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Resumen

Los autómatas celulares (AC) son sistemas dinámicos discretos que permiten el estudio de fenómenos
emergentes desde una perspectiva microscópica, o bottom-up. En esta tesis, nos centramos en el modelo
Q2R-Potts, un autómata celular específico que es reversible y conservativo tanto en el sentido matemático
como físico. Este modelo se distingue por un espacio de fases compuesto de puntos fijos y ciclos límite,
y una cantidad conservativa similar a la energía. Adaptamos la formulación original del modelo, que
se desarrolló en dos dimensiones con q = 3 estados, a una cadena unidimensional, con el objetivo de
caracterizar su dinámica tanto a nivel macroscópico como microscópico.

Inicialmente, realizamos una caracterización completa del espacio de fases para una cadena de longi-
tud L = 6, analizando la energía de cada configuración, su período y la dinámica de clusters acumulados.
Este análisis inicial fue esencial para comprender la distribución de la complejidad en el autómata, espe-
cialmente en términos de la riqueza de periodos y configuraciones para una energía dada. Posteriormente,
extendimos nuestro estudio a cadenas de longitudes L = 256, L = 512 y L = 1024, construyendo dia-
gramas de fase de magnetización versus densidad de energía. Aquí, descubrimos una transición de fase
de primer orden en una región crítica de energía, que converge a −0.9 > E/L > −0.88 a medida que
aumentamos la longitud del sistema. Se establece L = 1024 como la longitud característica del sistema y
utilizamos esta dimensión para explorar más a fondo la dinámica microscópica introduciendo el concepto
de cluster de estados. Estos últimos, muestran un comportamiento de ley de potencias y auto-organización
que depende de la energía de la configuración.

Este estudio aporta una nueva perspectiva a la comprensión de las transiciones de fase en el modelo
Q2R-Potts, estudiando por primera vez una transición de fase de primer orden en los modelos Q2R,
enfatizando su relevancia física y su comportamiento no ergódico. Nuestros hallazgos abren caminos para
futuras investigaciones en sistemas discretos con comportamientos emergentes complejos, particularmente
en extensiones del modelo Q2R-Potts a dos y tres dimensiones.
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Abstract

Cellular automata (CA) are discrete dynamical systems that allow the study of emergent phenomena from
a bottom-up point of view. In this thesis, we focus on the Q2R-Potts model, a specific cellular automaton
that is reversible and conservative both mathematically and physically. This model is distinguished by
a phase space composed of fixed points and limit cycles, and possesses a conservative quantity akin to
energy. We adapted the original formulation of the model, developed in two dimensions with q = 3 states,
to a one-dimensional chain aiming to characterize its dynamics both macroscopically and microscopically.

Initially, we conducted a comprehensive characterization of the phase space for a chain of length
L = 6, analyzing the energy of each configuration, its period, and the microdynamics by measuring the
accumulated state clusters. This initial analysis was crucial for understanding the complexity distribution
in the automaton, particularly in terms of the richness of periods and configurations for a given energy.
Subsequently, we extended our study to chains of lengths L = 256, L = 512 and L = 1024 constructing
phase diagrams of magnetization versus energy density. We discovered a first-order phase transition in
a critical energy region that converges to −0.9 > E/L > −0.88 while increasing the chain’s size. Then,
we determined L = 1024 as the characteristic length and used this chain size to further explore the
microdynamics of the system, introducing the concept of state clusters. The aforementioned exhibits a
power-law behavior and self-organization depending on the energy governing the system configuration.

Finally, this study offers a new perspective on understanding phase transitions in the Q2R-Potts
model, approaching for the first time in the family of Q2R a first-order phase transition, emphasizing its
physical relevance and non-ergodic behavior. Our findings pave the way for future research in discrete
systems with complex emergent behaviors, particularly in extensions of the Q2R-Potts model to two and
three dimensions.
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Chapter 1

Introduction

Models exhibiting highly complex behavior are often studied using the tools of statistical physics, partic-
ularly when their dynamics involve interactions. Examples of such systems include active particle models
[1, 2], particle transport models [3, 4], spin models [5, 6], and cellular automata (CA) models [7, 8].
Those research are typically investigated through extensive numerical simulations, where their dynam-
ics are analyzed using well-defined parameters. These parameters can represent either conservative or
non-conservative quantities that evolve over time.

In recent decades, several approaches have been published to explore and understand the dynamics
of these systems, keeping a focus on cluster formation, i.e., particles having a specific feature in common.
In this context, Soto and Golestanian [9] studied a run-and-tumble bacterial model by presenting a theo-
retical framework for finding the cluster size distribution in a one-dimensional system. Conversely, Cardy
and Ziff [10] presented and verified the size distribution of clusters (N(l) ∼ C/l2) by getting exact results
about the proportionality constant C associated with the macroscopic measure of the large clusters for
the Percolation, Ising, and Potts Models. Also, Kohyama [11], investigating the properties a family of
cellular automata, found a gas-liquid phase and liquid droplets by using the idea of cluster growth.
Given the advancements mentioned above, it becomes evident that quantifying clusters and their dy-
namics can reveal significant aspects of various systems. An intriguing model for such exploration is
the Q2R model, as defined by Vichniac [7]. This model represents a second-order cellular automaton
characterized by reversible dynamics and a conservative energy-like function [12]. Its features make it
particularly suitable for studying particle interactions and cluster behavior, providing insights into the
complex mechanisms underlying these phenomena.
This model has its roots in the Ising model for describing ferromagnetic transitions. In fact, in two dimen-
sions, the Q2R cellular automaton shows a phase transition around a critical energy density value [13, 14]
that is very close to that found in the Ising model Ec ≈ −

√
2. On the other hand, Urbina and Rica [15]

characterized equilibrium and non-equilibrium statistical properties using a coarse-graining technique,
and this allowed for the writing of a probability transfer matrix to define a master equation. Due to the
reversibility of this model, Herrmann et al. [13] demonstrated that the model dynamics can have periods
of “infinite" length on lattices of “infinite" size. In this context, Montalva et al. [16] classified the entire
space of 232 ≈ 4.3× 109 configurations by identifying all the fixed points and the orbits for each energy’s
value. Moreover, they presented a theorem that classifies the different types of cycles: symmetric and
asymmetric. Then, Urbina [17] presented a three-dimensional extension of the model and introduced a
coupling constant which evolves into three kinds of phases.

The above discussion demonstrates that the Q2R model has been extensively studied in various
aspects, but it has always been considered as a binary system. However, an extension of the Q2R
cellular automaton to the two-dimensional Potts model, considering q states, was defined by Pomeau
and Vichniac [47]. This extension preserves the reversible dynamics and conservative quantities of the
original model. This CA emerges as a promising framework for studying dynamics where the Potts model
plays a role, employing a set of simple logical rules. Potential studies under this framework might include
other phenomena such as recrystallization [18], cellular growth [19], and percolation [20]. In this work,
we will study the dynamics of the Q2R-Potts model using a one-dimensional chain. Here, we will employ
tools of statistical physics to quantify global behaviors using phase diagrams and probability distribution
functions. To characterize the cellular automaton, we will use the cluster concept for different energy

1



CHAPTER 1. INTRODUCTION

density values to quantify microscopic order and disorder.

This thesis starts with research questions and methodology, followed by a foundational exploration
of cellular automata, elementary statistical mechanics useful for our purposes and an overview of lattice
models and the genesis of the Q2R model in Chapters 2, 3 and 4 respectively. After that, in chapter 5 is
detailed the original Q2R-Potts model formulation and in Chapter 6 is described the initial conditions and
parameters for our adaptation to the one-dimensional case. Our findings are in Section 6.4. Concluding
Chapter 7 synthesize these insights, reflecting on their implications and future avenues for research in
this fascinating intersection of computational physics and lattice models. Finally, in appendix A are
additional figures with the behavior of this model for different sizes studied.

2



Goals and Research Questions

The main goal of this thesis is to characterize the Q2R cellular automaton (CA) in its extension to the
Potts model with q = 3 states in the one-dimensional case using tools from statistical mechanics. The
questions guiding our research are the following:

1. How is composed the Q2R-Potts CA’s phase space?

2. Does the Q2R-Potts CA undergo a phase transition, and if so, what type of transition is it?

3. How does the microscopic dynamic evolve in the system?

4. Can the microscopic dynamics capture and reflect the physical properties of the system?

To address these questions, we will conduct a series of simulations. Initially, we will explore the phase
space of the Q2R-Potts CA by classifying all configurations for a chain of length L = 6 in terms of their
energy, period, and accumulated clusters. This analysis will provide insights into both the macroscopic
and microscopic dynamics of the system from larger sizes.

Subsequently, we will investigate chains of sizes L = 256, L = 512 and L = 1024 to examine their
macroscopic properties. By constructing phase diagrams of magnetization versus energy density, we aim
to identify any potential phase transitions and determine a characteristic length scale Lc that accurately
represents the system’s behavior. Following this, we will focus on the chain of size Lc to delve deeper
into its microscopic dynamics, exploring how these small-scale interactions influence the overall behavior
of the model.

This comprehensive approach will enable us to gain a deeper understanding of the Q2R-Potts model
and its applications in statistical physics, contributing to the broader field of complex systems analysis.

3



Chapter 2

Cellular Automata

Cellular automata are discrete dynamical systems in space and time [21]. Although they could be defined
in any dimension and adopt different geometries, one of the most used and simple ways to represent
them is through a bidimensional lattice of homogeneous cells. Each cell adopts one of the possible states
available in the system, where this value will evolve following a rule of local interactions but is applied
globally. This means that over each cell, the same rule is applied, taking into account the local inter-
actions of each one. Thus, we can think of the rule of evolution as a function whose arguments are the
state to evolve, its neighbors, and time.

(a) (b) (c)

Figure 2.1: Two-dimensional cellular automata with square and hexagonal geometry, considering different neigh-
bors for the blackened cell. In (a) we can see the von Neumann neighborhood, in (b) the Moore neighborhood is
represented, and in (c) we can observe the first neighbors of a cell in a hexagonal lattice. Source: Own Elaboration

This rule of evolution could yield different patterns, but the most striking is related to the nature of
these rules because they can be defined following logical algorithms from which it is not straightforward
to predict the general behavior of the system after a certain number of steps (see Figure 2.2).
The development of cellular automata is intimately related to computing, thanks to the significant con-
tributions of John von Neumann in this field [22], and his curiosity about the numerical analysis that
computers could offer. Thus, their conception dates back to 1948 when von Neumann, curious about
the biological nature of self-replication, proposed the kinematic model [23], whose formalism includes a
continuous space. While discussing the technical difficulties of formalizing this idea with Stanislaw Ulam,
Ulam suggested discretizing the space for simplicity’s sake. This collaboration led to the creation of von
Neumann’s self-replicating cellular automaton. Where the space was represented using a square lattice
and each cell could assume one of the 29 possible states [23].
In addition to the kinematic model and cellular automata, von Neumann devised the following models:

• The excitation-threshold-fatigue model: It possesses the same characteristics as the self-
replicating automaton, but its rule of evolution incorporates excitation and fatigue thresholds,

4



CHAPTER 2. CELLULAR AUTOMATA

(a)

(b)

(c)

(d)

Figure 2.2: Representation of different rules for one-dimensional cellular automata. The top row in each box
represents the state to evolve (central cell) and its two first neighbors; the bottom row represents the evolution of
the central state based on its two neighbors. In each picture, based on the Wolfram nomenclature, we have the
rules: (a) 250, (b) 94, (c) 122, and (d) 110, respectively. Source: Own Elaboration

aiming to simulate neuronal behavior.

• The continuous model: Here, von Neumann planned to use cellular automata in a heuristic way
to understand and solve nonlinear partial differential equations associated with diffusive processes
in fluids.

• Probabilistic automata: This model incorporates a probabilistic variable in the rule of evolution
instead of a purely deterministic rule.

It’s worth noting that while these models were conceptualized by John von Neumann, they were not fully
developed due to his premature death. Despite this, the development of cellular automata remained tied
to mathematics and computer science, serving as an important model for parallel processing and image
recognition [24, 25]. Furthermore, they have been applied in various fields including physics, military
strategy, social sciences, and more [26, 27, 28, 29].

Beyond the theoretical and applied developments that cellular automata have undergone over the
years, one of the most significant advances in the subject is attributed to Stephen Wolfram’s works [30].
This culminated in the publication of a book [31] aiming to profoundly change the way we conceive and
study complexity in science.
The British physicist approached cellular automata as a study subject in its own right, focusing com-
prehensively on their properties, behaviors, and inherent features, unraveling their potential depth. For
example, in his research, he categorized the pattern formation of cellular automata, starting from random
initial conditions, into four types:

• Class 1: The evolution of the system leads to a uniform final state where all the cells have the
same value (Figure 2.3(a)).

• Class 2: The evolution of the system leads to steady or periodic states with well-defined structures
that do not interact between them (Figure 2.3(b)).

• Class 3: The evolution of the system results in the emergence of well-defined structures, such as
triangles, which appear seemingly at random and without any periodicity (Figure 2.3(c)).

• Class 4: The evolution of the system leads to well-defined structures that interact between them
in an irregular and unpredictable way (Figure 2.3(d)).

All automata, regardless of their geometry or dimension, exhibit the behaviors outlined by Wolfram.
However, since this classification is qualitative, there are some borderline automata whose behavior cannot
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CHAPTER 2. CELLULAR AUTOMATA

(a) (b)

(c) (d)

Figure 2.3: Examples of evolution over time of one-dimensional cellular automata considering four rules that
lead to different classes defined by Wolfram. The black cells represent ones, and the white cells represent zeros.
Each row represents the state of the cellular automaton at a given time and the evolution over time can be seen by
scanning the rows downwards. In each figure, we have the rules: (a) 250, (b) 94, (c) 122, and (d) 110, respectively
(see Figure 2.2). Source: Own Elaboration

6



CHAPTER 2. CELLULAR AUTOMATA

Figure 2.4: Schematic representation of the relationship among the three key processes in a computational
system: input, computation, and output. Source: Own Elaboration

be unambiguously categorized, although such cases are rare according to Wolfram [31]. Additionally,
certain evolutionary rules, such as rule 110, can mimic the behaviors of other rules. Such rules are
termed "Universal." Given the appropriate initial conditions, they can simulate any algorithm executed
by a Turing machine [32].
In simple terms, a Turing machine is a theoretical model that represents computations through logical
procedures and operations of reading and writing on an infinite tape [33]. This model embodies the
foundational concept behind computers and their computational capabilities. Thus, a universal cellular
automaton can, in theory, compute anything using specific logical rules.
Wolfram’s discoveries prompted him to delve deeper into his ideas regarding the workings of computational
systems and their relationship with natural phenomena. In general, a computational system can be
understood through three stages:

1. Input: Corresponds to the information provided to be processed by a system.

2. Computation: This stage consists of processing the input following a set of well-defined rules or
instructions.

3. Output: Information that emerges from the system after acting over the input.

Given that universality is achieved by rule 110, Wolfram posits that all cellular automata with Class
4 behavior are also universal. This led him to suggest a computational threshold for all systems. Once
this threshold is surpassed, a system becomes universally and computationally equivalent to any other
system. This universality isn’t contingent on the complexity of a system’s underlying rules but rather on
how the system processes information.
He went even further, suggesting that all phenomena in nature, regardless of their specific characteristics,
can be perceived as computational processes. Although each phenomenon may operate under distinct
rules, once they reach the universality threshold, they exhibit equivalent levels of sophistication, capable
of processing information similarly. Wolfram coined this the Principle of Computational Equiva-
lence.
This computational perspective led Wolfram to build upon Turing’s concept of "computability" [33],
introducing the notion of Computational Irreducibility. As Turing proposed, some processes are
computable (resolved in a finite number of steps), and those that aren’t. Computational Irreducibility
expands on this, suggesting some processes are so complex that their outcomes cannot be shortcut or
predicted in advance. The progression of such processes can only be understood by letting them unfold
entirely. This idea is exemplified by the behaviors of different cellular automata classes: Classes 1 and
2 illustrate computationally reducible processes because their outcomes are predictable within a finite
number of steps. In contrast, Classes 3 and 4 epitomize computationally irreducible processes, where the
evolution of structures remains uncertain over time.

While bold, the idea of understanding nature as a computational process remains a topic of robust
discussion and is far from being an openly accepted principle in the way we conduct science today. Nev-
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CHAPTER 2. CELLULAR AUTOMATA

ertheless, from their inception, cellular automata were designed as tools to gain intuition into phenomena
that were difficult to understand by other means. In this sense, cellular automata have been a successful
foundation for models such as the run and tumble [34], which can be viewed as a probabilistic automaton
that models the behavior of certain bacteria, and also for agent-based models [35], widely used to simulate
collective behaviors of various kinds. However, some models can be directly conceptualized as a cellular
automaton, which we will review in Chapter 4.

8



Chapter 3

Some Elements of Statistical Mechanics
and Phase Transitions

Among the objectives of this thesis is the characterization of a specific cellular automaton using the tools
of statistical mechanics. Therefore, in this chapter, I will introduce the essential elements of this branch
of physics, which are indispensable to analyze the results obtained in this study.

Statistical mechanics is a branch of physics intrinsically related to thermodynamics. The latter is a
phenomenological approach that aims to understand the macroscopic properties of systems in equilibrium
through energy exchange, either thermally or mechanically. The major achievement of this science was
to establish, through experimental means, the laws of thermodynamics. These laws deal with only a
few degrees of freedom, specifically the number of variables that can be managed experimentally and
measured in a macroscopic setup. On the other hand, statistical mechanics offers a bridge between the
macroscopic and microscopic realms of systems in equilibrium by employing a probabilistic approach that
considers a large number of degrees of freedom [36].

3.1 The Microcanonical Ensemble

Statistical mechanics approach considers the study of a large collections of systems, each composed of
N ≫ 1 particles, that share a macroscopic feature such as energy or temperature, but prepared considering
different configurations in its phase space. Specifically, the microcanonical ensemble considers a large
collection of mechanically and adiabatically isolated systems that share the same internal energy E.

Microstates corresponds to a point µ(t) in the 6N -dimensional phase space Γ =
∏N

i=1{q⃗i, p⃗i} which
evolves following the canonical equations of Hamilton for H(µ). In the microcanonical ensemble all the
microstates are confined to the surface H(µ) = E in the phase space, and the basic postulate of statistical
mechanics establish that all the microstates of the energy surface of a closed system can be assumed with
equal probability. This means that if Ω(E) are all the microstates available for the energy E, then the
equilibrium probability distribution of microstates is given by:

pE(µ) =
1

Ω(E)
·

{
1 , H(µ) = E

0 , H(µ) ̸= E
. (3.1.1)

Then, the macroscopic properties of a given system are obtained by taking the ensemble average ⟨O⟩,
which is calculated as:

⟨O⟩ =
∫

O(µ) pE(µ)dΓ (3.1.2)

where the integral is taken over all the microstates on the phase space.

9



CHAPTER 3. SOME ELEMENTS OF STATISTICAL MECHANICS AND PHASE TRANSITIONS

3.2 Ergodic Hypothesis

In the basic postulate of statistical mechanics, as reflected in Equation 3.1.1, we make a significant
assumption by stating that all microstates at a certain energy are equally likely. This assumption is
closely related to ergodic hypothesis.
A system is said to be ergodic if, for any initial point in the phase space, the trajectory followed by this
point eventually passes arbitrarily close to every other point on the constant energy surface. This implies
that, over time, every accessible region of the constant energy surface will be explored by the trajectory
of any initial point [37]. The main consequence of this hypothesis is that time averages are equal to
ensemble averages in the microcanonical ensemble. This allows us to establish that the ensemble average
effectively will measure the equilibrium properties of the system independent of the time.

3.3 Correlation Functions

The microcanonical ensemble described in Section 3.1 gives us a path to compute macroscopic quantities.
However, correlation functions allow us to access the microscopic realm of dynamics. These functions are
essential tools for analyzing the microscopic dynamics in physical systems. For instance, magnetization
is a macroscopic quantity that emerges from spin-spin interactions. These interactions can be quantified
at the microscopic level by the spin-spin correlation function between sites i and j, defined as:

C(r⃗i, r⃗j) = ⟨(si − ⟨si⟩)(sj − ⟨sj⟩)⟩, (3.3.1)

where r⃗i and r⃗j are the position vectors of sites i and j, respectively, and ⟨. . . ⟩ denotes the ensemble
average.

In systems with translational invariance, where the mean values of the spins are uniform across the
system, the equation simplifies since ⟨si⟩ = ⟨sj⟩ = ⟨s⟩. This allows the correlation function to be rewritten
as:

C(|r⃗i − r⃗j |) ≡ Cij = ⟨sisj⟩ − ⟨s⟩2. (3.3.2)

It is possible to relate the spin-spin correlation with magnetic susceptibility in a specific ensemble con-
figuration. The magnetic susceptibility is proportional to the sum of all spin-spin correlations, reflecting
how small-scale fluctuations influence the large-scale magnetic behavior of the system [38]. Furthermore,
an important feature of correlation functions is their correlation length ξ, which measures the distance
over which the correlation of a physical property persists. This metric is crucial for understanding the
scale at which interactions within the system remain significant.

3.4 Phase Transitions

Phase transitions are changes in a thermodynamic system from one state of matter to another. These
changes occur under specific conditions, known as critical conditions. In these conditions a small change
in a control parameter (e.g., temperature) causes a sharp change in a measurable physical property,
known as the order parameter (e.g., magnetization). These changes can be discontinuous (Figure 3.1(a))
or continous (Figure 3.1(b)). What is remarkable is that, outside of these critical conditions, the same
change, or even a larger one, in the control parameter would only produce a minor fluctuation in the
physical property [39].

In equilibrium, macroscopic properties of a system can be determined through thermodynamic po-
tentials. The Gibbs potential, G, is particularly useful for calculating properties of equilibrium states by
considering thermal and mechanical changes in the system. During a phase transition, a physical prop-
erty undergoes a sharp change, which is associated with the derivatives of G. According to the Ehrenfest
classification, phase transitions are divided into two types, based on the behavior of the derivatives of
G. If the first derivative of G is discontinuous, it is a first-order phase transition. Examples of first
derivatives of the Gibbs potential are the entropy S, volume V and magnetization M :

S = −
(
∂G

∂T

)
P

, V =

(
∂G

∂P

)
T

, M = −
(
∂G

∂H

)
T

. (3.4.1)
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CHAPTER 3. SOME ELEMENTS OF STATISTICAL MECHANICS AND PHASE TRANSITIONS

(a) (b)

Figure 3.1: Phase diagrams of first and second order phase transitions in (a) and (b) respectively, characterized
by an order parameter q0 and the temperature as control parameter. Notice the discontinuous change of q0 at Tc

in (a), and the continous change in (b). Source: Chaddah, 2017, p.37-38.

Where T represents the temperature, P the pressure, and H the magnetic field, respectively.

On the other hand, if a second or higher-order derivative is discontinuous, the transition is of n-
th order, where n is the order of the first discontinuous derivative found in the iterative process. Some
examples of second derivatives of the Gibbs potential are specific heat Cp, compressibility κ and magnetic
susceptibility χ:

CP = −T

(
∂2G

∂T 2

)
P

, κT = − 1

V

(
∂2G

∂P 2

)
T

, χ = −
(
∂2G

∂H2

)
T

. (3.4.2)

It’s important to highlight that while Ehrenfest’s classification is mathematically precise, it encounters
phenomenological and experimental challenges for phase transitions with n > 2 due to the inherent diffi-
culties in measurements and the possibility that changes between phases may not be apparent. Moreover,
in first-order transitions, it does not establish the existence of widely measured metastable states [39].
Thus, we can generally establish the following comparative in Table 3.1 between first and second-order
transitions, which are the most commonly measured and studied over the years:

Characteristic First Order Transition Second Order Transition
Order Parameter Discontinuous Continuous
Latent Heat Present with constant value No latent heat; continuous during transition
Phase Coexistence Yes No phase coexistence
Correlation Length Finite Diverges
Metastable States Yes No

Table 3.1: Comparison of the main features of First and Second Order Phase Transitions at the critical point.
Source: Own Elaboration.

11



Chapter 4

Bridging Lattice Models and Cellular
Automata

When we read the definition of cellular automata given in Chapter 2, it is unavoidable to think in lattice
models. Lattice models are theoretical representations of physical systems in which space is discretized,
with interactions occurring at fixed points on a lattice, typically with their nearest neighbors [40].
One of the earliest solved and most widely used lattice models is the Ising model [41]. This model consists
of a d-dimensional lattice with L nodes. Each node has a particle characterized by a discrete variable,
referred to as the spin (considering the classic sense of the concept), which can take values si = ±1. The
model aims to study the collective alignment of these spins, resulting from spin-spin interactions and
external disturbances. Its primary application is to model the behavior of magnets, and it is governed by
the following Hamiltonian:

H = −1

2

N∑
<i,j>

Jijsisj −B

N∑
i

si . (4.0.1)

In this expression, Jij represents the coupling factor between spins, B is an external magnetic field, and
the notation

∑
<ij> indicates summation over nearest-neighbor interactions. A central aspect of this

model is its ability to capture the transition of a magnet from ferromagnetic to paramagnetic behavior
at the Curie temperature. Thus, temperature T serves as a control parameter, while the magnetization
M is the order parameter, which characterizes this phase transition. Using eq.(4.0.1) and principles
of statistical mechanics, we can derive thermodynamic observables, however, this is a challenging task.
The Ising model has been solved only in the one-dimensional case [41], where the magnetization is zero
without an external field, and in the two-dimensional case [5, 6], where magnetization emerges from
nearest-neighbors interaction at temperatures T < TC , where Tc is the critical temperature. These

(a) (b)

Figure 4.1: (a) A 4 × 4 Ising model system with L = 16 nodes. The symbol ( ) indicates a spin down (−1)
while ( ) indicates a spin up (+1). (b) Example of Nearest neighbors of a spin down. Source: Own Elaboration
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analytical results reveal that spins align in specific directions, showing a behavior governed only by spin-
spin interactions. Therefore, simulating the Ising and Ising-type models is essential to gain insights into
these phenomena and efficiently explore various models.

Despite the apparent similarities between the definitions of cellular automata and lattice models, their
underlying differences are profound. Lattice models represent a discretization of physical systems, aiming
to study idealized scenarios. In contrast, cellular automata offer a novel approach to examining nature
using logical algorithms, rather than Hamiltonians. Hence, even though lattice models bear a resemblance
to cellular automata in their discrete nature, characterizing the latter can be challenging due to the lack
of parameters in its simulations.

4.1 An Ising Model Cellular Automaton: The Q2R Model

Edward Fredkin was one of the pioneers in bridging the gap between cellular automata and physics. He
provided a mathematical foundation that allowed the construction of cellular automata systems with
universal capabilities, incorporating concepts from mathematics and physics, such as invertible and con-
servative quantities [42]. Building on this logical framework, Gerard Vichniac introduced the Q2R cellular
automaton to simulate the Ising model [7], and Yves Pomeau identified a conservative energy-like quan-
tity that characterizes its dynamics [12].
The Q2R model is a conservative and reversible cellular automaton, which is reflected in its phase space
composed of limit cycles and fixed points (see Figure 4.2). Its reversibility indicates that the system’s

Figure 4.2: Phase space considering constant energy composed of cycles and fixed points. Source: Urbina, 2017,
p. 33.

rule is deterministic both forward and backward. For example, a given state at time t, considering its
neighbors, leads to a unique state at t + 1. Conversely, for every state at t + 1, there exists a unique
preceding state at t that resulted in it. This reversibility is signified by the letter "R" in its name. The
letter "Q" is derived from the French word for the number 4, quatre, which denotes its neighbor interac-
tion using the von Neumann neighborhood. The numeral "2" indicates that it’s a second-order cellular
automaton, this means that to determine a state, say at t + 1, one must be aware of the cell’s state at
t− 1, and its neighbors’ state at t. As we can see in its rule of evolution in 4.1.1 [43]:

st+1
k = st−1

k ϕ

(∑
i∈Vk

sti

)
, (4.1.1)

where stk is one of the two states availables in the Ising model, Vk is the von Neumann neighborhood with
periodic boundary condition and, if we denote x =

∑
i∈Vk

sti, the function ϕ is such that

ϕ (x) =

{
+1 , If x ̸= 0

−1 , If x = 0
. (4.1.2)

Regarding the simulation of the Ising model, it has been demonstrated that the Q2R cellular au-
tomaton exhibits behavior consistent with theoretical expectations in both one-dimensional and two-
dimensional cases. Notably, the two-dimensional Q2R undergoes a phase transition around a critical
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energy Ec ≈ −
√
2 [43, 14], mirroring the Ising model [5, 6] (see Figure 4.3). In more recent works Urbina

Figure 4.3: Phase diagram of average magnetization ⟨M⟩ /N versus the energy E/N . One can see regions where
the system shows ferromagnetic and paramagnetic behavior, for a given initial energy, as well as the critical regime.
Figure (b) represents the standard deviation of magnetization versus energy. The continuous line represents the
well-known statistical mechanics for the Ising model: M/N ≈ 25/16(

√
2 + E/N)1/8. Source: Urbina, 2017, p.30.

and Rica developed a master equation approach that captures the properties of the Q2R model both
in equilibrium and out of equilibrium [15]. It has also been studied in the three-dimensional scenario
adding different coupling factors, where three different phases are distinguished [17]. Moreover, given its
dynamical properties, researchers have approached the model considering the periods of the orbits in the
phase space, where one of the results is that there is a critical energy at which the periods in its evolution
are beyond the simulation time, and the global period of the system grows exponentially depending on
the size of the lattice [13]. On the other side, using the reversibility of the model, the orbits of the phase
space of the Q2R model were classified into four distinct categories based on topological characteristics.
Through this analysis, it was demonstrated that any configuration of the Q2R belongs to one of these
four categories and provides a detailed description of each one [16].
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Chapter 5

The Q2R CA Extended to The Potts
Model

As previously discussed, the Ising model describe dynamics that account for two possible spin values.
However, R. B Potts extended this conception in 1952 to accommodate q different spin values [44]. For
q = 2, this naturally reduces to the standard Ising model. The Potts model boasts richer dynamics
compared to its Ising counterpart and exhibits both first -(q > 4) and second-order (2 ≤ q ≤ 4) phase
transition in the two-dimensional case [45]. And recently has been showed that considering a mean field
approach, in the one-dimensional case with q = 3, develops first and second order phase transitions [46].
Its Hamiltonian, considering only spin-spin interactions, is given by:

HPotts = −
N∑

<i,j>

Jijδ (si, sj) (5.0.1)

Where Jij is the coupling factor between spins, and δ (si, sj) is the Kronecker delta:

δ (si, sj) =

{
1 , if si = sj
0 , if sj ̸= sj

(5.0.2)

Considering more states in the system, despite adding different behaviors on the phase transitions, also
increases the potential applications of the model to different situations. For instance, in the simulation
of recrystallization and the related annealing phenomena knowing the physical properties of materials
is key in the way to characterizing them, and recovery, recrystallization, and grain growth are core
elements of the thermomechanical processing to which the materials are subjected [18]. In particular,
grain growth is one of the fields in which the Potts model can be applied. A grain is an individual
crystal with its own orientation and atomic structure, and a polycrystalline material can be composed
of many different grains that interact with each other. On these interactions emerges the macroscopic
behavior of a material, thus controlling the grain composition of a material during the grain growth leads
to predicting the microstructure, texture, and kinetic properties. In this context, simulations based on
the Potts model using Monte Carlo methods have been applied and also have been considered models
based on cellular automata [18].
Another example of the application of the Potts model is the cellular cell sorting proposed by Graner and
Glazier. Through a Monte Carlo simulation and modifying the Hamiltonian by incorporating different
surface energies between cells in its interaction, and an area constraint, they simulate the cell sorting in
a tissue composed of three different cell types obtaining clusters formation typically observed in cells [19]
(see Figure 5.1).

Following the same path of R. B Potts, Pomeau and Vichniac extended the Q2R cellular automaton
to q different states [47]. While this new rule can be extended to encompass any number of q spin values,
our focus in this context will be specifically on q = 3, whose rule is described in the orginal paper as
follows:

Assuming the state S evolves into S′, the Q2R-Potts dynamics is depicted in Figure 5.2 proceed as
follows:

15



CHAPTER 5. THE Q2R CA EXTENDED TO THE POTTS MODEL

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Cell sorting evolution through Monte Carlo simulation. In (a) we have the initial configuration
randomly distributed and from (b) to (f) we have successive evolution of the process considering different stages
showing the pattern and cluster formation. Figure adapted and modified from [19] for aesthetic and pedagogical
reasons. Source: Own Elaboration.

(a) (b) (c) (d)

Figure 5.2: The image illustrates the four governing rules for the Q2R-Potts cellular automaton, taking into
account all potential configurations of evolution and permutations for a generic central state S.Here, the symbol
( ) denotes a spin value of −1, the symbol ( ) represents a spin value of 0, and ( ) signifies a spin value of +1.
The symbol ( ) stands for a generic state S that can be any of the aforementioned spin values. Source: Own
Elaboration.

• In configurations of Figures 5.2(a) and 5.2(b), regardless of the initial central state S = , the
state evolves such that S′ = S.

• In Figures 5.2(c) and Figure 5.2(d) we distinguish three subcases. If S = , then S′ = . On the
other hand, if S = ( or ), then S′ = ( ).
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Figure 5.3: Geometrical representation of the Potts model with q = 3 states. Each axis S0, S1 and S2 represent
a different spin value, and the angle θ is 2π

3
between axis. Source: Own Elaboration.

5.1 Conservative and non-conservative quantities in the Q2R CA

5.1.1 Energy

One of the main features of the dynamic of the Q2R model is its property of reversibility that leads to
conservative quantities, which was first identified by Pomeau for the original Q2R model [12], and later
formalized for the extended model [47]. Then, we have a conservative energy-like quantity, given by 5.1.1,
called in this way for its similarity in the functional form with 5.0.1:

E[si
t−1, sj

t
] = − 1

V

L∑
i=1

∑
j∈Vi

δ
(
si

t−1, sj
t
)
. (5.1.1)

In this equation, V it is the quantity of neighbors, sit−1 represent a central state S at time t − 1, Vi is
the set of neighbours of sit−1 at time t, and δ

(
si

t−1, sj
t
)

is the Kronecker delta (eq.5.0.2).

5.1.2 Magnetization

The hamiltonian 5.0.1 has an intrinsic symmetry that can be reflected by a hypertetrahedron in q − 1
dimension [45], then for q = 3 we have the two-dimensional projection of a tetrahedron, as we can see in
Figure 5.3, where each axis represents a specific spin value S0, S1, and S2. Considering the space formed
by the three spin values, we can quantify the magnetization by considering all the spin orientations in
the system and calculating a resultant vector with these. So, if np(t) represents the density of states in
each direction at time t, the magnetization can be expressed as:

M(t) =
1

L

∣∣∣∣∣
2∑

p=0

ei·θp · np(t)

∣∣∣∣∣ (5.1.2)

Where the angle θp is the angle between a fixed axis (e.g. S0) and the other two, and is given by:

θp =
2πp

3
, p = 0, 1, 2. (5.1.3)

This quantity is not conserved under the dynamics of the Q2R model, but it plays a crucial role in
quantifying how a preference for one state over others is established during the system’s evolution.

5.1.3 Example of the Q2R-Potts dynamics

In Figure 5.4 the rules of the Q2R-Potts cellular automaton are applied to a two-dimensional system.
Furthermore, we can calculate the energy and magnetization of the system as follows:
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(a) xt−1
k (b) xt

k (c) xt+1
k

Figure 5.4: Figure illustrates the dynamics of the Q2R-Potts cellular automaton on a two-dimensional square
lattice with dimensions L = 4× 4, taking into account periodic boundary conditions. For simplicity, it has been
assumed that the matrices of states at times t and t− 1 are identical as an initial condition. In (a), we highlight
a specific state inside a green rectangle. Moving to (b), the neighbors of this particular state are identified
and connected with lines. The evolution rules, as previously defined, are then applied, resulting in the state
showcased within the green rectangle in (c). It’s important to note that all states within the lattice undergo
updates concurrently. Source: Own Elaboration.

• Energy example: First we are going to compute the energy associated with the state inside the
green rectangle in Figure 5.4(a) to show the process:

Erectangle = −1

4

(
δ
(

,
)
+ δ

(
,
)
+ δ

(
,
)
+ δ

(
,
))

= −1

4
(0 + 0 + 0 + 1)

= −1

4

And summing over all states we obtain:

Et
Lattice = −9

2
,

To calculate the energy at time t+ 1, consider the states in Figure 5.4(c) as the neighbors configu-
ration and the configuration of states corresponds to Figure 5.4(b). From this, we can notice that
this value is:

Et+1
Lattice = −9

2
,

showing the conservation of the energy.

• Magnetization example: On the other hand, the magnetization at time t is:

M(t) =
∣∣5 · ei·θ0 + 4 · ei·θ1 + 7 · ei·θ2

∣∣
=
∣∣∣5 + 4 · e 2π

3 + 7 · e
−2π
3

∣∣∣
=

√
7

While at time t+ 1 we have:

M(t+ 1) =
∣∣5 · ei·θ0 + 6 · ei·θ1 + 5 · ei·θ2

∣∣
=
∣∣∣5 + 6 · e 2π

3 + 5 · e
−2π
3

∣∣∣
= 1

Through this example, we can notice that the magnetization changes over time as the states evolve and
change their values. While the energy is conserved under the same dynamics.
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Chapter 6

The One-dimensional Q2R-Potts CA

To comprehensively grasp the dynamics of the Q2R-Potts cellular automaton, it is crucial to delve into
the interplay between its microscopic properties, such as cluster formation, and macroscopic observable
like magnetization and energy. With these objectives in mind, the subsequent sections develop the one-
dimensional Q2R-Potts CA and its main results.

6.1 The One-dimensional Model

To analyze the Q2R-Potts model, we adapted its original two-dimensional lattice definition to a one-
dimensional chain (see Figure 6.2). This adaptation still maintains the periodic boundary conditions as
we can see in Figure 6.1 and our exploration encompassed system sizes of L = 6, L = 256, L = 512 and
L = 1024. The one-dimensional rule is summarized in Table 6.1:

Figure 6.1: The periodic boundary conditions can be visualized as particles arranged on a circle. Source: Own
Elaboration.

(a) (b)

(c) (d)

Figure 6.2: Adaptation of the rules from Figure 5.2 to the one-dimensional case, taking into account all potential
configurations of evolution and permutations for a generic central state S. The symbol ( ) denotes a spin value
of −1, the symbol ( ) represents a spin value of 0, and ( ) signifies a spin value of +1. The symbol ( ) stands for
a generic state S that can be any of the aforementioned spin values. Source: Own Elaboration.
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Vk St−1
k St+1

k

aaaa x x
aaab x x
aabb a b
aabb b a
aabb c c
aabc a a
aabc b c
aabc b b

Table 6.1: Summary of the evolution rule for the one-dimensional Q2R-Potts Cellular Automaton (CA). VK

represents the set of neighbors at time t for the state Sk, and St+1
k denotes its subsequent evolution. The symbols

a, b, and c represent specific states, while x stands for a generic state that can be any of the aforementioned.
Each set of neighbors takes into account all possible permutations of both states and positions. Source: Own
Elaboration.

6.2 Initial conditions

Given the second-order nature of the cellular automaton, initial conditions were set for both the state
configurations and their neighbors at t = 0, given a phase space composed of Ω = 32L possible configu-
rations.

6.2.1 Phase Space Exploration for L = 6

For a chain of length L, there are 3L different configurations, where each can be represented by a number
from 0 to 3L − 1 in a decimal base, but since we are considering three states, by a transforming from the
decimal base to a balanced ternary base we can map all numbers to a specific configuration in a chain of
length L.

A ternary base, like any numerical base, seeks the unambiguous representation of numbers, including
both natural and negative integers, by using powers of the number 3 and summing them together. The
usual coefficients in a ternary base are 0, 1, and 2. However, in a balanced ternary base, symmetry is
exploited by using -1, 0, and +1 as coefficients. This choice allows for a more centered representation of
numbers, evenly distributing both positive and negative values around zero. Thus, any integer can be
represented by the sum of powers of 3, using the aforementioned coefficients. For example, the number
−104 in the balanced ternary base corresponds to 1 · 30 + 1 · 31 + 0 · 32 + (−1) · 33 + (−1) · 34 + 0 · 35,
and this is mapped to the configuration (1, 1, 0,−1,−1, 0) in a chain of length 6. Where each element is
a factor in the sum of the successive powers of 3 from 0 to L− 1.

Following the aforementioned process, we built the 36 = 729 state configurations, and for each, we
considered each of the other 729 configurations corresponding to the neighbors, visiting thus the entire
phase space composed of 312 = 531, 441 configurations.

6.2.2 Phase Space Exploration for Larger Chains

For L = 256, L = 512, and L = 1024, we define yt and xt as matrices representing states and their
neighbors, at time t, respectively. Where yt is a change of variables such that yt = xt−1.

Then, we explored the phase space composed of the following initial conditions:

yt=0 = xt=0 = F (p, r)

Where F (p, r) is a probability function given by:

F (p, r) =


−1 with probability p,

0 with probability (1− p)r,

+1 with probability (1− p)(1− r).

(6.2.1)

And with p, r ∈ [0.005, 0.6] exploring 14.400 configurations.
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6.3 Microscopic Parameters

As we mentioned earlier, the macroscopic parameters of the Q2R-Potts cellular automaton are its energy
(5.1.1) and magnetization (5.1.2). To quantify its microscopic dynamics, we introduce the notion of a
cluster of states and its cluster size distribution. In the one-dimensional case, we define a cluster as a

(a) (b)

(c) (d)

Figure 6.3: One-dimensional system of size five showcasing various cluster configurations. (a) Features a cluster
of size 3 for the state ( ), and clusters of size 1 for states ( ) and ( ). (b) Presents clusters of size 2 for states ( )
and ( ), and a cluster of size 1 for the state ( ). (c) Depicts a cluster of size 2 for the state ( ), a size-1 for the
state ( ), and two size-1 clusters for the state ( ). (d) Shows size-1 clusters for states ( ) and ( ). Notably, due
to the periodic boundary condition, state ( ) forms a size-2 cluster across the boundary, in addition to a size-1
cluster. Source: Own Elaboration.

contiguous sequence of states sharing the same value. Then, a cluster of size l is a sequence of the form
s0, s1, s2, ..., sl, sl+1, where s1 = s2 = ... = sl, with s0 ̸= s1 and sl ̸= sl+1. Notably, due to the system’s
dynamics, clusters can change over time. To encapsulate this behavior, we describe the cluster size
distribution, which represents the frequency of a specific cluster size observed over the entire simulation:

fc(l, t) =

∑τ
t=0 nl(t)

τ
∑

l nl
. (6.3.1)

In this equation, t symbolizes time, and τ stands for the total number of iterations. The subscript l
signifies the cluster’s size, and nl(t) represents the number of clusters of size l of a determined state at
time t. Finally, the term

∑
l nl gives a considered state’s overall count of clusters.

6.4 Results

6.4.1 Phase Space Classification for L = 6

• First Research Question

To explore features regarding the reversibility nature and periods of the automaton we considered the
case of a chain of length L = 6, where the system possesses 312 = 531441 configurations, and it is
partitioned into subspaces of constant energies E and cycles of period T , as shown in Table 6.2. Due to
the two-step rule, that considers an initial condition and its neighbors at different time steps, we define
a period T as an entire loop of both, the configuration of states and the configuration of the neighbors
at the same time. For example, let’s consider the following configurations, st=0 = (1, 1, 1, 1, 1, 1) and
st=1 = (0, 0, 0,−1,−1, 0). For this case, the energy is E = 0 and its period it’s T = 2 that can be
identified as a symmetric cycle according to [16], due to the alternance between configuration of states
and configuration of neighbors (see Figure 6.4(a)). A period T = 4 occurs with the initial conditions
st=0 = (0,−1, 1, 0, 0, 0) and st=1 = (1, 1, 0,−1,−1, 0). Here the energy is E = −9 and the dynamic is
shown in Figure 6.4(b), where we can observe that its dynamic can be classified as an asymmetric cycle
(see theorem 4.10 [16]) because there is no a configuration with its symmetric pairs during the evolution
(see Figure 6.4(b)).

For the entire phase space, we can observe in Table 6.2, 21 different values of energy from 0 to −24,
and 17 periods. Where the longest period is T = 60 associated with E = −10, with 2880 different
configurations. The highest number of configurations is associated with E = −8, hoarding around 19%
of the total configurations, and almost a third part of that has a period T = 36. On the other hand,
period T = 2 has the widest variety of energies, specifically 17.
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(a)

(b)

Figure 6.4: Scheme of evolution for symmetric (a) and asymmetric (b) cycles. In (a), the initial configurations
st=0 = (1, 1, 1, 1, 1, 1) and st=1 = (0, 0, 0,−1,−1, 0) with an energy E = 0 and a period T = 2 evolve symmetri-
cally. This symmetry is highlighted by the presence of a composite configuration within the cycle, which contains
the permutation of roles between states and neighbors from the initial condition. In (b), the initial configurations
st=0 = (0,−1, 1, 0, 0, 0) and st=1 = (1, 1, 0,−1,−1, 0) with energy E = −9 and a period T = 4 evolve asymmetri-
cally, due to the absence of such permutation between states and neighbors of the initial configuration during its
evolution.

Moreover, we have computed the accumulated clusters’ configurations for each energy and period (see
Table 6.3). For instance, E = −8 and T = 12 have the widest variety of accumulated clusters’ configu-
rations, while the longest period, T = 60, has only 4 types of accumulated configurations and is reached
with E = −10. In the aforementioned, we can see that the maximum cluster’s length is lc = 3, and
the dynamic is mainly dominated by clusters of size lc = 1 with half of the configurations following the
clusters’ accumulated frequencies given by Figure 6.5(d).

6.4.2 Larger Chains

To analyze the cases L = 256, L = 512 and L = 1024 we will follow the style of Wolfram, as in Figure
2.3, by qualitatively describing the evolution over time for different energies and, after that, we are
going to quantify its macroscopic and microscopic dynamics by using the magnetization and cluster size
distribution respectively.
For the Q2R-Potts CA, we have that the behavior of its evolution is strictly related to the energy in the
system. Following this, there are three macroscopic behaviors identified which are independent of the
chain length (see Appendix A). For this reason, we will focus on L = 1024. This length not only reflects
a dynamic convergence similar to what is observed in a longer chain but also efficiently encompasses the
dynamics of the three states of interest in most of its points, all while significantly reducing computational
expenditure in comparison to larger chains. Nevertheless, all the macroscopic study of the other cases
will be covered in appendix A.
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Figure 6.5: All the accumulated clusters’ configurations for T = 60 and E = −10. The x-axis, lc, represents
the length of the cluster, while n(c) is the frequency associated with the entire simulation. From the 2880 that
evolves with these distributions of clusters, 240 evolved with the pattern of (a), 480 as in (b), 720 as in (c), and
1440 as in (d). Source: Own Elaboration.

T

E 1 2 3 4 6 8 9 10 12 15 16 20 24 32 36 40 60 n(T )

0 6 540 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 546
-1 0 1008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1008
-2 0 288 0 2160 0 576 0 0 432 0 0 0 0 0 0 0 0 3456
-3 0 1152 0 0 2592 576 0 0 1728 0 0 0 0 0 0 0 0 6048
-4 0 288 0 5688 576 9504 0 0 4608 180 1152 0 0 0 0 0 0 21996
-5 0 144 0 0 2160 5760 0 1440 6912 0 9216 5760 0 0 3456 0 0 34848
-6 0 144 0 4704 1728 14400 0 0 9648 0 6912 11520 10368 0 5184 2880 0 67488
-7 0 0 0 4032 2592 6912 0 0 19008 0 13824 0 0 18432 15552 0 0 80352
-8 18 162 54 8424 1656 11808 0 0 14760 0 18432 5760 8064 0 32832 0 0 101970
-9 0 0 0 2304 2592 6912 0 0 11136 0 18432 0 0 9216 10368 23040 0 84000
-10 72 216 0 2592 4752 6912 0 0 12960 0 18432 2880 4608 2304 6048 0 2880 64656
-11 0 0 0 0 2592 9216 0 2880 12096 0 0 2880 1152 0 0 0 0 30816
-12 0 432 12 6720 432 3168 108 0 8640 0 0 0 0 0 0 0 0 19512
-13 0 576 0 0 432 1152 0 0 1728 0 2304 0 0 0 864 0 0 7056
-14 0 576 0 1224 432 2304 0 0 0 0 576 0 0 0 0 0 0 5112
-15 0 0 0 864 0 0 0 0 0 0 0 0 0 0 0 0 0 864
-16 36 288 36 360 54 576 0 0 0 0 0 0 0 0 0 0 0 1350
-17 0 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144
-18 0 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144
-20 0 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72
-24 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

Table 6.2: Distribution of the number of configurations by cycles T for a periodic chain of length L = 6 according
to its energy. Source: Own Elaboration.
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T
E 1 2 3 4 6 8 9 10 12 15 16 20 24 32 36 40 60
0 1 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2 0 5 0 13 0 4 0 0 2 0 0 0 0 0 0 0 0
-3 0 9 0 0 8 2 0 0 2 0 0 0 0 0 0 0 0
-4 0 7 0 21 5 32 0 0 11 2 7 0 0 0 0 0 0
-5 0 2 0 0 7 12 0 4 10 0 7 3 0 0 2 0 0
-6 0 2 0 21 5 35 0 0 21 0 12 8 9 0 5 3 0
-7 0 0 0 14 8 9 0 0 26 0 11 0 0 8 9 0 0
-8 2 6 3 37 16 26 0 0 39 0 18 8 7 0 21 0 0
-9 0 0 0 9 8 11 0 0 16 0 12 0 0 6 7 8 0
-10 3 4 0 17 15 19 0 0 21 0 25 4 5 4 8 0 4
-11 0 0 0 0 8 11 0 5 15 0 0 2 1 0 0 0 0
-12 0 6 1 30 2 20 1 0 17 0 0 0 0 0 0 0 0
-13 0 4 0 0 2 3 0 0 2 0 3 0 0 0 1 0 0
-14 0 4 0 9 2 11 0 0 0 0 2 0 0 0 0 0 0
-15 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
-16 3 7 3 6 2 6 0 0 0 0 0 0 0 0 0 0 0
-17 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-18 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-20 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.3: Distribution of the number of different configurations of accumulated clusters by cycles T for a
periodic chain of length L = 6 according to its energy. Source: Own Elaboration.

Order: E/L = −0.924

In the dynamic of the Q2R-Potts CA, we have identified three behaviors. One of them corresponds to
the dynamic shown in Figure 6.6 with an energy density E/L = −0.924 (energy density goes from −1 to
0). In Figure 6.6(a) we have the pattern formed in the last 5000 time steps, where the dynamic follows
the same rules as in Figure 2.3, i.e., each row represents the state of the CA at a given time and the time
evolves downward. This energy density is near the minimum available in the system, and we can see a
very regular pattern, consisting of parallel flat strips and strips that incorporate periodicity in both the
red state and blue state. Also, We can notice a region with triangular structures and the yellow state
dominates the dynamic.
To give a quantitative description of the dynamic, we measured the magnetization, which shows very
regular fluctuations from M(t) ≈ 0.79 to M(t) ≈ 0.94 (see Figure 6.6 (b) and (c)). Although the
dynamics of the magnetization look quite regular and periodic, it isn’t. We have the fluctuations regions
and the type of curves in it very well defined, but each peak and valley shows slight differences with each
other.

Disorder: E/L = −0.506

The other case easily distinguished is the disordered case. This scenario is completely the opposite of
shown in Figure 6.6 because it doesn’t show any type of structure that persists over its evolution. In Figure
6.7(a) we can see the last 5000 time steps in an evolution of 1 million steps, which looks quite random
and noisy in terms of the states over the configuration. The little structures that one can distinguish are
tiny and don’t persist nor dissipate over the evolution of the system.
In terms of the magnetization, the fluctuations go from M(t) ≈ 0 to M(t) ≈ 0.13, almost the same range
∆M that we saw in Figure 6.6, but without a specific pattern. In this case, the system didn’t achieve a
period either over the simulation.
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Figure 6.6: Macroscopic dynamic for energy density E/L = −0.924. In (a) we have the pattern formed by
the Q2R-Potts’ evolution rules in the last 5000 steps in a simulation of 2 million time steps. In (b) there is
the measurement of the evolution of magnetization over time, and (c) is the probability density function of the
magnetization over the entire simulation. Pictures (a) and (b) follow quite regular patterns, but in the total
simulation, the system doesn’t complete a period. Source: Own Elaboration.

Fluctuations: E/L = −0.886

A very interesting behavior emerges for E/L = −0.886, where we can distinguish behaviors of order,
disorder, and the transition among them for a given initial condition. These give as a result a non-trivial
behavior for the entire simulation of this energy density, mainly characterized by big fluctuations.
In Figure 6.8(a) we can observe similar dynamics as in Figure 6.6(a), with periodic and regular linear
structures that persist over time, and with a region of fluctuations. In this case, the fluctuations don’t
follow a regular pattern as in Figure 6.6(a) (triangular structures), and this is captured by the magne-
tization over time (see Figure 6.8(b)) that doesn’t follow a recognizable pattern and fluctuates between
M(t) ≈ 0.66 and M(t) ≈ 0.86 (overall fluctuation around 5 centesimal units bigger than in the ordered
and disordered cases seen earlier).
In Figure 6.8(c) and Figure 6.8(d) we move forward in time and cover the dynamics of 429.600 to 434.600
time steps. The space-time evolution for this time window is something that has elements from Figure
6.6(a) and Figure 6.7(a), with small regions that look quite regular with some periodic structures or
clusters, and with thin bands propagating over the dynamic of the system with a noisy distribution of
states quite similar to Figure 6.7(a). Besides the behavior previously mentioned, we also can see clusters
moving around and crashing with each other creating new forms or disappearing. Although this behavior
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Figure 6.7: Macroscopic dynamic for energy density E/L = −0.506. In (a) we have the pattern formed by
the Q2R-Potts’ evolution rules in the last 5000 steps in a simulation of 2 million time steps. In (b) there is
the measurement of the evolution of magnetization over time, and (c) is the probability density function of the
magnetization over the entire simulation. Pictures (a) and (b) look very noisy and don’t follow any pattern.
Source: Own Elaboration.
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looks quite particular and, as a whole, is not at all similar to Figure 6.7(a), however, the magnetization
is quite close to 0 (see Figure 6.8(d)) and at times is in the same ranges as Figure 6.7(b). At first glance,
the formation of clusters makes the difference between the cases above, and it will become clear later on.
Finally, in Figure 6.8(e) and Figure 6.8(f), we have the dynamic restricted between 995.000 and 1.000.000
time steps. In this dynamic, we have a dominant state over the others, in this case, the red state. How-
ever, we also can notice big clusters of the other two states, and triangular fluctuating structures that
change over time. All the previously discussed give as a result a magnetization that fluctuates irregularly
between M(t) ≈ 0.35 and M(t) ≈ 0.52 (see Figure 6.8(f)).
In Figure 6.9(a) we have the entire evolution of the magnetization, where we can observe the fluctuations
in the system, which are mainly distributed between M(t) ≈ 0 and M(t) ≈ 0.5, with some peaks that
reach M(t) ≈ 0.7. This can be seen in the probability density function in Figure 6.9(b). Also, we can see
how the individual states are distributed in their probability density function in Figure 6.9(c).
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Figure 6.8: Space-time and magnetization evolution of the system for an energy density E/L = −0.886 at
different times. In figures (a), (c), and (d) we have the different patterns formed at times from 100.000 to 105.000
steps, 429.600 to 434.600 steps, and 995.000 to 1.000.000 steps, respectively. While (b), (d), and (f) show the
temporal series of the magnetization associated with (a), (c), and (d) respectively. Source: Own Elaboration.
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Figure 6.9: Dynamic of the magnetization and probability densities distribution for the energy density E/L =
−0.886. In (a) we have the temporal series of the magnetization considering fifty million time steps, in (b) we
can see the probability density distribution of the magnetization, and in (c) we observe the probability density
distribution of the magnetization per state. Source: Own Elaboration.
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6.4.3 Macroscopic Dynamics

• Second Research Question

Until now, we have seen different dynamics in the one-dimensional Q2R-Potts CA from both a qualitative
and quantitative point of view. From the aforementioned study, one of the conclusions that we may state
is that the general behavior of the system, and its magnetization, change when we change the energy
density E/L. But to answer how exactly changes we built a phase diagram considering the average
magnetization ⟨M⟩ as the order parameter and the energy density E/L as the control parameter (see
Figure 6.10). In Figure 6.10(a), we present the macroscopic description of the system in terms of our
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Figure 6.10: Phase diagrams for chains of length L = 256, L = 512 and L = 1024. In (a) the phase diagram of
average magnetization ⟨M⟩ versus E/L, and in (b) we have the standard deviation σ versus E/L. Source: Own
Elaboration.

chosen order and control parameters. Qualitatively, all the chains studied exhibit similar behavior,
and quantitatively, there are no significant differences between the chain of size L = 1024 and larger
chains. Therefore, our analysis will primarily focus on the chain of size L = 1024. When the energy
density increases from the lowest energy configuration, the system responds with a consistent decline
in magnetization, initially following a linear trend. As the energy density continues to increase, the
decrease in magnetization becomes more pronounced while entering a critical region that culminates in a
sharp drop in magnetization from ⟨M⟩ ≈ 0.8 to ⟨M⟩ ≈ 0.3. In parallel, the standard deviation increase
and reach the maximum value in the critical region E/L ≈ −0.9 and E/L ≈ −0.8 (see Figure 6.10(b)).
Finally, for energies greater than E/L > −0.8, the magnetization and its fluctuations decay exponentially
to ⟨M⟩ ≈ 0.

In Table 6.4 we summarize some important values from the phase diagrams in Figure 6.10:

E/L F (p, r) ⟨M⟩ σ
−0.927 F (0.02, 0.02) 0.293 0.154
−0.915 F (0.024, 0.027) 0.810 0.073
−0.910 F (0.027, 0.027) 0.279 0.131
−0.906 F (0.021, 0.033) 0.864 0.053
−0.889 F (0.035, 0.025) 0.244 0.158

Table 6.4: Parameters and initial conditions for some representative values from Figure 6.10.

In particular, we have that energy densities −0.927 and −0.889 are the highest values in the standard
deviation, and the first one is the biggest value of magnetization after the transition. On the other
hand, energy densities −0.915 and −0.906 have the lowest magnetization before the transition. Finally,
E/L = −0.910 has an interesting dynamic presenting large fluctuations.
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6.4.4 Microscopic Dynamics

• Third and Fourth Research Question

Something that we realized when studying the fluctuations in the dynamic for the energy density E/L =
−0.866, is that clusters play a key role in it, and by watching figures Figure 6.6(a), Figure 6.8 and Figure
6.7(a), is that the length of clusters, and its evolution are related to the energy density. This is shown in
Figure 6.11, where measure the longest cluster in the evolution of the system per energy density, and we
can see that in the range −1 < E/L < −0.9 the maximum available in the system is mainly dominated
by one state (in this case the yellow state). If we go to E/L ≈ −0.9 we have a maximum cluster growth
for all states, peaking around this energy density. And finally for −0.8 ≤ E/L we have an exponential
decaying of the maximum cluster available per energy density (see Figure 6.11). Notice the similarity
between Figure 6.11 and Figure 6.10(b).
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Figure 6.11: Maximum cluster length available in the system for each energy density after 2 million time steps.
Source: Own Elaboration.

To understand deeply the distribution of clusters, besides measuring the maximum cluster’s length
available per energy density, we can access the cluster size distribution to measure with what frequency
a specific cluster length appears per energy density after a simulation. So, we followed the same logical
process as in the section 6.4.2 by considering the same cases in Figure 6.12. In Figure 6.12(a) we have
the ordered case, and we can see that the cluster frequency is mainly dominated by one state, as one can
expect by watching Figure 6.6(a). This means that the figure Figure 6.6(a) is representative of the entire
dynamic of the system. In Figure 6.12(b) we have the case of fluctuations, and we can notice that different
states dominate at different cluster’s lengths following a clear exponential tendency, where the maximum
length available in the system is lc = 266. By fitting an exponential fit we found that fc ∼ e−0.07.
Finally, in the disordered case, the exponential tendency is stronger than in the case of fluctuation with
an exponent λ = 0.6, and we can notice that the maximum cluster length for this configuration is lc = 30,
which explains the differences between the snapshots Figure 6.7(a) and Figure 6.8(c). With the previous
analysis of particular cases, we got light on how the exponent of the exponential fit changes depending on
the energy density, and in Figure 6.13 we have the full picture of the qualities of the fit, with the different
slopes per energy density and the goodness of fit. In Figure 6.13(a) we can see that the slopes converge
to λ ≈ −1, and in Figure 6.13(b), (c) and (d) we can see that while we increase the energy, better and
more reliable is the fit
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Figure 6.12: Semilog plots for the cluster distribution frequency fc versus the cluster length lc. In each plot,
black depicted lines indicate least squares fit fc ∼ eλ. In (a) clusters don’t follow an exponential tendency, while
in (b) and (c), λ = −0.07 and λ = −0.6, respectively. Source: Own Elaboration.
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Figure 6.13: Exponent λ as a function of energy density (a), assuming an exponential distribution. The graph
also displays various measures of fit quality, including R-squared (R) in (b), Sum of Squared Errors (SSE) in (c),
and Root Mean Square Error (RMSE) in (d). Source: Own Elaboration.

6.4.5 First-Order Phase Transition in the Q2R-Potts Model

In Figure 6.10(a), the sharp discontinuity in the magnetization indicates that the system develops a
first-order phase transition. Moreover, we observed other typical aspects of first-order phase transitions
such as coexistence and a reduced size in the clusters of states.

As a non-ergodic system, the Q2R-Potts CA’s configurations do not evolve by exploring all the
microstates with the same energy. As observed in our phase space study for a chain of length L = 6,
detailed in Table 6.2 and 6.3. The system, for a given energy, can exhibit different periods and cluster
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structures during its evolution (see Figures 6.5 and 6.4). This phenomenon extends to larger systems, such
as a chain of length L = 1024. In the critical region, around E/L ≈ −0.9, we observed a phase coexistence
where configurations, accessed via different initial conditions at the same energy density, exhibit behaviors
either in the ordered phase, or disordered phase for different values of ⟨M⟩, as is detailed in Table 6.5:

E/L F (p, r) ⟨M⟩
−0.922 F (0.024, 0.021) 0.816
−0.922 F (0.023, 0.022) 0.415
−0.907 F (0.026, 0.028) 0.834
−0.907 F (0.024, 0.029) 0.219
−0.907 F (0.023, 0.031) 0.208
−0.898 F (0.021, 0.038) 0.858
−0.898 F (0.033, 0.021) 0.328

Table 6.5: Parameters and initial conditions for configurations that present coexistence in the critical region.

These findings reveal a different form of phase coexistence inherent to this non-ergodic, conservative,
and reversible cellular automaton.

From a microscopic perspective, Figure 6.11 illustrates the behavior of the maximum cluster length
available in the system per energy density, which decays exponentially after the transition region and
always maintains its size below a third of the system’s size, characterizing it as having a short range of
correlations through the transition.
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Chapter 7

Conclusions

In this thesis, we have delved into the understanding and characterization of the dynamic properties of the
Q2R cellular automaton, particularly in its extension to the Potts model with q = 3 states, considering
both its macroscopic and microscopic dynamics. Through a brief journey into the historical and scientific
development of cellular automata, we have explored a vast and diverse field. While we acknowledge that
we could not examine many significant contributions in detail, we have managed to link cellular automata
with relevant ideas about complexity and computation and integrate them into the conceptualization of
lattice models in physics.

A key distinction between lattice models and cellular automata is their capability for quantitative
characterization. While the former, emerging directly from physics, possess inherent quantitative predic-
tive power, the latter’s quantification is not as direct. In this context, the Q2R automaton stands out
for its mathematical formulation, which allows for associating a conservative energy and consequently,
an order parameter such as magnetization.

Among the contributions of this work is the complete characterization of the phase space for a chain
of length L = 6. Our analysis reveals that the phase space of the Q2R-Potts cellular automaton (CA) is
divided into subspaces of constant energy, with each energy level associated with a set of configurations
that evolve with varying periods and accumulated clusters. This insight was pivotal in understanding the
dynamics of clusters. By defining complexity as the coexistence of configurations with different periods,
we find that the most complex behaviors manifest in configurations of intermediate energy. Notably, our
results demonstrate that no single configuration explores the entire phase space; such a comprehensive
exploration would require a period of T = 531, 441, underscoring the intricate structure of the system’s
phase space. This fact is particularly noteworthy as it evidences the non-ergodicity of the automaton,
revealing that the system does not evolve over time to explore its entire phase space uniformly, a crucial
aspect for understanding the underlying dynamics of the Q2R-Potts CA.

After characterizing the phase space for a chain of length L = 6, we studied the macroscopic behavior
of chains of length L = 256, L = 512 and L = 1024 considering a phase diagram of ⟨M⟩ versus energy
density E/L. Here, we identified a transition from order to disorder characterized by a discontinuity in
⟨M⟩. While this finding may initially be unexpected, as one-dimensional magnetic systems do not exhibit
phase transitions when considering only nearest neighbors, as shown by the solution of the one-dimensional
Potts model with q = 3 states [46], our adaptation of the one-dimensional Q2R-Potts cellular automaton
involves a set of four neighbors that ensure the conservation of the dynamic properties of reversibility in
the automaton, making this result understandable from that perspective.

Moreover, a key aspect of our research involved analyzing the microscopic dynamics through the lens
of cluster formation. Specifically, we plotted the cluster distribution frequency fc for three different energy
densities on a semilog graph. Our findings highlight that the slope following the cluster frequency distri-
bution depends on the energy density governing the configuration, particularly noting self-organization
in cases where E/L > −0.5. Also, in Figure 6.11, we can observe the longest cluster available in the
system per energy density. Intriguingly, these follow a pattern similar to that observed in Figure 6.10(b),
indicating a profound connection between the Q2R-Potts cellular automaton and the statistical physics
of the system, appropriately connecting magnetic susceptibility and spin-spin correlation [38].
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CHAPTER 7. CONCLUSIONS

Immediate extensions of this work are to expand this development to two and three dimensions, where
our analysis can be key in understanding phase transitions in higher dimensions from a discrete system.

To conclude, this work presents a tool through which we can obtain exact results from a set of logical
rules that allows us to conceptually and quantitatively approach emergent phenomena in the Potts model.
Thus, the Q2R-Potts model aligns with Von Neumann’s vision in designing cellular automata, where they
can be used to gain perspective and intuition on a specific problem, but also the Q2R-Potts model allows
us to quantify and obtain measurable results.
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Appendix A

Dynamics in L = 256, L = 512, L = 1024
and L = 2048

The following appendix shows the dynamics of the Q2R-Potts cellular automaton considering all the
lengths explored during our study, in order to show its invariance to the size of the system. In addition,
we show the dynamics of the configuration in the chain of length L = 1024 which presents the longest
clusters during its evolution.
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Figure A.1: Temporal evolution (a) and magnetization (b) for the energy density E/L = −0.953 in a chain of
length L = 256. Source: Own Elaboration.
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Figure A.2: Temporal evolution (a), magnetization (b), and probability density distributions (c) and (d), for
the energy density E/L = −0.897 in a chain of length L = 256. Source: Own Elaboration.
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Figure A.3: Temporal evolution (a), magnetization (b), and probability density distributions (c) and (d), for
the energy density E/L = −0.506 in a chain of length L = 256. Source: Own Elaboration.
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Figure A.4: Temporal evolution (a) and magnetization (b) for the energy density E/L = −0.969 in a chain of
length L = 512. Source: Own Elaboration.

42



APPENDIX A. DYNAMICS IN L = 256, L = 512, L = 1024 AND L = 2048

Fluctuations

(a)

0 0.5 1 1.5 2 2.5 3

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(c)

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(d)

Figure A.5: Temporal evolution (a), magnetization (b), and probability density distributions (c) and (d), for
the energy density E/L = −0.866 in a chain of length L = 512. Source: Own Elaboration.
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Figure A.6: Temporal evolution (a), magnetization (b), and probability density distributions (c) and (d), for
the energy density E/L = −0.507 in a chain of length L = 512. Source: Own Elaboration.
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A.3 L = 1024

Dynamic of the Configuration with the Largest Clusters
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Figure A.7: Temporal evolution (a), magnetization (b), and probability density distributions (c) and (d), for
the energy density E/L = −0.910 in a chain of length L = 1024. Source: Own Elaboration.
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Figure A.8: Frequency of clusters versus its length for the energy density E/L = −0.910. Source: Own
Elaboration.
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Figure A.9: Temporal evolution (a) and magnetization (b) for the energy density E/L = −0.982 in a chain of
length L = 2048. Source: Own Elaboration.
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Figure A.10: Temporal evolution (a), magnetization (b), and probability density distributions (c) and (d), for
the energy density E/L = −0.910 in a chain of length L = 2048. Source: Own Elaboration.
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Figure A.11: Temporal evolution (a), magnetization (b), and probability density distributions (c) and (d), for
the energy density E/L = −0.507 in a chain of length L = 2048. Source: Own Elaboration.
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