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Introduction

In this thesis we work in two important problems of Algebraic Geometry: spe-
cial linear systems through multiple points on (P1)n and the topology of varieties
with torus action.

Problem 1 is the content of Chapter 2. There we discuss the problem of de-
termining the dimension of a linear system of hypersurfaces of a projective variety
X ⊆ PN passing through finitely many points in very general position with pre-
scribed multiplicities. This problem is related to polynomial interpolation in several
variables and to the classification of defective higher secant varieties of X. In case
X = P2 the Segre-Harbourne-Gimigliano-Hirschowitz conjecture [24, 25, 28, 41]
predicts the dimension of such linear systems. Several cases of this conjecture have
been proved, see e.g. [12, 17–19, 33, 38]. In [36, 37] an analogous conjecture is
stated for X = P3 and proved when the multiplicities of the points are ≤ 5 in [6,7].
There is no such a conjecture for higher dimensional projective spaces, but all the
same there are partial results about the dimension of such linear systems [21,42]
and in [8] the authors determine the contribution to the dimension of linear systems
given by linear subspaces.

Inspired by [8] in this thesis we study linear systems of X = (P1)n through
multiple points for n ≥ 2. Let L be the linear system of hypersurfaces of degree
(d1, . . . , dn) in (P1)n passing through a general union of r points with multiplicities
respectively m1, . . .mr. We denote such linear system by L(d1,...,dn)(m1, . . . ,mr).
One introduce the expected dimension edim(L) of the linear system (see 2.1.10)
which satisfies the inequality dim(L) ≥ edim(L) and the equality holds if the condi-
tions imposed by the points are independent. The system is special if the inequality
is strict and non-special otherwise. Special linear systems have been classified when
all the multiplicities are ≤ 2 in [15,32,34,46].

We prove that a fiber of a projection map (P1)n → (P1)s, where 1 ≤ s ≤ n− 1,
through a multiple point can contribute to the speciality of the linear system L. We
introduce in Definition 2.1.10 the fiber-expected dimension efdim(L). This definition
takes into account the poossible speciality of L coming from the fibers of such
projections. We say that L is fiber special if the inequality dim(L) > fdim(L) holds
and that it is fiber non-special otherwise. Our first result is the following.

Theorem 1. Given a linear system L in (P1)n, the inequalities dim(L) ≥
efdim(L) ≥ edim(L) hold. Moreover, a linear system through two multiple points
in (P1)n is fiber non-special.

If there are more than two multiple points then there are examples of fiber
special systems (see Example 2.2.3). To study such linear systems we make use of
a degeneration of (P1)n into two copies of (P1)n introduced in [34]. We relate the
speciality of a linear system with that of the two linear systems arising from the
degeneration in the following way.

Theorem 2. Let L(d1,...,dn)(m1, . . . ,mr) a linear system in (P1). And consider
the linear systems L1 = L(d1,...,dn−1,k)(m1, . . . ,ms) and L2 = L(d1,...,dn−1,dn−k)

(ms+1, . . . ,mr) with k ≤ dn and s ≤ r. If L1 and L2 are fiber non-special and hold
certain conditions 2.2.1, then L is fiber non-special.
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In Chapter 3 we study normal algebraic varieties endowed with an effective
action of an algebraic torus T = (C∗)n, the so-called T-varieties. Given a T-variety
X we define its complexity as dimX−dimT. Such T-varieties admit a combinatorial
description starting with the well-known case of complexity-zero T-varieties, i.e.,
toric varieties (see e.g. [20] and [31, Chapter 1]). Then, the complexity-one case
was systematically studied in [31, Chapter 2 and 4], [45] and [22]. Finally, in [3,4]
a combinatorial description is provided for arbitrary T-varieties.

The topology of Q-factorial complete toric varieties has been well studied, for
instance in the books [16, Chapter 12] and [23, Chapter 5]. In particular, the
fundamental group, the cohomology groups, the cohomology ring and the Chow
ring of toric varieties are known in different degrees of generality. In Chapter 3 we
generalize those results to the case of T-varieties. In the toric setting, these objects
depend on the combinatorial and geometric structure of its defining fan, while in
higher complexity they also depend on the topology of a normal semi-projective
variety Y of dimension dimX − dimT, which is a kind of quotient (chow quotient)
of X by the torus action.

In Section 1.3 we recall the language of divisorial fans to describe T-varieties.
In particular, a divisorial fan S living on (Y,N), where Y is an algebraic variety of
dimension k and NQ a n-dimensional Q-vector space, describes a T-variety X(S) of

dimension n+k and complexity k. To S we associate a T-variety X̃(S) which admits

a categorical quotient π : X̃(S) → Y and a contraction morphism X̃(S) → X(S)
(see Section 1.3). Moreover S defines a finitely generated abelian group N(S). The
fundamental group of X(S) is given by the following.

Theorem 3. Let X(S) be a complete T-Variety with log-terminal singularities.
Then we have an isomorphism

π1(X(S)) ' N(S)× π1(Y ).

Our next main result concerns the rational Chow ring A∗(X̃(S))Q of the com-

plexity-one T-variety X̃(S) for a divisorial fan S on Y = P1. The theorem holds
for a class of complete and simplicial divisorial fans called shellable, introduced
in Definition 3.2.9. This notion generalizes the usual shellable condition for fans.
Given a divisorial fan S on (P1, NQ), in Section 3.2 we construct the polynomial
ring Q[D : D invariant divisor] and the ideal I generated by all the linear relations
between the invariant divisors, plus the monomials corresponding to subsets of
invariants divisors with empty intersection (see Notation 3.2.10).

Theorem 4. Let S be a complete, simplicial and shellable divisorial fan on P1.
Then we have an isomorphism

Q[D : D invariant divisor]/I → A∗(X̃(S))Q, D + I 7→ [D].

Finally, we study the canonical map from rational Chow groups to rational
Borel-Moore homology groups of complexity-one T-varieties coming from divisorial
fans satisfying the conditions of Definition 3.2.9 and prove the following.

Theorem 5. Let S be a complete, simplicial and shellable divisorial fan on P1.
Then the canonical map from Chow groups to Borel-Moore homology

Ak(X̃(S))Q → H2k(X̃(S);Q),

is an isomorphism.
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The thesis is organized as follows. In Chapter 1 we introduce the necessary
background for Chapter 2 and 3. First in Section 1.1 we introduce algebraic va-
rieties, divisors and sheaf cohomomology, which are the basic concepts appearing
in both chapters. Then, in Section 1.2 we introduce linear systems in algebraic
varieties which is the main concept in Chapter 2. In Section 1.3 we have two sub-
sections, the former with the background of topology of Chapter 3 and the latter
with the language of divisorial fans to describe T-varieties. In Section 1.4 we intro-
duce schemes and show that varieties are in fact schemes. Finally, in Section 1.5 we
introduce toric varieties via fans and give an example of a complexity-one T-variety.
In Chapter 2 and 3, every section is devoted to the proof of the corresponding the-
orem.
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CHAPTER 1

Preliminaries

In this chapter we discuss the background of Chapter 2 and 3. We start in
Section 1.1 with a brief introduction to algebraic varieties and Weil divisors, which
are the basic concepts appearing in both chapters. Then in section 1.2 and 1.3
we specialize to the specific background of Chapter 2 and 3, respectively. In par-
ticular, section 1.2 introduces linear systems in projective varieties and Cox rings,
and Section 1.3 introduces T-Varieties via divisorial fans and topology of algebraic
varieties.

1.1. Algebraic Varieties and Divisors

In this section we introduce Algebraic Varieties, Regular and rational functions,
Divisors and Sheaf cohomology. We use the notation of [26, Chapter 1]. We work
over an algebraically closed field K.

Definition 1.1.1 (Affine varieties). We denote by An the affine n-space. We
say that a subset Z ⊂ An, is an algebraic subset if Z can be expressed as the common
zeros of a finite set of polynomials f1, . . . , fr ∈ K[x1, . . . , xn], or equivalently, as the
zero set of the ideal I = 〈f1, . . . , fr〉. We define the Zariski topology on An by
taking the closed subsets to be the algebraic subsets. We say that a subset X ⊂ An
is a affine algebraic variety (or affine variety) if X is the zero set of a prime ideal
I ⊂ K[x1, . . . , xn], with the induced Zariski topology. In An every closed subset
is a finite union of affine algebraic varieties no one containing another. Given an
affine variety X defined by an ideal I, we denote by A(X) := K[x1, . . . , xn]/I, its
coordinate ring. The field of fractions of A(X), denoted by K(X), is calle the field
of rational functions of X. We define the dimension of X as the supremum of all
integers n such that there exists a chain X0 ( X1 ( · · · ( Xn = X ⊂ An, of affine
varieties. An open subset of an affine variety is called a quasi-affine variety. Given
a quasi-affine variety X, and a function f : X → K, we say that f is regular at
a point p ∈ X, if there is an open neighbourhood p ∈ U ⊂ X, and polynomials
g, h ∈ K[x1, . . . , xn], such that h is nowhere zero on U , and f = g

h on U . We say
that f is regular on X if it is regular at every point.

Definition 1.1.2 (Projective varieties). We denote by PnK (or simply Pn) the
projective n-space over K and we say that a subset Z ⊂ Pn, is an algebraic subset if
Z is the zero set of an homogeneous ideal of K[x0, . . . , xn]. The Zariski topology of
Pn is defined by taking the closed subsets to be the algebraic subsets. A projective
algebraic variety (or projective variety) is the zero set of a homogeneous prime ideal
of K[x0, . . . , xn]. Given X ⊂ Pn a projective variety and I its defining ideal, we
denote by S(X) := K[x0, . . . , xn]/I its homogeneous coordinate ring. The field of
fractions of S(X), denoted by K(X), is calle the field of rational functions of X. We
define the dimension of X as the supremum of all integers n such that there exists
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a chain X0 ( X1 ( · · · ( Xn = X ⊂ Pn, of projective varieties. An open subset
of a projective variety is called a quasi-projective variety. Given a quasi-projective
variety X, and a function f : X → K, we say that f is regular at a point p ∈ X,
if there is an open neighbourhood p ∈ U ⊂ X, and homogeneous polynomials
g, h ∈ K[x0, . . . , xn] of the same degree, such that h is nowhere zero on U , and
f = g

h on U . We say that f is regular on X if it is regular at every point.

Definition 1.1.3 (Varieties). A variety over K (or a variety), is an affine,
quasi-affine, projective, or quasi-projective variety. If X and Y are two varieties,
a function φ : X → Y , is said to be a morphism if it is a continuous map such
that for every open set V ⊂ Y , and regular function f : V → K, the function
f ◦ φ : φ−1(V ) → K is regular. A morphism φ : X → Y is an isomorphism if there
exists and inverse morphism ψ : Y → X with ψ ◦ φ = idX and φ ◦ ψ = idY . A
subvariety of a variety X is a subset Y ⊂ X which is a variety with the induced
topology. The codimension of a subvariety Y ⊂ X is the supremum of all integers
n such that there exists a chain Y ( X1 ( · · · ( Xn = X, of subvarieties of X.
The product of two varieties X and Y is also a variety, we denote such variety by
X × Y .

Definition 1.1.4 (Topological spaces). In a topological space X, we say that
a nonempty subset Y is irreducible if it is not the union of two proper subsets
Y = Y1 ∪ Y2, each one closed in Y . A topological space X is called noetherian if
any sequence of closed subsets Y1 ⊃ Y2 ⊃ . . . eventually stops. A topological space
X is called quasi-compact if for every open cover there exists a finite subset of open
sets which cover X. Observe that varieties are irreducible and noetherian.

Definition 1.1.5 (Regular and rational functions). Let X be a variety. We
denote by O(X) the ring of all regular functions on X.

If p ∈ X, we define the local ring of p on X, denoted by Op,X , to be the ring of
germs of regular functions on X in a neighbourhood of p. In fact, the elements of
the local ring of p on X are pair (U, f), where U is an open subset of X containing
p, and f is a regular function on U . We identify two elements (U, f) and (V, g) if
f = g on U ∩ V . In fact, Op,X is a local ring, its unique maximal ideal is mp,X ,
generated by pairs (U, f), with f vanishing at p.

The field of rational functions of X, denoted by K(X), is defined as follows: an
element is a pair (U, f), where U is a nonempty set of X an f is a regular function
on U , and we identify two elements (U, f) and (V, g) if f = g on U ∩ V .

Given two varieties X and Y , a rational map f : X → Y , between two varieties
is an equivalence of pairs (fU , U) in which fU is a morphism of varieties from an
open subset U ⊂ X to Y , and any two such pairs (fU , U) and (fV , V ) are considered
equivalent if fU and fV coincide in U ∩ V . f is said to be birational if there exists
a rational map g : Y → X, which is its two-sided inverse.

Definition 1.1.6 (Discrete valuation ring). Given a field K and a G a totally
ordered abelian group. A valuation of K with values in G is a map υ : K−{0} → G,
with the following properties

υ(xy) = υ(x) + υ(y), ∀x, y ∈ K,x, y 6= 0,

υ(x+ y) ≥ min(υ(x), υ(y)), ∀x, y ∈ K,x, y 6= 0.
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If υ is a valuation, then the set R := {x ∈ K | υ(x) ≥ 0} ∪ {0}, is a subring of
K, which we call the valuation ring of υ. If G is the integers, the corresponding
valuation ring is called a discrete valuation ring.

Definition 1.1.7 (Regular local rings). We say that a ring R is noetherian if
it satisfies the ascending chain condition for prime ideals. It is, for any sequence
I1 ( I2 ( . . . of prime ideals, there exists r ∈ Z≥0, such that Ir = Ir+1 = . . . .
In particular, the coordinate ring (resp. homogeneous coordinate ring) of an affine
(resp. projective variety) is noetherian.

Let R be a ring and I ⊂ R a prime ideal, we define the height of I to be the
supremum of all integers n such that there exists a chain I0 ( I1 ( · · · ( In = I, of
prime ideals. The dimension of R is the supremum of the height of all the ideals.
Observe that if Y is an affine variety its dimension equals the dimension of its
coordinate ring, and if Y is a projective variety its dimension equals the dimension
of its coordinate rings minus one.

Observe that if Y is an affine or projective variety its dimension equals the
dimension of its coordinate ring (or homogeneous coordinate ring).

Let R be a noetherian local ring, with maximal ideal m and residue field k =
R/m. We say that R is a regular local ring if dimkm/m

2 = dimA. A local
homomorphism is a homomorphism R → S, of local rings, such that the preimage
of the maximal ideal of S is the maximal ideal of R.

Definition 1.1.8 (Smooth varieties). Given a variety X. We say that X is
nonsingular at a point p ∈ X, if the local ring Op,X is a regular local ring. X
is nonsingular (or smooth) if it is nonsingular at any point, otherwise it is called
singular. A variety X is normal at a point p ∈ X, if the local ring Op,X is integrally
closed in its field of fractions. We say that X is normal if it is normal at any point.
Observe that any smooth variety is normal. Given a variety X, the subset of points
of X where the local ring is not regular is called singular locus of X. If X is a
normal variety, then its singular locus has codimension at least two.

Definition 1.1.9 (Divisors). Let X be a noetherian integral separated scheme
which is regular in codimension one (see 1.4). We say that a point p ∈ X is a generic
point if its closure is X. Given a subscheme Y ⊂ X, we say that a point p ∈ X is
a generic point of Y if its closure is Y . A prime divisor on X is a closed integral
subscheme Y of codimension one. A Weil divisor ( or simply a divisor) of X is a
finite formal sum

∑
niYi, where Yi are prime divisors and ni integers. We denote

by WDiv(X), the free abelian group generated by the Weil divisors. A divisor is
said to be effective if ni ≥ 0, for each i. We write D ≥ 0 if a divisor is effective. The
support of a Weil divisor D =

∑
niYi is the closed subset supp(D) := ∪iYi ⊂ X.

Given a prime divisor Y ⊂ X, and η ∈ Y a generic point, the local ring Oη,X
is a discrete valuation ring. We call the corresponding discrete valuation υY the
valuation of Y .

Given f ∈ K(X), we define the divisor of f , denoted (f), by

(f) =
∑

υY (f)Y,

where the sum is taken over all prime divisors of X. Any divisor of this form is
called a principal divisor. The subgroup of WDiv(X) freely generated by principal
divisors is denoted by PDiv(X). We say that two Weil Divisors D and D′ are
linearly equivalent, denoted by D ∼ D′, if D−D′ is a principal divisor. We denote
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Cl(X) := WDiv(X)/PDiv(X), the Divisor class group of X. Recall by 1.4.15 that
this definition also works for algebraic varieties.

Definition 1.1.10 (Sheaves). Given a topological space X, we define a presheaf
F of abelian groups on X is given by the following data

• for every open subset U ⊂ X, an abelian group F(U),
• for every inclusion V ⊂ U , of open subsets of X, a morphism of abelian

group ρU,V : F(U)→ F(V ),

with the following conditions,

• F(∅) = 0,
• ρU,U is the identity map on F(U), for every open subset U of X, and
• if W ⊂ V ⊂ U is an inclusion of open subsets of X, then ρU,W = ρV,W ◦
ρU,V .

Given a morphism ρU,V : F(U) → F(V ), and an element s ∈ F(U), we denote by
s|V the element ρU,V (s). The group of sections F(X) of a presheaf F on X is also
denoted by Γ(X,F). A presheaf F on X is calle a sheaf if it satisfies the following
conditions

• if U is an open set of X, {Vi}i∈I an open covering of U and s ∈ F(U) is
an element such that s|Vi = 0 for all i ∈ I, then s = 0.

• if U is an open set of X, {Vi}i∈I an open covering of U and si ∈ F(Vi) for
each i ∈ I, with the property that si|Vi∩Vj = sj |Vi∩Vj for each i, j. Then
there is an element s ∈ F(U) such that s|Vi = si for each i.

The presheaves and sheaves of rings and modules are defined analogously. The
support of a sheaf F is the set of points p ∈ X such that Fp 6= 0. Given a sheaf F
on a topological space X, and a point p ∈ X, we denote the stalk of F at p to be
Fp = limx∈U F(U), the direct limit indexed over all open subsets of X containing
p.

Definition 1.1.11 (Morphism of sheaves). Given two presheaves F and G of
abelian groups on X, a morphism of sheaves φ : F → G consists of a morphism of
abelian groups φ(U) : F(U) → G(U), for each open subset U ⊂ X, such that for
every inclusion of open subsets V ⊂ U , the following diagram

F(U)

ρU,V

��

φ(U) // G(U)

ρ′U,V
��

F(V )
φ(V ) // G(V ),

is commutative, where ρ and ρ′ are the restriction maps of F and G respectively.
An isomorphism is a morphism which has a two-sided inverse. Given a morphism
of sheaves of X, F → G and a point p ∈ X, then there is an induced morphism of
the stalks Fp → Gp, obtained by direct limit.

Definition 1.1.12 (Sheafification). Let F be a presheaf on a topological space
X. The sheafification of F or the sheaf associated to the presheaf F is a sheaf F ′
defined by the data:

F ′(U) = {φ = (φp)p∈U | φp ∈ Fp, for all p ∈ U,
such that for all q ∈ U , there is a neighborhood q ∈ V ⊂ U
and a section φ′ ∈ F(V ), with φ′p = φp for all p ∈ V }.
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It is standard to check that F ′ is in fact a sheaf. If F is a sheaf, then F = F ′. The
stalks of F and F ′ agrees in each point.

Definition 1.1.13 (Kernel of morphisms of sheaves). Let φ : G → F be a
morphism of presheaves. We define the presheaf kernel and presheaf image of φ
to be U 7→ ker(φ(U)) and U 7→ im(φ(U)) respectively. A subsheaf of a sheaf F
is a sheaf G, such that for each open set U , G(U) is a subgroup of F(U). The
quotient sheaf of a sheaf F by a subsheaf G is the sheaf associated to the presheaf
U 7→ F(U)/G(U).

Example 1.1.14. Given a variety X. For every open subset U ⊂ X, let OX(U)
be the ring of regular functions of U , and given an inclusion of open subsets V ⊂ U ,
let ρU,V : OX(U)→ OX(V ) be the restriction map. Then OX is a sheaf on X, called
the structure sheaf of X.

We say that a sheaf F on a variety X is a sheaf of OX -modules, if for each open
subset U ⊂ X, F(U) is a OX(U)-module. We say that a sheaf F of OX -modules is
locally free if for each point p ∈ X, there exists an open neighbourhood U of p such
that F|U is a free OX(U)-module. Observe that in this case, every stalk Fp, with
p ∈ X is a free (OX)p-module. Moreover, the stalk (OX)p is canonically isomorphic
to the local ring OX,p, then Fp is a OX,p-module. If Fp is of finite rank n for every
p ∈ X, we say that F is a locally free OX-module of rank n. Given two sheaves of
OX -modules F and G on a variety X, we define a sheaf of OX -modules denoted by
F ⊗ G and given by

(F ⊗ G)(U) = F(U)⊗OX(U) G(U),

with the induced restriction maps.

Example 1.1.15. Given a Weil divisor D of a variety X we associate a sheaf
of K-vectorial spaces on X, denoted by OX(D) and given by

OX(D)(U) = {f ∈ K(X) | ((f) +D)|U ≥ 0},

where the restriction D|U is defined as 0 if D ∩U = ∅ and D ∩U otherwise. Given
two divisors D1 and D2 of X, we have that OX(D1) ' OX(D2) if and only if
D1 ∼ D2. We say that a Weil divisor D of X is Cartier if there exists an open
cover {Ui}i∈I such that D|Ui is a principal divisor for each i. Moreover, we say
that a divisor D is Q-Cartier if some multiple is Cartier. A Cartier divisor D on a
variety X can be represented by an open cover {Ui}i∈I by affine subsets of X and
rational functions fi defined in Ui, such that for each i, j ∈ I with Ui ∩ Uj 6= ∅,
the function fi ◦ f−1

j is regular and has no zeros in Ui ∩ Uj . The subgroup of

WDiv(X) freely generated by effective Cartier divisors is denoted by CaDiv(X).
The group of Cartier divisors modulo linear equivalence is denoted by CaCl(X).
Given a morphism of varieties f : X → Y , and a Cartier divisor D ⊂ Y , defined by
the rational functions fi ∈ Ui, with {Ui}i∈I an open affine cover of Y , we define
the pull-back f∗(D) to be the Cartier divisor of X defined by the rational functions
fi ◦ f ∈ f−1(Ui). This extends to a homomorphism f∗ : CaDiv(Y )→ CaDiv(X).

Definition 1.1.16 (Factorial variety). A variety X is said to be factorial if
every divisor is Cartier. Also, a variety X is said to be Q-factorial if every divisor
is Q-Cartier. Observe that a variety X is factorial if all its local rings are unique
factorization domains.
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Example 1.1.17. Given X a variety, and G an abelian group we can define the
constant presheaf with value G, denoted by G, to be the sheaf given by the data:
G(U) = G, for any open subset U ⊂ X, and ρU,V : G(U)→ G(V ), is the identity on
G for each V ⊂ U . This presheaf induces a sheaf G whose stalks are all equal to G.

Definition 1.1.18 (Coherent sheaf). A sheaf F of OX -modules on a variety
X is said to be coherent if the following conditions holds:

• F is of finite type. It is, for any points p ∈ X there exists a neighbourhood
U ⊂ X of x, and a surjective morphismOX(U)n → F(U), ofOX -modules,
for some n.

• For any open subset U ⊂ X, any n ∈ Z≥0 and any morphism φ : OX(U)n →
F(U), of OX -modules, the kernel of φ is of finite type.

Definition 1.1.19 (Contraction morphism). Let X and Y be algebraic vari-
eties. A morphism f : X → Y is said to be a contraction if there exists a proper
closed subvariety V ⊂ Y such that dim(f−1(V )) > dim(V ) and f |X\f−1(V ) : X \
f−1(V )→ Y \ V is an isomorphism.

Definition 1.1.20 (Picard group). Given a variety X, a locally free OX -
module of rank 1 is called a invertible sheaf. If L and M are invertible sheaves,
then so is L ⊗M. Moreover, given a invertible sheaf L, there exists a invertible
sheaf L−1 on X such that L ⊗ L−1 ' OX .

The Picard group of X is the group of isomorphism classes of invertible sheaves
on X. On any variety X, the map D 7→ OX(D) gives an isomorphism of the
group CaCl(X) of Cartier divisors modulo linear equivalence to Pic(X) (see [26,
Proposition 6.15]).

Definition 1.1.21 (Sheaf Cohomology). Let X be a variety, F be a locally
free sheaf of OX -modules and U = {Ui}i∈I an open cover of X by affine varieties.
Fix a well-ordering of the index set I. For any finite set of indices i0, . . . , ip ∈ I we
denote the intersection Ui0 ∩ · · · ∩Uip by Ui0,...,ip . We define a complex C·(U ,F) of
abelian groups as follow. For each p ≥ 0, let

Cp(U ,F) =
∏

i0<···<ip

F(Ui0,...,ip).

We denote an element α of Cp(U ,F) by elements αi0,...,ip ∈ F(Ui0,...,ip), for each
(p+ 1)-tuple i0 < · · · < ip of elements of I. We define a co-boundary map d : Cp →
Cp+1, by setting

(dα)i0,...,ip+1 =

p+1∑
k=0

(−1)kai0,...,îk,...,ip+1|Ui0 ,...,ip+1
.

Where the notation îk means that we omit the term ik. So, we have a complex of
abelian groups. We define the cohomology of F as

Hp(X,F) := hp(C·(U ,F)).

1.2. Linear Systems on Algebraic Varieties

In this section we introduce linear systems, which is the central concept of
Chapter 2. We work over an algebraically closed field K and consider projective
smooth varieties.
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Definition 1.2.1 (Linear Systems). Let X be a projective smooth variety
and D0 a Weil divisor. The complete linear system of D0 is |D0| := {D | D ≥
0, D ∼ D0}. Observe that for each nonzero section s ∈ Γ(X,OX(D0)), the divisor
div(s)+D0 is an element of |D0| and every element of |D0| occurs in this way, we call
this element the divisor of zeros of s. Moreover, two sections s, s′ ∈ Γ(X,OX(D0))
have the same divisor of zeros if and only if there exists λ ∈ K such that s′ = λs.
Then, there is a one-to-one correspondence

(Γ(X,OX(D0))− {0})/K∗ → |D0|, s 7→ div(s) +D0.

This gives |D0| the structure of a projective space over K.
A linear system L on X is a subset of a complete linear system |D0| which is a

linear subspace considering the projective space structure of |D0|. We say that L
is a sub-linear system of |D0|. The dimension of L is its dimension as a projective
space. The Base locus of a linear system L is the intersection of all the supports
of its divisors. We denote the Base locus of L, by Bs(L). Given a divisor D, we
define its Base locus Bs(D), to be the base locus of |D|.

Given a linear system L on X, we can give Bs(L) scheme structure (see 1.4.2)
as follows: Assume L corresponds to the linear subspace V ⊂ H0(X,D), where D
is a divisor on X. We have a morphism of sheaves V ⊗K OX → L, determined by
evaluation in V , which induces a morphism V ⊗KL∗ → OX , whose image is a sheaf
ideal determining a subscheme of X with topological space Bs(L).

Definition 1.2.2 (Blowing-up at points). Let X be a k-dimensional smooth
projective variety and p ∈ X a point. The blow-up of X at p is a smooth projective

variety X̃ with a surjective morphism π : X̃ → X, such that E := π−1(p) ' Pk−1

and π|X̃−EX̃ − E → X − {p} is an isomorphism. The blow-up of X at a point

always exists, and is unique up to isomorphism. We say that X̃ is obtained from

X by blowing-up p. E is a prime divisor of X̃ and is called the exceptional divisor

of X̃. The divisor class group of X̃ is isomorphic to Cl(X) ⊕ 〈E〉, where 〈E〉
denotes the subgroup generated by the class of E in Cl(X̃). Given r different points
p1, . . . , pr ∈ X, we define the blow-up of X at the points p1, . . . , pr to be the smooth
projective variety Blp1,...,pr X obtained by blowing-up those points inductively. In
fact, we obtain a surjective morphism π : Blp1,...,pr X → X, which fiber over a
point pi is isomorphic to Pk−1 =: Ei and called the i-th exceptional divisor and the
restriction of π to the complement of ∪ri=1Ei is an isomorphism. By induction, it
follows that

Cl(Blp1,...,pr X) ' Cl(X)⊕ri=1 〈Ei〉.

Definition 1.2.3 (Linear systems of hypersurfaces passing throught fixed points).
Let X be a smooth projective variety as above. Fix r different points p1, . . . , pr ∈ X
and a class [D] ∈ Cl(X). Given r nonnegative integers m1, . . . ,mr we define the
linear system of hypersurfaces of degree [D] passing through pi with multiplicity
mi for each i, to be the complete linear system |π∗D−

∑r
i=1miEi| on Blp1,...,pr X.

This linear system is also a sub-linear system of |D| on X. Observe that the dimen-
sion of such linear system depends on the points p1, . . . , pr. We say that p1, . . . , pr
are in very general position if for every [D] ∈ Cl(X) and m1, . . . ,mr nonnegative
integers, we have that dim(L[D](m1, . . . ,mr)) attains its minimum.

Definition 1.2.4 (Cox sheaf and Cox ring). Let X be a smooth projective
variety with freely finitely generated Divisor class group. Fix a subgroup K ⊂
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WDiv(X), such that the canonical map K → Cl(X), sending D ∈ K to [D] is an
isomorphism. We define the Cox sheaf associated with K to be the following sheaf
of rings

R :=
⊕

[D]∈Cl(X)

OX(D),

where D ∈ K represents [D] ∈ Cl(X) and the multiplication in R is defined by
multiplying homogenous sections in K(X). Up to isomorphism, the sheaf R does
not depend on K (see [2, 1.4.1.1]). The Cox ring of X is the ring of global sections
of R. We denote the Cox ring of X by

Cox(X) =
⊕

[D]∈Cl(X)

H0(X,OX(D)).

For a complete construction of Cox rings, basic properties and selected topics see [2].

Observe that given a projective smooth variety X, a class [D] ∈ Cl(X), points
p1, . . . , pr and nonnegative integers m1, . . . ,mr, the problem of calculating the di-
mension dim(L[D](m1, . . .mr)) is equivalent to calculate the dimension, as a K-
vectorial space, of the homogeneous part of degree [D] of Cox(Blp1,...,pr X).

1.3. Topology and Varieties with Torus Action

Subsection 3.1: Topological objects
We start introducing some concepts of topology applied to affine and projective

varieties. In this section we work over the complex numbers C. We define the
fundamental group, cohomology ring and Chow ring of an algebraic variety, which
are algebraic objects containing the topological information of the variety (with its
analytical topology). In Chapter 3 we compute those algebraic objects for some
classes of T-varieties.

Definition 1.3.1 (Homotopy). Let f and g two continuous functions from a
topological space X to a topological space Y . A homotopy between f and g is a
continuous function H : X × [0, 1] → Y , such that H(x, 0) = f(x) and H(x, 1) =
g(x). If such function exists, we say that f and g are homotopic. Homotopy is an
equivalence relation. A standard reference for homotopy is [27, Chapter 0].

Recall that any variety over the complex numbers has an Analytical topology
induced by the euclidean topology of Cn and PnC. Let X be a variety with its
analytical topology, and let x0 be a point of X. We say that a continuous function
f : [0, 1] → X is a loop with base points x0 if f(0) = x0 = f(1). The fundamental
group π1(X,x0) of X with base point x0 is the set of loops modulo homotopy,
endowed with the multiplication define by

(f · g)(t) :=

{
f(2t), 0 ≤ t ≤ 1

2 ,

g(2t− 1) 1
2 ≤ t ≤ 1.

Since varieties are path-connected, for any two different points x0 and x1 in X, the
groups π1(X,x0) and π1(X,x1) are isomorphic, so we simply denote this group by
π1(X). Given a morphism of algebraic varieties φ : X → Y , it induces a homomor-
phism between its fundamental groups φ∗ : π1(X) → π1(Y ). A standard reference
for fundamental group is [27, Chapter 1].
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Definition 1.3.2 (Cohomology ring). Given a variety X and a ring R, we
define the k-th singular cohomology with coefficients in R, denoted by Hk(X,R),
to be the k-th sheaf cohomology group with the constant sheaf of R.

Given Hk(X,R) the cohomology groups of X with coefficients in a commutative
ring, one can define the cup product, which is a map

Hk(X,R)×H l(X,R)→ Hk+l(X,R).

The cup product gives a multiplication structure on the direct sum of cohomology
groups

H•(X,R) '
⊕
k∈Z≥0

Hk(X,R).

The ring H ·(X,R) is called the Cohomology ring of X with coefficients in R. A
standard reference for Cohomology ring is [27, Chapter 3]

Definition 1.3.3 (Chow ring). Let X be a variety. a k-cycle on X is a finite
formal sum

∑
ni[Vi], where Vi are k-dimensional subvarieties of X, and the ni

integers. We denote by ZkX the abelian group freely generated by k-cycles. For
any subvariety W of dimension k + 1 of X, and any rational function C(W )∗, we
define a k-cycle [div(r)] on X given by

[div(r)] =
∑

ordV (r)[V ],

where the sum is taken over all the subvarieties of W of codimension one, and ordV
is the valuation associated to the local ring OV,W = Oη,W , and η ∈ V a generic
point. A k-cycle α is said to be rationally equivalent to 0, denoted by α ∼ 0, if there
is a finite number of (k+1)-dimensional subvarieties Wi of X and ri ∈ K(Wi)

∗, such
that α =

∑
[div(ri)]. We say that two cycles are rationally equivalent if its difference

is rationally equivalent to 0. The group of k-cycles modulo rational equivalence on
X is AkX. The Chow ring of X is the direct sum

A∗(X) :=

dimX⊕
k=0

Ak(X),

where multiplication is given by

[Y ] · [Z] = [Y ∩ Z].

This construction is functorial, given a morphism of varieties f : X → Y , there is an
associated homomorphism of Chow rings f∗ : A∗(Y ) → A∗(X). Given a variety X
we define its Chow ring with rational coefficients to be A∗(X)⊗ZQ. For a complete
construction and properties of the Chow ring of a variety see [29, Chapter 1].

For every variety X, there is a canonical homomorphism A∗(X) → H2∗(X),
which sends the class of a k-cycle [Vi] to the class of Vi in H2k(X).

Definition 1.3.4 (Borel-Moore homology). Let X be a variety embedded into
a smooth manifold M of dimension m, such that X is a retract of an open neigh-
bourhood of itself. Then we define the Borel-Moore homology of X to be

HBM
i (X) = Hm−i(M,M \X),

where Hm−i(M,M \X), is the relative cohomology. Given a morphism of varieties
f : X → Y , there is an induced homomorphism of Borel-Moore homology groups
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f∗ : HBM
i (Y ) → HBM

i (X). If X is compact, then the Borel-Moore homology co-
incides with the usual singular homology. Given Y ⊂ X a closed subvariety and
U := X \ Y its complement, there is a long exact sequence

· · · → HBM
i (Y )→ HBM

i (X)→ HBM
i (U)→ HBM

i−1 (F )→ . . .

This exact sequence comes from excision long exact sequence of relative cohomology.
For more equivalent definitions and properties of Borel-Moore homology see [11,
Chapter 5].

Subection 3.2: T-Varieties via divisorial fans
In the well-known theory of toric varieties, a toric variety corresponds to a fan

in a finite dimensional Q-vector space. In this subsection we recall a generalization
of this correspondence due to Altmann, Hausen and Süß [3, 4], see also [5] for
a survey on known results about T-varieties. Roughly speaking, a T-variety of
complexity k and dimension n (see 1.3.6) corresponds to a variety Y of dimension
n− k and a polyhedral divisor (see 1.3.8) living in a k-dimensional Q-vector space
and the variety Y . We introduce this description to generalize results of Fulton
(see [23, Chapter 5]) about the topology of algebraic toric varieties to varieties
of higher complexity in chapter 3. In appendix two, we recall the well-known
correspondence between toric varieties and fans.

Definition 1.3.5 (Q-divisors). Given a variety X, we define the group of Q-
Weil divisors to be WDivQ(X) = WDiv(X) ⊗Z Q. A Q-divisor D is said to be
Cartier (resp. effective) if there exists an integer n, such that nD is a Cartier (resp.
effective) Weil divisor.

Definition 1.3.6 (T-Variety). We say that the action of a group G on a set X
is effective if the unique element of G acting trivially is the identity. We denote by
T = (C∗)n the n-dimensional complex torus. A T-variety X is an algebraic variety
endowed with an effective action of an algebraic torus T. We define the complexity
of the T-variety as dimX − dimT. If the complexity is zero, we say that X is a
toric variety.

We fix N a finitely generated free abelian group and let M := Hom(N,Z) be
the dual of N . We denote by NQ := N ⊗Z Q and MQ := M ⊗Z Q the associated
rational vector spaces.

Definition 1.3.7 (σ-polyhedra). Let σ be a pointed polyhedral cone in NQ.
For every convex polyhedron ∆ ⊆ NQ, we define its tail cone as tail(∆) = {v ∈
NQ | v + ∆ ⊆ ∆} and we say that ∆ is a σ-polyhedron. We denote by Pol+Q (N, σ)
the set of all σ-polyhedra in NQ, observe that this set endowed with the Minkowski
sum is a semigroup. We will consider the empty set as a σ-polyhedron for any σ,
with the addition rule ∅+ ∆ := ∅.

Definition 1.3.8 (Polyhedral divisor). Let X be a normal projective variety.
A polyhedral divisor on (X,NQ) is a formal sum D :=

∑
D ∆D⊗D ∈ Pol+Q (N, σ)⊗Z

CaDiv(X), where ∆D are convex σ-polyhedra in NQ and at most finitely many
coefficients ∆D are different from σ. We call σ the tailcone of D.

Definition 1.3.9 (Locus and restriction). Given a polyhedral divisor D on
(X,NQ), we define its open loci to be Loc(D) = X \ ∪∆D=∅D, its support to be
Loc(D) ∩ ∪∆D 6=σD and its trivial locus to be UD = Loc(D) \ supp(D).
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Given an open subset U ⊆ X, we define the restriction of the polyhedral divisor
D to U to be

∑
D∩U 6=∅∆D ⊗D|U if U 6⊆ UD and σ(D)⊗D, where D ∈ CaDiv(U),

otherwise.

Definition 1.3.10 (Intersection set). An intersection set of D is a non-empty
intersection of divisors of supp(D). The intersection set is called maximal inter-
section set if it does not properly contain an intersection set. Given a maximal
intersection set M the polyhedron

∑
M⊆D ∆D is called a maximal polyhedron of D.

Given y ∈ Y , we denote by Dy the polyhedron
∑
y∈D ∆D.

Definition 1.3.11 (Evaluation of a polyhedral divisor). Let CaDivQ(Y ) be
the group CaDiv(Y )⊗Z Q be the set of rational Q-Cartier divisors. Given a poly-
hedral divisor D on (X,NQ) with tail cone σ, we have an evaluation map into
D : σ∨ → CaDivQ(Y ), which we call the evaluation map of D, and maps u in∑

minv∈∆D
〈u, v〉D.

Definition 1.3.12 (p-divisor). Let D be a polyhedral divisor on (Y,NQ) with
tail cone σ. Then D is a p-divisor if D(u) is a semiample divisor for every u ∈ σ∨
and D(u) is big for u ∈ relint(σ∨).

Definition 1.3.13 (Good quotient). Let G be an algebraic group acting on
a variety X. A morphism f : X → Y is said to be G-invariant if it is constant
along the orbits of the action. Moreover, f is called affine if the preimage of an
open affine subset is affine. A morphism f : X → Y is called a good quotient for
an action of G on X if f is affine, G-invariant and the f∗ : OY → (p∗OX)G is an
isomorphism (here f∗ is the pull-back morphism defined in 1.4.1, and FG means
the sheaf of algebras of G-invariants of F).

Definition 1.3.14 (Affine T-variety defined by a p-divisor). Given a p-divisor

D on (X,NQ) with tail cone σ, we denote by X̃(D) the relative spectrum of the
coherent sheaf of algebrasA(D) =

⊕
u∈M∩σ∨ OY (D(u)) on Loc(D). There is a good

quotient π : X̃(D)→ Loc(D) induced by the inclusion of sheaves OY → A(D). We
define the affine T-variety defined by D to be X(D) := SpecH0(Loc(D),A(D)).
This variety comes with a proper birational contraction (see 1.4.13 and 1.1.19)

X̃(D)→ X(D). The main result in [3] states that all normal affine T-varieties arise
this way.

Definition 1.3.15 (Intersection of p-divisors). Given two p-divisors D,D′ on
(Y,NQ), we write D′ ⊆ D if ∆D′ ⊆ ∆D for each D ∈ CaDiv≥0(Y ). Observe that if
D′ ⊆ D, then we have an induced map X(D′) → X(D). We say that D′ is a face
if such map is an open embedding. The intersection D ∩ D′ of D′ and D is the
polyhedral divisor

∑
D(∆D ∩∆′D)⊗D.

Definition 1.3.16 (Divisorial fan). A divisorial fan S is a finite set of p-divisors
on (Y,NQ) such that the intersection of any two p-divisors of S is a face of both
and S is closed under taking intersections.

Definition 1.3.17 (T-variety defined by a divisorial fan). Given a divisorial
fan S on (X,NQ), we denote by X(S) the T-Variety obtained by gluing the affine
T-Varieties X(Di) along the open subvarieties X(Di ∩Dj) for each Di,Dj ∈ S and
call it the T-variety defined by the divisorial fan S. The main result in [4] states
that all normal T-varieties arise this way.
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The set {σ(D) | D ∈ S} form the so-called tailfan Σ(S) of S. The locus of S is
the open set Loc(S) := ∪D∈S Loc(D), the support of S is supp(S) :=

⋃
D∈S supp(D)

and the trivial locus of S is the open set US :=
⋂
D∈S UD. For any divisorial fan

S and open subset U ⊆ X we define the restriction of the divisorial fan S to U as
S|U := {D|U | D ∈ S}.

1.4. Appendix one: Varieties as Schemes

In this section we introduce the concept of Scheme, which is a generalization
of the concept of Variety. Chapter 2 and 3 can be read with the above background,
but the concept of scheme is necessary for a complete understanding. The main
observation of this section is that any variety has the structure of a scheme, which
was already usted to define Weil divisors on algebraic varieties, and the concept of
multiplicity in the inclusion of schemes (see 1.4.6).

Definition 1.4.1 (Locally ringed space). We say that a pair (X,OX) is a ringed
space if X is a topological space and OX is a sheaf of rings on X. A morphism of
ringed spaces is a continuous map f : X → Y with a map f∗ : OY → f∗OX , where
f∗OX(U) = OX(f−1(U)), for each U ⊂ Y open subset. A ringed space (X,OX)
is called a locally ringed space if for each p ∈ X, the stalk OX,p is a local ring.
A morphism of locally ringed spaces is a morphism of ringes spaces, such that for
each p ∈ X, the homomorphism induced in the stalks f∗p : OY,f(p) → OX,p is a local
homomorphism (the homomorphism f∗ is called the pull-back homomorphism). An
isomorphism of locally ringed spaces is a morphism with a two-sided inverse.

Definition 1.4.2 (Scheme). Given a ring R we denote by SpecR the set of
all prime ideals of R. If I ⊂ R is a prime ideal, we denote by Z(I) ⊂ SpecR the
set of all prime ideals which contains I. We call the Zariski topology of SpecR the
topology which closed sets have the form Z(I), for each prime ideal I ⊂ R. Also,
we can define a sheaf of rings OR on Spec(R) in the following way: For any open
subset U ⊂ SpecR, we define OR(U) to be the set of functions s : U →

∐
p∈U Rp,

such that s(p) ∈ Rp, for each p, and for each p ∈ U , there exists a neighborhood V
of p, contained in U , and elements a, f ∈ R, such that f 6∈ q for each q ∈ V , and
s(q) = a

f . In other words, we require s to be locally a quotient of elements of R. We

say that a locally ringed space isomorphic to (R,OR) is an affine scheme. A scheme
is a locally ringed space which is locally an affine scheme. It means that for each
point p ∈ X of the locally ringed space (X,OX), there exists a neighborhood p ∈ U ,
such that with the restricted sheaf (U,OX |U ) is an affine scheme. A morphism and
isomorphism of schemes are morphisms and isomorphisms of locally ringed spaces.
An affine scheme is said to be noetherian if it is the spectrum of a noetherian ring.
We say that OX is the structure sheaf of X. The dimension of a scheme X is the
dimension of its topological space. By abuse of notation, we will denote by the
same symbol X, a scheme and its topological space. An irreducible component of
a scheme is an irreducible component of its topological space.

Definition 1.4.3 (Notation of schemes). A scheme X is said to be

• connected if its topological space is connected.
• reduced if for every open subset U ⊂ X, the ring OX(U) has no nilpotent

elements.
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• integral if for every open subset U ⊂ X, the ring OX(U) is an integral
domain.

• locally noetherian if it can be covered by noetherian affine schemes.
• noetherian if it is noetherian and quasi-compact.
• regular if for each point p ∈ X, the ring Op,X is a regular local ring.
• normal if for each point p ∈ X, the ring Op,X is an integrally closed

domain.
• regular in codimension one if every local ring Op,X of dimension one is

regular. This means that the scheme is regular along the subspace {x}
which has codimension one.

Definition 1.4.4 (Open and closed subschemes). Given an open subset U ⊂ X
of a scheme, we say that U with the structure sheaf OX |U is an open subscheme of
X. A morphism f : X → Y is an open immersion if induces an isomorphism of X
with an open subscheme of Y . A closed immersion is a morphism f : X → Y , of
schemes, such that the image of the continuous map between its topological spaces
is closed, and the map f∗ : OX → f∗OY is surjective. A closed subscheme is the
image of a closed immersion.

Definition 1.4.5 (Ideal sheaves). Let X be a topological space and OX a sheaf
of rings on X. An ideal sheaf in OX is a sheaf I of OX -modules, such that I(U) is
an ideal o OX(U), for each open subset U ⊂ X.

Given a scheme X, there is a correspondence between closed subschemes of X
and quasi-coherent ideal sheaves of the structure sheaf of X. In fact, given an ideal
sheaf I in OX , then the support of the sheaf U 7→ OX/I(U) is a closed subspace
Y of X, and (Y,OX/J) is a closed subscheme of X. On the other hand, the kernel
sheaf of the surjective map f∗ : OX → f∗OY , of a closed subscheme f : Y → X,
gives an ideal sheaf.

Given a scheme X, we define Xred, the unique reduced subscheme of X to be
the subscheme induced by the ideal sheaf which associates the nilradical of OX(U)
to each open subset U ⊂ X.

The following definition will be used in Chapter 2 to study the subschemes of
Bs(L) which are contained with multiplicity equal or greater than one.

Definition 1.4.6 (Multiplicity along a subscheme). Let X be a scheme and
Z ⊂ X a closed subscheme. Let Z ′ ⊂ Z be an irreducible component and υ ∈ Z ′ a
generic point. Then we define the multiplicity of Z ′ in Z to be lengthOX,υ OZ,υ.

Definition 1.4.7 (Fibre product). Let S be a scheme and X,Y schemes with
morphisms X → S and Y → S. The fibre product X ×S Y , is a scheme with
projection morphisms p1 : X ×S Y → X and p2 : X ×S Y → Y , which makes the
square diagram commute, with the following universal property: given another
scheme Z with morphisms f : Z → X and g : Z → Y making the square diagram
commute, then there exists a unique morphism h : Z → X ×S Y making the whole
diagram commutative. The fibre product of two schemes X and Y with morphisms
to a scheme S always exists (see [26, Theorem 3.3]).

Definition 1.4.8 (Residue field). Given a scheme X and a point p ∈ X, the
residue field K(p) of p on X is the residue field of the local rings OX,p. Given a
point p ∈ X, there is a natural morphism SpecK(p)→ X.
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Definition 1.4.9 (reduced fibre of a morphism). Given morphism f : X → Y ,
and y ∈ Y a point. The morphisms f and SpecK(y)→ Y induces a fibre product
Xy = X ×Y SpecK(y), which is called the fibre of f at y. Its topological space is
f−1(y). We call Xyred the reduced fiber at y. A generic fiber of a morphism is a
fiber of a generic point.

Definition 1.4.10 (Finite and finite type morphism). A morphism f : X → Y
of schemes is said to be finite if there exists a coverng of Y by affine subsets SpecBi,
such that for each i, the open set f−1(SpecBi) is the spectum of a Bi-algebra which
is finitely generated as Bi-module. We say that f is of finite type if f−1(SpecBi)
can be covered by a finite number of affine schemes which are spectrums of finitely
generated Bi-algebras.

Definition 1.4.11 (Separated scheme). Given a morphism of schemes f : X →
Y , the diagonal morphism of f is the unique morphism ∆f : X → X ×Y X, such
that pi ◦∆f = idX , where p1, p2 : X ×Y X → X, are the projection on the first and
second coordinate respectively. We say that f is a separated morphism if ∆f is a
closed immersion. We say that X is separated, if the natural morphism X → SpecZ
is separated.

Definition 1.4.12 (Base extension). Let S be a fixed scheme and S′ → S a
morphism, then for every scheme X with a morphism X → S we denote X ′ =
X ×S S′, which is a scheme with a morphism X ′ → S′. We say that X ′ is obtained
from X via a base extension S′ → S.

Definition 1.4.13 (Proper morphism). A morphism f : X → Y , is universally
closed if for every morphism Y ′ → Y , the corresponding morphism obtained by
base extension is closed. A morphism is said to be proper if it is separated, of finite
type, and universally closed.

Definition 1.4.14 (Abstract variety). An abstract variety is a integral sepa-
rated scheme of finite type over an algebraically closed field K. Moreover, we say
that the abstract variety is complete if it is proper over K.

Remark 1.4.15. The varieties considered in the preliminaries are in fact ab-
stract varieties with its structure sheaf. Since the singular locus of any normal
variety has codimension at least two, then a normal variety is in fact a scheme
which is regular in codimension one.

1.5. Appendix two: Toric Varietes

In this section we recall the well-known correspondence between toric varieties
and fans in finite-dimensional Q-vector spaces. Also, we give a very simple example
of a toric variety described as a complexity-one T-variety. Compare the following
section with subsection 3.2 to a better understanding of varieties of higher com-
plexity.

Definition 1.5.1 (Fan). Let N be a free finitely generated abelian group, M
its dual,NQ and MQ the associated Q-vector spaces. A fan Σ in NQ is a finite
collection of pointed convex polyhedral cones such that the intersection of any two
elemnts of Σ is a face of both and Σ is closed under taking intersection.

Construction 1.5.2 (Toric variety). Let Σ be a fan in NQ and n = dimQ(NQ).
For each cone σ ∈ Σ, consider the affine variety X(σ) = Spec(⊕u∈σ∨Cχu), the
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grading of the ring ⊕u∈σ∨Cχu, gives X(σ) an effective action of T = (C∗)n. Given
a face τ ⊂ σ, there is a corresponding T-equivariant inclusion X(τ) ⊂ X(σ), then
we can glue equivariantly all the affine varietis X(σ), with σ ∈ Σ, to obtain a T-
variety X(Σ) of dimension n. There is a one-to-one dimension reversing equivalence
between faces of Σ and orbits of X(Σ). From the discussion in subsection 3.2 it
follows that any toric varieties appears in this way.

Definition 1.5.3 (Notation of toric varieties). A toric variety X(Σ) is

• complete if ∪σ∈Σσ, the support of Σ, is all NQ.
• Q-factorial if for each cone σ ∈ Σ, the extremal rays generating this cone

are linearly independent over Q.
• smooth if for each cone σ ∈ Σ, the extremal rays generating this cone are

linearly independent over Z.

Example 1.5.4. Consider the fan Σ of Q2 whose maximal cones are listed on
the left, and its rays are in figure 1.

σ1 = 〈(1, 0), (0, 1)〉,
σ2 = 〈(0, 1), (−1,−2)〉,
σ3 = 〈(−1,−2), (0,−1)〉,
σ4 = 〈(0,−1), (1, 0)〉.

Figure 1.

Observe that X(Σ) is an algebraic complete smooth toric surface. Every maxi-
mal cone of Σ corresponds to a fixed point of X(Σ), each ray of Figure 1 corresponds
to a T-invariant divisor of X(Σ), and the origin of Q2 corresponds to (C∗)2 as an
open orbit of X(Σ). In fact, X(Σ) is the Hirzebruch surface Σ2 given by

Σ2 := {([x0 : x1], [y0 : y1 : y2]) | x2
0y1 − x2

1y2 = 0} ⊂ P1 × P2.

Observe that the (C∗)2 is given by

(t1, t2) · ([x0 : x1], [y0 : y1 : y2])→ ([t1x0 : x1], [t2y0 : y1 : y2]).

One can consider the subtorus C∗ = {(t1, 1)} ⊂ (C∗)2, and describe Σ2 as a
complexity-one T-variety with respect to the action of the subtorus. The corre-
sponding divisorial fan S2 on (P1,Q) has four maximal p-divisors given as follows

D1 = ∅ ⊗ {0}+ Q≥0 ⊗ {∞},
D2 = [−2,∞[⊗{0}+ ∅ ⊗ {∞},
D3 = ]−∞,−2]⊗ {0}+ ∅ ⊗ {∞},
D4 = ∅ ⊗ {0}+ Q≤0 ⊗ {∞}.

Since the locus of each p-divisorDi is affine, then the contraction morphism X̃(Di)→
X(Di) is an isomorphism. The tail cone of D1 and D2 is Q≥0 while the tail cone
of D3 and D4 is Q≤0. The tail fan of S2 is the fan of P1. The trivial locus of S2 is
P1 \{0,∞} and the good quotient Σ2 → P1 has fiber isomorphic to P1 in the trivial
locus. The good quotient of Σ2 associated to its description as a complexity-one
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T-variety is in fact the clasical description of Σ2 as a P1-bundle over P1. Is stan-
dard to check that for each 1 ≤ i ≤ 4 we have that X(Di) ' X(σi) and the gluing
construction of Σ2 as a T-variety or as a toric variety is the same.
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CHAPTER 2

Linear Systems on (P1)n

2.1. Fiber Special Systems of (P1)n

In what follows we will denote by K an algebraically closed field. Given an
algebraic variety X we denote by hi(X,D) the dimension of the i-th cohomology
group of any line bundle whose class is D ∈ Pic(X).

In this section we recall some definitions, notations and results about linear
systems on (P1)n and Pn. First of all we denote by K[x1, y1, . . . , xn, yn] the Cox
ring of (P1)n and by K[x0, . . . , xn] the Cox ring of Pn. Let πY : Y → (P1)n ( resp.
πX : X → Pn ) be the blowing-up at r (resp. r+n−1) points in very general position.
The Picard Group of Y is generated by the r + n classes of H1, . . . ,Hn, E1, . . . Er
where Ei is the exceptional divisor over the i-th point and Hi is the pull-back of
the prime divisor of equation xi = 0. The Picard Group of X is generated by the
r+ n classes of H,E1, . . . , Er+n−1 where Ei is the exceptional divisor over the i-th
point and H is the pull-back of a hyperplane. We will call these bases tautological.

Remark 2.1.1. (Points in very general position). Let q1, . . . , qr be distinct
points of (P1)n and let m ∈ Nr. Consider the scheme (P1)n[r] parametrizing r-

tuples of points in (P1)n and let Q ∈ (P1)n[r] be the point q1 + · · · + qr. For

d ∈ Nn denote by H(d,m,Q) the vector space of degree d homogeneous polyno-
mials of K[x1, y1, . . . , xn, yn] with multiplicity at least mi at each qi. Observe that
H(d,m,Q) depends on Q and that there is a Zariski open subset U(d,m) ⊂ (P1)n[r]
where this dimension attains its minimal value. Let us denote by

U :=
⋂

(d,m)∈Nn+r

U(d,m).

We say that the points q1, . . . , qr are in very general position if the corresponding
Q is in U .

Definition 2.1.2. Given a birational map φ : X 99K Y of algebraic varieties
we say that φ is a small modification if there exist open subsets U ⊆ X and V ⊆ Y
such that ϕ(U) ⊆ V , the restriction φ|U is an isomorphism and both X − U and
Y − V have codimension at lest two. Note that any small modification induces
mutually inverse isomorphisms of push-forward and pull-back

φ∗ : Pic(X)→ Pic(Y ) φ∗ : Pic(Y )→ Pic(X).

Moreover h0(Y, φ∗(D)) = h0(X,D) for any D ∈ Pic(X) and h0(X,φ∗(D)) =
h0(Y,D) for any D ∈ Pic(Y ).

Definition 2.1.3. Let X be an algebraic variety, D ∈ Pic(X) a divisor class
and V ⊂ X a subvariety. We say that V is contained with multiplicity m in the
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base locus of D if the exceptional divisor E of the blow-up π : X̃ → X of X at V
is contained with multiplicity m in the base locus of π∗(D).

Remark 2.1.4. Let φ : Pn → (P1)n be the birational map defined by [x0 :
· · · : xn] 7→ ([xn−1 : xn], . . . , [x0 : xn]). Let p1, . . . , pr+n−1 be points of Pn in very
general position such that the first n+1 are the fundamental ones and let q1, . . . , qr
be points of (P1)n such that q1 = ([0 : 1], . . . , [0 : 1]), q2 = ([1 : 0], . . . , [1 : 0])
and qi+2 = φ(pi+n+1) for i ∈ {1, . . . , r − 2}. This gives the following commutative
diagram

X
φ //

πX

��

Y

πY

��
Pn

φ // (P1)n,

where with abuse of notation we are denoting by the same symbol φ and its lift.
To show that the above lift is a small modification it is enough to consider the case
r = 2. In this case we have commutative diagrams

Σnn+1

��

⊇ Σ ⊆ Σ1,n
2

��
Σn Σ1,n

Xn
n+1

��

⊇ X(Σ) ⊆ Y n2

��
Pn (P1)n

where the first diagram is obtained by completing in two different ways the fan
Σ whose cones are exactly the one-dimensional cones of Zn generated by the vectors
{±e1, . . . ,±en,±(e1 + · · ·+en)}, while the second diagram is obtained applying the
toric functor to the first one. Since the complement of X(Σ) in both X(Σnn+1) and
X(Σn) is of codimension at least two, then the corresponding toric birational map
φ : X 99K Y is small. We recall that the map φ and its action on fat points has
already been considered in [14].

With the above notation the induced isomorphism φ∗ : Pic(X) → Pic(Y ) is
given by 

H 7→
∑n
i=1Hi − (n− 1)E1

En+1 7→ E2

Ei 7→ Hn+1−i − E1 for 1 ≤ i ≤ n
Ei 7→ Ei−n+1 for i > n+ 1.

(2.1.1)

2.1.1 Standard form
Let us recall that we denote by Y the blow-up of (P1)n at r points q1, . . . , qr in

very general position. Without loss of generality we can assume the first two points
to be q1 = ([0 : 1], . . . , [0 : 1]), q2 = ([1 : 0], . . . , [1 : 0]). In this section we recall
the definition of a non-degenerate quadratic form Pic(Y ) → Z already introduced
in [44]. Define the bilinear form Pic(Y )×Pic(Y )→ Z by (D1, D2) 7→ D1 ·D2 whose
values on pairs of elements of the basis (H1, . . . ,Hn, E1, . . . , Er) are the following:

Hi ·Hj = 1− δij Ek · Es = −δks Hi · Ek = 0,(2.1.2)

where i, j ∈ {1, . . . , n} and k, s ∈ {1, . . . , r}. Observe that the lattice Pic(Y )
equipped with the integer quadratic form induced by the above bilinear form has
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discriminant group isomorphic to Z/(n − 1)Z and generated by the class 1
n−1KY .

Recall that given a non-degenerate lattice Λ and an element R ∈ Λ with R2 = −2
one can define the Picard-Lefschetz reflection defined by R as:

σR : Λ→ Λ D 7→ D + (D ·R)R.

Observe that σR is the reflection in Λ with respect to the hyperplane orthogonal
to R. The Weyl group of Λ, denoted by W (Λ) is the subgroup of isometries of
Λ generated by the Picard-Lefschetz reflections. For simplicity, given an algebraic
variety X and a bilinear form on Pic(X) we denote the Weyl group of its Picard
group by W (X).

The following is a particular case of [39, Theorem 1]:

Proposition 2.1.5. For each transformation w : Pic(Y ) → Pic(Y ) of W (Y ),
there is a small modification w : Y 99K Yw with the following property: Yw is also a
blow-up of (P1)n in r points q1, . . . , qr in general position and the pull-back of the
tautological basis of Pic(Yw) coincides with the transformation of the tautological
basis of Y by w.

In [44, Lemma 2.1] a set of generators for W (Y ) consists of n+r−1 reflections
with respect to the following roots:

H1 − E1 − E2, H1 −H2, . . . ,Hn−1 −Hn, E1 − E2, . . . , Er−1 − Er.

Let ω be any element of the Weyl group W (Y ) and let ϕω : Y 99K Yω be the
corresponding small modification. We have that ϕω is the lift of a birational map
φω : (P1)n → (P1)n, moreover Yω is the blow-up of (P1)n at points q′1, . . . , q

′
r where

q′1 = q1,q′2 = q2 and q′i = φω(qi) for i ≥ 3. The birational involution of (P1)n

associated to the root H1 − E1 − E2 is the following [39, pag. 128]:

([x1 : y1], . . . , [xn : yn]) 7→
([

1

x1
:

1

y1

]
,

[
x2

x1
:
y2

y1

]
, . . . ,

[
xn
x1

:
yn
y1

])
.

The birational involution of (P1)n associated to the root Hi − Hi+1 is the trans-
formations of (P1)n which exchanges the i-coordinate with the i + 1-coordinate,
for i ∈ {1, . . . , n − 1}. Finally the birational map of (P1)n associated to the root
Ei−Ei+1 is the identity map as we are just relabeling two points between the qi’s.

Remark 2.1.6. Observe that the map φ∗ : Pic(X)→ Pic(Y ) is an isometry of
lattices.

To see this it is enough to check that φ∗ preserves the intersection matrix of
the basis (H,E1, . . . , Er) of Pic(X). This holds by (2.1.1) and the definition of the
bilinear forms on the two lattices [44, 2.1]. We recall also that for any ω ∈ W (Y )
and any D,D′ ∈ Pic(Y ) we have h0(Y,D) = h0(Yω, ω(D)) by [44, Lemma 2.3] and
D is integral if and only if ω(D) is.

Definition 2.1.7. A class D =
∑n
i=1 diHi −

∑r
i miEi of Pic(Y ) is in pre-

standard form if the following inequalities hold:

d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 m1 ≥ m2 ≥ · · · ≥ mr

n∑
i=2

di ≥ m1 +m2.

If in addition mr ≥ 0, then D is in standard form.
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Remark 2.1.8. By Definition 2.1.7 [37, Definition 3.1 ] and the action of φ
given above we have that a class D in the Picard group of X is in pre-standard
form (resp. in standard form) if and only if φ∗(D) is in pre-standard form (resp.
in standard form). In particular by [37, Proposition 3.2] we deduce that for any
effective class D ∈ Pic(Y ) there exists a w ∈ W (Y ) such that w(D) is in pre-
standard form.

Remark 2.1.9. A (−1)-class of Pic(Y ) is the class of an irreducible and reduced
divisor E such that E2 = E · K = −1 where K := 1

n−1KY . Observe that this

definition coincides with the classical concept of (−1)-class when n = 2.
By Remark 2.1.6 and [37, Section 4] we conclude the following: The (−1)-

classes form an orbit with respect to the action of the Weil group. Moreover if
D is a class in standard form, then w(D) · E ≥ 0 for any (−1)-class E and any
w ∈ W (Y ). Finally, some geometric properties of (−1)-curves on surfaces gener-
alize to (−1)-classes: if D is effective and D · E < 0 for some (−1)-class E then
E ⊂ Bs|D| and if E,E′ are two distinct (−1)-classes having negative product with
D then E · E′ = 0.

The following program given a class D ∈ Pic(Y ) returns its standard form
D′ ∈ Pic(Y ) or returns 0 ∈ Pic(Y ) if the linear system induced by D is empty.

Input: (d,m) ∈ Nn × Nr, with r ≥ 2.
Output: (d,m) ∈ Nn × Nr or ∅.
Sort both d = (d1, . . . , dn) and m = (m1, . . . ,mr) in decreasing order;

while k :=
∑n
i=2 di −m1 −m2 < 0 and min(d1, . . . , dn) ≥ 0 do

(d1,m1,m2) := (d1,m1,m2) + (k, k, k);

Sort both d and m in decreasing order;

end

if min(d1, . . . , dn) < 0 then
return ∅

else
return (d,m);

end
Algorithm 1: Standard form.

2.1.2 Fiber special systems
Recall that we denote by π : Y → (P1)n the blow-up of (P1)n at r points

q1, . . . , qr in very general position. Given a subset I ⊆ {1, . . . , n} we denote by
PI : (P1)n → (P1)|I| the morphism defined by (if I is empty PI is the constant
morphism to a point)

([x1 : y1], . . . , [xn : yn]) 7→ ([xi : yi] : i ∈ I).

We denote by Fj,I the fiber of PI through the point qj for any j. Given a vector
(d1, . . . , dn) ∈ Nn we will denote by

sI :=
∑
i∈I

di and SI := 1 + |I|+ sI for any I ⊆ {1, . . . , n},(2.1.3)
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where s∅ = 0 and S∅ = 1. Observe that by the assumption made on the points
Fi,I ∩ Fj,I = ∅ for any i 6= j. In what follows we use the notation L := L(d1,...,dn)

(m1, . . . ,mr) to denote a general linear system when no confusion arises. We denote
by V (L) the subvector space of homogeneous polynomials of K[x1, y1, . . . , xn, yn] of
degree (d1, . . . , dn) and multiplicity at least m1, . . . ,mr at q1, . . . , qr respectively.

Definition 2.1.10. The virtual dimension of L is

vdim(L) =

n∏
i=1

(di + 1)−
r∑
i=1

(
n+mi − 1

n

)
− 1

the expected dimension of L is edim(L) = max(vdim(L),−1). The fiber dimension
of the linear system L is

fdim(L) :=

n∏
i=1

(di + 1)−
∑

1≤j≤r
I⊆{1,...,n}
SI≤mj

(−1)|I|
(
mj − SI + n

n

)
− 1

and the the fiber-expected dimension is efdim(L) := max(−1, fdim(L)). We say that
L is fiber special if dim(L) > efdim(L) and it is fiber non-special otherwise.

Theorem 2.1.11. For any linear system L the following inequalities hold dim(L) ≥
efdim(L) ≥ edim(L).

Proof. Denote by ∆(m) ⊆ Zn≥0, for m ≥ 1, the set of integer points of the

n-dimensional simplex which is the convex hull of the points: 0, (m−1)e1, . . . , (m−
1)en. Let V ⊆ K[x1, . . . , xn] be the subvector space of polynomials of degree at
most (d1, . . . , dn). Given w ∈ Znz≥0 we define the partial derivative ∂/∂xw, where

xw = xw1
1 · · ·xwnn . Let

Φ: V → KN f 7→
(
∂f

∂xw
(pj) : 1 ≤ j ≤ r and w ∈ ∆(mj) ∩ Zn≥0

)
be the function which maps f to the collection of all partial derivatives of f , cor-
responding to the integer points of the polytope ∆(mj), evaluated at pj for each
j. Observe that dim(L) equals dim(ker(Φ)). Moreover if w is an integer vec-
tor outside the polytope ∆(mj) ∩

∏n
i=1[0, di], then ∂f/∂xw is the zero polyno-

mial. Thus any such w does not impose conditions on the kernel of Φ. Using
the inclusion-exclusion principle we see that the number of integer vectors of the
polytope ∆(mj) ∩

∏n
i=1[0, di] equals

µj =
∑

I⊆{1,...,n}
mj≥SI

(−1)|I|
(
mj − SI + n

n

)
.

Thus the point pj of multiplicity mj can impose at most µj conditions and the first
inequality dim(L) ≥ efdim(L) follows. The second inequality follows by observing
that the number of integer vectors of ∆(mj) is greater than or equal to the number
of integer vectors of ∆(mj) ∩

∏n
i=1[0, di]. �
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Remark 2.1.12. For a linear system L of Pn through multiple base points
in very general position, in [8] the authors introduce the liner expected dimen-
sion eldim(L), which takes into account the speciality coming from linear sub-
spaces through some of the points. In that case the authors asset that the in-
equality dim(L) ≥ eldim(L) is equivalent to the weak Fröberg-Iarrobino conjec-
ture [8, Remark 3.4]. The reason why in (P1)n one can easily prove the inequality
dim(L) ≥ efdim(L) is that the each subvariety taken into account in the fdim
formula passes exactly through one point.

Theorem 2.1.13. A linear system L through two points is fiber non-special.

The proof of the following lemma is a direct consequence of the identity
∑k
i=n

(
i
n

)
=
(
k+1
n+1

)
which holds for any k ≥ n.

Lemma 2.1.14. Let I be an ordered subset of {1, . . . , n − 1}, let J := I ∪ {n}
and let m be a non-negative integer. Given a vector (d1, . . . , dn) ∈ Nn let SI be
defined as in (2.1.3). Then the following holds

dn∑
j=0

∑
m−j≥SI

(
m− j − SI + n− 1

n− 1

)
=
∑
m≥SI

(
m− SI + n

n

)
−
∑
m≥SJ

(
m− SJ + n

n

)
.

Proof of Theorem 2.1.13. Without loss of generality we can assume that
q1 := ([0 : 1], . . . , [0 : 1]), q2 := ([1 : 0], . . . , [1 : 0]). Hence a basis B(L) for

V (L) consists of the monomials of the form
∏n
i=1 x

ai
i y

bi
i where

∑n
i=1 ai ≥ m1,∑n

i=1 bi ≥ m2 and ai + bi = di for any i. The statement follows by induction on n
using Lemma 2.1.14 and the equality

|B(L)| =
dn∑
j=0

|B(L(d1,...,dn−1)(m1 − j,m2 − dn + j))|.

�

Corollary 2.1.15. A linear system L := L(d1,...,dn)(m1,m2) is effective if and

only if
∑n
i=1 di ≥ m1 +m2.

Proof. If
∑n
i=1 di < m1 + m2 then, with the same notation of the proof

of Theorem 2.1.13 either
∑n
i=1 ai < m1 or

∑n
i=1 bi < m2 so that there are no

monomials in V (L) and thus L is empty. On the other hand if
∑n
i=1 di ≥ m1 +m2

then there are ai, bi such that
∑n
i=1 ai ≥ m1 and

∑n
i=1 bi ≥ m2 and ai + bi = di

for any i. Thus V (L) contains a monomial and hence L is not empty. �

Proposition 2.1.16. Let L be a non-empty linear system. Then the fiber FI,j
is contained in the base locus of L with multiplicity

µ ≥ max{mj − sIc , 0}

and the equality holds when r ≤ 2.

Proof. Without loss of generality we can assume that j = 1 and I = {1, . . . i}.
Let M := L(d1,...,dn)(m1,m2). The vector space V (L) is a subspace of V (M)
which admits a monomial basis B(M) given in the proof of Theorem 2.1.13. The
Cox ring of the blow-up π1,I : X1,I → (P1)n of (P1)n at F1,I is isomorphic to
K[zx1, y1, . . . , zxi, yi, xi+1, yi+1, . . . , xn, yn], where z corresponds to the exceptional
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divisor. Let B′(M) be the pull-back of the basis B(M) via π1,I . Then the basis
B′(M) consists of the following monomials

i∏
j=1

(zxj)
aj (yj)

bj

n∏
j=i+1

x
aj
j y

bj
j ,

where
∑n
i=1 ai ≥ m1,

∑n
i=1 bi ≥ m2 and ai + bi = di for each i. Observe that∑i

j=1 aj ≥ m1 −
∑n
j=i+1 aj ≥ m1 − sIc , with equalities when bj = 0 for any

j ∈ {i + 1, . . . , n} and
∑n
i=1 ai = m1. Thus zm1−sIc divides any monomial in

B′(M) and this is the maximal power with this property when M = L, i.e. when
r ≤ 2. �

2.1.3 Base Locus of the Linear System
In this subsection we describe a class of subvarieties contained in the base

locus Bs(L) of a linear system L of the form L(d1,...,dn)(m1, . . . ,mr) of (P1)n and
compute their multiplicity in Bs(L). By the generality assumption on the position
of the points we can assume all but the first two of them to be contained in the
n-dimensional torus Tn of (P1)n. Denote by pn+i−1 = φ−1(qi), for 3 ≤ i ≤ r, where
φ : Pn → (P1)n is the birational map defined in Remark 2.1.4. Given two subsets
I ⊆ {1, . . . , n} and J ⊆ {2, . . . , r} we denote by LIJ the following linear subspace
of Pn:

LIJ = 〈{ei : i ∈ I} ∪ {pj : j ∈ J}〉.
We denote by VIJ the closure in (P1)n of φ(LIJ∩Tn). Observe that if LIJ is defined
by a matrix A ∈ Mk×n(C), with k = |I| + |J | − 1, then VIJ ∩ φ(Tn) is defined by
the following equations

A


y1y2 . . . yn−1xn
y1y2 . . . xn−1yn

...
x1y2 . . . yn−1yn
y1y2 . . . yn−1yn

 =


0
0
...
0
0

 .
Proposition 2.1.17. Let L = L(d1,...,dn)(m1, . . . ,mr) be a non-empty linear

system and let VIJ be as above. Then VIJ is contained in Bs(L) with multiplicity

µIJ := max

{
0, (|J | − 1)(m1 − δ) +

∑
i∈J

mi −
∑
i∈I

di

}
,

where we denote by δ =
∑n
i=1 di.

Proof. The multiplicity of VIJ in the base locus of L equals the multiplicity
of LIJ in the base locus of φ∗(L). By (2.1.1) the class of an element of φ∗(L) is

(δ −m1)H −
n∑
i=1

(δ −m1 − dn−i)Ei −
r∑
i=2

mn+i−1En+i−1.

Thus we conclude by [8, Proposition 2.5]. �

As a consequence of the fact that the base locus of a linear system through
n+ 2 points in Pn is a union of linear subspaces [8, Corollary 4.8] we immediately
get the following.
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Corollary 2.1.18. If L(d1,...,dn)(m1,m2,m3) is a linear system through three
points in general position, then its base locus only contains varieties of the form
FI,j and VIJ .

2.2. Degeneration of (P1)n and Linear Systems

In this section we use the degeneration in (P1)n introduced in [34, Section 3]
and using a method introduced in [21] we prove a Theorem that allows to check
non-speciality of a linear system in (P1)n via this degeneration.

Recall that ∆(m + 1) ⊆ Zn≥0, for m ≥ 0, the set of integer points of the
n-dimensional simplex which is the convex hull of the points: 0,me1, . . . ,men.
L(d1,...,dn−1,k→dn)(m1, . . . ,mr) will denote the sublinear system of L defined by

all the polynomials divisible by xkn. We denote by VA(L) the subvector space of
K[x1, . . . , xn] obtained by evaluating the polynomials of V (L) at y1 = · · · = yn = 1.
Observe that VA(L) is the subvector space of polynomials f ∈ K[x1, . . . , xn] of
degree at most (d1, . . . , dn) such that f has multiplicity at least mj at pj for any
j. Let V := VA(L(d1,...,dn)) and let

Φ: V → KN

be the function which maps f into the collection of all partial derivatives of f , which
correspond to the integer points of the polytope ∆(mi)∩

∏n
i=1[0, di] evaluated at pi

for each i (see also the proof of Theorem 2.1.11). Let M(L) be the matrix of Φ with
respect to the monomial basis of V and the standard basis of KN . The columns
M(L) are indexed by monomials of degree at most (d1, . . . , dn), while rows are
indexed by conditions imposed by the points. Let P = K[p1

1, . . . , p
n
1 , . . . , p

1
r, . . . , p

n
r ],

where pik is the i-coordinate of the k-th point. Then the entries of M(L) can be
considered as polynomials in P . Let s be a positive integer ≤ r, let deg be a grading
on P defined by deg(pkj ) = 1 if k = n and j ≥ s+ 1 and deg(pkj ) = 0 otherwise. In
what follows we will adopt the following notation:

(2.2.1) L1 := L(d1,...,dn−1,k−1)(m1, . . . ,ms) L2 := L(d1,...,dn−1,dn−k)(ms+1, . . . ,mr).

Theorem 2.2.1. Let L1 and L2 be defined as in (2.2.1). Assume that the
following conditions hold:

(1) L1, L2 are fiber non-special with (fdim(L1) + 1)(fdim(L2) + 1) ≥ 0,
(2) mi ≤ k, for any i ∈ {1, . . . , s},
(3) mj ≤ dn − k + 1 for any j ∈ {s+ 1, . . . , n}.

Then the system L := L(d1,...,dn)(m1, . . . ,mr) is fiber non-special.

Proof. Observe that we have an isomorphism of vector spaces

Ψ: VA(L2)→ VA(L(d1,...,dn−1,k→dn)(ms+1, . . . ,mr))

where the multiplicities are imposed at the points ps+1, . . . , pr respectively. After
reordering the rows and the columns of the matrix M(L) we can assume that its
first γ columns are indexed by monomials of degree at most (d1, . . . , dn−1, k − 1)
and that its first ρ rows are indexed by conditions imposed at the points p1, . . . , ps.
We write

M(L) =

[
M1 K1

K2 M2

]
,
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where M1 is a ρ × γ matrix. Observe that M1 = M(L1) and M2
∼= M(L2) via

the isomorphism Ψ. Moreover by conditions (2), (3) and the fact that L1, L2 are
fiber non-special, we deduce that both matrices have maximal rank. Assume now
that fdim(L1) ≥ −1 and fdim(L2) ≥ −1 (the other case being analysed in a similar
way). Choose two submatrices M ′i of Mi of maximal rank, for i ∈ {1, 2}, and form
the square submatrix of M(L)

M ′ =

[
M ′1 K ′1
K ′2 M ′2

]
where K ′1 is obtained from K1 by deleting columns of M2 and similarly for K ′2.
By [21, Lemma 2] we have that deg(det(M ′2)) > deg(det(B)) for any square sub-
matrix B of [K ′2 M ′2]. Thus, by the Laplace expansion with respect to the first ρ
rows we conclude that deg(det(M ′)) = deg(det(M ′1) · det(M ′2)) > 0 and the result
follows. �

The following algorithm is a recursive program that uses Theorem 2.2.1 and
Theorem 2.1.13 in order to conclude if the given linear system is non-special.

Input: (d,m) ∈ Nn × Nr, with r ≥ 2.
Output: x ∈ {non-special, undecided, special}.
if std(d,m) = ∅ then

return non-special.
else if fdim(std(d,m)) > edim(d,m) then

return special;

else
(d,m) := std(d,m);

if r = 2 then
if fdim(d,m) ≥ edim(d,m) then

return special;

else
return non-special;

end

else
for k ∈ {1, . . . , d1 − 1}, s ∈ {1, . . . , r − 1} do

d′ := (k − 1, d2, . . . , dn), m′ := (m1, . . . ,ms);

d′′ := (d1 − k, d2, . . . , dn), m′′ := (ms+1, . . . ,mr);
if sp(d′,m′) =non-special and sp(d′′,m′′) =non-special
and (fdim(d′,m′) + 1)(fdim(d′′,m′′) + 1) ≥ 0
and mi ≤ k for any i ∈ {1, . . . , s}
and mj ≤ dn − k for any j ∈ {s+ 1, . . . , r}
then

return non-special;

end

end

return undecided;

end

end
Algorithm 2: Speciality by degeneration.
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2.2.1 Examples and Conclusions
We have studied linear systems of (P1)n passing through points in very general

position and concluded that the fibers of the projections (P1)n → (P1)k, for 1 ≤
k < n, can contribute to the speciality. The following is an example of a fiber
special linear system L whose standard form L′ is fiber non-special.

Example 2.2.2. The linear system L := L(13,9,5)(112, 72, 32) of (P1)3 is not in
standard form with

vdim(L) = 122 · 82 · 42 − 2

((
13

3

)
+

(
9

3

)
+

(
5

3

))
= 80 fdim(L) = 154.

Using Algorithm 1 we obtain the following linear systems

L(13,9,5)(112, 72, 32) L(5,9,5)(7
2, 34) L(5,5,5)(3

6) =: L′

where L′ is in standard form. Algorithm 2 degenerates L′ according to the following
scheme:

L(5,2,2)(3
2)

L(5,5,2)(3
3)

22

,, L(5,2,2)(3)
L′

55

)) L(5,2,2)(3
2)

L(5,5,2)(3
3)

22

,, L(5,2,2)(3)

By Theorem 2.1.13 the last four linear systems are non-special, thus by repeated ap-
plications of Theorem 2.2.1 we conclude that L′ is non-special as well. In particular
dim(L) = dim(L′) = vdim(L′) = 156.

The following example shows that there are other varieties giving contribution
to the speciality of the linear system already when we blow-up three points in very
general position.

Example 2.2.3. The linear system L := L(1,1,1,1,1,1,1)(3
3) of (P1)7 is in stan-

dard form with

vdim(L) = 27 − 3

(
9

7

)
= 20 fdim(L) = vdim(L) + 21 = 41,

where the contribution on the right is given by the 21 one-dimensional fibers on the
base locus, but we have that dim(L) = 42, then L is fiber-special. Observe that
Algorithm 2 returns undecided in this case since every degeneration gives a special
linear system. The dimension of L can be calculated by evaluating directly the rank
of the matrix M(L), appearing in the proof of Theorem 2.2.1. By Corollary 2.1.18
the base locus of L is the union of all the fibers through each of the three points
plus the irreducible surfaces VIJ for J = {2, 3} and I = {i} ⊆ {1, . . . , 7}, plus the
curve C = V∅,{2,3}. By Proposition 2.1.17 each VIJ is contained in the base locus of
L with multiplicity 1 and C is contained with multiplicity 2. Moreover the equality

dim(L) = fdim(L) + 1

suggests that C is contributing to the speciality of L.

Remark 2.2.4. Observe that the strict inequality dim(L) > efdim(L) can
hold also in the simple case when all the multiplicities equal 2. For instance the
linear system L = L(2,2,2)(2

7) is special of dimension 0 and efdim(L) = −1. The
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subvariety of (P1)3 which produces the speciality is the unique surface of the linear
system L(1,1,1)(1

7). For a complete classification of the base loci of special linear

systems through double points of (P1)n see [34, Section 7].

Denote, as before, by Y the blow-up of (P1)3 at r points in very general position
and by φ : P3 → (P1)3 the birational map defined in Remark 2.1.4. Let Q be a
divisor in the strict transform of the linear system L(1,1,1)(1

7) which is the image

via φ∗ of the class of the strict transform of the quadric through 9 points of P3. For
any divisor D in the strict transform of L(d1,d2,d3)(m1, . . . ,m7) let

q(D) := χ(D|Q) = (d1 + 1)(d2 + 1)(d3 + 1)− d1d2d3 −
7∑
i=1

mi(mi + 1)

2
.

The following conjecture is equivalent to [37, Conjecture 6.3] via the small
modification φ.

Conjecture 2.2.5. Let L := L(d1,d2,d3)(m1, . . . ,mr) be a linear system in
standard form and let D be a divisor in its strict transform.

• If q(D) ≤ 0, then h0(D) = h0(D −Q).
• If q(D) > 0, then D is special if and only if m1 > dn + 1 and D is fiber

non-special.

Example 2.2.6. Let Ln = L(n,n,n)(n
7) be the linear system corresponding to

the divisor class nQ ∈ Pic(Y ), where n > 0. This system has dimension 1 for any
n and it is non-special for n = 1. Its fiber dimension is

fdim(Ln) = vdim(Ln) = n3 − 7

(
2n− 1

n

)
< 0,

so that Ln is fiber-special for n > 1. It is easy to check that q(nQ) = 0 for any n
and that in this case the conjecture holds.
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CHAPTER 3

Topology of Complexity-one T-Varieties

3.1. Fundamental group of T-varieties
This section is devoted to prove Theorem 3 in the introduction. Let us first

remark that the log-terminal assumption in Theorem 3 is essential. Indeed, let D be
any p-divisor on a projective curve Y with positive genus, then by [35, Corollary 5.4]
the T-variety X := X(D) is not log-terminal. Moreover, since Y = Loc(D) is pro-
jective, X has an attractive fixed point and thus π1(X) is trivial, while π1(Loc(D))
is non-trivial.

Given a p-divisor D on a normal projective variety Y , we denote by (ND)Q the
subspace of NQ generated by the subset

{v1 − v2 | y ∈ Y, v1, v2 ∈ Dy}.

We denote by ND := N ∩ (ND)Q the sublattice of N of the integer points of (ND)Q
and by N(D) the quotient N/ND. Given a divisorial fan S on a variety Y , we
denote by NS the sublattice of N generated by {ND | D ∈ S} and by N(S) the
following quotient

N(S) := N/NS .

Definition 3.1.1 (See [30]). We say that a divisorial fan S on (Y,NQ) is
contraction-free if for all D ∈ S the locus of D is affine.

Observe that S is contraction-free if and only if for every D ∈ S the contraction

morphism X̃(D) → X(D) is an isomorphism. Recall that for any divisorial fan S
we have a rational quotient map π : X(S) 99K Loc(S) and if S is contraction-free
observe that this rational quotient map is indeed a morphism π : X(S)→ Loc(S).
Given a contraction-free divisorial fan S on (Y,NQ) and a open subset V ⊆ Y , we
will adopt the following notation

U := π−1(V ) Vt := V ∩ VS Ut := π−1(Vt).

In order to prove Theorem 3, we will prove Proposition 3.1.2 via relaxing the
hypothesis successively in Lemmas 3.1.3, 3.1.4, 3.1.6 and 3.1.7. In what follows we
will assume that Y is a smooth variety and that all the divisors of the following
four lemmas have tail cone σ(D) = σ. In order to abbreviate the notation we will
assume that V is contained in Loc(D) in the following lemmas.

Proposition 3.1.2. Let S be a contraction-free divisorial fan on (Y,NQ) such
that X(S) is smooth and V ⊆ Y an open subset. Then the trivialization t : Ut '
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TN × Vt induces the following commutative diagram

0 // K //

'
��

π1(Ut) //

t∗ '
��

π1(U)

'
��

// 0

0 // KS ×KV
// N(Σ(S))× π1(Vt)

α×β // N(S|V )× π1(V ) // 0

where α : N(Σ(S)) → N(S|V ) is induced by the inclusion N(S|V ) × π1(V ) and
β : π1(Vt)→ π1(V ) is induced by the inclusion Vt → V .

Recall that given a p-divisorD on a variety Y we have a good quotient π : X̃(D)→
Y , that for any open subset V ⊆ Y we have an isomorphism Ut ' X(σ(D)) × Vt
and given a point y ∈ Vt we have a commutative diagram

TN

��

t7→(t,v) // TN × Vt //

��

Vt

��
X(σ(D)) // X̃ // Y

where the vertical arrows are open embeddings and X(σ(D))→ X̃ is the inclusion
of the fiber π−1(y) = X(σ(D)) over y. Passing to the fundamental group and
using [16, Theorem 12.1.10] we have the following commutative diagram

(3.1.1) 1 // N

��

// N × π1(Vt) //

��

π1(Vt)

��

// 1

N(σ(D)) // π1(X̃) // π1(Y ) // 1

If X̃ and Y are smooth, by [40, Lemma 1.5.C] the rows are exact and by [16,
Theorem 12.1.5] the vertical arrows are surjective.

Lemma 3.1.3. Let D be a p-divisor on (Y,NQ) such that X is smooth. If there
is only one maximal intersection set, and N(D) is trivial, then Proposition 3.1.2
holds for V = Y affine.

Proof. Y is affine so we have X̃ = X. Since there is only one maximal
intersecting set there exists a point y ∈ Y in the intersection of all divisors of
supp(D). Moreover, since N(D) is trivial, the polyhedron Dy is full dimensional
in NQ. By [3, Proposition 7.6] we have that the fiber π−1(y) of the good quotient

π : X̃ → Y , contains a fixed point p, with respect to the torus action. Let p0 ∈ X̃ be
a point on an irreducible fiber π−1(y0) of π. By [16, Theorem 12.1.5] the inclusion
TN → π−1(y0) induces a surjective homomorphism i∗ : π1(TN ) → π1(π−1(y0)),
so that any loop η in the fiber is homotopically equivalent to a loop in TN . In
particular, we can assume without loss of generality that η(t) = α(t) · q, where α
is a loop in TN with base point the identity. Let γ be a path from q0 to p. The

homotopy H : I2 → X̃, defined by (t, s) 7→ α(t) · γ(s), contracts the loop α to

the constant loop at p. Thus the homomorphism N → π1(X̃) is trivial and the
first statement of Proposition 3.1.2 holds. The second statement follows from the
commutative diagram (3.1.1). �
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Lemma 3.1.4. Let D be a p-divisor on (Y,NQ) such that X is smooth. If there
is only one maximal intersection set, any divisor of supp(D) is principal and D have
at least one polyhedral coefficient of positive dimension, then Proposition 3.1.2 holds
for V = Y affine.

Proof. Write D =
∑
D ∆D ⊗ D. For each D let vD ∈ N such that ∆D −

vD ⊆ (ND)Q and let D′ :=
∑
D(∆D − vD) ⊗ D. By hypothesis the divisor D −

D′ is principal and thus the sheaves of algebras A(D) and A(D′) are isomorphic.

Being D′ contained in a proper subspace (ND)Q of NQ we conclude that X̃ =
SpecLoc(D)A(D) ' SpecLoc(D)A(D′) is isomorphic to the cartesian product TN(D)×
SpecLoc(D)A(D′0), where D′0 is the polyhedral divisor D′ whose coefficients lie in

(ND)Q. Then, the first statement follows by Lemma 3.1.3. The second statement
follows by the commutative diagram (3.1.1). �

Remark 3.1.5. Suppose that all the polyhedral coefficients of D are points and
write D =

∑
D qD ⊗ D. Let L be the line spaned by two polyhedral coefficients

of D. For any point qD choose vD ∈ N such that qD − vD ∈ L. Let l ∈ L ∩ N
and denote by D′ :=

∑
D(qD − vD − l)⊗D. As in the previous paragraph we can

write X̃ ' TN(l) × SpecLoc(D)A(D′0), where D′0 is the polyhedral divisor D′ whose
coefficients lies in Nl ' Q.

Lemma 3.1.6. Let D be a p-divisor on (Y,NQ) such that X is smooth. If there
is only one maximal intersection set and any divisor of supp(D) is principal, then
Proposition 3.1.2 holds for V = Y affine.

Proof. By Lemma 3.1.4 we reduce to the case when all the polyhedral coef-
ficients of D are points and using remark 3.1.5 we can reduce to the case N ' Z.
Observe that in this case the morphism X = X̃ → Y is a topological C∗-fibration.
Let m ∈ Z>0 such that all the points of mD are integrals, then we have that
X(mD) ' C∗×Y . Observe that the morphism X(D)→ X(mD) is the quotient by
a cyclic group of order m. Both p-divisors have the same trivial open subset and
we have the following commutative diagram

C∗ × VD

��

C∗ × VD
(zm,u)← [(z,u)
oo

��
C∗ × Y X(D)oo

where the vertical arrows are open embeddings. Passing to the fundamental group
we have the following commutative diagram

Z× π1(VD)

��

Z× π1(VD)
(mz,u)←[(z,u)
oo

��
Z× π1(Y ) π1(X(D))oo

The vertical arrows are surjective morphisms by [16, Theorem 12.1.5]. By the
commutativity of the diagram we conclude that π1(X(D)) ' Z × (π1(VD)/K),
where K is a normal subgroup of π1(VD). On the other hand, we have the long
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exact sequence of the fibration X(D)→ Y :

π1(C∗) //

'
��

π1(X(D)) //

'
��

π1(Y )

Z // Z× (π1(VD)/K) // π1(Y ) // 0.

Choosing C∗ to be a fiber of a point in the trivial open subset of Y we can see that
the homomorphism Z → Z × (π1(VD)/K) is the inclusion on the first component.
Thus π1(X(D)) ' Z× π1(Y ) and the result follows. �

Lemma 3.1.7. Let D be a p-divisor on (Y,NQ) such that X is smooth. Then
Proposition 3.1.2 holds.

Proof. We split the proof in four steps.

(1) Observe that if Proposition 3.1.2 holds for the open sets V 1 ⊆ V 2 ⊆ Y
then we have a commutative diagram

N(σ(D))× π1(V 1
t )

id×i∗12 //

α1×β1

��

N(σ(D))× π1(V 2
t )

α2×β2

��
N(D|V 1)× π1(V 1) // N(D|V 2)× π1(V 2)

where i12 : V 1 → V 2 is the inclusion. We conclude that the bottom hori-
zontal map is of the form s12× i∗12, where s12 is the surjection induced by
ND|V2 → ND|V1 .

(2) If Proposition 3.1.2 holds for the open sets V 1, V 2 ⊆ Y and V 1 ∩ V 2

then by Seifert Van-Kampen Theorem [27, Theorem 1.20] we have two
push-out diagrams

N(D|V 1∩V 2) //

��

N(D|V 1)

��
N(D|V 2) // N(D|V 1∪V 2)

π1(V 1 ∩ V 2) //

��

π1(V 1)

��
π1(V 2) // π1(V 1 ∪ V 2)

Taking the free product of the two diagrams and using Step (1) we get
the following push-out diagram

π1(U1 ∩ U2)
ı1 //

ı2

��

π1(U1)

��
π1(U2) // N(D|V 1∪V 2)× π1(V 1 ∪ V 2)

where the maps ı1 and ı2 are induced by the inclusion of the corresponding
open subsets. Then π1(U1∪U2) is isomorphic toN(D|V 1∪V2

)×π1(V 1∪V 2).
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Moreover, observe that we have a commutative diagram

π1(U1
t ∩ U2

t ) //

��

π1(U1
t )

��
p1

  

π1(U2
t ) //

p2

++

π1(U1
t ∪ U2

t )

p

''
π1(U1 ∪ U2)

where pi is the composition π1(U it ) → π1(U i) → π1(U1 ∪ U2) induced
by the two inclusion maps and the square diagram is a push-out. Then
by universal property of the push-out diagram the unique homomorphism
p is induced by the inclusion U1

t ∪ U2
t ⊆ U1 ∪ U2. Moreover we have a

commutative diagram

π1(U1
t ∪ U2

t )
p //

'
��

π1(U1 ∪ U2)

'
��

N(σ(D))× π1(V 1
t ∪ V 2

t )
p′ // N(D|V 1∪V 2)× π1(V 1 ∪ V 2)

where p′ is induced by the inclusions Nσ(D) ⊆ ND|V 1∪V 2
and V 1

t ∪ V 2
t ⊆

V 1 ∪ V 2. Thus, Proposition 3.1.2 holds for V 1 ∪ V 2.
(3) Suppose that Proposition 3.1.2 holds for the open subsets V1, . . . , Vk of

Y and for every intersection of this sets. We conclude by Step (2) that
Proposition 3.1.2 also holds for ∪ki=1Vi. Indeed, suppose by induction that

it holds for ∪k−1
i=1 Vi and Vk ∩ (∪k−1

i=1 Vi) = ∪k−1
i=1 (Vk ∩ Vi), then by Step (2)

it also holds for ∪ki=1Vi.
(4) Let V ⊆ Y be any open subset. Consider a finite affine open cover Vi

of V such that every divisor of supp(D) is principal at any Vi, and D|Vi
has only one maximal intersection set. Let V ′ be any finite intersection
of the Vi’s, then V ′ is an open affine set, so D|V ′ is a p-divisor on V ′ with
only one maximal intersection set. By Lemma 3.1.6 we conclude that
Proposition 3.1.2 holds for V ′. Thus, we are in situation of Step (3) and
Proposition 3.1.2 also holds for V .

�

Proof of Proposition 3.1.2. First we prove the Theorem in the case V =
Y . We proceed by induction on the number n of p-divisors of S. If n = 1 then
X(S) = X(D) and results follows from Lemma 3.1.7. Suppose that S is the set of
p-divisors {D1, . . . ,Dn} and the result is true for n−1. Assume that Dn is maximal
with respect to the inclusion. Using the induction hypothesis on the divisorial fans

S1 := {Dn}, S2 := {D1, . . . ,Dn−1}, S ′ := {D1 ∩ Dn, . . . ,Dn−1 ∩ Dn}.
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By a similar argument as in the proof of Lemma 3.1.7 we have a commutative
diagram

N(σ(S ′))× π1(VS′) //

��

N(σ(Si))× π1(VSi)

��
N(S ′)× π1(Loc(S ′))

αi×βi // N(Si)× π1(Loc(Si)),

for each i ∈ {1, 2}. Thus the homomorphisms induced by the inclusion X(S ′) →
X(Si) is αi× βi where on each factor the corresponding homomorphism is induced
by the inclusions Loc(S) → Loc(Si) and NSi → NS , for each i. We have the
following push-out diagram

N(S ′)× π1(Loc(S ′))
α1×β1 //

α2×β2

��

N(S1)× π1(Loc(S1))

��
N(S2)× π1(Loc(S2)) // N(S)× π1(Loc(S1) ∪ Loc(S2)),

then the isomorphism π1(X(S))→ N(S)× π1(Loc(S)) follows by the Seifert Van-
Kampen Theorem. We now look at the homomorphism π1(US) → π1(X(S)). We
have a commutative diagram

N(σ(S ′))× π1(VS′) //

��

N(σ(S1))× π1(VS1)

��
p1

!!

N(σ(S2))× π1(VS2) //

p2

,,

N(σ(S))× π1(VS)

((
π1(X(S))

where all the arrows are induced by inclusions and pi is the composition

N(σ(Si))× π1(VS)→ N(Si)× π1(VSi)→ N(S)× π1(Loc(S))

for each i. Then by the universal property of the push-out diagram we have a
commutative diagram

π1(US)
p //

'
��

π1(X(S))

'
��

N(σ(S))× π1(VS)
p′ // N(S)× π1(Loc(S))

where p′ is induced by the inclusions Nσ(S) ⊆ NS and VS ⊆ Loc(S). The statement
follows. �

Proof of Theorem 3. Reasoning as in the proof of Proposition 3.1.2, by
gluing affine T-varieties, it is enough to prove the affine case.

Let D be a p-divisor on (Y,NQ) such that X(D) have log-terminal singularities.

Let rS : X(S) → X̃(D) be a toroidal resolution of singularities of X̃(D) such that
S is contraction-free and D has the same locus and support than S, see [35]. Thus,
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we have a commutative diagram

X(σ(D))× VD

iD
��

iS

&&

sD

xx
X(D) X̃(D)

roo X(S)
rSoo

where iD and iS are inclusions, r and rS are birational contractions and sD is
defined as the composition r ◦ iD. Passing to the fundamental groups, (r ◦ rS)∗ is
an isomorphisms by [43, Theorem1.1]. Being X(S) smooth and N(D) = N(S) we
have the isomorphisms π1(X(D)) ' π1(X(S)) ' N(S) × π1(Loc(S)) = N(D) ×
π1(Loc(D)). Being iD and iS inclusions of open subsets we have that (iD)∗ and
(iS)∗ are surjective. We deduce that the kernel of the three homomorphims (sD)∗,
(iD)∗ and (iS)∗ are equal. Thus (sD)∗ : N(σ(D))× π1(VD)→ N(D)× π1(Loc(D))
is α × β, where α is the surjection induced by the inclusion Nσ(D) ⊆ ND and β is
the surjection induced by the inclusion VD ⊆ Loc(D). �

3.2. The cohomology ring of a complexity one T-variety
From now, we will consider divisorial fans S on (P1, NQ), such that X̃(S) is

complete and Q-factorial and describe the Cohomology ring and the Chow Ring
under certain conditions (see Definition 3.2.9). Recall that using [35, Example 2.5]

we can see in S when X̃(S) is a Q-factorial variety. The results of this sections are
generalizations of well-known Theorems, see [23, Chapter 5.].

Definition 3.2.1. Given a σ-polyhedron 4 ⊆ NQ, we denote by V(4) its set
of vertices and by N (4), or simply N , its normal fan consisting of the regions
where the function σ∨ → Q, u 7→ minv∈4〈u, v〉, is lineal. The cones of N are
in one-to-one dimension-reversing correspondence with the faces F ≤ 4 via the
bijection

F 7→ λ(F ) := {u ∈MQ | 〈F, u〉 = min〈4, u〉}.
Given a σ-polyhedron 4 we define the affine toric bouquet X(4) := Spec(C[N ]),
where C[N ] :=

⊕
u∈σ∨∩M Cχu as a C-vector space and the multiplication is given

by

χu · χu
′

:=

{
χu+u′ if u,u’ belong to a common cone of N ,

0 otherwise.

The ring C[N ] is not an integral domain, hence X(4) is not a variety, but is
a scheme, nevertheless since C[N ] is reduced, X(4) have a decomposition into a
finite union of irreducible toric varieties

X(4) =
⋃

v∈V(4)

X(Q≥0 · (4− v)).

These irreducible toric varieties are intersecting along T-invariant divisors, hence
the big torus is still acting on X(4). Observe that the orbits of X(4) are in one-to-
one dimension-reversing correspondence with the faces F ≤ 4. We denote by 4(k)
the set of faces of codimension k and given a face F ∈ 4(k) we denote by OF its
corresponding torus orbit of dimension k. Given ∆ a polyhedral complex consisting
of a finite number of σi-polyhedra 4i, we can glue the affine toric bouquets X(4i)
and X(4j) along X(4i ∩4j) to obtain a toric bouquet X(∆). We denote by ∆(k)
the set of faces of codimension k of ∆.
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Proposition 3.2.2. The Chow group Ak(X) of an arbitrary toric bouquet X =
X(∆) is generated by the classes of the orbit closures [OF ] for F ∈ ∆(k).

Proof. We denote bye Xi the union of all orbits corresponding to faces of
codimension at most i. This gives a filtration X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X−1 = ∅
by closed subschemes. The complement of Xi−1 in Xi is a disjoint union of |∆(i)|
torus orbits of dimension i. We conclude by the exact sequence [23, Proposition
1.8]

Ak(Xi−1)→ Ak(Xi)→ Ak(Xi −Xi−1)→ 0,

and by induction on i. �

Definition 3.2.3. In X̃(S) we have two kind of T-invariant cycles. Given a

point y ∈ Y and a face F of Sy we have a T-invariant cycle [OF ] ∈ A∗(X̃(S)). We
call such cycle vertical if y is a closed point of Y and horizontal if y is the generic
point of Y . If y ∈ Y is the generic point and ρ ∈ Sy = Σ(S) is a ray, we denote the
corresponding horizontal divisor by Dρ and if y ∈ Y is a closed point and v ∈ V(Sy)
is a vertex, we denote the corresponding vertical divisor by D(v,y).

Proposition 3.2.4. Given a divisorial fan S on a curve Y the Chow group

Ak(X̃(S)) is generated by the classes of the horizontal and vertical cycles of dimen-
sion k.

Proof. Let p1, . . . , pr be the support of the divisorial fan S. Recall that each
π−1(pi) is a toric bouquet and that we have an isomorphism

π−1(Y − {p1, . . . , pr}) ' X(Σ(S))× (Y − {p1, . . . , pr}).
Here X(Σ(S)) denotes the toric variety associated to the fan Σ(S). Recall that by
Proposition 3.2.2 the Chow group Ak(

⋃r
i=1 π

−1(pi)) is generated by vertical cycles
of dimension k, while using the above isomorphism we see that the Chow group
Ak(π−1(Y − {p1, . . . , pr})) is generated by vertical and horizontal cycles of dimen-
sion k. Using the exact sequence of Chow groups relating the closed subscheme⋃r
i=1 π

−1(pi) and its complement the result follows. �

Definition 3.2.5. Given a polyhedral complex ∆ on NQ, we say that ∆ is
shellable if we can order the maximal polyhedra 41, . . . ,4k of ∆ such that for
each i the following set odered by inclusion

{F ≤ 4i | F is not contained in ∪j<i 4j} ,
has a unique minimal element denoted by Gi.

For example the fan of a projective and simplicial toric variety is always shellable
by [23, Section 5.2, Lemma]. Observe that for each face F of a shellable polyhedral
complex ∆ there is a unique i such that Gi ⊆ F ⊆ 4i.

Definition 3.2.6. We say that a polyhedral complex ∆ is simplicial if for each
vertex v ∈ ∆ and maximal polyhedron v ∈ 4 ∈ ∆ the cone Q · (v−∆) is simplicial.

Let ∆ be a shellable polyhedral complex and 41, . . . ,4k, the order induced in
its maximal polyhedra. for 1 ≤ i ≤ k we define the subvarieties of X(∆)

Yi :=
⋃

Gi⊆F⊆4i

OF , Zi := Yi ∪ Yi+1 ∪ · · · ∪ Yk.

This is a generalization of the shellability condition on fans given in [23, Section 5.2] which
is related to the shellability problem for cones [10].
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Lemma 3.2.7. Each Zi is closed, Z1 = X(∆) and Zi − Zi+1 = Yi. Moreover,
if ∆ is simplicial then each Yi is the quotient of an affine space by a finite group.

Proof. Recall that for each face F of Sy there is a unique i such that Gi ⊆
F ⊆ 4i, then π−1(y) is the disjoint union of the sets Yi. The closure of OF is the
union of all the orbits OF ′ with F ′ ⊇ F , then we conclude that each Zi is closed.
The last assertion follows from the fact that each irreducible toric component of
π−1(y) is a simplicial toric variety. �

Proposition 3.2.8. Let ∆ be a shellable and simplicial polyhedral complex
with complete support. Then the classes [OGi ] form a basis for A∗(X(∆))Q '
H2∗(X(∆);Q) and Hq(X(∆)) = 0 for q odd.

Proof. In the proof all homologies and Chow groups are over Q. Recall that
X(∆) = Z1. We prove, by descending induction on i, that the canonical map
A∗(Zi) → H∗(Zi) is an isomorphism, that the classes [OGj ], for any j ≥ i, form a
basis of A∗(Zi) and that Hq(Zi) = 0 for q odd. Following Fulton [23, Pag. 103]
we have a commutative diagram of Chow groups and Borel-Moore homology with
rational coefficients

Ap(Zi+1) //

��

Ap(Zi) //

��

Ap(Yi)

��

// 0

. . . // H2p+1(Yi) // H2p(Zi+1) // H2p(Zi) // H2p(Yi) // H2p−1(Zi+1) // . . .

Since Yi is the quotient of an affine space by a finite group we conclude thatAk(Yi) '
H2k(Yi) ' Q is generated by the class of Yi for k = dimC Yi and otherwise both
spaces are trivial. By induction hypothesis Hq(Zi+1) = 0 for q odd. The statement
follows. �

Consider a divisorial fan S on P1, with support {p1, . . . , pr}, such that X̃(S) is
complete and Q-factorial. We denote by Si the polyhedral complex corresponding
to the toric bouquet π−1(pi), for i ∈ {1, . . . , r} and by S0 the polyhedral complex
corresponding to the toric variety π−1(p0), where p0 is a general point. Assume that
Si is shellable with ordered maximal polyhedra 4i1, . . . ,4iki and minimal elements

Gi1, . . . , G
i
ki

for any i. We denote by

Bi := {[OGij ] : j ∈ {1, . . . , ki}}

the Q-vector space basis of Ak(X(Si)). For each face F of S0 we denote by S(F )i
the set of faces of Si which have the same tailcone and dimension of F . For each
F ′ ∈ S(F )i we denote by v(F ′) its unique vertex. We define the 0-graded linear
map of Q-vector spaces

ji : A∗(X(S0))→ A∗(X(Si)), [OG0
j
] 7→

∑
F ′∈S(G0

j )i

µ(v(F ′))[OF ],

for j ∈ {1, . . . , i0}. Observe that ji is well defined, since B0 is a Q-vector space
basis of A∗(X(S0)) by Proposition 3.2.8.

Definition 3.2.9. We say that S is complete if X̃(S) is a complete variety. We

say that S is simplicial if X̃(S) is a Q-factorial variety. We say that S is shellable
if ji,k is injective for each k ∈ N and i ∈ {1, . . . , r}.
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For each face F of Si, we denote by i(F ) the minimum positive integer such
that F ⊆ 4i(F ). Observe that a sufficient condition for ji,k to be injective is that
for each 1 ≤ n < m ≤ k0 we have that

min{i(F ) | F ∈ S(G0
n)i} < min{i(F ) | F ∈ S(G0

m)i}.

Indeed in this case the representative matrix of ji with respect to the basis B0 of
A∗(X(S0)) and Bi of A∗(X(Si)) contains a triangular submatrix of full rank.

Notation 3.2.10. Given a complete, simplicial and shellable divisorial fan S
on P1, we denote by Q[Dρ, D(p,v)] the polynomial ring over Q generated by elements

Dρ and D(p,v) for ρ ∈ Σ(S)(1) and v ∈ V(Sp), with p ∈ P1.

For each face F of a slice Sp with p ∈ P1, we have a corresponding monomial
in Q[Dρ, D(p,v)], which is the product of all the elements Dρ and D(p,v) such that
v ∈ F and ρ ∈ σ(F ). We denote such element by p(F ).

For each cone σ of the fan Σ(S), we have a corresponding monomial in Q[Dρ, D(p,v)],
which is the product of all the elements Dρ with ρ ∈ σ. We denote such element
by p(σ).

We denote by I the ideal generated by

(3.2.1) div(fχu) :=
∑

ρ∈Σ(S)(1)

〈ρ, u〉Dρ +
∑

p∈P1,v∈V(Sp)

µ(v)(〈v, u〉+ ordpf) ·D(p,v),

for each rational function f ∈ C(P1) and character lattice χu ∈ M and by all the
monomials which are not of the form p(F ) nor p(σ).

Proof of Theorem 4. In the proof we omit the rational coefficients in order

to abbreviate notation. We start by proving the first statement. Let U = X̃(S)−
∪ri=1π

−1(pi). We have a commutative diagram of Chow groups and Borel-Moore
homology with rational coefficients

Ak(U c) //

'
��

Ak(X̃(S)) //

��

Ak(U)

'
��

// 0

H2k+1(U) // H2k(U c) // H2k(X̃(S)) // H2k(U) // H2k−1(U c).

The first vertical arrow is an isomorphism by Proposition 3.2.8. Using that Ak(P1−
{p1, . . . , pr}) → H2k(P1 − {p1, . . . , pr}) is an isomorphism for each k, Künneth
formula for Borel-Moore homology [13, Section 2.6.19] and Proposition 3.2.8, we
see that the third vertical arrow is an isomorphism. Moreover H2k−1(U c) = 0 by
Proposition 3.2.8. We define an injective homomorphism

A∗(X(S0))→ A∗(U
c)

in the following way. Given the orbit closure V of X(S0) we map its class [V ] ∈
A∗(X(S0)) to the class of ı∗i (V × P1 − {p1, . . . , pr}), where ıi : X(Si)→ X̃(S) is the
inclusion of the reduced fiber. This map extends to an injective homomorphism

i : Qr−1 ⊗Q A∗(X(S0))→ A∗(U
c) '

r⊕
i=1

A∗(X(Si))

defined by

(m1, . . . ,mr−1)⊗Q [V ] 7→ (m1j1([V ]), . . . ,mr−1jr−1([V ]),−mjr([V ])),
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where m = m1 + · · ·+mr−1. The image of i is in the kernel of A∗(U
c)→ A∗(X̃(S)).

Indeed, (m1, . . . ,mr−1)⊗Q [V ] is mapped to the divisor of a rational function fχ0,

where f has order mi at pi, for i ∈ {1, . . . , r−1} and order −
∑r−1
i=1 mi at pr. Then

we have the following commutative diagram

Qr−1 ⊗Q Ak(X(S0))� _

i

��
0 // K //

j

��

Ak(U c) //

'
��

Ak(X̃(S)) //

��

Ak(U)

'
��

// 0

Qr−1 ⊗Q Hk(X(S0)) // H2k(U c) // H2k(X̃(S)) // H2k(U) // 0,

where K is the kernel of Ak(U c) → Ak(X̃(S)), i is the injection induced by the
above homomorphism, and j is the unique arrow making the diagram commutative.
By the four lemma the third vertical arrow is surjective, then j is injective. Since

dim(Ak(X(S0)))Q = dim(Hk(X(S0));Q)

for each k by Proposition 3.2.8, all the vertical arrows are isomorphisms. �

Now we prove three Lemmas concerning the structure of the ring Q[Dρ, D(p,v)],
in order to prove Theorem 5. Recall that given a complete, simplicial and shellable
divisorial fan S on P1 with support {p1, . . . , pr} we denote by 4i1, . . . ,4iki the or-

dered maximal polyhedra of Si and we denote by Gi1, . . . , G
i
ki

the minimal elements
for any i. Moreover, we will denote by 41, . . . ,4k, the ordered maximal cones
of Σ(S) and we denote by G1, . . . , Gk the minimal elements. We assume that the
shellability induced in S0 and Σ(S) are the same.

Lemma 3.2.11. Let S be a divisorial fan on P1 as above. Let ∅ 6= G ( H ⊆ F
be faces in Si, with i ∈ {0, . . . , r}. Then there exists an element on I of the form

p(H)−
∑
j

mjp(Hj),

where Hj are faces of Si, with with G ⊆ Hj and Hj 6⊆ F , and mj ∈ Q.

Proof. Let V(F ) = {v1 . . . , vk}, and σ(F ) = {ρ1, . . . , ρk′}. We prove the case
where v1 ∈ V(H) is not in V(G) (the case where exists ρ ∈ σ(H), not in σ(G) is
analogous). Recall that the set

S := {(ρ1, 0), . . . , (ρk′ , 0), (v1, 1), . . . , (vk, 1)},
is linearly independent inNQ⊕Q. Consider an element u′ ∈M⊕Z = Hom(N⊕Z,Z)
which vanishes at all the elements of S − {(v1, 1)} and u′(v1, 1) = 1. Let u be the
restriction of u′ to M and consider a rational function f ∈ C(P1) with ordpi(f) =
u′(0, 1) and ordpk(f) = 0 for k 6= i. Recall that div(fχu) is in I by definition.
Moreover, by (3.2.1) we have

div(fχu) :=
∑

ρ∈σ(F )c

〈ρ, u〉Dρ +
∑

v∈V(F )c

µ(v)(〈v, u〉+ ordpif) ·D(pi,v)

+D(pi,v1) +
∑

p∈P1−{pi},v∈V(Sp)

µ(v)(〈v, u〉+ ordpf) ·D(p,v),
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where all but the summand D(pi,v1) correspond to vertices or rays which are not in
V(F )∪σ(F ). Multiplying div(fχu) by p(H)/D(pi,v1), subtracting all the monomials
which are not of the form p(F ), with F a face of Si, and observing that p(G) divides
p(H)/D(pi,v1), we get the result. �

Lemma 3.2.12. Let S be a divisorial fan as above and let Si be a slice with
i ∈ {0, . . . , r}. The ideal Ii := 〈D(p,v) + I | v ∈ Si〉 of Q[Dρ, D(p,v)]/I is generated

as a Q-vectorial space by the set {p(Gij) + I | j ∈ {1, . . . , ki}}.

Proof. First we prove that Ii is generated by square-free monomials. To this
aim it is enough to show that for any face F of Si and v ∈ V(F ) the element
D(pi,v)p(F ) and Dρp(F ) are equivalent to sum of square-free monomials modulo I.
Following the proof of Lemma 3.2.11 we can find an element div(fχu) ∈ I which
contains D(pi,v) as a summand and the other summands corresponds to vertices and
rays which are not in F . Multiplying this element by p(F ) + I we conclude that
D(pi,v)p(F ) is equal to a linear combination of square-free monomials. A similar
argument applies to Dρp(F ).

By descending induction on k, we prove that if Gik ⊆ H ⊆ Fk then p(H) + I
is in the submodule generated by p(Gij) + I with j ≥ k. If H = Gik we are done,

otherwise we can apply Lemma 3.2.11 to ∅ 6= Gik ( H ⊆ Fk and conclude by the
induction hypothesis. �

In the following proof, given a face F ∈ Spi , with i ∈ {1, . . . , r}, we will denote
by DF the p-divisor with support {p1, . . . , pr} and slices DF pi = F and DF pj = ∅,
if j 6= i. Recall that we have a open embedding X(DF )→ X̃(S).

Lemma 3.2.13. Let S be a complete, simplicial and shellable divisorial fan on

P1. Then every T-invariant prime subvariety of X̃(S) is the complete intersection
of T-invariant divisors.

Proof. Recall that, according to Definition 3.2.3, any T-invariant prime sub-

variety of X̃(S) is of the form OF , where F is a face of the slice Sy and y ∈ P1 is

a point. If y is a closed point, then OF , with F ∈ Sy, equals
⋃
F ′⊃F OF ′ . Observe

that F ′ ⊃ F if and only if σ(F ′) ⊃ σ(F ) and V(F ′) ⊃ V(F ), so that the following
equality holds:

OF =
⋂

v∈V(F )

D(y,v) ∩
⋂

ρ∈σ(F )

Dρ.

If y is the generic point and p ∈ P1 is a closed point, localizing to a toric neigh-
bourhood of p we have the equality

OF ∩ π−1(p) =
⋃

F ′∈Sp,σ(F ′)⊃σ(F )

OF ′ ,

where the ⊆ inclusion is clear, while the ⊇ inclusion is due to the fact that if F ′ ∈ Sp
and σ(F ′) 6⊃ σ(F ), then X(DF ′) is an open subset of X̃(S) which contains OF ′ and
is disjoint from OF . We conclude that

OF =
⋃
p∈P1

⋃
F ′∈Sp,σ(F ′)⊃σ(F )

OF ′ =
⋂

ρ∈σ(F )

Oρ =
⋂

ρ∈σ(F )

Dρ.

�
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Proof of Theorem 5. We have a canonical homomorphism

Q[Dρ, D(p,v)]→ A∗(X̃(S)), D 7→ [D]

which maps every Dρ (resp. D(p,v)) to the class of the corresponding divisor.

In X̃(S) every T-invariant cycle is the intersection of T-invariant divisors by
Lemma 3.2.13, then the above homomorphism is surjective. Recall by [5, Theorem
26] that given a rational function f of P1 and a character χu of the torus acting on

X̃(S), the element div(fχu) ∈ Q[Dρ, D(p,v)] is in the kernel of the homomorphism.
Consider a monomial m of the form

Dρ1 . . . Dρk′D(p1,v1) . . . D(pk,vk) ∈ Q[Dρ, D(p,v)].

If there exist 1 ≤ i < j ≤ k such that pi 6= pj then the image of m in A∗(X̃(S))
is zero because we are intersecting two divisors which are in diferent fibers of the

quotient morphism X̃(S) → P1. If all the pi’s are equal, we can localize to the
toric neighbourhood X(Σi) of π−1(pi) and see that there exists no face F in Spi
such that σ(F ) = 〈ρ1, . . . , ρk′〉 and V(F ) = {v1, . . . , vk} if and only if there exists no
cone in Σi generated by {(ρ1, 0), . . . , (ρk′ , 0), (v1, 1), . . . , (vk, 1)}. The last condition
is equivalent to ask for the divisors in m to have empty intersection. If this is the
case then m is in the kernel of the homomorphism. If there is no D(pi,vi) in the
monomial, and there is no cone σ ∈ Σ(S) such that ρ1, . . . , ρk′ generates σ, then
the horizontal divisors in m have empty intersection by [23, Section 5.2]. Thus we
have a well-defined surjective homomorphism

φ : Q[Dρ, D(p,v)]/I → A∗(X̃(S)).

In order to conclude we prove that there is a subset of Q[Dρ, D(p,v)]/I which gen-
erates it as a Q-vector space and whose image is a Q-basis of the Chow ring.

Observe that the subring of A∗(X̃(S))Q generated by {Dρ | ρ ∈ Σ(S)(1)} is
isomorphic to A∗(X(Σ(S)))Q, and by Proposition [23, Chapter 5] it is generated
as Q-vectorial space by the monomials p(Gj), with j ∈ {1, . . . , k}.

From now, we use the notation of the proof of Theorem 5. The restriction
of φ to Ii induces a surjective homomorphism αi : Ii → A∗(X(Si)) of Q-vector
spaces which maps {p(Gij) + I | j ∈ {1, . . . , ki}} into a Q-basis of the codomain.

Then αi is an isomorphism by 3.2.12. Consider a rational function f ∈ C(P1) with
ordp0(f) = 1 and ordpi(f) = −1. Expanding the product p(Gj) div(fχ0) ∈ I we
deduce the following

p(G0
j ) + I =

∑
v∈V(Si)

µ(v)p(Gj)D(pi,v) + I.

For each i, we define the Q-linear map

I0 → Ii. p(F ) + I 7→
∑

v∈V(Si)

µ(v)p(F )D(pi,v) + I.

which makes commute the following diagram

I0
� � //

'
��

Ii
� � //

'
��

Q[Dρ, D(p,v)]/I

φ
����

A∗(X(S0))
� � ji // A∗(X(Si)) �

� // A∗(X̃(S)).
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In particular, for each i we can choose a set of elements Bi of Ii which are
linear combination of the monomials p(Gij) + I, such that the image of Bi via φ is

a basis of coker(ji). Observe that {p(G0
j ) + I | j ∈ {1, . . . , k0}} ∪ Bi generates Ii as

a Q-vector space for each i. Being X̃(S) a Q-factorial variety and using Theorem 5
we have that

A∗(X̃(S)) ' A∗(X̃(S)) ' A∗−2(X(Σ(S)))⊕A∗(X(S0))

r⊕
i=1

coker(ji).

We conclude that the set

{p(Gj) + I | j ∈ {1, . . . k}} ∪ {p(G0
j ) + I | j ∈ {1, . . . , k0}}

r⋃
i=1

Bi,

is a subset of Q[Dρ, D(p,v)]/I which generates its as a Q-vector space and whose
image is a Q-basis of the Chow ring. �

The following example gives the dimensions of cohomology groups with rational
coefficients of a complete Q-factorial threefold with shellable divisorial fan.

Example 3.2.14. Let S be shellable divisorial fan on P1 such that X̃(S) is a
complete Q-factorial threefold. Denote by p1, . . . , pr the support of S and by Si
the slice at the point pi. We denote by si the number of maximal polyhedra in
Si. Using Theorem 5 we can compute the dimension of its cohomology groups with
rational coefficients

dimQ(H0(X̃(S))) = 1, dimQ(H2(X̃(S))) =

r∑
i=1

|V(Si)|+ |Σ(S)| − r − 2,

dimQ(H4(X̃(S))) =

r∑
i=1

(si − |V(Si)|)− r|Σ(S)|+ r+ 1, dimQ(H6(X̃(S))) = 1.

Remark 3.2.15. Observe that the conclusion of Lemma 3.2.13 is no longer

true if we substitute X̃(S) with X(S). As an example consider the quadric Q =
V (x1x2 + x3x4 + x5x6) of P5. It admits an effective action of (K∗)3 and thus is
a T-variety of complexity one, so that Q = X(S) for some divisorial fan S on P1.
On the other hand Q is isomorphic to the Plücker embedding of the Grassmannian
G(2, 4) and its Chow ring of Q is well known: A1(X) ∼= Z is generated by the class
of a hyperplane section and A2(X) ∼= Z2. Hence A∗(X) cannot be generated by
classes of invariant divisors.

3.3. Singular Cohomology of complexity-one T-varieties
In this section Y denotes a smooth curve. Let D =

∑r
i=1 ∆pi ⊗ pi denote a

p-divisor on a curve Y with tailcone σ. We define the degree of D as

deg(D) :=

r∑
i=1

∆pi ⊆ NQ.

For a p-divisor D on a curve Y we have that deg(D) 6= ∅ ⇔ Loc(D) = Y . If D is a
polyhedral divisor on Y then D is a p-divisor if and only if deg(D) ( σ and D(u)
has a principal multiple for all u ∈ σ∨ with u⊥ ∩ (deg(D)) 6= 0.

Now we turn to compute the higher homology and cohomology of contraction-
free complexity-one T-varieties. Given D =

∑r
i=1 ∆r

p=1 ⊕ pi be a p-divisor on a
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curve Y . we consider the open set V :=
∐r
i=1 Vi :=

∐r
i=1 C which is an analytic

neighbourhood of the support of D. We will write U := π−1(V ) and Ui := π−1(Vi)
for each i. We recall that we have an equality Ui := X(σi) for some cone σi in
N ′Q := NQ ⊕ Q. For each polyhedra ∆i we denote by N(∆i) := N/N∆i

, where
N∆i

:= Z ∩ {v1 − v2 | v1, v2 ∈ ∆i}. For each i we have that N ′(σi) ' N(∆i) and
we will denote by N∆i the kernel of the surjective homomorphism N(σ)→ N(∆i),
then we can identify N(∆i) with a subspace of N(σ) via the isomorphism N(σ) '
N(∆i)⊕N∆i

for each i. We will use the following notation

NDi (1) := N∆i
∩ 〈N∆i+1

, . . . , N∆r
〉,

NDi (2) := N∆i
∩N(∆i+1) ∩ · · · ∩N(∆r),

NDi (3) := N(∆i) ∩ 〈N∆i+1
, . . . , N∆r

〉,
NDi (4) := N(∆i) ∩N(∆i+1) ∩ · · · ∩N(∆r).

Observe that for each i the subspaces NDi (1), NDi (2), NDi (3) and NDi (4) are pair-
wise disjoint and generate N(σ). To abreviate notation, given natural numbers
a1, a2, a3, a4 we will write

∧a1,a2,a3,a4NDi := ∧a1NDi (1)⊗Z ∧a2NDi (2)⊗Z ∧a3NDi (3)⊗Z ∧a4NDi (4),

and

Hk(ND) :=

r−1⊕
i=1

 ⊕
(a1,a2,a3,a4)∈Ik−1

∧a1,a2,a3,a4NDi

 ,

where Ik := {(a1, a2, a3, a4) ∈ N4 | a1 + a2 + a3 + a4 = k, (a1 + a2)(a1 + a3) 6= 0}.
Proposition 3.3.1. Let D = ∆p ⊕ p be a p-divisor on a curve Y . Then the

following statements holds.

(1) If D have affine locus, then Hk(X̃(D)) is isomorphic to

∧kND1 (4)⊕
(
∧k−1N(σ)⊗Z H1(Y )

)
⊕Hk(ND).

(2) If D have complete locus, then Hk(X̃(D)) is isomorphic to

Hk(X(σ)× Y ).

Lemma 3.3.2. Let N,N ′, N ′′ be free finitely generated Z-modules. Then the
following statements hold.

(1) Let f : N ′ → N be a surjective homomorphism with kernel K. Then the
kernel of ∧kf : ∧k N ′ → ∧kN is isomorphic to⊕

i+j=k
i 6=0

∧iK ⊗Z ∧jN.

(2) Let K1, . . . ,Kr be submodules of N ′ and let Ki := 〈Ki+1, . . . ,Kr〉. Then
the kernel of the sum homomorphism K1 ⊕ · · · ⊕Kr → M is isomorphic
to

r−1⊕
i=1

Ki ∩ Ki.
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(3) Let f : N ′ → N be a surjective homomorphism with kernel K and i : N ′ →
N ′′ be a homomorphism. Then the cokernel of the induced homomorphism
(f, i) : N ′ → N ⊕N ′′ is isomorphic to

N ′′/i(K).

Proof of Proposition 3.3.1. We prove the first assertion. Recall thatN ′(σ) '
N(σ)⊕ Z, then for each k we have

∧kN ′(σ) ' ∧kN(σ)⊕ ∧k−1N(σ).

Using [16, Proposition 12.3.1] we see that

Hk(U ∩ UD) ' ⊕ri=1 ∧k N ′(σ) ' ∧kN(σ)⊗Z Zr ⊕ ∧k−1N(σ)⊗Z Zr,

Hk(Um) ' ⊕ri=1 ∧k N(∆i),

Hk(UD) ' ∧kN(σ)⊕ ∧k−1N(σ)⊗Z (H1(Y )⊕ Zr).
In order to compute Hk(X(D)) we will study the homomorphism

ik : Hk(U ∩ UD)→ Hk(U)⊕Hk(UD).

We denote by ik,1 and ik,2 the coordinates of ik. Then we can write

ik,2 : ∧k N(σ)⊗Z Zr ⊕∧k−1N(σ)⊗Z Zr → ∧kN(σ)⊕∧k−1N(σ)⊗Z (H1(Y )⊕ Zr),

ik,1 : ⊕ri=1

(
∧kN(σ)⊕ ∧k−1N(σ)

)
→ ⊕ri=1 ∧k N(∆i),

where ik,2 is induced by the sum homomorphisms Zr → Z and the injection Zr →
H1(Y )⊕ Zr and ik,1 corresponds on each factor to the k-th wedge homomorphism
of the projection N(σ)→ N(∆i) and the zero homomorphism on ∧k−1N(σ).

Then, the kernel of ik corresponds to the elements of ⊕ri=1 ∧k N(σ) which are
in the kernel of the surjection ⊕ri=1 ∧k N(σ) → ⊕ri=1 ∧k N(∆i) and in the kernel
of the sum homomorphism ⊕ri=1 ∧k N(σ) → ∧kN(σ). Using part (1) and (2) of
Lemma 3.3.2 we conclude that the kernel of ik is isomorphic to

r−1⊕
i=1

 ⊕
(a1,a2,a3,a4)∈Ik

∧a1,a2,a3,a4NDi

 ,

Observe that this is a free finitely generated abelian group.
On the other hand, ik,1 is a surjection, then using part (1) and (3) of Lemma 3.3.2

we conclude that the cokernel of ik is isomorphic to

∧kND1 (4)⊕
(
∧k−1N(σ)⊗Z H1(Y )

)
Then the first assertion follows.

For the second assertion observe that as D have complete locus, then by [5,
Lemma 18] we have that N(∆i) = N(σ) for each i. Then we have that NDi (1) =
NDi (2) = NDi (3) = 0 and NDi (4) = N(σ) for each i. Then the result follows from
the first part. �

Now we turn to compute the cohomology of affine complexity-one T-varieties.
Given a cone σ ⊆ N we denote by M(σ) := σ⊥ ∩M . We recall from [16, Propo-
sition 12.3.1] that Hk(X(σ)) ' ∧kM(σ) for each k. Then, given a p-divisor
D :=

∑r
i=1 ∆i ⊕ pi on a semiprojective curve Y . Observe that for each i we have

isomorphisms M(σ) := M(∆i)⊕M∆i
and M ′(σi) 'M(∆i), where M∆i

:= (N∆i
)⊥

for each i.
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We will use the following notation

MDi (1) := M∆i+1
∩ 〈M(∆1), . . . ,M(∆i)〉,

MDi (2) := M∆i+1
∩M(∆1) ∩ · · · ∩M(∆i),

MDi (3) := M(∆i+1) ∩ 〈M(∆1), . . . ,M(∆i)〉,
MDi (4) := M(∆1) ∩ · · · ∩M(∆i+1).

Observe that the subspaces MD(1)MD(2),MD(3) and MD(4) are pairwise disjoint
and generate M(σ). To abreviate notation, given natural numbers a1, a2, a3, a4 we
will write

∧a1,a2,a3,a4Hk(MD) := ∧a1MDi (1)⊗Z ∧a2MDi (2)⊗Z ∧a3MDi (3)⊗Z ∧a4MDi (4),

and

Hk(MD) :=

r−1⊕
i=1

 ⊕
(a1,a2,a3,a4)∈Ik−1

∧a1,a2,a3,a4MDi

 .

Proposition 3.3.3. Let D :=
∑r
i=1 ∆pi⊗pi be a p-divisor on a curve Y . Then

the following statements holds.

• If D have affine locus then Hk(X̃(D)) is isomorphic to

∧kMD(4)⊕
(
∧k−1M(σ)⊗Z H

1(Y )
)
⊕Hk(MD).

• If D have complete locus then Hk(X̃(D)) is isomorphic to

Hk(X(σ)× Y )⊕Hk(X(σ)).

Lemma 3.3.4. Let M be a free finitely generated Z-module, K1, . . . ,Kr be sub-
modules and Ki := K1 ∩ · · · ∩Ki. Then the cokernel of the homomorphism

r⊕
i=1

Ki ⊕M →Mr,

given by (k1, . . . , kr,m)→ (m− k1, . . . ,m− kr) is isomorphic to

r−1⊕
i=1

M/〈Ki,Ki+1〉.

Proof of Proposition 3.3.3. We proof the first assertion. Recall thatM ′(σ) '
M(σ)⊕ Z, then for each k we have

∧kM ′(σ) ' ∧kM(σ)⊕ ∧k−1M(σ).

Using [16, Proposition 12.3.1] we see that

Hk(U ∩ UD) ' ⊕ri=1 ∧kM ′(σ) ' ∧kM(σ)⊗Z Zr ⊕ ∧k−1M(σ)⊗Z Zr,

Hk(U) ' ⊕ri=1 ∧kM(∆i),

Hk(UD) ' ∧kM(σ)⊕ ∧k−1M(σ)⊗Z (H1(Y )⊕ Zr).
In order to compute Hk(X(D)) we will study the homomorphism

ik : Hk(U)⊕Hk(UD)→ Hk(U ∩ UD).
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We denote by ik,1 and ik,2 the homomorphism ik restricted to Hk(U) and Hk(UD)
respectively. Then we can write

ik,1 :

r⊕
i=1

∧kM(∆i)→
r⊕
i=1

(
∧kM(σ)⊕ ∧k−1M(σ)

)
,

ik,2 : ∧kM(σ)⊕∧k−1M(σ)⊗Z (H1(Y )⊕Zr)→ ∧kM(σ)⊗Z Zr⊕∧k−1M(σ)⊗Z Zr,
where ik,1 is the k-th wedge product of the inclusion M(∆i) → M(σ) on each
component and ik,2 is the homomorphism induced by Z → Zr, z 7→ (z, . . . , z) and
the projection H1(Y )⊕ Zr → Zr.

Then the kernel of ik is isomorphic to ∧k−1M(σ) ⊗Z H
1(Y ) direct sum with

the kernel of the homomorphism
r⊕
i=1

∧kM(∆i)⊕ ∧kM(σ)→ (∧kM(σ))r,(3.3.1)

which is isomorphic to
(
∧k(M(∆1) ∩ · · · ∩M(∆r))

)r−1
. Observe that the kernel of

ik is a free finitely generated abelian group. On the other hand, the cokernel of ik

is the cokernel of homomorphism 3.3.1. Then, using Lemma 3.3.4 we see that the
cokernel of ik is isomorphic to

r−1⊕
i=1

 ⊕
(a1,a2,a3,a4)∈Ik−1

∧a1,a2,a3,a4MDi

 ,

Then the first assertion follows.
For the second assertion observe that as D have complete locus, then by [5,

Lemma 18] we have that M(∆i) = M(σ) for each i. Then we have that MDi (1) =
MDi (2) = MDi (3) = 0 and MD(4) = M(σ) for each i. Then the result follows from
the first part. �

Remark 3.3.5. Proposition 3.3.3 can be obtained from Proposition 3.3.1 and
the Universal coefficient theorem for cohomology. In this case using the Universal
coefficient theorem correspond to take duality N(σ) 7→M(σ).

Let S be a divisorial fan on a curve Y , we will denote by I an ordered set of
indexes i such that Di ∈ S is a maximal p-divisor with respect to the inclusion. We
denote by Ik the set of increasing k-sequences of elmenets of I.

Proposition 3.3.6. Let S be a divisorial fan on a curve Y such that for each
i ∈ I, Di has affine locus and full-dimensional tailcone. Then

H2(X̃(S)) ' ker

 ⊕
(i,j)∈I2

MD
i∩Dj (4)→

⊕
(i,j,k)∈I3

MD
i∩Dj∩Dk(4).

⊕H2(Loc(S)),

where the homomorphism MD
i∩Dj (4)→MD

i∩Dj∩Dk(4), is induced by the inclusion
of p-divisors Di ∩ Dj ∩ Dk ⊆ Di ∩ Dj.

Proof. Consider the affine open cover of X(S) given by U := {X(Di) | i ∈ I}.
We have an spectral sequence of the covering U

Ep,q1 =
⊕

γ=(i0,...,ip)∈Ip+1

Hq(X(Di0) ∩ · · · ∩X(Dip))⇒ Hp+q(X(S)).
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Observe that
Ep,01 =

⊕
γ=(i0,...,ip)∈Ip+1

Z.

Thus, Ep,02 = 0 for p > 0 and E0,0
2 = Z. The maximal cones of Σ(S) are full-

dimensional, then by Proposition 3.3.3 we have that E0,q
1 =

⊕
i∈I H

q(X(Di)) = 0,

for all q > 1 and E0,1
1 =

⊕
i∈I H

1(Loc(Di)). It follows that E0,q
2 = 0 for all q > 1.

Then E2,0
r and E0,2

r are zero for all r ≥ 2. Moreover, the differentials into and

out of E1,1
r are zero for all r ≥ 2. Thus, E1,1

2 = E1,1
∞ ' H2(X(S)). Then, we can

compute H2(X(S)) from the complex

E0,1
1 → E1,1

1 → E2,1
1 .

By Proposition 3.3.1 we have that H2(X(S)) is the homology of the following
complex ⊕

i∈I
H1(Loc(Di))→

⊕
(i,j)∈I2

MD
i∩Dj (4)⊕H1(Loc(Di ∩ Dj))

→
⊕

(i,j,k)∈I3
MD

i∩Dj∩Dk(4)⊕H1(Loc(Di ∩ Dj ∩ Dk)).

Observe that this group is isomorphic to

ker

 ⊕
(i,j)∈I2

MD
i∩Dj (4)→

⊕
(i,j,k)∈I3

MD
i∩Dj∩Dk(4)

 ,

direct sum with the homology of the complex⊕
i∈I

H1(Loc(Di))→
⊕

(i,j)∈I2
H1(Loc(Di ∩ Dj))→

⊕
(i,j,k)∈I3

H1(Loc(Di ∩ Dj ∩ Dk)),

which is isomorphic to H2(Loc(S)). �

In the following example we use Theorem 3 and Proposition 3.3.1 to compute
the cohomology groups of a particular affine T-variety.

Example 3.3.7. Consider a divisorial fan S on (Y,Z3) with Y a curve. Let
{y1, y2} ⊆ Y be the support of S. Assume that the fan of the generic fiber is
generated by e1 and the slices S1 and S2 over y1 and y2 respectively corresponds
to the polyhedra

∆1 := (0, 0, 0), (0, 1, 0) + e1, ∆2 := (0, 0, 0), (0, 0, 1) + e1.

Using Theorem 3 we observe that π1(X̃(S)) ' π1(Y ), then H1(X̃(S)) ' H1(Y ).
Moreover, using Proposition 3.3.1 we can compute

ND1 (1) = {0}, ND1 (2) = 〈e2〉 ND1 (3) = 〈e3〉, ND1 (4) = 0,

H3(ND) ' Z, and 0 otherwise .

Then, we conclude that

H0(X̃(S)) ' Z, H1(X̃(S)) ' H1(Y ), H2(X̃(S)) ' H1(Y )⊗Z Z2,

H3(X̃(S)) ' H1(Y )⊕ Z, Hk(X̃(S)) ' 0, for k ≥ 4.
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Future directions

In this section we discuss future directions of the work in Chapter 2 and Chap-
ter 3. Given an algebraic variety X, The problem of calculating the dimension of a
linear system of hypersurfaces of X of a fixed degree passing through points with
prescribed multiplicities is a wide open problem. In particular, the problem is still
open in P2 and most of results are for bounded degree, bounded multiplicities or
a fixed number of points. However, there are works which try to describe the sub-
varieties appearing in the base locus of a linear system in a product of projective
spaces (see [8,9,44]). Toric varieties seem to be good candidates to generalize these
results. This gives the motivation for the following problems.

Problem 3.3.8. Let X be a projective smooth toric variety and let p1, . . . , pr ∈
X be points in very general position. L be the linear system of hypersurfaces of
degree [D] ∈ Cl(X) passing through pi with multiplicity mi.

• What are the subvarieties which appear in Bs(L). Even new examples
would be interesting.

• Write a conjecture which try to predict dim(L). Even new lower bounds
would be interesting in any case.

• Find new examples of toric varieties X and points p1, . . . , pr ∈ X such
that the blow-up along these points is a Mori dream space.

The results presented in Chapter 3 depends in the singularities of the T-variety
X. In [35] there are characterisations of singularities of T-varieties, they focus to
give a complete picture of the singularities of complexity-one T-varieties and its
descriptions via the divisorial fan. In order to have a better understanding of the
topology of a T-variety its necessary the study of its singularities. This motivates
the following problems.

Problem 3.3.9. Let X be an affine T-variety, with its unique fixed point p,
and let R be the ring of regular functions of X and m the maximal ideal of R
corresponding to p.

• Study the local cohomology groups Hp
m(R), for p ≥ 1. This is open also

in the complexity-one case.
• Let D be the p-divisor of X, try to find a characterisation of the Cohen-

Macaulayness of X via D. This is open also in the complexity-one case.

54



References

[1] Marta Agustin Vicente and Kevin Langlois, Intersection cohomology for rational projective
contraction-free T-varieties of complexity one, 2014. arXiv:1412.7634v2 [math.AG], 5p. ↑

[2] Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface, Cox rings, Cam-

bridge Studies in Advanced Mathematics, vol. 144, Cambridge University Press, Cambridge,
2015. MR3307753 ↑14

[3] Klaus Altmann and Jürgen Hausen, Polyhedral divisors and algebraic torus actions, Math.

Ann. 334 (2006), no. 3, 557–607. ↑4, 16, 17, 36
[4] Klaus Altmann, Jürgen Hausen, and Hendrik Süss, Gluing affine torus actions via divisorial

fans, Transform. Groups 13 (2008), no. 2, 215–242. ↑4, 16, 17

[5] Klaus Altmann, Nathan Owen Ilten, Lars Petersen, Hendrik Süß, and Robert Vollmert, The
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