDF, HUDF09, ERS, CANDELS-South,
and CANDELS-North Fields. , 793:115, October 2014.

[4] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised
Learning. The MIT Press, 1st edition, 2010.

[5] W. Chu, F. D. L. Torre, and J. F. Cohn. Selective transfer machine for personalized
facial action unit detection. In 2013 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3515–3522, June 2013.

[6] Ronan Collobert, Fabian Sinz, Jason Weston, and Léon Bottou. Large scale trans-
ductive svms. J. Mach. Learn. Res., 7:1687–1712, December 2006.

[7] Gabriela Csurka. Domain adaptation for visual applications: A comprehensive
survey. CoRR, abs/1702.05374, 2017.

[8] Gabriela Csurka, Boris Chidlowskii, Stéphane Clinchant, and Sophia Michel. Un-
supervised domain adaptation with regularized domain instance denoising. In
Gang Hua and Hervé Jégou, editors, Computer Vision – ECCV 2016 Workshops,
pages 458–466, Cham, 2016. Springer International Publishing.

[9] John S. Denker, W. R. Gardner, Hans Peter Graf, Donnie Henderson, R. E.
Howard, W. Hubbard, L. D. Jackel, Henry S. Baird, and Isabelle Guyon. Neu-
ral network recognizer for hand-written zip code digits. In D. S. Touretzky, editor,
Advances in Neural Information Processing Systems 1, pages 323–331. Morgan-
Kaufmann, 1989.

[10] J. Donahue, J. Hoffman, E. Rodner, K. Saenko, and T. Darrell. Semi-supervised
domain adaptation with instance constraints. In 2013 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 668–675, June 2013.

[11] Miroslav Dudı́k, Steven J. Phillips, and Robert E Schapire. Correcting sample
selection bias in maximum entropy density estimation. In Y. Weiss, B. Schölkopf,

38

and J. C. Platt, editors, Advances in Neural Information Processing Systems 18,
pages 323–330. MIT Press, 2006.

[12] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological Cy-
bernetics, 36(4):193–202, Apr 1980.

[13] Yaroslav Ganin and Victor Lempitsky. Unsupervised Domain Adaptation by Back-
propagation. arXiv e-prints, page arXiv:1409.7495, Sep 2014.

[14] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-
adversarial training of neural networks. J. Mach. Learn. Res., 17(1):2096–2030,
January 2016.

[15] Timnit Gebru, Judy Hoffman, and Li Fei-Fei. Fine-grained recognition in the wild:
A multi-task domain adaptation approach. CoRR, abs/1709.02476, 2017.

[16] Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen
Li. Deep reconstruction-classification networks for unsupervised domain adapta-
tion. CoRR, abs/1607.03516, 2016.

[17] M. Giavalisco, H. C. Ferguson, and A. N. Koekemoer. The great observatories
origins deep survey: Initial results from optical and near-infrared imaging. The
Astrophysical Journal, 2004.

[18] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-
scale sentiment classification: A deep learning approach. In Proceedings of the
28th international conference on machine learning (ICML-11), pages 513–520,
2011.

[19] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2066–2073, June 2012.

[20] Ian Goodfellow, Honglak Lee, Quoc V. Le, Andrew Saxe, and Andrew Y. Ng. Mea-
suring invariances in deep networks. In Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Process-
ing Systems 22, pages 646–654. Curran Associates, Inc., 2009.

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2672–
2680. Curran Associates, Inc., 2014.

39

[22] R. Gopalan, Ruonan Li, and R. Chellappa. Domain adaptation for object recogni-
tion: An unsupervised approach. In 2011 International Conference on Computer
Vision, pages 999–1006, Nov 2011.

[23] Norman A. Grogin, Dale D. Kocevski, and S. M. Faber. Candels: The cosmic as-
sembly near-infrared deep extragalactic legacy survey. The Astrophysical Journal
Supplement, 2011.

[24] Y. Guo, H. C. Ferguson, M. Giavalisco, G. Barro, S. P. Willner, M. L. N. Ashby,
T. Dahlen, J. L. Donley, S. M. Faber, A. Fontana, A. Galametz, A. Grazian, K.-
H. Huang, D. D. Kocevski, A. M. Koekemoer, D. C. Koo, E. J. McGrath, M. Peth,
M. Salvato, S. Wuyts, M. Castellano, A. R. Cooray, M. E. Dickinson, J. S. Dunlop,
G. G. Fazio, J. P. Gardner, E. Gawiser, N. A. Grogin, N. P. Hathi, L.-T. Hsu, K.-S.
Lee, R. A. Lucas, B. Mobasher, K. Nandra, J. A. Newman, and A. van der Wel.
CANDELS Multi-wavelength Catalogs: Source Detection and Photometry in the
GOODS-South Field. apjs, 207:24, August 2013.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[26] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580, 2012.

[27] Sepp Hochreiter and Jrgen Schmidhuber. Long short-term memory. Neural com-
putation, 9:1735–80, 12 1997.

[28] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei A. Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain
adaptation. CoRR, abs/1711.03213, 2017.

[29] Ehsan Hosseini-Asl, Yingbo Zhou, Caiming Xiong, and Richard Socher.
Augmented cyclic adversarial learning for domain adaptation. CoRR,
abs/1807.00374, 2018.

[30] Lanqing Hu, Meina Kan, Shiguang Shan, and Xilin Chen. Duplex generative ad-
versarial network for unsupervised domain adaptation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[31] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[32] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks. CoRR, abs/1611.07004, 2016.

40

[33] Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with
Gumbel-Softmax. arXiv e-prints, page arXiv:1611.01144, Nov 2016.

[34] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou.
Variational deep embedding: A generative approach to clustering. CoRR,
abs/1611.05148, 2016.

[35] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Back-
propagation and Approximate Inference in Deep Generative Models. arXiv e-
prints, page arXiv:1401.4082, Jan 2014.

[36] Thorsten Joachims. Transductive inference for text classification using support
vector machines. In Proceedings of the Sixteenth International Conference on
Machine Learning, ICML ’99, pages 200–209, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[37] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G. Hauptmann. Contrastive
adaptation network for unsupervised domain adaptation. CoRR, abs/1901.00976,
2019.

[38] J. S. Kartaltepe, M. Mozena, D. Kocevski, D. H. McIntosh, J. Lotz, E. F. Bell,
S. Faber, H. Ferguson, D. Koo, R. Bassett, M. Bernyk, K. Blancato, F. Bournaud,
P. Cassata, M. Castellano, E. Cheung, C. J. Conselice, D. Croton, T. Dahlen, D. F.
de Mello, L. DeGroot, J. Donley, J. Guedes, N. Grogin, N. Hathi, M. Hilton, B. Hol-
lon, A. Koekemoer, N. Liu, R. A. Lucas, M. Martig, E. McGrath, C. McPartland,
B. Mobasher, A. Morlock, E. O’Leary, M. Peth, J. Pforr, A. Pillepich, D. Rosario,
E. Soto, A. Straughn, O. Telford, B. Sunnquist, J. Trump, B. Weiner, S. Wuyts,
H. Inami, S. Kassin, C. Lani, G. B. Poole, and Z. Rizer. CANDELS Visual Clas-
sifications: Scheme, Data Release, and First Results. apjs, 221:11, November
2015.

[39] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2015.

[40] Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling.
Semi-Supervised Learning with Deep Generative Models. arXiv e-prints, page
arXiv:1406.5298, Jun 2014.

[41] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv
e-prints, page arXiv:1312.6114, Dec 2013.

[42] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Proceedings of the 25th International

41

Conference on Neural Information Processing Systems - Volume 1, NIPS’12,
pages 1097–1105, USA, 2012. Curran Associates Inc.

[43] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November
1998.

[45] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image trans-
lation networks. CoRR, abs/1703.00848, 2017.

[46] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning trans-
ferable features with deep adaptation networks. In Proceedings of the 32Nd Inter-
national Conference on International Conference on Machine Learning - Volume
37, ICML’15, pages 97–105. JMLR.org, 2015.

[47] Mingsheng Long, ZHANGJIE CAO, Jianmin Wang, and Michael I Jordan. Con-
ditional adversarial domain adaptation. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 31, pages 1640–1650. Curran Associates, Inc.,
2018.

[48] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. Deep trans-
fer learning with joint adaptation networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning - Volume 70, ICML’17, pages 2208–2217.
JMLR.org, 2017.

[49] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther.
Auxiliary Deep Generative Models. arXiv e-prints, page arXiv:1602.05473, Feb
2016.

[50] A. Molino, N. Benı́tez, B. Ascaso, D. Coe, M. Postman, S. Jouvel, O. Host, O. La-
hav, S. Seitz, E. Medezinski, P. Rosati, W. Schoenell, A. Koekemoer, Y. Jimenez-
Teja, T. Broadhurst, P. Melchior, I. Balestra, M. Bartelmann, R. Bouwens,
L. Bradley, N. Czakon, M. Donahue, H. Ford, O. Graur, G. Graves, C. Grillo,
L. Infante, S. W. Jha, D. Kelson, R. Lazkoz, D. Lemze, D. Maoz, A. Mercurio,
M. Meneghetti, J. Merten, L. Moustakas, M. Nonino, S. Orgaz, A. Riess, S. Rod-
ney, J. Sayers, K. Umetsu, W. Zheng, and A. Zitrin. CLASH: accurate photometric
redshifts with 14 HST bands in massive galaxy cluster cores. mnras, 2017.

42

[51] Saeid Motiian, Quinn Jones, Seyed Iranmanesh, and Gianfranco Doretto. Few-
shot adversarial domain adaptation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 6670–6680. Curran Associates, Inc.,
2017.

[52] Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, and Gianfranco Doretto. Unified
deep supervised domain adaptation and generalization. CoRR, abs/1709.10190,
2017.

[53] J. Nagi, F. Ducatelle, G. A. Di Caro, D. Cirean, U. Meier, A. Giusti, F. Nagi,
J. Schmidhuber, and L. M. Gambardella. Max-pooling convolutional neural net-
works for vision-based hand gesture recognition. In 2011 IEEE International Con-
ference on Signal and Image Processing Applications (ICSIPA), pages 342–347,
Nov 2011.

[54] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th International Conference on Inter-
national Conference on Machine Learning, ICML’10, pages 807–814, USA, 2010.
Omnipress.

[55] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew
Y Ng. Reading digits in natural images with unsupervised feature learning. NIPS,
01 2011.

[56] Augustus Odena. Semi-Supervised Learning with Generative Adversarial Net-
works. arXiv e-prints, page arXiv:1606.01583, Jun 2016.

[57] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In 2014 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1717–1724, June
2014.

[58] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, Oct 2010.

[59] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans. on
Knowl. and Data Eng., 22(10):1345–1359, 2010.

[60] Xingchao Peng and Kate Saenko. Synthetic to real adaptation with deep genera-
tive correlation alignment networks. CoRR, abs/1701.05524, 2017.

[61] Manuel Pérez-Carrasco, Guillermo Cabrera-Vives, Monserrat Martinez-Marı́n,
Pierluigi Cerulo, Ricardo Demarco, Pavlos Protopapas, Julio Godoy, and Marc

43

Huertas-Company. Multiband galaxy morphologies for clash: a convolutional neu-
ral network transferred from candels. arXiv preprint arXiv:1810.07857, 2018.

[62] M. Postman, D. Coe, N. Benı́tez, L. Bradley, T. Broadhurst, M. Donahue, H. Ford,
O. Graur, G. Graves, S. Jouvel, A. Koekemoer, D. Lemze, E. Medezinski,
A. Molino, L. Moustakas, S. Ogaz, A. Riess, S. Rodney, P. Rosati, K. Umetsu,
W. Zheng, A. Zitrin, M. Bartelmann, R. Bouwens, N. Czakon, S. Golwala, O. Host,
L. Infante, S. Jha, Y. Jimenez-Teja, D. Kelson, O. Lahav, R. Lazkoz, D. Maoz,
C. McCully, P. Melchior, M. Meneghetti, J. Merten, J. Moustakas, M. Nonino, B. Pa-
tel, E. Regös, J. Sayers, S. Seitz, and A. Van der Wel. The Cluster Lensing and
Supernova Survey with Hubble: An Overview. , 199:25, April 2012.

[63] M. Postman, M. Franx, N. J. G. Cross, B. Holden, H. C. Ford, G. D. Illingworth,
T. Goto, R. Demarco, P. Rosati, J. P. Blakeslee, K.-V. Tran, N. Benı́tez, M. Clampin,
G. F. Hartig, N. Homeier, D. R. Ardila, F. Bartko, R. J. Bouwens, L. D. Bradley,
T. J. Broadhurst, R. A. Brown, C. J. Burrows, E. S. Cheng, P. D. Feldman, D. A.
Golimowski, C. Gronwall, L. Infante, R. A. Kimble, J. E. Krist, M. P. Lesser, A. R.
Martel, S. Mei, F. Menanteau, G. R. Meurer, G. K. Miley, V. Motta, M. Sirianni,
W. B. Sparks, H. D. Tran, Z. I. Tsvetanov, R. L. White, and W. Zheng. The
Morphology-Density Relation in z ˜ 1 Clusters. apj, 623:721–741, April 2005.

[64] Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko.
Semi-supervised learning with ladder network. CoRR, abs/1507.02672, 2015.

[65] Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann.
Math. Statist., 22(3):400–407, 09 1951.

[66] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, pages 65–386, 1958.

[67] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed processing:
Explorations in the microstructure of cognition, vol. 1. chapter Learning Internal
Representations by Error Propagation, pages 318–362. MIT Press, Cambridge,
MA, USA, 1986.

[68] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. Int.
J. Comput. Vision, 115(3):211–252, December 2015.

[69] Paolo Russo, Fabio Maria Carlucci, Tatiana Tommasi, and Barbara Caputo. From
source to target and back: symmetric bi-directional adaptive GAN. CoRR,
abs/1705.08824, 2017.

44

[70] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category
models to new domains. In Proceedings of the 11th European Conference on
Computer Vision: Part IV, ECCV’10, pages 213–226, Berlin, Heidelberg, 2010.
Springer-Verlag.

[71] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko.
Semi-supervised Domain Adaptation via Minimax Entropy. arXiv e-prints, page
arXiv:1904.06487, Apr 2019.

[72] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum
classifier discrepancy for unsupervised domain adaptation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 3723–
3732, 2018.

[73] Cicero Nogueira dos Santos, Kahini Wadhawan, and Bowen Zhou. Learning loss
functions for semi-supervised learning via discriminative adversarial networks.
arXiv preprint arXiv:1707.02198, 2017.

[74] Rui Shu, Hung Bui, Hirokazu Narui, and Stefano Ermon. A DIRT-t approach to
unsupervised domain adaptation. In International Conference on Learning Rep-
resentations, 2018.

[75] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[76] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958, 2014.

[77] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain
adaptation. CoRR, abs/1511.05547, 2015.

[78] Baochen Sun and Kate Saenko. Deep CORAL: correlation alignment for deep
domain adaptation. CoRR, abs/1607.01719, 2016.

[79] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[80] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-
fang Liu. A survey on deep transfer learning. CoRR, abs/1808.01974, 2018.

[81] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep
transfer across domains and tasks. CoRR, abs/1510.02192, 2015.

45

[82] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discrimi-
native domain adaptation. CoRR, abs/1702.05464, 2017.

[83] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep
domain confusion: Maximizing for domain invariance. CoRR, abs/1412.3474,
2014.

[84] Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data using t-sne.
2008.

[85] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion. J. Mach. Learn. Res.,
11:3371–3408, December 2010.

[86] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. CoRR,
abs/1802.03601, 2018.

[87] Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang, Yong Xu, and Wangmeng
Zuo. Mind the class weight bias: Weighted maximum mean discrepancy for unsu-
pervised domain adaptation. CoRR, abs/1705.00609, 2017.

[88] Jun Yang, Rong Yan, and Alexander G. Hauptmann. Cross-domain video concept
detection using adaptive svms. In Proceedings of the 15th ACM International
Conference on Multimedia, MM ’07, pages 188–197, New York, NY, USA, 2007.
ACM.

[89] T. Yao, , C. Ngo, and and. Semi-supervised domain adaptation with subspace
learning for visual recognition. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2142–2150, June 2015.

[90] Y. Yao and G. Doretto. Boosting for transfer learning with multiple sources. In 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 1855–1862, June 2010.

[91] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? CoRR, abs/1411.1792, 2014.

[92] Guoqiang Peter Zhang. Neural networks for classification: a survey. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
30(4):451–462, 2000.

[93] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. CoRR,
abs/1703.10593, 2017.

46

[94] Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and Qing He. Super-
vised representation learning: Transfer learning with deep autoencoders. In Pro-
ceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15,
pages 4119–4125. AAAI Press, 2015.

[95] Han Zou, Yuxun Zhou, Jianfei Yang, Huihan Liu, Hari Prasanna Das, and Costas
Spanos. Consensus adversarial domain adaptation. In AAAI Conference on Arti-
ficial Intelligence 33, 01 2019.

47

Chapter 6

Suplementary Material

6.1 Apendix A

In this appendix we provide complete derivations for Equation 3.10. This Equation can

be decomposed in the following terms:

DKL

[
qφ(z|x)||pθ(z)

]
=

∫
z

qφ(z|x) log
qφ(z|x)
pθ(z)

dz

=

∫
z

qφ(z|x) log qφ(z|x)dz −
∫
z

qφ(z|x) log pθ(z)dz

=

∫
z

N (z|µ̃, σ̃2I) logN (z|µ̃, σ̃2I)dz −
∫
z

N (z|µ̃, σ̃2I) logN (z|µ, σ2I)dz

(6.1)

Following the derivations of Lemma 1 in appendix B of Jiang et al. 2016 [34], we can

compute an analytical solution for the first term as follows:

∫
z

N (z|µ̃, σ̃2I) logN (z|µ, σ2I)dz =
1

2

J∑
j=1

− log 2πσ2
j −

σ̃2
j

σ2
j

− (µ̃j − µi)2

σ2
j

(6.2)

Using the same Lemma, the analytical solution for the second term can be computed

as follows:

∫
z

N (z|µ̃, σ̃2I) logN (z|µ̃, σ̃2I)dz = −J
2
log 2π − 1

2

J∑
j=1

(1 + log σ̃2
j) (6.3)

By combining Equation 6.1 and 6.1, we obtain the solution introduced in Equation

3.10.

48

6.2 Apendix B

In this appendix we provide complete derivations for Equation 3.7. This Equation can

be decomposed in two terms as follows:

DKL(qψ
(
z, y|x)||pθ(z, y)

)
= Eqψ(z,y|x)

[
log

qψ(z, y|x)
pθ(y, z)

]
= Eqψ(z,y|x)

[
log

qψ(z|x)
pθ(z|y)

]
+ Eqψ(z,y|x)

[
log

qψ(y|z)
pθ(y)

]
= Eqψ(y|z) Eqψ(z|x)

[
log

qψ(z|x)
pθ(z|y)

]
+ Eqψ(y|z) Eqψ(z|x)

[
log

qψ(y|z)
pθ(y)

]
= Eqψ(y|z)

[
DKL(qψ(z|x)||pθ(z|y))

]
+ Eqψ(z|x)

[
DKL(qψ(y)||pθ(y))

]
(6.4)

This Equation can be further optimized following the procedures introduced in Equa-

tion 3.13 and Equation 3.15.

49

	Abstract
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Deep Neural Networks
	Perceptron
	Feed-forward Neural Network
	Convolutional Neural Networks

	Autoencoders
	Vanilla Autoencoder
	Variational Autoencoder

	Semi-supervised Learning
	Semi-supervised Variational Autoencoders
	Adversarial Learning
	Transfer Learning
	Domain Adaptation

	THE METHOD
	Problem Definition
	Adversarial Variational Domain Adaptation Model
	Variational Objectives
	Adversarial Objective
	Overall Objectives and Optimization

	EXPERIMENTS
	Digits
	Implementation Details
	Results
	Ablation Study
	Visualization

	Galaxies
	Implementation Details
	Results
	Visualization

	CONCLUSION
	Bibliography
	Suplementary Material
	Apendix A
	Apendix B

