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0.1 Introduction

One of the most important topological invariants of a space X are its ho-
mology groups Hp(X;K) and cohomology groups Hp(X;K), where K is
a ring. As it is well known, there is additional structure on H∗(X;K) =
⊕p≥0H

p(X;K) than in homology, and this is useful for several reasons: it
makes computations easier, permits to prove deep theorems and to construct
other important invariants. The simplest operation defined in cohomology
is its cup product. This is an associative product defined on the cochain
level

⌣: Cp(X)⊗ Cq(X) → Cp+q(X)

(we omit the coefficient ring K) and it gives the structure of a differential
graded algebra to C∗(X), so it induces a product in cohomology. The cup
product is not commutative on the cochain level, but it is commutative on
H∗(X). The failure of commutativity on the cochain level is measured by
another operation

⌣1: C
p(X)⊗ Cq(X) → Cp+q−1(X)

which satisfies the relation

±d(x ⌣1 y) = ±(dx) ⌣1 y ± x ⌣1 (dy) + x ⌣ y − (−1)pqy ⌣ x.

for x ∈ Cp, y ∈ Cq. One can iterate this process to get operations ⌣i:
Cp(X) ⊗ Cq(X) → Cp+q−i(X) called cup-i products (see [St47]). When
taking mod 2 coefficients, these products are used to construct the Steenrod
powers in cohomology

Sqi : Hp(X;Z2) → Hp+i(X;Z2)

and these operations generate a whole algebra A2 which acts on H∗(X;Z2)
(see [Eps62] and [Mi58] for properties of the Steenrod algebra and applica-
tions). These operations are the most classical ones and come from products
defined on the cochain complex of any space. Additional structure on the
(co)chain complex exists for specific classes of spaces. The most interesting
case is that of d-fold loop spaces ΩdX, which are algebras over the little d-
cubes operad Cd, so C∗(Ω

dX) is an algebra over the operad C∗(Cd) ([BV68],
[Coh76]). In this thesis, we will be mainly concerned with a much bigger
operad which contains (equivalent versions of) the operads C∗(Cd) as sub-
operads. This is the McClure-Smith operad ([MS03], [BF04]), or surjection
operad, S which acts on S∗(X), the normalized cochain complex of a space,
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and this action contains the aforementioned cup-i products. The operad S is
constructed from non-degenerate surjective functions and having an operad
action of S on S∗(X) means that for every such surjection f : m+ k → k
(where m = {1, . . . ,m}) there is a mapping

〈f〉 : S∗(X)⊗k → S∗(X)

lowering degrees by m and satisfying certain properties. Cup-i products are
the particular case f : i+ 2 → 2, f = 1212 . . . of this construction. More-
over, the operad S is filtered by suboperads Sn, that is, S2 ⊂ S3 ⊂ · · · ⊂ S,
such that each Sn is quasi-isomorphic to the little n-cubes chain operad
C∗(Cn).

The objective of this thesis is to show that some operations coming from
the McClure-Smith operad S appear in a purely algebraic context, as opera-
tions on the primitive subspace of certain bialgebras. This idea is motivated
on some versions of the Milnor-Moore theorem ([MM65]). The classical ver-
sion of this theorem states that the primitive subspace of a bialgebra has
a Lie structure and if this bialgebra is conilpotent and cocommutative one
can recover the original algebra as an enveloping algebra of its primitive
subspace. For non-cocommutative bialgebras there are similar theorems,
but more structure is needed. In [Lod01] dendriform algebras are defined as
associative algebras in which the product splits as a sum of two operations
satisfying certain relations. There is also a notion of dendriform bialgebra
and it is shown in [Ron02] that a dendriform bialgebra D has a brace al-
gebra structure, that is, there are operations M1n : D⊗n+1 → D satisfying
certain relations, and the primitive subspace is a sub-brace algebra. These
operations appear in the operad S, the braces M1n corresponding to the sur-
jective functions 12131 . . . 1(n+1)1. Now, in [LR01], tridendriform algebras
are defined and it is shown in [BR10] that the operad S2 acts on the primi-
tive subspace. Our purpose (still incomplete) is to generalize these results,
that is, we would like to construct a certain kind of algebra (depending on n)
defined by a non-symmetric operad such that on the primitive subspaces of
the corresponding bialgebras we have operations appearing in Sn. Eventu-
ally we would like to recover all the McClure-Smith operad as the primitive
subspace of a certain bialgebra.

To study this problem, we take the following point of view: the den-
driform operad can be described in terms of planar binary trees and the
dendriform structure is defined in terms of the Tamari order. Now, binary
trees are in bijection with 1-Dyck paths (see 3 for definitions) and the Tamari
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order of 1-Dyck paths (or binary trees) can be generalized to m-Dyck paths
([BP12]). We use this order to define operations ∗0, . . . , ∗m on the vector
space Dm spanned by all m-Dyck paths, which give a new kind of algebras
which we call Dyckm-algebras. This is the correct structure in the sense
that Dm becomes the free Dyckm-algebra on one generator. We construct
a bialgebra structure on Dm which respects the ∗i-operations and we study
its primitive subspace. We prove a Milnor-Moore type theorem for Dyckm-
algebras and GV m-algebras, which is the structure on the primitive subspace
of a Dyckm-algebra. However this is not going to solve our problem, it is
just the first step. This is because the operads Sn come from a filtration,
that is, S2 ⊂ S3 ⊂ . . .S and we are considering Dyck paths for m-fixed, so
there is no kind of filtration. In a future work, we will consider all Dyck
paths (of a certain kind) and then we will take a filtration from which we
expect to recover (at least part of) the Sn-operads.

The thesis is organized as follows. In chapter 1 we give the construction
of the McClure-Smith operad, following [BF04] (but the action on S∗(X)
is described as in [MS03]). All the necessary preliminaires are given: the
construction of the cohomology chain complex, cup-i products (although
these are included in the McClure-Smith operad) and operads. In chapter
2 we define differents kinds of bialgebras and we describe the different al-
gebraic structures appearing on their primitive subspaces. We start with
classical bialgebras and Lie algebras, then we discuss dendriform bialgebras
and brace algebras and finally we briefly define tridendriform algebras and
Gerstenhaber-Voronov algebras. The third and last chapter contains the
original part of this thesis. On the space Dm spanned by m-Dyck paths, we
construct in 3.2 a structure which generalizes dendriform algebras (which
is the case m = 1): there are binary operations ∗i : Dm ⊗ Dm → Dm for
0 ≤ i ≤ m satisfying the relations

1. x ∗i (y ∗j z) = (x ∗i y) ∗j z for any i < j;

2. x ∗i (y ∗0 z+ · · ·+ y ∗i z) = (x ∗i y+ · · ·+x ∗m y) ∗i z for any 0 ≤ i ≤ m,

see [LPR15]. A vector space with m + 1 binary operations satisfying such
relations is called a Dyckm-algebra and we show in 3.3 that Dm is the free
Dm algebra on one generator. In 3.4 we construct a coproduct on Dm which
respect the ∗i-operations and in 3.5 we study the operations on Prim(A) of
a Dyckm-bialgebra A. Finally, in 3.6 we show a Milnor-Moore theorem for
our algebras, that is, we show that the structure we define on Prim(A) of a
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Dyckm-bialgebra is enough to recover the original algebra A by means of an
appropiate universal enveloping algebra functor.
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Chapter 1

Operations on the

cohomology cochain complex

In this chapter we describe the operations arising from the singular cochain
complex of a topological space. In 1.1 we review the definition of the sin-
gular cohomology cochain complex. The first non-trivial operation on this
complex is the cup product, which we define in 1.2 to proceed with the
definition of cup-i products. We then define operads and algebras over an
operad in 1.3 in order to construct the McClure-Smith operad S in 1.4 using
surjective functions. This operad acts on the (normalized) cochain complex
of a space and gives the Steenrod ⌣i products for special surjective func-
tions. Moreover, this operad is filtered by suboperads S2 ⊂ S3 ⊂ · · · ⊂ S,
these are defined in 1.5. No proofs are given in this chapter, we refer the
reader to the corresponding papers (mainly [St47], [MS03], [BF04]).

1.1 The cohomology cochain complex

We start by defining the objects to consider, the singular homology chain
complex with its simplicial structure and then we dualize to get the coho-
mology cochain complex.

Notation 1.1.1. When considering collections of groups {Cp}p≥0, we de-
note by C∗(X) (or C∗(X) if the groups have upper indices Cp) both the
collection of groups and the graded abelian group

⊕
p≥0Cp.

Convention 1.1.2. Throughout the text we will use the Koszul convention
for graded vector spaces: when two elements x, y are permuted, the sign

9



10CHAPTER 1. OPERATIONS ON THE COHOMOLOGYCOCHAIN COMPLEX

(−1)|x||y| is to be introduced. This also applies to maps, so for example
f ⊗ g(x⊗ y) = (−1)|g||x|f(x)g(y).

Let ∆p be the standard p-dimensional simplex, that is

∆p = {(t0, . . . , tp) ∈ R
p+1 | ti ≥ 0 and

∑p
i=0 ti = 1)}.

For each i = 0, . . . , p, we define maps δi : ∆
p−1 → ∆p by

δi(t0, . . . , tp−1) = (t0, . . . , ti−1, 0, ti, . . . , tp−1)

and σi : ∆
p+1 → ∆p by

σi(t0, . . . , tp+1) = (t0, . . . , ti−1, ti + ti+1, . . . , tp+1).

It is straightforward to verify that these maps satisfy the following rela-
tions

1. δjδi = δiδj−1, i < j

2. σjσi = σiσj+1, i ≤ j

3. σjδi = δiσj−1, i < j

4. σjδj = σjδj+1 = I

5. σjδi = δi−1σj , i > j + 1.

Now let X be a topological space.

Definition 1.1.3. A standard p-simplex on X is a continuous mapping
σ : ∆p → X. The p-th singular chain group of X, denoted by Cp(X), is the
free abelian group generated by the standard p-simplices on X.

We define homomorphisms di : Cp(X) → Cp−1(X) for i = 0, . . . , p and
p ≥ 1 on generators by

di(σ) = σ ◦ δi.

These are called face operators. We also define degeneracy operators
si : Cp−1(X) → Cp(X) for i = 0, . . . p− 1 and p ≥ 1 by

si(σ) = σ ◦ σi.
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Dual to the relations between the maps δi and σj previously defined we
have the following relations between face and degeneracy operators (which
mean we have a simplicial complex structure on C∗(X)):

1. didj = dj−1di, i < j

2. sisj = sj+1si, i ≤ j

3. disj = sj−1di, i < j

4. djsj = dj+1sj = I

5. disj = sjdi−1, i > j + 1.

Using these relations, it is easy to see that if we define d : Cp(X) →
Cp−1(X) by

d =

p∑

i=0

(−1)idi

then d2 = 0 so that we get a chain complex.

Definition 1.1.4. The pair (C∗(X), d) is called the singular homology chain
complex of a space X.

Now we define the singular cohomology cochain complex. Let K be a
ring and define

Cp(X;K) = Hom(Cp(X);K)

the homomorphisms of abelian groups. The differential d : Cp(X) →
Cp−1(X) dualizes to a differential (which we denote by the same letter)
d : Cp−1(X;K) → Cp(X;K). We also denote by si the duals of the corre-
sponding maps.

Definition 1.1.5. The pair (C∗(X;K), d) is the singular cohomology cochain
complex with coefficients in K ofX. The normalized cochain groups, denoted
by Sp(X;K), are the quotients of the Cp(X;K) by the images of the si. The
differential d induces a differential between the normalized cochain groups
and the pair (S∗(X;K), d) is the normalized singular cochain complex of X.

Remark 1.1.6. Normalization of a simplicial complex does not change its
(co)homology (cf. [EM53]).
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1.2 Cup-i products

Notation 1.2.1. Let σ : ∆p → X be a singular p-simplex on a space. If
0 ≤ a0 < a1 < · · · < ak ≤ p we denote by σ(a0, . . . , ak) the k-simplex
obtained by composing σ with the unique linear map ∆k → ∆p which sends
vertex i to vertex ai.

Let K be a ring (commutative with identity). The usual cup product

⌣: Cp(X;K) → Cq(X;K) → Cp+q(X;K)

is defined by

(x ⌣ y)(σ) = x(σ(0, . . . , p))y(σ(p, . . . , p+ q))

where σ : ∆p+q → X and we used the product structure of K on the right.
It is easy to see that this product is associative and that it satisfies the

following relation with the differential (cf. [Hat02])

d(x ⌣ y) = dx ⌣ y + (−1)px ⌣ dy

for x ∈ Cp, y ∈ Cq, so it induces a product in cohomology. Define

⌣1: C
p(X)⊗ Cq(X) → Cp+q−1(X)

by

(x ⌣1 y)(σ) =
p−1∑

j=0

(−1)(p−j)(q+1)x(σ(0, . . . , j, j + q, . . . , p + q − 1))y(σ(j, . . . , j + q))

where σ : ∆p+q−1 → X (see [St47]). Then the following formula holds:

d(x ⌣1 y) = (−1)p+q−1x ⌣ y+(−1)pq+p+qy ⌣ x+dx ⌣1 y+(−1)px ⌣1 dy.

This implies that if x, y are cycles, then

x ⌣ y − (−1)pqy ⌣ y

is a coboundary so the cup product is commutative on the cochain level.
As we stated in the introduction, this process can be iterated. In [Bre93]
there is a very nice construction of the cup-i products by using the method of
acyclic models and considering the cup product as the dual of the Alexander-
Whitney map C∗(X) → C∗(X) ⊗ C∗(X). In this case, the cup i-product is
the dual of an homotopy expresing the non-commutativity of the preceding
⌣i−1. Although this method is easy and there is almost no need to prove
difficult formulas, it is non explicit so we take the approach of [MS03].
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Definition 1.2.2. An overlapping partition A of {0, . . . , p} with m pieces is
a collection of m nonempty sets A = {A1, . . . , Am} whose union is {0, . . . , p}
such that:

1. Ai ∩Ai+1 consists of exactly one point for each i.

2. If i < j, each element of Ai is less than or equal to every element of
Aj .

Now let x, y be cochains of degrees p, q on a space X respectively.

Definition 1.2.3. The cup-i product of two cochains, denoted by x ⌣i y,
is the p+ q − i cochain defined by

(x ⌣i y)(σ) =
∑

±x(σ(A1 ⊔A3 ⊔ . . . ))y(σ(A2 ⊔A4 ⊔ . . . ))

where the sum is taken over all overlapping partitions of i+ 2 pieces of
{0, . . . , p + q − i} and σ is a p+ q − i singular simplex on X.

Remark 1.2.4. Here A1 ⊔A3 ⊔ . . . means disjoint union, even if they have
an intersection point. In this case the singular simplex σ(A1 ⊔ A3 ⊔ . . . ) is
degenerate, so it is zero on normalized (co)chains. When the dimensions of
the σ(A1 ⊔A3 ⊔ . . . ), σ(A2 ⊔A4 ⊔ . . . ) do not match the dimensions of x, y,
the corresponding term is meant to be zero. The signs in this definition are
hard to describe, we refer the reader to [MS03].

The following formula appears in [St47].

Proposition 1.2.5. The cup-i products satisfy the following formula:

d(x ⌣i y) = (−1)p+q−ix ⌣i−1 y + (−1)pq+p+qy ⌣i−1 x+ dx ⌣i

y + (−1)py ⌣i dx.

Remark 1.2.6. Cup-i products are used to define operations in mod 2
cohomology (so in this case signs in the preceding formulas do not matter).
By 1.2.5 the operation Sqi : H

p(X;Z2) → H2p−i(X;Z2), Sqi(x) = x ⌣i x
is well defined (for i ≥ 0) on cohomology. The Steenrod squares are then
defined by

Sqi : Hp(X;Z2) → Hp+i(X;Z2), Sq
i(x) = Sqp−i(x).

for p ≥ i and are zero of p < i. For the properties of these operations (as
the Adem relations) and applications, we refer the reader to [Eps62] and for
the construction and properties of the algebra they generate, see [Mi58].



14CHAPTER 1. OPERATIONS ON THE COHOMOLOGYCOCHAIN COMPLEX

1.3 Operads

In this section we will define operads and algebras over an operad (see
[MSS02]). The important example to have in mind to understand the defi-
nition, is that of functions (of any arity) on a set.

Let X be a set and P(n) the set of maps Xn → X for n ≥ 1. There is a
map

γ : P(n)× P(m1)× · · · × P(mn) → P(m1 + · · ·+mn)

given by

γ(f ; g1, . . . , gn)(x1, . . . , xm1+···+mn
) =

f(g1(x1, . . . , xm1
), . . . , gn(xm1+···+mn−1+1, . . . , xm1+···+mn

))

that is, we are replacing the functions gi into the variables of f . These
maps satisfy an obvious associativity condition: suppose we are given func-
tions f ∈ P(n), gi ∈ P(mi) for 1 ≤ i ≤ n and hkP(jk) for 1 ≤ k ≤
m1 + · · ·+mn. Then replacing the gi on f in order, and then the functions
hk is the same as replacing first the hk on the gi and then replacing these
new functions on f . This is expressed as the commutativity of a certain
diagram.

Proposition 1.3.1. Define

P[m] = P(m1)× · · · × P(mn)
P[j] = P(j1)× . . .P(jq)

P[mi] = P(mi)× P(jm1+···+mi−1+1)× · · · × P(jm1+···+mi
)

for each 1 ≤ i ≤ n, where q = m1 + · · · + mn, then the following diagram
commutes

(P(n) × P[m])× P[j]

γ×P[j]

��

= // P(n)× P[m1]× · · · × P[mn]

P(n)×γ...γ
��

P(n)××n
i=1P(jm1+···+mi−1+1 + · · ·+ jm1+···+mi

)

γ

��
P(q)× P[j]

γ // P(j1 + · · ·+ jq).
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If ∗ denotes a set consisting of a point, there is a map η : ∗ → P(1)
given by η(∗) = 1X , the identity map of X. The maps γ and η satisfy the
following obvious relations:

P(n)× P(1)×n γ // P(n)

P(n)× ∗×n

P(n)×η×n

OO
∼=

88ppppppppppp

P(1) × P(n)
γ // P(n)

∗ × P(n)

η×P(n)

OO
∼=

88qqqqqqqqqq

Observe that there is a right action of Sn on P(n) for each n given by

(fσ)(x1, . . . , xn) = f(xσ−1(1), . . . , xσ−1(n)).

Let m1, . . . ,mn ≥ 1 and σ ∈ Sn, we define a permutation σ ∈ Sm1+···+mn

by

σ(m1 + · · · +mi−1 + j) = m′
1 + · · · +m′

σ(i)−1 + j

for 1 ≤ j ≤ mi and 1 ≤ i ≤ n, where m′
i = mσ−1(i).

Proposition 1.3.2. The action of the symmetric groups on the sets P(n)
satisfy

γ(fσ; g1, . . . , gn) = γ(f ; gσ−1(1), . . . , gσ−1(n))σ

for any f ∈ P (n), gi ∈ P(mi) for 1 ≤ i ≤ n and σ ∈ Sn.

Now consider an arbitrary symmetric monoidal category C. Roughly
speaking, this is a category with an associative product (under natural iso-
morphism) ⊗, an identity element for this product and a natural isomor-
phism A ⊗ B ∼= B ⊗ A for any pair of objects A,B in C. For example, the
category of vector spaces over a fieldK is a monoidal category with the usual
tensor product, the field K as identity element, and symmetry isomorphism
V ⊗W → W ⊗ V, v ⊗ w 7→ w ⊗ v. The category of Z-graded (or N-graded)
modules over a ring K with the usual tensor product

(V ⊗W )n =
⊕

i+j=n

Vi ⊗Wj ,
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the identity K concentrated in degree zero, and the isomorphism

V ⊗W → W ⊗ V, v ⊗ w 7→ (−1)|v||w|w ⊗ v.

is also a monoidal category. In 1.4 we will be concerned with the monoidal
category of differential graded modules, where the differential on a tensor
product is given by

d(v ⊗ w) = d(v) ⊗ w + (−1)|v|v ⊗ dw

and where the same identity (with zero differential) and symmetry isomor-
phism are considered.

Let C be one of the preceding categories. In the diagrams of 1.3.1 and
1.3.2, replace × by ⊗ and ∗ by the identity I of C.

Definition 1.3.3. A non-symmetric operad P in C consists of a collection
of objects {P(n)}n≥1 together with the following:

1. Maps

γ : P(n) ⊗ P(m1)⊗ . . . ⊗P(mn) → P(m1 + · · ·+mn)

for each n and m1, . . . ,mn such that the first diagram of 1.3.1 is com-
mutative.

2. A map η : I → P(1) such that the second diagrams of 1.3.1 commute.

A symmetric operad is a non-symmetric operad P = {P(n)}n≥1 such
that each P(n) has a right action of the symmetric group Sn satisfying the
relations of 1.3.2. An operad (symmetric or not) is said to be unital if the
morphism η : I → P(1) is an isomorphism. We will reserve the term operad
for symmetric operad.

Remark 1.3.4. Operads can also be described by means of partial compo-
sition products. Let P be an operad, for any 1 ≤ i ≤ n we define

◦i : P(n)⊗ P(m) → P(n +m− 1)

by the composition

P(n)⊗ P(m) = P(n)⊗ Ii−1 ⊗ P(m) ⊗ In−i

��
P(n)⊗ P(1)i−1 ⊗P(m) ⊗ P(1)n−i γ // P(n+m− 1)
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where the first map is P(n)⊗ηi−1⊗P(m)⊗ηn−i. The associativity condition
for γ implies the following relations for the ◦i-products

(f ◦i g) ◦j h =





(f ◦j h) ◦i+r−1 g if j < i
f ◦i (g ◦j−i+1 h) if i ≤ j ≤ i+m− 1
(f ◦j−m+1 h) ◦i g if i+m− 1 < j

where f ∈ P(n), g ∈ P(m), h ∈ P(r). Conversely, if P = {P(n)}n≥1

is a collection of objects in a symmetric monoidal category together with
products ◦i : P(n)⊗P(m) → P(n+m− 1) for any n,m ≥ 1 and 1 ≤ i ≤ n
satisfying the preceding relations, and a morphism η : I → P(1) satisfying
obvious unit conditions with respect to the ◦i-products, then P is a non-
symmetric operad with operations γ : P(n) ⊗ P(m1) ⊗ . . . ⊗ P(mn) →
P(m1 + · · ·+mn) defined by

γ(f ; g1, . . . , gn) = (((f ◦1 g1) ◦m1+1 g2) ◦m1+m2+1 . . . gn−1) ◦m1+···+mn−1+1 gn.

For the corresponding symmetry conditions see [MSS02].

Example 1.3.5. 1. In the category of vector spaces, let E(n) = Hom(V ⊗n, V )
and let the operations γ be defined exactly as in the case of Maps(Xn,X)
with the same Sn-action. Then {E(n)} is an operad, which we call the
endomorphism operad and denote it by E(V ). We can make the same
definition in the category of differential graded vector spaces (with dif-
ferential of degree +1). Here, each E(n) is graded, where a map has
degree m if it lowers degrees by m and the differential (of degree -1)
in E(n) is given by

∂f = dV f − (−1)|f |fdV ⊗n

where the dV is the differential of V .

2. Let Cd(n) be the collection of n-tuples (C1, . . . , Cn) where the Ci are
disjoint d-cubes linearly imbedded in the standard cube [0, 1]d (and
with sides parallel to the axis). Since such an n-tuple (C1, . . . , Cn) is
determined by the center of the Ci and the length of their sides, the
set Cd(n) is in bijection with an open subset of (Rd)n × (Rd)n. We
topologize Cd(n) under this bijection. We define a map

Cd(n)× Cd(m1)× · · · × Cd(mn) → Cd(m1 + · · · +mn)
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by inserting the first m1 cubes into the first cube from Cd(n), the
following m2 cubes into the second cube from Cd(n) and so on. The
identity element of Cd(1) is the whole cube [0, 1]d and Sn acts on the
right of Cd(n) by (C1, . . . , Cn)σ = (Cσ(1), . . . , Cσ(n)). This gives an
operad in the category Top which we denote by Cd and call it the
little d-cubes operad (see [BV68]).

Definition 1.3.6. A P-algebra over an operad P is an object A in C to-
gether with morphisms

αn : P(n)⊗A⊗n → A

satisfying obvious associativity, identity and symmetry conditions (see [MSS02]).
Forgetting the symmetry, we get a notion of P-algebra for non-symmetric
operads.

If we think of an element of P(n) as a function with n inputs, the map
αn is then thought as evaluating this function into n elements of A. Then
the associativity condition means that replacing the n variables of a func-
tion f ∈ P(n) by functions f1, . . . , fn and then evaluating at a1, . . . , aq ∈ A
where q = m1 + · · · +mn is the same thing as evaluating first the fi in the
aj (in order) and then evaluating f in the n elements of A thus obtained.

Example 1.3.7. 1. Any vector space V is an algebra over its endomor-
phism operad E(V ).

2. For any space X, the d-fold loop space ΩdX is an algebra over the
little d-cubes operad Cd. Similarly C∗(Ω

dX) (resp. H∗(Ω
dX)) is an

algebra over the operad C∗(Cd) (resp. the operad H∗(Cd)).

This second example is pretty interesting. It was proved in [Coh76]
that algebras over the operad H∗(Cd) are d-Gerstenhaber algebras, that
is, algebras with a Lie bracket of degree −(d − 1) satisfying certain com-
patibility relations. For d = 2 we just call them Gerstenhaber algebras.
Now, in [Gers63], the Hochschild cohomology of an associative algebra is
endowed with a Gerstenhaber algebra structure, so it is an algebra over the
operad H∗(C2). It was asked by Deligne in [De93] whether this action lifts
to an action of the chain operad C∗(C2) on the Hochschild cochain complex
CC∗(A,A). This conjecture has been solved in several papers, for exam-
ple, in [MS03], where the suboperad S2 of the surjection operad (see 1.5) is
shown to act on CC∗(A,A).
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Remark 1.3.8. Let P = {P(n)}n≥1 be a unital operad of vector spaces,
that is, P(1) = K. The structure maps of P give the structure of an P-
algebra to the vector space P =

⊕
Pn. Moreover, by the unitality condition,

it is easy to see that this space is the free P-algebra on one generator.
Conversely, if we have a certain kind of algebras which is codified by a non-
symmetric operad (that is, the variables of the defining relations stay in the
same order) and F =

⊕
n≥1 Fn is the free algebra on one generator, then F

has an operad structure which codifies this kind of algebras. Moreover, in
this case the free P-algebra on a vector space V is given by

⊕

n≥1

Fn ⊗ V ⊗n.

1.4 The surjection operad

Consider the category of differential graded modules over a ring K, say, in-
dexed by the nonnegative integers. We construct an operad S which acts
on the normalized cochain complex S∗(X) of any space X. This operad is
called the surjection operad since it will be defined in terms of surjective
maps f : m → k, where we denote by m the set {1, . . . ,m}. The following
construction is taken from [MS03].

Let f : m → k be a surjection and σ : ∆p → X be a standard p-simplex.
We define an element σ[f ] ∈ (S∗X)⊗k by the formula

σ[f ] =
∑

A

±
k⊗

i=1

σ
(
∐f(j)=iAj

)

where the sum runs over all overlapping partitions of m pieces of the set
{0, . . . , p} (see 1.2.2). Now for every surjection f : m → k we define a natu-
ral transformation 〈f〉 : (S∗X)⊗k → S∗X by

〈f〉(x1 ⊗ · · · ⊗ xk)(σ) = (−1)m−kx1 ⊗ · · · ⊗ xk(σ[f ]).

Remark 1.4.1. When f : i+ 2 → 2 is the map 1212... then the natural
transformation 〈f〉 is just the usual Steenrod ⌣i product (except for a sign).

Definition 1.4.2. A map f : m → k is said to be degenerate if it is non-
surjective or if f(j) = f(j + 1) for some j.



20CHAPTER 1. OPERATIONS ON THE COHOMOLOGYCOCHAIN COMPLEX

Let S(k) be the graded abelian group freely generated by the maps
f : m → k modulo de degenerate maps where such a map f has degree
m − k. Let N (k) be the graded abelian group of natural transformations
(S∗X)⊗k → S∗X. The collection N = {N (k)}k≥0 has the structure of
an operad as in 1.3.5. For each k the correspondence f 7→ 〈f〉 defines an
homomorphism S(k) → N (k) which is easily seen to be a monomorphism.
We have the following:

Theorem 1.4.3. ([MS03]) The monomorphism S → N embeds each S(k)
as a subcomplex of N (k) and S as a suboperad of N .

We give now a more explicit description of the operadic structure of S
as in [BF04]. This is not exactly the same operad since signs differ, but it
is equivalent to it. We will use the same notation S, although Berger and
Fresse denote it by χ.

If f : m → k is a surjection, we denote it by f = (f(1), . . . , f(m)). The
signs in the differential are determined according to the following definition.

Definition 1.4.4. The caesuras of the surjection (f(1), . . . , f(m)) are the
f(i)′s which are not the last occurrence of a value, that is, f(i) = k is a
caesura if there exists j > i such that f(i) = k.

The differential d : S(k)e → S(k)e−1 is defined by

d(f(1), . . . , f(k + e)) =
∑

±(f(1), . . . , f̂(i), . . . , f(k + e))

where f̂(i) means omission of that value. We will give a sign to each value
f(j) which appear more than once and the sign of the term

(f(1), . . . , f̂(i), . . . , f(k + e))

is defined as the product of the corresponding signs. Let f(i1), . . . , f(ir) be
the caesuras of the surjection, we give them alternate signs, starting with +
on the first caesura. Suppose a term f(j) is the last occurrence of a value
which appear more than once. The preceding occurrence of that value (a
caesura) has a sign, we give f(j) the opposite sign. Observe that deleting a
value which appears only once gives a degenerate function, so it is zero.

Example 1.4.5. Let f = 1243242, the caesuras are f(2) = 2, f(3) =
4, f(5) = 2 so they have the signs +,−,+ respectively. The values f(6) =
4, f(7) = 2 then have signs +,− so the differential is
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d(1243242) = +143242 − 123242 + 124342 − 124324.

We describe the partial composition product ◦i : S(k) ⊗ S(l) → S(k +
l − 1). Let f ∈ S(k)d and g ∈ S(l)e and suppose there are n ocurrences of
i in (f(1), . . . , f(k+ d)). Divide (g(1), . . . , g(l+ e)) in n blocks so that each
block overlap the next one in its last element:

(g(0), . . . , g(j1)), (g(j1), . . . , g(j2)), . . . , (g(jn−1), . . . , g(jn)).

We delete the ocurrences of i from f and insert the n blocks of g in order.
In order to obtain a surjection, we add i− 1 to the g(t)’s, add l − 1 to the
f(t) > i and the f(t) < i are left untouched. Then, the composition f ◦i g
is defined as the sum (with signs) of all the possible ways of dividing g and
inserting it on the ocurrences of i.

Example 1.4.6. Let f = 1212 and g = 121, then

f ◦2 g = 123212 ± 123132 ± 121232.

The signs in the ◦i-products are obtained in the following way. Let
f = (f(1), . . . , f(k + d)) be a surjection and suppose the caesuras are
f(i1), . . . , f(im). The table arrangement of f is the array

f =





f(1), . . . , f(i1)
f(i1 + 1), . . . , f(i2)

...
f(im + 1), . . . , f(k + d)

where the last terms are the caesuras of f (except on the last line). Let
(f(t1), . . . , f(t2)) be a subsequence of f . We say it has degree p if it intersect
p+1 lines in the table arrangement of f . When computing the product f ◦ig
one has to decompose f in blocks as

(f(1), . . . , f(t1)), (f(t1), . . . , f(t2)), . . . , (f(tn), . . . , f(k + d))

(where the t1, . . . , tn are the ocurrences of i) and also decompose g in blocks
as

(g(0), . . . , g(j1)), (g(j1), . . . , g(j2)), . . . , (g(jn−1), . . . , g(jn)).

Each of these blocks has a degree, and the terms of f ◦i g are obtained by
permuting the blocks of g along the blocks f from right to left. We give the
Koszul sign 1.1.2 to each of these terms.
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Example 1.4.7. Let’s see how to get the sign of the term 123212 of the
preceding example. The blocks of f are (12)(212)(2) of degrees 1, 1, 0 re-
spectively, and the blocks of g for this term are (121)(1), of degrees 1 and 0
so the second block of g does not contribute any sign. The first block of g
is permuted with (2) and (212), so the sign is −123212.

1.5 Filtration of S

The operad S is filtered, that is, there are suboperads S2 ⊆ S3 ⊆ . . . whose
union is all of S. The operad Sn is homotopy equivalent to the little n-cubes
chain operad. This is used in [MS03] to prove Deligne’s conjecture.

Definition 1.5.1. Let f : m → k be a surjection. The complexity of f is the
maximum number of jumps on f |f−1(A), where A ranges over two element

subsets of k.

This definition is easier to understand with an example.

Example 1.5.2. Let f = 12213213, then 122121 has 4 jumps, 11313 has 3
jumps and 22323 has 3 jumps, so f has complexity 4.

We denote by Sn the subspace generated by all non-degenerate functions
of complexity ≤ n.

Theorem 1.5.3. ([MS03]) The subspace Sn is a suboperad of S which is
quasi-isomorphic to the little n-cubes chain operad C∗(Cn).



Chapter 2

Operations on primitive

elements

In this chapter we turn to a more algebraic framework. We will study
bialgebras (of a certain kind) and the additional structure on their primitive
subspace. For each of these algebras there is a Milnor-Moore type theorem,
that is, the original bialgebra can be recovered from its primitive subspace
by taking an appropiate universal enveloping algebra. We only state this
theorem for classical bialgebras and dendriform bialgebras. We will see
that some operations appearing in the surjection operad S arise. Section
2.1 starts with classical bialgebras and the classical Milnor-Moore theorem
([MM65]). We then study dendriform bialgebras and brace algebras in 2.2
and 2.3. We describe in detail the free dendriform algebra on one generator
and its bialgebra structure, since this will be generalized in chapter 3. In
2.4 we define the eulerian idempotent of a dendriform bialgebra and state
its main properties. This is the main tool to prove a Milnor-Moore type
theorem for a subcategory of dendriform bialgebras ([Ron02]). We finally
define (briefly) tridendriform algebras and Gerstenhaber-Voronov algebras
([BR10]).

2.1 Bialgebras

We will start with classical bialgebras and the classical Milnor-Moore theo-
rem (see [MM65]).

Definition 2.1.1. Let A be a vector space over a field K. A coalgebra
structure on A consists of linear maps ∆ : A → A ⊗ A and ǫ : A → K,

23
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called coproduct and counit respectively, such that the following diagrams
are commutative (the first is coassociativity of ∆):

A

∆
��

∆ // A⊗A

A⊗∆
��

A⊗A
∆⊗A// A⊗A⊗A

A⊗K
∼=

%%KKKKKKKKKK
A⊗A

A⊗ǫ
oo ǫ⊗A // K ⊗A

∼=
yyssssssssss

A

∆

OO

.

The coalgebra is cocommutative if the diagonal satisfies τ∆ = ∆ where
τ : A⊗A → A⊗A is the switching morphism τ(a⊗ b) = b⊗ a.

We denote by ∆ the reduced diagonal

∆(x) = ∆(x)− x⊗ 1− 1⊗ x.

Observe that coassociativity of ∆ is equivalent to coassociativity of ∆.
We define ∆n : A → A⊗n by ∆1 = Id and ∆n = Id⊗∆n−1 ◦∆ and similarly
for ∆.

Definition 2.1.2. Let A be a coalgebra with coproduct ∆. We say that A
is conilpotent if for each x ∈ A there is an n ≥ 1 such that ∆

n
(x) = 0.

Definition 2.1.3. A primitive element on a coalgebra A is an element sat-
isfying ∆(x) = 0. The subspace of primitive elements of A is denoted by
Prim(A).

Definition 2.1.4. Let A be an associative algebra with unit with a coalge-
bra structure (∆, ǫ). If both ∆ and ǫ are algebra morphisms, we say that A
is a bialgebra.

Example 2.1.5. Let V be a vector space, consider the tensor module
T (V ) =

⊕
n≥0 V

⊗n, where V ⊗0 = K. We define a coalgebra structure
by

∆[v1, . . . , vn] =
∑n

i=0[v1, . . . , vi]⊗ [vi+1, . . . , vn]



2.1. BIALGEBRAS 25

where the denote [v1, . . . , vn] = v1 ⊗ . . . ⊗ vn, and we let ǫ : T (V ) → K be
the identity on V ⊗0 = K. Then (T (V ),∆, ǫ) is a coalgebra which we call
the tensor coalgebra on V . The concatenation product

[v1, . . . , vi] · [vi+1, . . . , vn] = [v1, . . . , vn]

gives an associative algebra structure to T (V ) (with this product we call
T (V ) the tensor algebra over V ) but it is not a bialgebra in this way (it
is a unital infinitesimal bialgebra as in [LR06]) together with the preceding
coproduct. We denote by T (V ) the reduced tensor coalgebra ⊕n≥1V

⊗n.

Remark 2.1.6. When considering bialgebra structures on graded vector
spaces, we require that all morphisms respect the grading. If A =

⊕
n≥0An

is graded and A0 = K, then commutativity of the second diagram of 2.1.1
means that

∆(x) = x⊗ 1 + 1⊗ x+
∑

xi ⊗ x′i

where 0 < |xi|, |x
′
i| < |x| for every i. Observe that graded coalgebras are

always conilpotent.

The following proposition is obvious from the definitions.

Proposition 2.1.7. The bracket

[x, y] = xy − yx

defines a Lie algebra structure on an algebra A. If A is a bialgebra, then its
primitive subspace is a Lie subalgebra.

We denote by ALie the space A with the preceding bracket. We now
construct a functor from Lie algebras to algebras so as to recover the original
algebra structure from the Lie structure of its primitive subspace.

Definition 2.1.8. Let g be a Lie algebra. The universal enveloping algebra
of g is the quotient of the tensor algebra T (g) =

⊕
n≥0 g

⊗n by the ideal
generated by the elements of the form

[x, y]− x⊗ y − y ⊗ x

for x, y ∈ g.

Let ι : g → U(g) be the obvious inclusion. The universal enveloping al-
gebra is constructed so as to have the following (obvious) universal property.
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Proposition 2.1.9. Let g be a Lie algebra and let A be an associative algebra
with unit. For any Lie algebra morphism f : g → ALie there is a unique
morphism of algebras f : U(g) → A such that f ◦ ι = f .

The universal enveloping algebra has a natural bialgebra structure. In-
deed, the map g → U(g) ⊗ U(g) given by x → ι(x) ⊗ 1 + 1 ⊗ ι(x) extends
to a unique algebra map U(g) → U(g)⊗ U(g) which obviously satisfies the
coassociativity and counit requirements of 2.1.4. Moreover, U(g) is always
conilpotent. Observe that if A is a bialgebra and f : g → A is a Lie mor-
phism such that f(g) ⊆ Prim(A), then the extension f : U(g) → A is a
bialgebra morphism.

Theorem 2.1.10. ([MM65]) Let K be a characteristic zero field. For
any Lie algebra g over K, the map ι : g → U(g) gives an isomorphism
g ∼= Prim(U(g)). Let A be a conilpotent cocommutative bialgebra over K.
The inclusion map Prim(A) → A extends to an isomorphism of bialgebras
U(Prim(A)) ∼= A.

2.2 Dendriform bialgebras

The following definition was introduced by Loday in [Lod01].

Definition 2.2.1. A dendriform algebra is a vector space A together with
two binary products ≻,≺: A⊗A → A satisfying

1. (x ≺ y) ≺ z = x ≺ (y ∗ z)

2. (x ≻ y) ≺ z = x ≻ (y ≺ z)

3. (x ∗ y) ≻ z = x ≻ (y ≻ z)

where ∗ =≻ + ≺.

Observe that these relations imply that the product ∗ = ≻ + ≺ is
associative.

Example 2.2.2. The relations of a dendriform algebra already appear in
[EM53] (where the operation ≺ is called the half product and it is denoted by
↓). Let (X,µ) be an associative H-space and γ a (p, q)-shuffle of {0, . . . , p+
q − 1}, that is, γ(0) < · · · < γ(p− 1) and γ(p) < · · · < γ(p+ q − 1). Define
a map σγ : ∆p+q → ∆p ×∆q by

σγ = σγ(p) ◦ · · · ◦ σγ(p+q−1) × σγ(0) ◦ · · · ◦ σγ(p−1)
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where the σi’s are the maps defined in 1.1. Then there is a dendriform
structure on C≥1(X) defined by

x ≻ y =
∑

γ(p)=0

(−1)sgn(γ)µ ◦ x× y ◦ σγ

where x ∈ Cp, y ∈ Cq, sgn(γ) is the sign of a permutation and the sum
is over all (p, q)-shuffles such that γ(p) = 0. The operation ≺ is defined
similarly, summing over shuffles γ such that γ(0) = 0.

For our purposes, the most important example of a dendriform algebra
is the free algebra on one generator which we now describe (see [Lod01]).
For n ≥ 1, let Yn be the set of planar binary trees with n internal vertices.
We also define Y0 = {|}, the set consisting of the leaf with no vertex. For
example, the elements of Y2 are:

Let ∨ : Yn × Ym → Yn+m+1 be the grafting operation, joining the roots
of two trees to a new root. Every binary tree can be uniquely written as
t = t1 ∨ t2. A subtree of a tree t is any binary tree obtained from a given
vertex of t and considering all edges up from that vertex. There is a partial
order in Yn which turns this set into a lattice.

Definition 2.2.3. Let s be a tree and s′ be a subtree of the form s′ =
(s1 ∨ s2) ∨ s3. Let t be the tree obtained from s by substituting s′ by
s1 ∨ (s2 ∨ s3). The Tamari order on binary trees is defined by the covering
relation s < t.

Example 2.2.4. The following is the Tamari order for n = 3 (increasing
from left to right):
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We denote by K[Y∞] the vector space spanned by all binary trees. This
space is graded by K[Y∞] =

⊕
n≥1 K[Yn]. We define two operations ≻,≺

on K[Y∞] inductively by

s ≻ t = s ∗ t1 ∨ t2 and s ≺ t = s1 ∨ s2 ∗ t

where s = s1 ∨ s2, t = t1 ∨ t2 and where | ∗ t = t ∗ | = t, where | is the leaf
with no vertex. Let s, t be binary trees, we denote by s/t the binary tree
obtained by gluing the root vertex of s to the end of the first leaf of t, and
we let s\t be the binary tree obtained by gluing the root vertex of t to the
end of the last leaf of s.

Theorem 2.2.5. The space K[Y∞] is the free dendriform algebra on one
generator. The operations ≻,≺ can be written as

s ≻ t =
∑

u

where the sum is taken over all u such that s/t ≤ u ≤ (s\t1) ∨ t2 and

s ≺ t =
∑

u

where the sum is over all u such that s1/(s2\t) ≤ z ≤ s\t.

See [Lod01] for the first assertion and [LR02] for the second. This theo-
rem will be generalized in chapter 3.

Remark 2.2.6. By 1.3.8, the free dendriform algebra on a vector space V
is given by

⊕

n≥1

K[Yn]⊗ V ⊗n.

Let A be a dendriform algebra and let A+ = K⊕A. Let x ∈ A, we make
the following definitions:

1. x ≻ 1 = 0,

2. 1 ≻ x = x,

3. x ≺ 1 = x,

4. 1 ≺ x = 0.

Observe that 1 ≻ 1 and 1 ≺ 1 are not defined. When we refer to a
dendriform structure on A+ we will always refer to the structure defined on
A = A+/K. For a linear map ∆ : A → A⊗A we denote by ∆+ its extension
to A+ defined by ∆+(x) = x⊗1+1⊗x+∆(x) for x ∈ A and ∆+(1) = 1⊗1.
We define a dendriform algebra structure on A+ ⊗A+ by
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1. x1 ⊗ x2 ≻ y1 ⊗ y2 = x1 ∗ y1 ⊗ x2 ≻ y2,

2. x1 ⊗ x2 ≺ y1 ⊗ y2 = x1 ∗ y1 ⊗ x2 ≺ y2

whenever x2 6= 1 or y2 6= 1, otherwise we define

1. x⊗ 1 ≻ y ⊗ 1 = x ≻ y ⊗ 1,

2. x⊗ 1 ≺ y ⊗ 1 = x ≺ y ⊗ 1.

Definition 2.2.7. A dendriform bialgebra is a dendriform algebra A to-
gether with a coassociative coproduct ∆ : A → A⊗A such that its extension
∆+ : A+ → A+ ⊗A+ is a dendriform algebra morphism.

Remark 2.2.8. Usually we consider non unital dendriform bialgebras, so
primitive elements are those verifying ∆(x) = 0.

The free dendriform algebra on one generator has a dendriform bialgebra
structure (see [Ron00]). We need the following definition. Observe that the
edges of a tree t are partially ordered: if e2 is an edge inmeadiately above
an edge e1, then we define e1 < e2 and extend by transitivity.

Definition 2.2.9. An admissible set of edges on a tree t is a set Γ =
{e1, . . . , ek} of different edges of t such that no ei is < an ej.

Let Γ = {e1, . . . , ek} be an admissible set of edges of a tree t. We denote
by t(i) the subtree of t starting from the endpoint of ei, i = 1, . . . , k, and we
let t(k+1) be the complement of the t(i) in t (so it has the root vertex). We
define a coproduct ∆ : K[Y∞] → K[Y∞]⊗K[Y∞] by

∆(t) =
∑

Γ

t(1) ∗ · · · ∗ t(k) ⊗ t(k+1)

where the sum is over all admissible set of edges Γ of t.

Theorem 2.2.10. The pair (K[Y∞],∆) is a dendriform bialgebra.

2.3 Brace algebras

There is a version of the Milnor-Moore theorem for dendriform bialgebras.
However, there is much more structure on the primitive subspace than just
a Lie structure. We give now the corresponding definitions (see [Ron02]).
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Definition 2.3.1. A brace algebra ([Gers63], [Kad88]) is a vector space B
together with operations B⊗(n+1) → B,x → x{x1, . . . , xn} (we also use the
notation M1n(x; y1, . . . , yn) for these braces) satisfying

x{y1, . . . , yn}{z1, . . . , zm} =∑
x{z1, . . . , zj1 , y1{zj1+1, . . . , zk2}zk2+1, . . . , zj2 , . . . , zjn , yn{zjn+1, . . . , zkn}, zkn+1, . . . , zm}

where the sum is taken over all possible ways of bracketing the z1, . . . , zm in
order with the y1, . . . , yn. We also admit empty braces, this is just yi{} = yi.

Example 2.3.2. When n = m = 1 we have

x{y}{z} = x{y, z} + x{y{z}} + x{z, y}.

Remark 2.3.3. Any brace algebra is a Lie algebra with

[x, y] = x{y} − y{x}.

Let (A,≻,≺) be a dendriform algebra. We follow the notations of [Ron02]
and write

1. w≻(x1, . . . , xn) = (((x1 ≻ x2) ≻ x3) ≻ . . . ) ≻ xn,

2. w≺(x1, . . . , xn) = x1 ≺ (· · · ≺ (xn−2 ≺ (xn−1 ≺ xn))).

We define brace operations on a dendriform algebra by

x{x1, . . . , xn} =

n∑

i=0

(−1)n−iw≺(x1, . . . , xi) ≻ x ≺ w≻(xi+1, . . . , xn).

Theorem 2.3.4. ([Ron02]) The preceding operations define a brace alge-
bra structure on a dendriform algebra A. Moreover, if A is a dendriform
bialgebra, then its primitive subspace is a brace subalgebra.

Definition 2.3.5. Let (B,M1n) be a brace algebra. Let Dend(B) be the
free dendriform algebra over the vector spaceB (see 2.2.6) and letM ′

1n be the
induced brace operations on Dend(B). The universal enveloping dendriform
algebra of B is the quotient of Dend(B) by the dendriform ideal generated
by the elements of the form M1n(x;x1, . . . , xn)−M ′

1n(x;x1, . . . , xn), where
x, x1, . . . , xn ∈ B, and we denote it by Udend(B).
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We denote by ι the canonical map ι : B → Udend(B).

Remark 2.3.6. As in 2.1.9, the universal enveloping dendriform algebra
has an obvious universal property. One can check that the map

B → Udend(B)+ ⊗ Udend(B)+, x 7→ ι(x)⊗ 1 + 1⊗ ι(x)

is a brace morphism so it extends to a dendriform morphism defined on all
of Udend(B). This gives a dendriform bialgebra structure to Udend(B).

For any dendriform bialgebra A, there is a canonical map Udend(P (A)) →
A, induced by the inclusion Prim(A) → A.

Theorem 2.3.7. ([Ron02]) For any brace algebra B, the canonical map
B → Udend(B) gives an isomorphism B ∼= Prim(Udend(B)). For any conilpo-
tent dendriform bialgebra, the canonical map Udend(P (A)) → A is an iso-
morphism. In other words, the functors Prim and Udend give an equivalence
of categories between the category of conilpotent dendriform bialgebras and
that of brace algebras.

2.4 Eulerian idempotents

In this section we sketch the main ideas of [Ron02] behind the proof of 2.3.7.

Let (A,≻,≺,∆) be a conilpotent dendriform bialgebra. Define≻n: A⊗n →
A inductively by ≻1= Id and ≻n=≻ ◦Id⊗ ≻n−1. Define a map e : A → A
by

e =
∑

n≥1

(−1)n+1 ≻n ◦∆n.

This is well-defined by conilpotency. This map is called the eulerian
idempotent of A. Clearly, e satisfies a recursion formula

e(x) = x− x(1) ≻ e(x(2))

where ∆(x) =
∑

x(1) ⊗ x(2).

Proposition 2.4.1. The eulerian idempotent e has the following properties:

1. e(x) is primitive for all x ∈ A,

2. e(x ≻ y) = 0 for any x, y ∈ A,
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3. For any x ∈ A the following formula holds

x = e(x) +
∑

e(x(1)) ≻ e(x(2))+ · · ·+
∑

w≻(e(x(1)), . . . , e(x(n))) + . . .

where ∆n(x) =
∑

x(1) ⊗ . . . ⊗ x(n).

4. e(x ≺ w≻(y1, . . . , yn)) = (−1)nM1n(x; y1, . . . , yn) for x, y1, . . . , yn ∈
Prim(A).

Corollary 2.4.2. On a conilpotent dendriform bialgebra A, any element can
be written as a sum of elements of the form w≻(y1, . . . , yn) with y1, . . . , yn ∈
Prim(A).

Proof. This is by properties 1 and 3 of 2.4.1.

One can show easily by induction that

∆(w≻(y1, . . . , yn)) =
n−1∑

i=1

w≻(y1, . . . , yi)⊗ w≻(yi+1, . . . , yn).

whenever y1, . . . , yn ∈ Prim(A). Now, one extends the eulerian idempotent
e : A → Prim(A) to a map ǫ : A → T (Prim(A)) by

ǫ(x) =
∑

n≥1 e(x(1))⊗ . . .⊗ e(xn)

where ∆(x) =
∑

x(1) ⊗ . . .⊗ x(n). It is easy to see that ǫ(w≻(y1, . . . , yn)) =
y1 ⊗ . . . ⊗ yn for primitive y1, . . . , yn by using the preceding formula for
∆(w≻(y1, . . . , yn)) and property 2 of 2.4.1. This implies the following:

Corollary 2.4.3. The map ǫ : A → T (Prim(A)) is a coalgebra isomorphism
with inverse y1 ⊗ . . . ⊗ yn 7→ w≻(y1, . . . , yn).

With all these results, it is rather easy to prove a Milnor-Moore theo-
rem for conilpotent dendriform bialgebras. A similar proof works also for
tridendriform algebras and the Dyckm-algebras we define in chapter 3. We
will give a complete proof for Dyckm-algebras in 3.6.
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2.5 Tridendriform algebras

We introduce q-tridendriform algebras by two reasons. First, to illustrate
our initial objective of relating operations on the primitive subspace of bial-
gebras to the McClure-Smith operad. In this case, it is the operad S2

(without differential) which acts on Prim(A) of a 0-tridendriform bialge-
bra A. For another hand, some of the formulas between the operations on
the primitive subspace of a Dyckm-algebra are similar of those holding in
a 1-Gerstenhaber-Voronov algebra. Indeed, Dyck2-algebras are in a certain
sense a non-associative version of 1-tridendriform algebras.

The material of this section is taken from [BR10]. Let K be a field,
q ∈ K and A a vector space over K.

Definition 2.5.1. A q-tridendriform algebra is a vector space A together
with three binary operations ≻, ·,≺: A ⊗ A → A satisfying the following
relations:

1. (x ∗ y) ≻ z = x ≻ (y ≻ z)

2. (x ≻ y) ≺ z = x ≻ (y ≺ z)

3. (x ≺ y) ≺ z = x ≺ (y ∗ z)

4. (x · y) · z = x · (y · z)

5. (x ≻ y) · z = x ≻ (y · z)

6. (x ≺ y) · z = x · (y ≻ z)

7. (x · y) ≺ z = x · (y ≺ z)

where ∗ =≻ +q ·+ ≺ and x, y, z ∈ A.

Remark 2.5.2. Let ≻ = q · + ≻, then ≻,≺ defines a dendriform algebra
structure on the tridendriform algebra A.

As in the case of dendriform algebras, the free q-tridendriform algebra
on one generator can be described in terms of planar trees (not necessarily
binary). Let Tn be the set of planar rooted trees with n + 1 leaves and let
K[T∞] = ⊕n≥1K[Tn]. Observe that any tree t can be written in a unique
way as a grafting of trees t1, . . . , tr. We denote it by t = (t1, . . . , tr).

Theorem 2.5.3. On the space K[T∞] the operations defined inductively by
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t ≻ u = (t ∗ u1, . . . , us)
t · u = (t1, . . . , tr ∗ u1, . . . , us)

t ≺ u = (t1, . . . , tr ∗ u)

where t = (t1, . . . , tr), u = (u1, . . . , us) and ∗ =≻ +q · + ≺ define a q-
tridendriform algebra structure (as in the dendriform case we define t ∗ | =
| ∗ t = t, where | is the leaf with no vertex). Moreover, K[T∞] is the free
q-tridendriform algebra on one generator.

Definition 2.5.4. A q-Gerstenhaber Voronov algebra is a brace algebra
(A,M1n) together with an associative product · satisfying

M1n(x · y; z1, . . . , zn) =∑

0≤i≤j≤n

qj−iM1i(x; z1, . . . , zi)zi+1 . . . zjM1(n−j)(y; zj+1, . . . , zn)

for any x, y, z1, . . . , zn ∈ A.

Remark 2.5.5. Define operations in the McClure-Smith operad by M1n =
12131 . . . 1(n + 1)1 and · = 12. By using the description of the McClure-
Smith operad of [BF04] given in 1.4 one can see that these operations satisfy
the brace relations of 2.3.1 and the relations of a 0-Gerstenhaber-Voronov
algebra:

M1n(x · y; z1, . . . , zn) =
n∑

i=0

M1i(x; z1, . . . , zi) ·M1(n−i)(y; zi+1, . . . , zn).

No signs appear on this formula, this is because the term on the right
comes from expanding 121 . . . 1(n+1)1◦1 12 and each subsequence of 12 has
degree zero (there are no caesuras) so all Koszul signs are +1. In this way, 0-
Gerstenhaber-Voronov algebras are codified by the operad S2 of 1.5 (expect
for some signs), where the operad S2 is considered without differential.

Theorem 2.5.6. Let (A,≻, ·,≺) be a q-tridendriform algebra and let M1n

be the braces coming from the dendriform structure ≻ = q · + ≻,≺ on A.
Then (A,M 1n, ·) is a q-Gerstenhaber-Voronov algebra.

There is a Milnor-Moore theorem for q-tridendriform bialgebras and q-
Gerstenhaber-Voronov algebras which we do not state here (see [BR10]).



Chapter 3

Structure on m-Dyck paths

This chapter contains the original part of this thesis. We define m-Dyck
paths in 3.1 and we use the m-Tamari order on these paths defined in [BP12]
to construct in 3.2 m + 1 binary operations ∗0, . . . , ∗m on the vector space
Dm generated by m-Dyck paths. These operations satisfy certain relations
which generalize those of dendriform algebras. We define a Dyckm-algebra
as a space with m + 1 binary operations satisfying the same relations for
Dm. This is the correct structure on m-Dyck paths: we show in 3.3 that the
space Dm becomes the free Dyckm-algebra on one generator. We also show
that Dm is Dyckk-free for any 0 ≤ k ≤ m. In 3.4 we construct a coproduct
on Dm which respect the ∗i-operations. We do not prove the relations for
the ∗i-operations and neither the formulas for the coproduct since these
proofs are very technical (see [LPR15] for the proofs). The difficulty lies
in the fact that there is not an (easy) inductive definition of the products
∗0, . . . , ∗m for m > 1 (such formulas exists for m = 1, see 2.2). We finally
study the operations arising on the primitive subspace of a Dyckm-bialgebra
A. We show that there are brace operations M1n coming from a dendriform
structure on A, and together with the products ∗1, . . . , ∗m−1, they generate
the subspace of primitive elements. The most difficult part is to find the
relations for M1n(x ∗i y;−), this is done in 3.5. The chapter ends with the
statement and proof of a Milnor-Moore type theorem for Dyckm-bialgebras.
We have not yet identified operations on the primitive subspace of a Dyckm-
bialgebra as operations of the McClure-Smith operad. This is to be done in
a future work.

35
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3.1 m-Dyck paths

Definition 3.1.1. For m,n ≥ 1, an m-Dyck path of size n is a path on
the real plane R

2, starting at (0, 0) and ending at (2nm, 0), consisting on
up steps (m,m) and down steps (1,−1), which never goes below the x-axis.
Note that the initial and terminal points of each step lean on Z

2
+.

We denote by Dyckmn the set of all m-Dyck paths of size n. We also
denote by Dm,n the vector space (over a given field K) spanned by Dyckmn
and by Dm the direct sum

⊕
n≥1Dm,n. We denote by dm,n = dim(Dm,n).

The set of down steps of an m-Dyck path P is denoted by DW(P ). We also
denote by ρm the unique m-Dyck path of size 1.

Example 3.1.2. The elements of Dyck22 are
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Definition 3.1.3. Let P ∈ Dyckmn and let u1, . . . , un be the up steps of P
ordered from left to right. We say that uk has rank k and if d is a down step
in between uk and uk+1, we say that d has level k. We denote by L(P ) the
number of down steps of maximal level of P .

Definition 3.1.4. Let P,Q be two m-Dyck paths, of sizes n1, n2 respec-
tively. Let d1, . . . , dL(P ) be the maximal level down steps of P from left to
right. For each 0 ≤ j ≤ L(P ) we define P ×j Q as the m-Dyck path of size
n1+n2 obtained by glueing the initial point of Q to the end point of dL(P )−j

and glueing the down steps dL(P )−j+1, . . . , dL(P ) to the end of Q.

Example 3.1.5. For the following 2-Dyck paths P,Q
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the Dyck path P ×2 Q is
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Definition 3.1.6. An m-Dyck path P is said to be irreducible (or prime)
if it cannot be written as P = Q×0 R for lower size Dyck paths Q,R. We
denote by Irr(Dm) the set of irreducible m-Dyck paths.

Remark 3.1.7. It is clear that ×0 defines an associative product on Dm

and that any m-Dyck path P can be written uniquely as P = P1 ×0 · · · ×0

Pr for irreducible Dyck paths P1, . . . , Pr. This means that (Dm,×0) =
T (K[Irr(Dm)]) as associative algebras.

In what follows we will also consider the point • as an m-Dyck path (of
size 0) and L(•) = 0, so P ×j • = P for 0 ≤ j ≤ L(P ) and • ×0 P = P for
any m-Dyck path P .

Notation 3.1.8. Let P0, . . . , Pm be m-Dyck paths of size n0, . . . , nm ≥ 0
respectively. We denote by (P0, . . . , Pm) the m-Dyck path

P0 ×0 (((ρm ×m P1)×m−1 P2)×m−2 . . . Pm−1)×1 Pm.

Proposition 3.1.9. Any m-Dyck path P of size n ≥ 1 can be written
uniquely as P = (P0, . . . , Pm) where the sum of the sizes of the Pi is n− 1.

Proof. Write P = P0×0Q with Q irreducible of size ≥ 1. Draw an horizontal
line starting from the end point of the first up step of Q. Let P1 be the
maximal sub Dyck path of P above this line. Now draw an horizontal
line from the end point of the first down step after P1 and let P2 be the
maximal sub Dyck path above this line. Repeating this process until we
reach the x-axis, we get m-Dyck paths P0, . . . , Pm which clearly satisfy P =
(P0, . . . , Pm).

Remark 3.1.10. In a very similar way, one can prove that any m-Dyck
path P can be uniquely written as

P = (((ρm ×m P0)×m−1 P1)×m−2 . . . )×0 Pm.

We write this by P =
∨
(P0, . . . , Pm).

Remark 3.1.11. Let dm(x) be the generating series of D+
m, that is, dm(x) =∑

n≥0 dm,nx
n (where dm,0 = 1). Then the preceding proposition implies that

dm(x) satisfies the following formula:

dm(x)− 1 = xdm(x)m+1.

When m = 1 the preceding formula is also satisfied by the generating
series of binary trees, so there is a bijection between 1-Dyck paths and binary
trees.
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3.2 Operations on m-Dyck paths

We now define the m-Tamari order of [BP12] on Dyckmn and we use it to
define m+ 1 binary operations ∗i : Dm ⊗Dm → Dm for 0 ≤ i ≤ m.

Definition 3.2.1. Let P ∈ Dyckmn and let d be a down step of P followed
by an up step u. Consider the shortest sub Dyck path P ′ of P starting from
u. Define a new m-Dyck path P(d) by exchanging d with P ′. The m-Tamari
order on Dyckmn is defined by setting P < P(d) and extending by transitivity.

Example 3.2.2. The following is the Tamari order on Dyck23:
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Remark 3.2.3. A bijection φ : Yn → Dyck1n can be constructed inductively
by setting φ(t ∨ s) = (φ(t), φ(s)). Under this bijection, one can see that the
Tamari order on binary trees correspond to the 1-Tamari order defined on
1-Dyck paths.

Definition 3.2.4. Let P be a m-Dyck path of size n. The standard coloring
of P is a map αP from the set of down steps DW(P ) to the set {1, . . . , n},
defined recursively as follows:

1. For P = ρm ∈ Dyckm1 , αρm is the constant function 1.

2. For P =
∨
(P0, . . . , Pm), with Pj ∈ Dyckmnj

, the set of down steps of P
is the disjoint union

DW(P ) = {1, . . . ,m}
∐

DW(P0)
∐

· · ·
∐

DW(Pm),



3.2. OPERATIONS ON M -DYCK PATHS 39

where the first subset {1, . . . ,m} corresponds to the steps of ρm. The
map αP is defined by:

αP (d) =

{
1, for d ∈ {1, . . . ,m},

αPj
(d) + n0 + · · · + nj−1 + 1, for d ∈ DW(Pj),

where 0 ≤ j ≤ m.

Let P be a m-Dyck path of size n and let d1, . . . , dL(P ) be the maximal
level down steps of P from left to right. For any 0 ≤ i ≤ m, let

1. ci(P ) be the minimal number of elements such that the word

αP (dL(P )−ci(P )+1) . . . αP (dL(P ))

contains i times an integer in {1, . . . , n} and no integer more than i
times,

2. Ci(P ) be the maximal integer such that the word

αP (dL(P )−Ci(P )+1) . . . αP (dL(P ))

contains at least one integer repeated i times and no integer repeated
i+ 1 times.

Let P,Q be two m-Dyck paths of sizes n1, n2 respectively. For any
0 ≤ i ≤ m, let P/iQ and P\iQ be the Dyck paths (of size n1 + n2) defined
as follows:

1. P/iQ := P ×ci(P ) Q,

2. P\iQ := (P ×L(P ) (Q1 ×0 . . .×0 Qr))×Ci(P ) Qr,

where Q = Q1 ×0 . . . ×0 Qr, with Qi prime for 1 ≤ i ≤ r. We define a
binary product ∗i : Dm⊗Dm → Dm in terms of the m-Tamari order for any
0 ≤ i ≤ m by the following formula:

P ∗i Q =
∑

P/iQ≤Z≤P\iQ

Z.

For the proof of the following theorem, see [LPR15].
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Theorem 3.2.5. The products ∗i : Dm ⊗ Dm → Dm satisfy the following
relations:

1. x ∗i (y ∗j z) = (x ∗i y) ∗j z for any i < j;

2. x∗i (y ∗0 z+ · · ·+ y ∗i z) = (x∗i y+ · · ·+x∗m y)∗i z for any 0 ≤ i ≤ m.

Definition 3.2.6. A Dyckm-algebra is a vector space A together with m+1
binary operations ∗i for 0 ≤ i ≤ m satisfying the relations of 3.2.5.

3.3 Freedom of Dm

We now turn to prove that Dm is the free Dyckm-algebra on one generator.

Proposition 3.3.1. Each element of Dm is a linear combination of elements
of the form P1 ∗i P2 where 0 ≤ i ≤ m and P1, P2 have strictly lower size.

Proof. Let P ∈ Dm of size n and suppose the proposition is true for elements
of size < n. The proposition is obviously true for the maximal element
Pmax of size n, so suppose it is also true for elements Q of size n such that
P < Q < Pmax in the m-Tamari order. Write P = (P0, . . . , Pm), and let
i ≥ 0 be the last index such that Pi 6= •. If i = 0 then P is a concatenation
of two nontrivial elements, P = P0 ∗0 R and we are done. If i > 0 and we
let P ′ be the Dyck path obtained from P by collapsing Pi to a point, then
both P ′ and Pi have lower size than P and

P ′ ∗m−i+1 Pi = P +
∑

Qk

where the Qk are > P . By our induction assumptions, this proves the
proposition.

Theorem 3.3.2. The free Dyckm-algebra on one generator is isomorphic
to (Dm, ∗0, . . . , ∗m).

Proof. We will prove this theorem following the argument of [LR06] (where
a similar theorem is proved for 2-associative algebras). Let Dyckm be the
free Dyckm-algebra on one generator, say x. Since Dm is a Dyckm-algebra,
sending x to the size 1 element of Dm defines an homomorphism of Dyckm-
algebras φ : Dyckm → Dm. By 3.3.1 this homomorphism is surjective. Let
Dyckmn be the degree n part of Dyckm. In order to prove that φ is injective,
we only need to show that
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dim(Dyckmn ) ≤ dim(Dm,n)

for any n ≥ 1. A spanning set of Dyckmn consists of words of the form
x ∗j1 x ∗j2 . . . x ∗jn−1

x with a certain way of parenthezing. This can be
identified with a binary tree with n−1 vertices with each vertex colored with
a number between 0 and m (corresponding to the operations ∗i, 0 ≤ i ≤ m).
Now, by the relations in a Dyckm-algebra, any product (x∗iy)∗j z with i ≤ j
can be expressed in terms of products (x∗k y)∗l z where k > l or x∗k (y ∗l z)
for any k, l. In this way, the dimension of Dyckmn is ≤ bn−1, where bn is the
number of binary trees with n vertices with the following two conditions:

1. Each vertex is colored with a color between 0 and m;

2. Whenever there is a vertex colored with k and a vertex inmediately to
the right of k with colour j, then k > j.

Hence we only need to show that bn = dm,n+1. Let b−1 = 1 and f(x) =∑
n≥−1 bnx

n+1, we will show that the numbers bn satisfy the same recursion
formula as the dm,n+1 (see 3.1.11), that is,

xf(x)m+1 = f(x)− 1 (3.1)

and since b−1 = dm,0 = 1, this will prove our theorem.
Let bin be the number of such trees with root vertex colored with i and

let fi(x) =
∑

n≥0 b
i
nx

n+1 where we define bm0 = 1 and bk0 = 0 for k < m so
that we have

f − 1 =

m∑

i=0

fi. (3.2)

It is easy to see that fm = xf and that for k < m and n ≥ 1

bkn =
∑

blibj

where the sum is taken over the i, j, l such that l > k, i + j = n − 1 and
i, j ≥ 0. This gives the formula

fk =
∑

l>k

flf

for k < m and solving we get

fm−i(x) = xf i(f − 1) (3.3)

for i = 1, . . . ,m. Putting together 3.2 and 3.3, equation 3.1 follows inmedi-
ately:
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f − 1 =
m∑

i=0

fm−i =
m∑

i=1

xf i(f − 1)+xf = x(f − 1)
fm+1 − f

f − 1
+xf = xfm+1.

Let V be a vector space. Since Dm is the free Dyckm-algebra on one
generator and the variables in the relations of an Dyckm-algebra stay in the
same order, the free Dyckm-algebra on V is

Dyckm(V ) =
⊕

n≥1

Dm,n ⊗ V ⊗n.

Suppose V is graded, V =
⊕

n≥1 Vn where each Vn is finite dimensional,
and let v(x) be the generating series of V corresponding to this grading. If
the generating series of Dm is dm(x), then the series of Dyckm(V ) is d(v(x)).
Using these facts, we show that Dm is Dyckk-free for any 0 ≤ k < m.

Lemma 3.3.3. Let dm(x) be the generating series of Dm. The following
formula holds

dm(x) = dk(xdm(x)m−k)

for all 0 ≤ k ≤ m.

Proof. Clearly, it is enough to prove this for k = m − 1. Let d′m(x) =
dm(x)−1 and let gm(x) be the inverted series of d′m(x), that is, a series such
that d′m(gm(x)) = gm(d′m(x)) = x (such a g exists since d′(0) = 0). Since
x(1 + d′m(x))m+1 = d′m(x), replacing x by gm(x) we obtain the following
formula for gm(x):

gm(x) =
x

(1 + x)m+1
.

Since clearly (1 + x)gm(x) = gm−1(x), replacing x by d′m(x) and applying
d′m−1(x) to both sides we get the desired formula d′m−1(x(1 + d′m(x))) =
d′m(x).

Observe that the operations ∗0, . . . , ∗k−1, ∗k + · · · + ∗m define a Dyckk-
algebra structure on Dm.

Theorem 3.3.4. As a Dyckk-algebra, (Dm, ∗0, . . . , ∗k−1, ∗k + · · · + ∗m) is
free on the set W of elements of the form (P0, . . . , Pm) where P0 = • and
Pm−k+1 = · · · = Pm = •.
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Proof. We show first that W has the correct dimensions, that is, that the
free Dyckk-algebra on W , which is

Dyckk(W ) =
⊕

n≥1 Dk,n ⊗K[W ]⊗n

is isomorphic to Dm as a graded vector space. Indeed, it is easy to see that
the generating series w(x) of W satisfies w(x) = xd(x)m−k so the series
of Dyckk(W ) is dk(xd(x)

m−k) and this is d(x) by the preceding lemma, as
we wanted. We show now that the Dyckk-subalgebra A generated by W
and the operations ∗0, . . . , ∗k−1, ∗k + · · ·+ ∗m which we denote respectively
by ∗′0, . . . , ∗

′
k coincides with Dm. The idea is the same as in 3.3.1. Let

P = (P0, . . . , Pm) ∈ Dm of size n and suppose that all elements of size < n
and all elements Q > P (in the m-Tamari order) of size n are contained in
A. If P0 6= • then

P = P0 ∗0 (•, P1, . . . , Pm)

so P ∈ A by induction. Now suppose P0 = • and P /∈ W , so there is an
i > m− k (and this implies m+ 1− i ≤ k) such that Pi 6= • and Pj = • for
j > i. Let P ′ be the m-Dyck path obtained from P by replacing Pi by •.
Then we have

P = P ′ ∗′m+1−i Pi +
∑

Qk

where the Qk are > P . By the induction assumptions, this implies that
P ∈ A.

3.4 A diagonal for m-Dyck paths

In this section we define a coproduct ∆ : Dm → Dm⊗Dm which respects the
∗i-operations. This generalizes the coproduct on 1-Dyck paths (or binary
trees) defined in [Ron00]. First, we extend the ∗i-operations to D+

m: for
P ∈ Dm (so P 6= 1) define

1. P ∗0 1 = 0 and 1 ∗0 P = P ,

2. P ∗i 1 = 1 ∗i P = 0 for 0 < i < m;

3. P ∗m 1 = P and 1 ∗m P = 0.

As usual, 1 ∗i 1 is undefined for any i. Let D+
m ⊗D+

m be the positive

degree part of D+
m ⊗ D+

m, that is, D+
m ⊗D+

m = D+
m ⊗ Dm ⊕ Dm ⊗ D+

m. We

define a Dyckm-algebra structure on D+
m ⊗D+

m by
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1. (x1 ⊗ x2) ∗i (y1 ⊗ y2) = (x1 ∗ y1)⊗ (x2 ∗i y2) if x2 6= 1 or y2 6= 1;

2. (x⊗ 1) ∗i (y ⊗ 1) = (x ∗i y)⊗ 1.

It is easy to see that this indeed defines a Dyckm-algebra structure.

Definition 3.4.1. Let P be an m-Dyck path. A central vertex of P is a
vertex of an up step of P which is not a common vertex to a down step of
P .

Observe that the initial vertex of P is a central vertex.

Example 3.4.2. Consider the following 2-Dyck path:

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

The central vertices are marked in green.

Definition 3.4.3. For each central vertex v of P consider the horizontal
line through v and consider the maximal path above this line starting from
v. The vertices of down steps of this path which lie on this line are called
the admissible vertices of v. An admissible cut of P is any path starting
from a central vertex v of P and ending on an admissible vertex of v. The
whole path P is not considered as an admissible cut. The level of a cut P ′

is the level of the down steps of P of maximal level which belong to P ′.

Example 3.4.4. Consider the Dyck path of the preceding example. The
admissible cuts are the paths above the dotted red lines.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

Observe that the central vertex (2,2) has as admissible vertices the points
(4,2) and (12,2), so there are two admissible cuts corresponding to the lowest
red dotted line.
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Let Ad(P ) be the set of admissible cuts of P . This set is partially ordered
in the following way: if P1, P2 ∈ Ad(P ), then P1 ≤ P2 if P1 is contained in
P2. We call this the cut order of Ad(P ).

Definition 3.4.5. Let P be an m-Dyck path. The (reduced) coproduct
∆ : Dm → Dm ⊗Dm is defined by

∆(P ) =
∑

P1 ∗ · · · ∗ Pk ⊗ P/{P1, . . . , Pk}

where the sum ranges over all P1, . . . , Pk ∈ Ad(P ) which are not com-
parable under the preceding partial order, ordered by increasing level, and
P/{P1, . . . , Pk} is the m-Dyck path obtained by collapsing all the Pi, 1 ≤
i ≤ k, to a point.

The reduced coproduct extends to a coproduct ∆+ : Dm → D+
m ⊗D+

m as

∆+(P ) = ∆(P ) + P ⊗ 1 + 1⊗ P .

The main result is the following:

Theorem 3.4.6. The coproduct ∆ satisfies

∆+(P ∗i Q) = ∆+(P ) ∗i ∆
+(Q)

for any 0 ≤ i ≤ m and P,Q ∈ Dm, that is, ∆+ is a morphism of Dyckm-
algebras.

See [LPR15] for a proof.

Corollary 3.4.7. The coproduct ∆+ (hence also ∆) is coassociative.

Proof. We need to show that the composition

Dm
∆+

// D+
m ⊗D+

m

∆+⊗1−1⊗∆+

// D+
m ⊗D+

m ⊗D+
m

is zero. There is a Dyckm-algebra structure on D+
m ⊗D+

m ⊗D+
m given by:

(x1 ⊗ x2 ⊗ x3) ∗i (y1 ⊗ y2 ⊗ y3) = (x1 ∗ y1)⊗ (x2 ∗ y2)⊗ (x3 ∗i y3)
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and we make similar considerations as in the case of D+
m ⊗D+

m when x3 =
y3 = 1. Since ∆+ is a Dyckm-morphism, it is easy to see that both ∆+ ⊗
1, 1 ⊗∆+ are so. By 3.3.2, coassociativity of ∆+ follows from the fact that

(∆+ ⊗ 1− 1⊗∆+)(∆+ρm) = 0

for the generator ρm of Dm.

Definition 3.4.8. A Dyckm-bialgebra is a Dyckm-algebra A together with
a coassociative coproduct ∆ : A → A ⊗ A such that its extension ∆+ :
A → A+ ⊗A+ is a morphism of Dyckm-algebras, where A+ ⊗A+ has a

Dyckm-algebra structure defined in the same way as for D+
m ⊗D+

m.

In summary, Dm is a Dyckm-bialgebra with the coproduct of 3.4.5.

3.5 Operations on the space of primitive elements

In this section we introduce the algebras arising on the primitive subspace
of a Dyckm-bialgebra, which we call GV m-algebras. These are brace alge-
bras together with m − 1 binary operations ∗1, . . . , ∗m−1 satisfying certain
relations. The most difficult task of the present section is to establish the
relationship between braces and the operations ∗k, which satisfy a generali-
sation of M. Gerstenhaber and A. Voronov formula for M1n(x · y; z1, . . . , zn)
given in 2.5.

Notation 3.5.1. For any binary tree t ∈ Yn−1 with vertices colored with
binary operations, and elements y1, . . . , yn in a Dyckm-algebra, we denote by
t[y1, . . . , yn] the element y1α1 . . . αn−1yn with parenthesis given by t, where
the αi are the operations in the corresponding vertices of t. If all the αi

represent the same operation α, we write tα[y1, . . . , yn]. The tree t = |
represents the identity operation. We denote by r(t) the number of right
leaves of a binary tree and by tn the maximal element (in the Tamari order)
of Yn.

Recall that on any dendriform algebra (A,≻,≺) there are brace opera-
tions defined by

M1n(x; y1, . . . , yn) =
n∑

i=0

(−1)n−iw≺(y1, . . . , yi) ≻ x ≺ w≻(yi+1, . . . , yn).
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Consider the dendriform structure ≻= ∗0,≺= ∗1+ · · ·+∗m on a Dyckm-
algebra A. We denote by M1n the corresponding braces. Define new braces,
which we call reduced braces, M̃1n by

M̃1n(x; y1, . . . , yn) =

n∑

i=0

(−1)n−iw≺(y1, . . . , yi) ≻ x ∗m w≻(yi+1, . . . , yn).

A sequence of linear operators Sn : A⊗n → A defined for n ≥ 1 is said
to satisfy the canonical recursion formula if

z1 ≻ Sn(z2, z3, . . . , zn+1)− Sn(z1 ≻ z2, z3, . . . , zn+1) = Sn+1(z1, . . . , zn+1)

for all zi ∈ A and n ≥ 1. Observe that if two sequences of operators defined
for n ≥ 1 satisfy this formula and they coincide when n = 1, then they are
equal for all n.

Lemma 3.5.2. Let A be a Dyckm-algebra and ∗ a binary product on A
satisfying (x ≻ y)∗z = x ≻ (y∗z). Consider two families of linear operators
Sn, Tn : A⊗n → A for n ≥ 1 and suppose that the family Sn satisfy the
canonical recursion formula. Define S0 and T0 as empty or as a specified
element of A (different elements could be taken). Then the operators

Bn(z1, . . . , zn) =
n∑

i=0

Si(z1, . . . , zi) ∗ Tn−i(zi+1, . . . , zn)

satisfy the canonical recursion formula provided that

z1 ≻ (S0 ∗ Tn(z2, . . . , zn+1))− S0 ∗ Tn(z1 ≻ z2, . . . , zn+1) =
S0 ∗ Tn+1(z1, . . . , zn) + S1(z1) ∗ Tn(z2, . . . , zn+1)

for all z1, . . . , zn+1 ∈ A and n ≥ 1.

Proof. This is trivial.

Proposition 3.5.3. The usual braces M1n and the reduced braces M̃1n sat-
isfy the canonical recursion formula.

Proof. Define Sn(z1, . . . , zn) = w≺(z1, . . . , zn) ≻ x for n ≥ 1 and S0 = x, and
let Tn(z1, . . . , zn) = (−1)nw≻(z1, . . . , zn) (with T0 empty). It is easy to check
that these operators together with the product ∗ =≺ satisfy the conditions
of the lemma and that M1n(x; z1, . . . , zn) = Bn(z1, . . . , zn) proving what
we wanted. The assertion for the reduced braces is obtained by taking
∗ = ∗m.
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Lemma 3.5.4. If Sn(z1, . . . , zn) = M1n(x; z1, . . . , zn) for all n ≥ 0 (x fixed)
and the product ∗ satisfies further that (x ≺ y) ∗ z = x ∗ (y ≻ z)+x ∗ (y ∗ z),
then the operators Bn satisfy the canonical recursion formula provided

z1 ≻ Tn(z2, . . . , zn+1)− Tn(z1 ≻ z2, . . . , zn+1) + z1 ∗ Tn(z2, . . . , zn+1) =
Tn+1(z1, . . . , zn+1).

Proof. This follows easily using the given properties of ∗, the fact that the
M1n satisfy the canonical recursion formula, and the recursion formula for
Tn.

The braces M̃1n respect the operation ∗1 in the sense that they satisfy
a Gerstenhaber-Voronov type formula.

Proposition 3.5.5. Given a Dyckm algebra A, the operations M1n and M̃1n

defined previously satisfy that:

M̃1n(x ∗1 y; z1, . . . , zn) =∑

0≤i≤j≤n

M1i(x; z1, . . . , zi)∗1 (zi+1 ∗1 · · · ∗1 (zj ∗1 M̃1(n−j)(y; zj+1, . . . , zn)) . . . ),

for any x, y, z1, . . . , zn ∈ A.

Proof. Define T0 = y and

Tn(z1, . . . , zn) =

n∑

i=0

t∗1i [z1, . . . , zi, M̃1(n−i)(zi+1, . . . , zn)].

It is easy to check that these operators and the operation ∗1 satisfy the
conditions of 3.5.4. The operator Bn(z1, . . . , zn) given by these operators
and the product ∗1 is exactly the right hand side of our equation. Since
clearly B1(z) = x ∗1 (M̃11(y; z) + z ∗1 y)+M11(x; z) ∗ y equals M̃11(x ∗1 y; z)

and the M̃1n also satisfy the canonical recursion formula, then M̃1n(x ∗1
y; z1, . . . , zn) = Bn(z1, . . . , zn) for all n.

Proposition 3.5.6. Given a Dyckm algebra, for any collection of elements
x, z1, . . . , zn ∈ A we get that:

M̃1n(x; z1, . . . , zn) =
n∑

i=0

t
∗′
1

n−i[M1i(x; z1, . . . , zi), zi+1, . . . , zn]

where ∗′1 = ∗1 + · · ·+ ∗m−1.
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Proof. Define Tn(z1, . . . , zn) = t
∗′
1

n−1[z1, . . . , zn] for n ≥ 1, and let T0 be
empty. These operators together with the product ∗′1 satisfy the conditions
of 3.5.4, and the corresponding operator Bn(z1, . . . , zn) is the right hand side

of our formula. Since clearly M̃11 = B1, we have M̃1n = Bn for all n.

We denote by Tn the set of all trees (not necessarily binary) with n+ 1
leaves as in 2.5 and by cn the n-th corolla, that is, the tree with one vertex
and n + 1 leaves. In order to write down a nice formula for M1n(∗k;−) we
introduce the following definitions.

Definition 3.5.7. A right comb tree is a binary tree obtained as a concate-
nation of maximal binary trees in the Tamari order. The set of right comb
trees of n vertices will be denoted by RTn. The leaf with no vertex is also
considered as a right comb tree, and r(|) = 1.

There are exactly 2n−1 right comb trees of n vertices (for n ≥ 1).

Definition 3.5.8. An M -tree is a tree obtained from a maximal binary
tree tn by grafting two corollas ci, cj (i, j ≥ 0) one into the first leave of tn
and the other in any other leave. We denote by MTn the set of M -trees
contained in Tn. A right comb M -tree is a tree of the form u/v, where u is
an M -tree and v is a right comb tree. We denote by RMTn the set of right
comb M -trees of Tn. Let t be a right comb M -tree, we denote by t̃ the right
comb binary tree obtained from t be deleting the two corollas.

For a right comb M -tree t ∈ RMTn+1 we will assume the vertex of the
first corolla represents M1i and the vertex of the second one represents M1j .
We will put a variable x into the first leave of ci and a variable y into the
first one of cj . We put variables z1, . . . , zn in order into the other leaves
of t. All other vertices of our tree t represents a binary operation to be
specified. Using these conventions, for any t ∈ RMTn+1, we denote the
element t[x, z1, . . . , zi, . . . , y, zp+1, . . . , zp+j , . . . , zn] just by t. Inserting 3.5.6

into 3.5.5 and using our convention, we rewrite our formula for M̃1n(x∗1y;−).

Lemma 3.5.9. We have

M̃1n(x ∗1 y; z1, . . . , zn) =
∑

t∈MTn+1

t.

The vertices of t̃ are colored in the following way: write t̃ = u1 \ u2 where
the second corolla of t is inserted in the first leave of u2. Then we color the
vertices of u1 with ∗1 and those of u2 with ∗′1 = ∗1 + · · ·+ ∗m−1.
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Proposition 3.5.10. The following formula holds:

M1n(x ∗1 y; z1, . . . , zn) =
∑

t∈RMTn+1

(−1)r(t̃)−1t.

The vertices of t̃ are colored in the following way: write t = u/v there u is
an M -tree and v is a right comb tree. The vertices of u are colored as in the
preceding lemma, and those of v are colored with ∗′1.

Proof. We use the following obvious equality:

RMTn+1 = MTn+1 ∪
n−1⋃

i=0

{u/tn−i | u ∈ RMTi+1}.

Now, by 3.5.6 we have

M1n(∗1;−) = M̃1n(∗1;−)−
n−1∑

i=0

tn−i[M1i(∗1;−), . . . ]

=
∑

t∈MTn+1

t−
n−1∑

i=0

∑

u∈RMTi+1

(−1)r(ũ)−1tn−i[u, . . . ]

by the preceding lemma and induction. Now observe that tn−i[u, . . . ] =
u/tn−i and that r(ũ) = r(ũ/tn−i)− 1 so by using the equality for RMTn+1,
we get our theorem. The coloring of the vertices is obvious from the induc-
tion.

Using the preceding proposition, we can find a formula for M1n(x∗k y;−)
for any 1 ≤ k ≤ m− 1.

Proposition 3.5.11. Using the same notation as before, we have

M1n(x ∗k y; z1, . . . , zn) =
∑

t∈RMTn+1

(−1)r(t̃)−1t

where the vertices of u1 are colored in all possible ways with the oper-
ations ∗1, . . . , ∗k with at least one ∗k used, and all other vertices of t̃ are
colored with ∗′1 = ∗1 + · · ·+ ∗m−1.

Proof. For any k let ∗′k = ∗1 + · · ·+ ∗k, then ∗0, ∗
′
k, ∗k+1 + · · ·+ ∗m defines a

Dyck2-algebra structure on A, where ∗′k now plays the role of ∗1. In this way,
we can apply the preceding proposition to get a formula for M1n(x ∗′k y;−).
Substracting M1n(x∗

′
k y;−)−M1n(x∗

′
k−1y;−) we get the desired result.
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Let us provide a formal definition for the algebraic structures which ap-
pear naturally on the subspace of primitive elements of any Dyckm-bialgebra.

Definition 3.5.12. A GV m-algebra W is a brace algebra (W,M1n) together
with binary operations ∗1, . . . , ∗m−1 such that

1. (x ∗i y) ∗j z = x ∗i (y ∗j z) for any x, y, z ∈ W and i < j;

2. M1n(x ∗k y;−) satisfies the formula of 3.5.11 for any 1 ≤ k ≤ m− 1.

Theorem 3.5.13. Let (A, ∗0, . . . , ∗m) be a Dyckm-algebra. Let M1n be the
brace operations coming from the dendriform structure ≻0= ∗0,≺

0= ∗1 +
· · ·+ ∗m. Then (A,M1n, ∗1, . . . , ∗m−1) is a GV m-algebra. Moreover, if A is
a Dyckm-bialgebra, then Prim(A) is a GV m-subalgebra of A.

3.6 Milnor-Moore theorem for Dyckm-bialgebras

We now turn to prove that the brace operations M1n together with the
binary products ∗1, . . . , ∗m−1 generate all the primitive elements of Dm. We
will use the eulerian idempotent of dendriform algebras defined in 2.4. Using
the standard properties of this operator, we show the following two lemmas.

Lemma 3.6.1. For any x ∈ Dm, y ∈ Prim(Dm) and 0 < i < m the following
formula holds:

e(x ∗i y) = e(x) ∗i y.

Proof. Since y is primitive and 0 < i < m, we have

∆(x ∗i y) = x(1) ⊗ x(2) ∗i y

so

e(x ∗i y) = x ∗i y − x(1) ≻ e(x(2) ∗i y)

= x ∗i y − x(1) ≻ (e(x(2)) ∗i y) by induction

= (x− x(1) ≻ e(x(2))) ∗i y

= e(x) ∗i y

therefore proving the lemma.
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Lemma 3.6.2. For x, y1, . . . , yn ∈ Prim(Dm), we have

e(x ∗m w≻(y1, . . . , yn)) = (−1)nM̃1n(x; y1, . . . , yn).

Proof. By using 2.4.1 and the formulas of 3.5.6 relating M1n and M̃1n, we
have

M̃1n(x; y1, . . . , yn) =

n∑

i=0

M1i(x; y1, . . . , yi) ∗
′ t∗

′

n−i−1(yi+1, . . . , yn)

=

n∑

i=0

e((−1)ix ≺ w≻(y1, . . . , yi)) ∗
′ t∗

′

n−i−1(yi+1, . . . , yn)

=
n∑

i=0

e((−1)i(x ≺ w≻(y1, . . . , yi)) ∗
′ t∗

′

n−i−1(yi+1, . . . , yn))

where ∗′ = ∗1 + · · ·+ ∗m−1 and we have used lemma 3.6.1. In this way, it is
enough to prove the following formula:

t∗
′

n (x, y1, . . . , yn) =

n∑

i=1

(−1)i−1(x ≺ w≻(y1, . . . , yi)) ∗
′ t∗

′

n−i−1(yi+1, . . . , yn)

+ (−1)nx ∗m w≻(y1, . . . , yn).

This is done easily by induction using the formula

x ∗′ (y ∗′ z) = (x ≺ y) ∗′ z − x ∗′ (y ≻ z).

Let Irr(Dm) be the set of prime (or irreducible) elements of Dm. Clearly
T (Irr(Dm)) ∼= Dm and since Dm is a conilpotent dendriform bialgebra,
by 2.4.3 we have T (Prim(Dm)) ∼= Dm. This implies that the number of
irreducibles of degree n is equal to the dimension of the degree n part of
Prim(Dm). Using these facts, we prove:

Proposition 3.6.3. The elements e(x), where x is a prime element of Dm,
form a basis of Prim(Dm).

Proof. It is enough to prove that the e(x), x prime, are linearly independent.
But by definition of e, we have

e(x) = x+ reducible elements
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and this implies linear independence immediately.

Theorem 3.6.4. The subspace A of Dm generated by the degree 1 element
ρm and the operations M1n and ∗1, . . . , ∗m−1 coincides with Prim(Dm).

Proof. Assume inductively that Prim(Dm)k = Ak for k < n and let x ∈
Irr(Dm)n, we will prove that e(x) ∈ A. This will imply that Prim(Dm)n =
An by 3.6.3. Suppose that e(y) ∈ A for any y > x in the m-Tamari order.
Write x = (•, x1, . . . , xm) and suppose first that x2 = · · · = xm = •, that is,
x = ρm ∗m x1. By 2.4.1, x1 is a sum of elements of the form w≻(y1, . . . , yk)
with y1, . . . , yk ∈ Prim(Dm) (so the yi ∈ A by induction) and

e(ρm ∗m w≻(y1, . . . , yk)) = (−1)kM̃1k(ρm; y1, . . . yk)

which implies that e(x) ∈ A (observe that the subspace generated by the

M̃1n and the ∗1, . . . , ∗m−1 is the same as A by 3.5.6). Observe that this
proves that e(xmax) ∈ A, where xmax is the maximal element in the Tamari
order of Dm,n. Now suppose xi 6= • for i > 1 and xi+1 = · · · = xm = •.
Then if x′ is the Dyck path obtained from x by collapsing xi to a point (as
in 3.3.1), we have

x′ ∗m+1−i xi = x+
∑

yk

where the yk are > x in the Tamari order. By our assumptions, we have

e(x′ ∗m+1−i xi) ≡ e(x) (mod A)

so the theorem will proved by the following claim.

Claim: e(y ∗i z) ∈ A for any y, z of degree < n such that |y| + |z| = n
and 0 < i < m.

Recall that we are assuming e(Irr(Dm)k) = Ak for k < n. As before,
it is enough to prove the claim when z = w≻(y1, . . . , yk) with yi primitive
and |z| < n so we perform induction on k. When k = 1, we have by
3.6.1 that e(y ∗i z) = e(y) ∗i z and by induction both e(y), z ∈ A so also
e(y ∗i z) ∈ A. To simplify notation, write wl

≻(y) for w
l
≻(y1, . . . , yl) and note

that wl
≻(y) ≻ yl+1 = wl+1

≻ (y) for any l. We have

e(y ∗i w
k
≻(y)) = e(y ∗i (w

k−1
≻ (y) ∗0 yk))

=
i∑

j=1

−e(y ∗i (w
k−1
≻ (y) ∗j yk)) +

m∑

j=i

e((y ∗j w
k−1
≻ (y)) ∗i yk).

(3.4)
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By induction, the sum on the right hand side belongs to A. Now, observe
that

wk−1
≻ (y) ∗j yk = (wk−2

≻ (y) ≻ yk−1) ∗j yk = wk−2
≻ (y) ≻ (yk−1 ∗j yk)

= wk−1
≻ (y1, . . . , yk−2, yk−1 ∗j yk)

and since 0 < j < m, yk−1 ∗j yk is primitive. By induction again, the sum
on the left hand side of (11) belongs to A, proving the claim.

Remark 3.6.5. Proposition 3.6.3 can be generalized easily to Dyckm(V ),
where V is a (finite dimensional) vector space, in this case we have

Prim(Dyckm(V ))n = e(Irr(Dm)n ⊗ V ⊗n).

It is easy to see that this coincides with e(Irr(Dm)n)⊗ V ⊗n, so we get

Prim(Dyckm(V ))n = Prim(Dm)n ⊗ V ⊗n.

The following corollary is now obvious.

Corollary 3.6.6. For any vector space V , the primitive subspace Prim(Dyckm(V ))
is generated by V , the operations M1n and ∗1, . . . , ∗m−1.

Theorem 3.6.7. For any vector space V , Prim(Dyckm(V )) is the free GV m

algebra on V .

Proof. Suppose that dim(V ) = k and let GV m(V ) be the free m-GV algebra
on V . Then dim(GV m(V )n) = dim(GV m(K)n)k

n and also dimPrim(Dyckm(V ))n =
dimPrim(Dm)nk

n so by 3.6.6, it suffices to prove the theorem for V = K.
By 3.6.6 and 3.6.3 it suffices to prove that

dim(GV m(K)n) = dimK[Irr(Dm)n].

A basis B of GV m(K) is constructed inductively as follows: let B1 = {x}
and suppose that Bk is defined for k < n and each such set is partitioned in
m− 1 subsets Bk = Bk,1 ⊔ · · · ⊔ Bk,m−1. For any 1 ≤ i ≤ m− 1, we define

Bn,i = {y ∗i z | y ∈ Bk,j, z ∈ Bl such that j ≥ i, k + l = n}
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and we let Bn = Bn,1 ⊔ · · · ⊔ Bn,m−1. It is easy to see this defines a basis
of GV m(K)n. We define a map ϕ : Bn → Irr(Dm)n inductively as follows:

1. ϕ(x) = ρm;

2. ϕ(M1i(x; y1, . . . , yi)) = ρm ∗m wi
≻(ϕ(y1), . . . , ϕ(yi));

3. ϕ(x ∗j y) = ϕ(x)×j ϕ(y).

It is easy to see that this map is injective, and since there is a surjection
GV m(K) → Prim(Dm), this is a bijection, therefore proving the theorem.

Definition 3.6.8. Let (W,M1n, ∗1, . . . , ∗m−1) be a GV m algebra. The uni-
versal enveloping Dyckm-algebra on W , denoted by UDyckm(W ), is the quo-
tient of Dyckm(W ) by the Dyckm-ideal generated by the elements of the form
M1n(x; y1, . . . , yn)−M ′

1n(x; y1, . . . , yn) and x∗i y−x∗′i y for x, y, y1, . . . , yn ∈
W , 1 ≤ i ≤ m− 1 and where M ′

1n, ∗
′
1, . . . , ∗

′
m−1 is the induced GV m-algebra

structure on Dyckm(W ).

Remark 3.6.9. The universal enveloping Dyckm-algebra has an obvious
adjointness property. Using this, it is easy to see that it also has a canonical
Dyckm-bialgebra structure.

As usual, there is a canonical GV m-algebra morphism W → UDyckm(W )
for anyGV m-algebraW , and a canonical Dyckm-morphism UDyckm(Prim(A)) →
A for any Dyckm-algebra A.

Theorem 3.6.10. For any GV m-algebra W , the canonical morphism gives
an isomorphism W ∼= Prim(UDyckm(W )). For any conilpotent Dyckm-bialgebra
A, the canonical morphism UDyckm(Prim(A)) → A is an isomorphism. In
other words, the functors Prim and UDyckm give an equivalence between the
category of conilpotent Dyckm-bialgebras and GV m-algebras.

Proof. The subspace Prim(UDyckm(W )) is the image of Prim(Dyckm(W )) =
GV m(W ) under the projection, and the image of this is exactly W . For the
second assertion, observe that conilpotent Dyckm-bialgebras are conilpotent
dendriform bialgebras (for example, with ≻0,≺0). Consider the composition

A
ǫ // T (Prim(A))

ϕ // UDyckm(Prim(A)),
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where ǫ is map of 2.4.3 and ϕ(y1 ⊗ . . . ⊗ yn) = w≻(y1, . . . , yn). Since
Prim(UDyckm(Prim(A))) = Prim(A) by the first part, any element of UDyckm(Prim(A))
can be written as a sum of elements of the form w≻(y1, . . . , yn) for y1, . . . , yn ∈
Prim(A) and this is also true for A. It is now easy to see that the composition
ϕ ◦ ǫ is an inverse to the canonical map.
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