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While I was sitting one night with a poet
friend watching a great opera performed in a
tent under arc lights, the poet took my arm
and pointed silently. Far up, blundering out
of the night, a huge Cecropia moth swept
past from light to light over the posturings of
the actors. "He doesn't know," my friend
whispered excitedly. "He's passing through
an alien universe brightly lit but invisible to
him. He's in another play; he doesn't see us.

He doesn't know. Maybe it's happening right

now to us."”

Loren Eiseley
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Summary

This thesis is based on the reconstruction of the S-expansion method [5] on an analytical
way. This means to convert the method in an analytic one without random proccess or the
needed to use computational algoritms to find a Lie (Super)algebra from another one, the
key is the use of a general disjoint union of discrete and finite sets wich elements have in
principle the closure property (Magma) and a very especial element (also been closed un-
der the internal binary set operation) whose job is to abelianizate those commutation rules
that are nedded to obtain the exact description of the wanted Lie (Super)Algebra. The steps
to carry out along the use of this analytical method can been summarizated as follows:

1) Get the required information from the starting and arrival Lie (Super)Algebras, this is;
The total dimensionality and the subspace dimensionality of both in an equivalent alge-
braic partition (Spliting).

2) Put this data on the linear equation system that we have constructed wich give us just
one exact solution in terms of a set of numbers that must belong to the atural numbers,
if it's not the case (solution containing numbers belonging to other algebraic fields like
rationals for example) the immediate answer is the starting algebra and the arrival one
are not connect by means of an S-expansion procedure.

3) If the solution is natural we proceed to construct the commutation rules of the S-expan-
ded structure. The very interesting thing is that the linear system of equations provide us
also the cardinality of the unique set of the partition that must be multiplied whit its spe-
cific subspace (coming from the starting algebra). In this manner the new commutation
rules (the S-expanded ones) contains the information about the way in which the original
subspaces commutes among them and this information is traspassed to the way in which
the several subsets of the partition must be multiplied using what we call the composed
index. Untill this point we have used all the information that we need from the starting
algebra. It's necessary to recall that in all the S-expanded commutation relationships is
present the zero element taken axiomatically from the non analytical version of the me-
thod. This very important element is used in the next step.

4) Having to our disposition the S-expanded commutation rules we use what we call The
identification criterion, this is a tool that take allow us to identify the S-expanded genera-
tors with generators of the arrival algebra using the fact that the S-expansion procedure
doesn't produce changes in the internal structure of the generators as tranformation opera-
tors, so a rotation, translation or supersymmetry transformation, among others in the arri-
val algebra must be costructed in base of a rotation, translation or supersymmetry transfor-
mation coming from the starting one. This finally allow us to discover wich commutators
becomes abelianized by the selection of the zero element in the linear combination (right
side) that defines the subspace where falls the commutators product of two generators.

With the step 3 we find the way in wich the different elemententering the partition are re-
lated under the internal binary multiplication of the closed set and with the step 4 are foun-
ded in detail the binary multiplication rule for each pair of set elements lying inside each
clement (subset) of the partition. In this way we have obtained the suitable set that bring us
from the starting algebra to the required one, this set could be a semigroup or not depending
on the implementation of theorem 3.

So now it's more simple to perfom the S-expansion procedure in an analytical and elegant
way.

v



Abstract

In this paper we describe an analytic method able to give the multiplication table(s) of the
set(s) involved in an S-expansion process (with either resonance or 0-resonant-reduction)
for reaching a target Lie (super)algebra from a starting one, after having properly chosen
the partitions over subspaces of the considered (super)algebras.

This analytic method gives us a simple set of expressions to nd the subset decomposition

of the set(s) involved in the process. Then, we use the information coming from both the
mitial (super)algebra and the target one for reaching the multiplication table(s) of the mentio-
ned set(s). We also give some interesting examples of application, which check and corrobo-
rate our analytic procedure and also generalize some result already presented in the literature.



1 Introduction

The relation of given Lie (super)algebras among themselves, and in particular the derivation
of new (super)algebras from other ones, is a problem of great interest, in both Mathematics
and Physics, since it involves the problem of mixing (super)algebras, which is a non-trivial
way of enlarging spacetime symmetries.

One method to connect different (super)algebras is the expansion procedure, introduced
for the first time in [1], and subsequently studied under different scenarios in [2—4]. In 2006,
a natural outgrowth of the power series expansion method was proposed (see Ref.s [5-7]),
which is based on combining the structure constants of the initial (super)algebra with the
inner multiplication law of a discrete set S with the structure of a semigroup, in order to
define the Lie bracket of a new S-expanded (super)algebra. From the physical point of
view, several (super)gravity theories have been extensively studied using the S-expansion
approach, enabling numerous results over recent years (see Ref.s [8-32]) in this context.

The S-expansion method replicates through the elements of a semigroup the structure of
the original (super)algebra into a new one. The basis of the S-expansion consists, in fact,
on combining the multiplication law of a semigroup S with the structure constants of a Lie
(super)algebra G [5]; The new Lie (super)algebra obtained through this procedure is called
S-expanded (super)algebra, and it is written as Gg = S ® G.

There are two facets applicable in the S-expansion method, which offer great manipulation
on (super)algebras, i.e. resonance and reduction. The role of resonance is that of transferring
the structure of the semigroup to the target (super)algebra, and therefore to control its
structure with a suitable choice on the semigroup partitions. Mecanwhile, reduction plays a
peculiar role in cutting the (super)algebra properly, thanks to the existence of a zero element
in the set involved in the procedure, which allows, for example, the Inonii-Wigner contraction
(see Ref.s [33,34]).

A fundamental task to accomplish in the S-expansion is to find the appropriate semigroup
connecting two different (super)algebras, but this task involves a non-trivial process, due to
the fact that until today there is no analytic procedure to unequivocally derive the semigroup
performing the required expansion.

With this in mind, in the present work we describe an analytic method to find the correct
semigroup(s) allowing S-expansion (involving either resonance or Og-resonant-reduction) be-
tween two different (super)algebras, once the partitions over subspaces have been properly
chosen.

This work is organized as follows: In Section 2, we give a review of S-expansion, reduc-
tion, Og-reduction (and Og-resonant-reduction), and resonance. In Section 3, we develop an
analytic procedure to obtain the semigroup(s) multiplication table(s) linking different Lie
(super)algebras. Then, examples of application are presented in Section 4. Section 5 contains
a summary of our results, with comments and possible developments. In the Appendix, we
give the detailed calculations for reaching the results we have obtained.



We finish the present work with a conclusion, in which it's emphazise the technical part of the analytical
method. Also it's given a deep analisys that bring us beyond the detailed calculations and focalize in the
hierarchy that exist between the principal postulates and foundations concepts in the formulation of the
S-expansion, for example the stablishment that the need of certain porportionality between the starting
and arrival algebras has te consecuence that the partition of the magma (at least) must have a resonant
behavior with respect to the way in wich the several subpspaces in the starting algebra closed under
commutation.



2 Review of S-expansion, reduction, Os-reduction (and
Os-resonant-reduction), and resonance

The expansion of a Lie (super)algebra entails finding a new (super)algebra starting from
an original one. The so called S-expansion, that is an incarnation of the expansion method
described in [2], involves a finite abelian semigroup S to accomplish this task, and it has
the feature of being very simple and direct (see Ref. [5]). The S-expansion method allows
to obtain new Lie (super)algebras starting from an original one by choosing an abelian
semigroup leading to resonant, reduced or resonant-reduced subalgebras.

2.1 S-expansion of Lie (super)algebras

The S-expansion procedure consists in combining the structure constants of a Lie (su-
per)algebra G with the inner multiplication law of a semigroup S, to define the Lie bracket
of a new, S-expanded (super)algebra Gg =5 ® G.

Let S = {A.}, with @ = 1,..., N, be a finite, abelian semigroup with two-selector Kaﬁ’y

defined by
1, when A\jAg = Ay,
Koy = { ’ (2.1)

0, otherwise.

Let G be a Lie (super)algebra with basis {74} and structure constants C 4, defined by the
commutation relations
(T4, Tp) = Cuf T (2.2)

Denote a basis element of the direct product S®G by T(4..) = AsT4 and consider the induced
commutator

[Tta.a)s Tim,)] = Aads [Ta, Tp) - (2.3)
Then one can show (see Ref. [5]) that the product
Gs=S®G (2.4)
corresponds to the Lie (super)algebra given by
[Tiae) Ti.p)] = Kag'Cag’ Tic), (2.5)
whose structure constants can be written as
(Cr) _ c
Can)(B.5) V=K JC,y5 . (2.6)
The product [+, -] defined in (2.5) is also a Lie product, since it is lincar, antisymmetric and it

satisfies the Jacobi identity. This product defines a new Lie (super)algebra characterized by
(Gs, [, °]), which is called S-ezpanded Lie (super)algebra. This implies that, for every abelian
semigroup S and Lie (super)algebra G, the (super)algebra Gg obtained through the product
(2.4) is also a Lie (super)algebra, with a Lie bracket given by (2.5) L.

'However, as we will show in the present work, there exist some exception in which, in order to reach



2.2 Reduced Lie (super)algebras

In [5], the authors gave a definition in order to introduce the concept of reduction of Lic
(super)algebras. It essentially reads as follow: Let us consider a Lie (super)algebra G of the
form G = Vi @ V4, where Vj and V] are two subspaces respectively given by Vo = {T,,} and
Vi = {T,,}. When [V}, V;] C Vi, that is to say when the commutation relations between
generator present the following form

[Tam Tbo] = Caob(c)OTco + Caob(cyl 1,
[Tao ) Tbl] = Oa,obfl T,
[Tal ’ Tb1] - OalbfoTco + Oalblcl TCU

one can show that the structure constants C, ,* satisfy the Jacobi identity themselves, and
therefore

[Ta07 Tbo] - C COTCQ (2.10)

agbg
itself corresponds to a Lie (super)algebra, which is called reduced (super)algebra of G.

In spite of the similarity of the concepts, a reduced algebra does not, in general, correspond
to a subalgebra (see Ref. [5]).

2.3 0g-reduction (and 0Og-resonant-reduction) of S-expanded Lie
(super)algebras

The concept of reduction of Lie (super)algebras, and in particular Og-reduction, was in-
troduced in [5]. It involves the extraction of a smaller (super)algebra from a given Lie
(super)algebra Gg, when certain conditions are met.

Now, in order to give a review of Og-reduction, let us consider an abelian semigroup S
and the S-expanded (super)algebra Gg = S ® G. When the semigroup S has a zero element
0s € S (in the following, we will adopt the notation 0g = Ao, in order to make clearer
the multiplication rules of the semigroup(s) involved in the process), this element plays a
peculiar role in the S-expanded (super)algebra, as it was shown in [5]. In fact, we can split
the semigroup S into non-zero elements \;, 2 = 0, ..., N, and a zero element Ay = 0g = Ag,.
The zero element ) is defined as one for which

Mosra = Aatog = Ages (2.11)

for each A\, € S. Under this assumption, we can write S = {\;} U {Ay41 = Aoy}, with
i=1,...,N (here and in the following, the Latin index run only on the non-zero elements of

a target Lie (super)algebra, is not always necessary to use a semigroup, but just an abelian set, since the
procedure can be performed without requiring associativity. This is due to the fact that, in that cases, the
Jacobi identity is trivially satisfied (each term of the Jacobi identity is equal to zero).



the semigroup S ). Then, the two-selector satisfies the relations

Kini® = Ky’ =0, (2.12)
Kz’,z\urlNJrl = KN+1,1'N+1:17 (2-13)
Kyjanid = 0 (2.14)

K'N-irl,N-HN—ir1 = 1 (2.15)

which mean, when translated into multiplication rules,

)\N+1)\i = )\N+17 (216)
>\N+]_>\N+1 = >\N+]_. (217)

Therefore, for Gg = S ® G we can write the commutation relations

[Tasy Tisgp)] = K;"Cag Tiow + KV Cus Tion+), (2.18)
[T+, Tiap] = Cuas Tien+1), (2.19)
[Tean+1), Tianeny] = Cus Tion+1)- (2.20)

If we now compare these commutation relations with (2.7), (2.8), and (2.9), we clearly see
that

[Ty, Ts.j)) = Ki;*Cag Tiow (2.21)

are the commutation relations of a reduced Lie (super)algebra generated by {74}, whose
structure constants are K;; e, -
The reduction procedure, in this particular case, is equivalent to the imposition of the
condition
Tant1 = XogTa =0. (2.22)

We can notice that, in this case, the reduction abelianizes large sectors of the (super)algebra,
and that for each j satisfying K; NF1 =1 (that is to say AggAj = A1), We have

[Tias T.a)] = 0. (2.23)

The above considerations led the authors of [5] to a definition which essentially reads:
Let S be an abelian semigroup with a zero element Ao, € S, and let Gg = S ® G be an
S-expanded (super)algebra. Then, the (super)algebra obtained by imposing the condition

XogTa =0 (2.24)

on Gg (or on a subalgebra of it) is called Og-reduced (super)algebra of Gs (or of the subalge-
bra).

When the Og-reduced (super)algebra Gg, presents a structure which is resonant with
respect to the structure of the semigroup involved in the S-expansion process, the procedure
takes the name of Og-resonant-reduction.



2.4 Resonant subalgebras for a semigroup

As we have seen, the S-expanded (super)algebra has a fairly simple structure. Furthermore,
with the reduction procedure we can arrive to a more interesting (super)algebra, where it is
possible to demand some abelian commutators.

Additionally, there is another way to get smaller (super)algebras from S ® G, which
strongly depends on the structure of semigroup, that we shall see below.

Let G = D,c; V; be a decomposition of G in subspaces V,,, where I is a set of indices. For
each p,q € I it is always possible to define the subsets i(, 4 C I, such that

v vilc @ v (2.25)

T€(p,q)

where the subsets i(, 4) store the information on the subspace structure of G.
Now, let S = Upe ; Sp be a subset decomposition of the abelian semigroup S, such that

Sp-Sec | S, (2.26)

7€i(p,q)

where the product S, - S, is defined as
SpSq =M | Ay = Ao, ey, With Ay, € S, Ao, € Sg} C S. (2.27)

When such subset decomposition S = Upe ; Sp exists, then we say that this decomposition
is in resonance with the subspace decomposition of G, G = EBPE 1 V.

The resonant subset decomposition is crucial in order to systematically extract subalgebras
from the S-expanded (super)algebra Gs = S ® G, as it was enunciated and proven with the
following theorem in Ref. [5] 2:

Theorem 1. Let G = Upel V, be a subspace decomposition of G, with a structure described
by equation (2.25), and let S = Upel Sy be a resonant subset decomposition of the abelian
semigroup S, with the structure given in equation (2.26). Define the subspaces of Gs = S®G
as

W,=8,®V,, pel (2.28)
Then,
Gr=EPW, (2.29)

pel

s a subalgebra of Gs = S ® G, called resonant subalgebra of Gs.

The proof of Theorem 1 can be found in Ref. [5].

2This theorem corresponds to “Theorem IV.2” given in Ref. [5].



3 Theoretical construction of the analytic method for
finding the semigroup(s)

In this section, we develop an analytic method to find the semigroup(s) involved in the S-
expansion procedure (with either resonance or Og-resonance-reduction) for moving from an
initial Lie (super)algebra to a target one, once the partitions over subspaces of the considered
(super)algebras have been properly chosen.

To this aim, let us consider a finite Lie (super)algebra G, which can be decomposed into
N subspaces V4, with A = 0,1,..., N — 1, and can be written as their direct sum, namely
G =, Va. Then, let us consider a target Lie (super)algebra Gs,, (where the label “Sgrg”
stands for “S-expanded, (0g-)resonant-reduced” ), which can analogously be decomposed into
N subspaces~‘~/A, with A = 0,1,..., N — 1, and can be written as their direct sum, namely
gSRR = @A Vi ?.

Let us also consider an abelian, discrete and finite set S, with P elements, including
thezero element, \gvhich can be decomposed into N subsets S4, A =0,1,..., N — 1.

We will denote each of this subsets with Sa,, where the composed index A, expresses
both the cardinality (number of elements) of each subsets (capital Greek index, A), and the
subspace associated (capital Latin index, A, B, C,...). The association between the subsets
and the (super)algebra subspaces is unique (under the resonance condition), and we will see
that for each value of A we will have a unique value for the corresponding index A. This is
the reason why we are using this composite index.

Thus, let us consider the decomposition of the set S in terms of its subsets partition

S = Ua,SA L, (3.1)
where with the symbol U we mean the disjoint union of sets.
We can now use this general partition and perform a 0g-resonant-reduced process 4, linking

the original Lie (super)algebra G and the target one Gg, . In this way, we get

Q’SRRZ‘N/O@‘NG@--'EBVNA:
= (Sa, @ Vo) ® {Nos} @ Vo) &
®(Sa, V1) @ ({ st @ V1) B

S RERNC (SAN_l ® VN—l) ® {Mog} ® V1),

3Here and in the following, the quantities with a “tilde” symbol above will refer to quantities of the target
(super)algebra.

4A process which involves only resonance would be a simpler one, and it will be briefly treated in the
following.



Since we can factorize the zero element, the above relation can be simply rewritten as

Gsin =VoOVIi® - ® VN1 =

(3.3)

= [(Sao ® Vo) ® (Sa, @ Vi) @+ @ (Say_, ® Vwv—1)] & ({hos} ® G).

As we have said above, equation (3.3) comes from the study of a Og-resonant-reduced process,
which we can be written in a more formal way as

gred—res

{Ua, {Sa,} ® Vo — (Un s {88, } ® Vo +0.V0) } @ ...

@ {Ua,, {Sast ® Vi = (Uaza, {Sa} ® Vi +0,1)}

D... ® {Ua, {Sa,} @ Viver — (Uauy, {Sa,t ® Vv +0,V) }
{Ua{Sa} — (Uaza, {54} +05)} @ Vg

® {Ua {Sa} — (WX, {Sa} +0,)} @ WA

@ {Ua {Sa} — (Uagay_, {Sa} +0,) @ Vy_1}

{S & (Uan {Sa )+ os)} ® Vo

® {5 S (Unap {San) + Os)} @V

D @ {50 (Unpuy 1 {52, +0,) @} Vivs

-1

[S’ 6 (UauurSa, @ AOS)] ® Vi,
0

2

~
Il



where we have denoted with @& and © the direct sum and subtraction over subsets, re-
spectively.

From expression (?7?), taking into account the dimensions of the subspaces involved in
the partitions of the considered (super)algebras, the following system of equations arises:

dim <‘7()) = dim (V) (15 —1- ]VX_:lAA) )

AZ£0

dim (‘71) = dim (1)) (]5— 1 —Nz_fAA> )

A#1

(

(3.4)

N

N-1
dim VN—l) = dim (VN—l) <ﬁ— 1— Z AA> s

A#£N-1

N-1
P:ZAA-FL
A

\

where in the expression P = Zg_l A4+ 1 we have P > P (let us remember that P is the
total number of elements of the set S ), and the +1 contribution is given by the presence of
the zero element \g,.

We can rewrite the system above in the following simpler form (which comes directly from
relation (3.3)):

dim (VO) = dim (Vo) (Ay) ,
dim (‘71) = dim (V3) (A1),

dim (VN—1> = dim (Vy_1) (An-1),

~1
p:ZAA-I-l.
A

If this system admits a solution (which, if exists, is unique), then we will immediately
know, for construction, that it is possible to reach a S-expanded, 0g-resonant-reduced (su-
per)algebra Gg,, . starting from the initial Lic (super)algebra G with the considered partition
over subspaces, and we will also know the way in which the elements of S are distributed
into different subsets, i.e. the cardinality of the subsets associated with the subspaces of the
initial Lie (super)algebra.

In fact, knowing the dimensions of the partitions of both the initial and the target (su-
per)algebra, the system (3.5) can be solved with respect to the variables

P, Ay, A=0,...N —1, (3.6)

9



and the solution (3.6) admits only values in N* (the value zero is obviously excluded).

We can observe that the system (3.5) admits solution if and only if the dimensions of
the subspaces of the target (super)algebra are proportional (multiples) to the dimensions
of the respective subspaces of the initial one °. Furthermore, this system admits solutions
only if the number of subspaces in the partition of the target (super)algebra is equal to
the number of subspaces in the partition of the starting one. These considerations offer a
criterion to properly choose a partition over subspaces for both the initial and the target Lie
(super)algebras, namely:

e The number of subspaces in the partition of the target (super)algebra must be equal
to that of the starting (super)algebra;

e The dimensions of the subspaces of the target (super)algebra must be multiples of the
dimensions of the respective subspaces of the initial one.

Once these two conditions over the partitions are met, one is able to develop our analytic
method and find all the semigroup(s), with respect to the chosen partitions, linking the
considered (super)algebras.

We can also observe that the system (3.5) can also be solved when considering an S-
expansion including just a resonant processes, since it also contains the subsystem

( dim (VO) — dim (Vo) (A)
dim (‘71) =dim (1) (A1),

) 5 (3.7)
dim (VN_l) =dim (Vy_1) (An-1),

1

P=>Y Ay,
A

in which we can clearly see that we are now considering the variable P = EJX_l A 4 without
the +1 contribution, whose presence was due to the inclusion of the zero element Ay,. In
this case, the solution to the system (3.7) is unique again, and the considerations done for
the 0g-resonant-reduced case still hold.

At this point, we know the cardinality of each of the subsets of the set S involved in the
process. Now we can understand something more about the multiplication rules of the set
S, by studying the adjoint representation of the initial Lie (super)algebra with respect to
the partition over subspaces.

Thus, we construct, for each subspace, the adjoint representation with respect to the
subspaces. This construction is based on the association

\

Va,Ve] C Ve — ()45, (3.8)

5This is the reason why, if the system (3.5) admits a solution, this solution is trivially unique.

10



where the index A, B, C can take the values 0, ..., N — 1, and where the matrix (C)S give
us the adjoint representation over the subspace A, which can be written as

e (Ol - ©OF
e I 3:9)
(0)94 N-1 T e (C)]XYVl—l

In this way, the matrix (C')§p is written by exploiting the commutation rules between the
different partitions over the subspaces of the initial (super)algebra, and it contains the whole
information about these partitions.

e The S-expanded adjoint representation in detail will aquire the following form:

(7To) 0 (OT'r) R
(K(CVAA))(BAO) (Ca)g == - (K(QAA))(gAI;) (Ca)o
(7T0) 0 - (VTr) R
(Te) [y \C Kaan)gn (Ca)i (Kt0a) gay) (Ca)
(K(O‘AA)>(;ACB) (Ca)p = ( ! )(:'(Ml) ' | 4 )(’?A ) 1. (3.10)
(¥To) 0 ("T'r) R
(Kann)gan C0r ==+ (Kasw) gy (Ca)g

In particular:

(Kios) g € = ((((Kean)i) ) )

(s 7323) @y (Kaan)je) Ca)m™
< )(1) <(K(QAA))Z£Z) (C’m)fllim(Vo)

T 0 ~T dim(Vp)
((K(aAA))gA?)) (Com)aimey 7 (<K(°‘AA))BA?)> (Com) gim(vi)

so as we can see this has the structure

((Fea22) €) ) = ((Kea)f) @) ). 3

0
and where®

6The index #A 4 represent the cardinality of the subset A 4.

11
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(K(OAA))Z;i(; e (K(QAA))gil;o)Fo

o N (#To)T
O B L I

AT (#To)T

(K#anan) wagne 0 E@anan) Gy

so we have show here the interesting structure of the remain representation for the S-
expanded Lie algebra

T
(K(QAA));AZ ? (Cm)iz ? CEB (313)

For the case of low dimension Lie algebras we propose the following procedure that puts
into practice part of the theorical machinary expossed previously. This is because the adjoint
representation for this cases is not to enormous and is handly to write it and recongnize the
correspondingly separation between the S-expanded subspaces. After this we are going to
make use of the full theoretical construction for the supersymmetryc case in wich we’ll note
the true scope by using it.

From this adjoint-like representation over the subspaces of the initial (super)algebra, we
can now write, according to the usual S-expansion procedure (as it was done in [5]), the

relations
[(Sa, ®Va) ® ({Aos} ® Vi), (Sap @ Ve) @ ({Aos} @ V)] =

= (K30 (O)%5) (520 ©Ve) & (Do} ® Vo)

where we have also taken into account the presence of the zero element in the set S, since
we have considered a Og-resonant-reduction process “. Here, the composite index A4, Ag,
and Ac label, as said before, the cardinality of the different subsets (labeled with the capital
Greek index A), uniquely associated with the different subspace partitions (labeled with
capital Latin index). In order to write the relation (3.14), we are also taking into account
the following theorem:

(3.14)

Theorem 2. In the S-expansion procedure, when the commutator of two generators in the
original Lie (super)algebra falls into a linear combination involving more than one generator,
all the terms appearing in this resultant linear combination of generators must share the same
element of the set S involved in the procedure.

Proof. The demonstration of this theorem can be treated as a proof by contradiction (reductio
ad absurdum). In fact, if the linear combination of generators were coupled with different

TA process involving only resonance would be a simpler one, and it would require a similar (but simpler)
analysis, since, in that case, one would relax the reduction condition.

12



elements of the set S involved in the procedure, we would have

[Tia0). T5,5)] = [Aa TA,AﬁTB] =\ )\ﬁ[TA,TB] _
= K’h C’AB T(Cl 1) + CAB (C2,v2) + - K’ynCAB T(Cn Tn) — (3'15)
= K" CABcl M, Te, + K2 CABCQ MoTe, + -+ K CAB "M Te,,

where { Ao, Ag, Mys Aygs ooy Ay } € S, {Ta} € Via, {T} € Vi, {Te,, Ty, -, Te, } € Ve 8, and
where
Kl # K% 4 £ Kl (3.16)

Equations (3.15) and (3.16) would mean that different two-selectors were associated with
the same resulting element, and, according to the definition of two-selector given in (2.1),
this would imply

AaAg = Ay, = Ay, = Ay, (3.17)

with 1 # 79 # - -+ # 7,, which would break the uniqueness of the internal composition law
of the set S.

But this cannot be true, since the composition law associates each couple of elements
Ao and A with a unique element A\, (as we can see in the definition (2.1)). Thus, we can
conclude that when the commutator of two generators in the original Lie (super)algebra falls
into a linear combination involving more than one generator, the terms appearing in this
resultant linear combination of generators must be multiplied by the same element. O

Theorem 2 reflects on the commutators involving the subspaces of the partition of the
original Lie (super)algebra and the subsets of the set o

In fact, if the subspaces involving the linear combination of generators were coupled with
different elements of S, we would have

[({hann} ® Vi) @ (Dhas} @ Vi), ({As.05} © Vi) @ (Do} © V)] =
= (K050 (O58) [(Paac} © Vo) & (s} @ Vo)) +
(K250 (O)Sn) [(Pnact @ Vo) @ (Dhag} @ V)] + (3.18)

mny A
+ (K A;@,AB)@ 5) (e} @ Vo) & ({hog} @ Vo)l
where with A, o, we denote an arbitrary element A\, contained in the subset S4, associated
with the subspace Vy, with cardinality A °, and where

(v1,A¢) 'yz,AC ('Yn»AC)
K(QAA )(B,AB) 7é (a,A4)(B.AB) 7é 7é (,A4)(B.AB)" (319)

Equations (3.18) and (3.19) would mean that different two-selectors were associated with
the same resulting element, which would break the uniqueness of the internal composition

8Here we denote with V4, Vi, and Vi the subspaces of the partition over the original Lie (super)algebra.
9The same notation has been adopted in equation (3.18) for all the other elements of the set S.
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law of the set S. Thus, since the composition law associates each couple of elements in S
with a unique element of the set S, we can finally say that

({asal V) & (o} @ Vi), ((san} @ Va) & (Do} @ Vi) =
= (K029 0.0 (O (a0} @ Vo) @ (Do} @ Ve)].

By exploiting the statement of Theorem 2, we can also say that when the commutator
of two generators of the original Lie (super)algebra falls into a linear combination involving
more then one generator, the intersection between the subsets of the set S could be a non-
empty set, which means that the same element(s) will appear in more than one subset of
the set S 10,

Furthermore, we can also observe that the S-expansion procedure does not always re-
produce an Inonii-Wigner contraction, and this is due to the fact that in the Inonii-Wigner
contraction there are some terms in the commutation relations which can go to zero sepa-
rately, while this cannot happen when one is dealing with the S-expansion, where, in fact, the
combination of two-selectors appearing in the left-hand-side of equation (3.15) can only give
either zero or a single two-selector. Thus, one can apply our analytic method with the ez-
ception of the cases in which the S-expansion procedure cannot reproduce the Inonii-Wigner
contraction.

We may observe that equation (3.14) can be rewritten in a simpler form (due to the fact
that the left hand side produces commutation relations that trivially conduce to the zero
element of the set S), which reads

(3.20)

(S84 ® Vi, Saa © Vil = (K&(am (€)58) (S50 © Vo) & (o} ©VO)],  (321)

so as to highlight the information we need to know about the multiplication rules between
the elements in the set .

We can now proceed with the development of our analytic method. The relation (3.14)
gives us a first view on the multiplication rules between the eclements of the set S, since it
tells us the way in which the different subsets of S combine among each other, that is to say

(Sa, U{Xog}) - (Sap U{Aos}) C Sac U{ost, (3.22)

where the product “” is the internal product of the set S, and thus between its subsets.
According to the relation in (3.21), equation (3.22) can also be rewritten as

SAA . SAB - SAC U {/\OS}. (3.23)

We have thus exhausted the information coming from the starting (super)algebra G, and
we have gained a first view on the multiplication rules of the elements of the subsets of
S. Now we can exploit the information coming from the target (super)algebra, in order to
fix some detail on the multiplication rules and to build up the whole multiplication table
describing the set S. This step is based on the following identification criterion.

10Tn the example given in Subsection 4.4, and in particular in Appendix D, we have used this statement;
The reader can find the explicit application of this observation in equations (D.57) and (D.58).
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3.1 Identification criterion

Until now, we have exploited the information coming from the original (super)algebra.

It is now necessary to understand the structure of the whole multiplication table of the
set S. To this aim, the other pieces of information we need to know come from the target Lie
(super)algebra. In fact, since at this point, we already know the composition laws between
the subsets of S, we can now write the following identification between the S-expanded
generators of the initial Lie (super)algebra and the generators of the target one:

TA = TA(x = )\QTA, (324)

where Ty are the generators included in the subspace V4 of the starting (super)algebra and
Ty are the generators in the subspace V4 of the target (super)algebra, and where A\, € S is
a general element of the set S 1.

We have to perform the identification (3.24) for each element of the set S, associating
each element of each subset with the generators in the subspace related to the considered
subset, that is to say, in our notation,

T = MaanTa, (3.25)

where Aa.a) = Aa € Sa,.

We can observe that in the development of our analytic method, we can perform the
whole procedure of association and identification without affecting the internal structure of
the generators of the starting (super)algebra.

With the identification (3.24), we can link the commutation relations between the gener-
ators of the target (super)algebra with the commutation relations of the S-expanded ones,
and, factorizing the elements of the set S, we have the chance of fixing the multiplication rela-
tions between these elements. To this aim, we first observe that for the target (super)algebra
we can write the commutation relations

|74, T5] = Cas Te, (3.26)
where Ty, T , and Tg are the generators in the subspaces Va, f/B, and Vg of the pa,rtition
over the target Lie (super)algebra, respectively (A, B,C € {0, ..., N — 1}). Here, with C AB
we denote the structure constants of the target Lie (buper)algebra that is to say C,,¢ =
C( Aa)( Bﬂ)(c 7), in the usual notation. Then, by following the usual S-expansion procedure
(see Ref. [5]), since for the initial (super)algebra we can write

[Ta,Ts) = Cpp T, (3.27)

where we have adopted the same notation used in the case of the target (super)algebra, and
where C ;¢ are the structure constants of the initial Lie (super)algebra, we are able to write
the relations (2.5). We also report them here for completeness:

[T(A,a)v T(B,,B)j| = KQB’YCABC T(C,'y)7 (328)

: 1We have to remember that when performing our analytic method, we are just talking about a general set
S, since we do not know yet whether it is, or is not, a semigroup. However, the final check for associativity
will tell us if the set S is or is not a semigroup.
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namely
NaTu, AsT5] = K5 Cai’ M, (3.29)

where the two-selector is defined by (2.1).

We now write the structure constants of the target (super)algebra in terms of the two-
selector and of the structure constants of the starting one, namely, reporting equation (2.6)
here for completeness,

~ c,
CABC = C(Aa)(B,[j§ ’Y) — Ka ’YOABC, (330)

and we exploit the identification (3.24) in order to write the commutation relations of the
target (super)algebra (3.26) in terms of the commutation relations between the S-expanded
generators of the starting one, factorizing the elements of the set S out of the commutators.
In this way, we get the following relations:

NaTa, AsTs] = K 5 Cus MTe, — Aadg[Ta, Tp) = K5 Cy 5’ M Te. (3.31)

If we now compare the commutation relations (3.31) with the ones of the starting (su-
per)algebra in (3.27), we are able to deduce something more about the multiplication rules
between the elements of S, that is to say:

Aas = Ay (3.32)

We have to repeat this procedure for all the commutation rules of the target (super)algebra,
in order to sculpt the multiplication rules between the elements of the set S.

We observe that, during this process, the possible existence of the zero element in the set
S, namely Ay, can play a crucial role, since, in the case in which the commutation relations
of the target (super)algebra read

[TA,TB] L (3.33)
and at the same time from the initial (super)algebra we have
(T4, T3] # 0, (3.34)
putting all together the relations
NaTa, AsT5] = Aars [Ta, Ts] = Cyf A\Te =0 (3.35)
and (3.34), we can conclude that
AaAg = Aog- (3.36)

Thus, at the end of the whole procedure, we are left with the complete multiplication
table(s) describing the set(s) S involved in the S-expansion (with either resonance or 0g-
resonant-reduction) process for moving from an initial Lie (super)algebra to a target one.

The final step consist in checking that S is indeed an abelian semigroup. This is done by
checking the associativity of the multiplication table(s) (one of the properties required by a
set to be defined as a semigroup is, in fact, the associative property).
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Another very important thing is that in the set of equations (3.4) has another piece of
infor-mation to give us. For the cases in wich we are requiring to this equations the
following procedure, for example

dim(Vo)s—eaxp, r.r. = dim(Vp) (P —1—m), (3.37)
dim(V1)s—exp, .. = dim(V4)(P—1-1), (3.38)
P = 1l4+m+1 (3.39)
where
dim(Vy) =0 (3.40)
we’ll have

dim(‘/l)S—ezp, rr =0

no matter the possible values on the factor (P — 1 —1[) it will always be zero, so the
remaining sistem of equations becomes degenerated as follows (for example)

dim(Vo)s—exp, .. = dim(Vp) (P —1—m)
dz’m(Vl)S_em RR — 0 (341)
P —d+m+1
so we have to think on the above in a rather different way to have as equations as unknowns

as is possible. This is done realizing our selves that the only way to create the new subspace
V] is to extract some generators of the non zero part in the original algebra. This is traduced

in the set (3.4) like this

dim(Vy)s—eap. r.r. = dim(Vp)m, (3.42)
dim(V1)s—exp. r.r. = dim(Va)l, (3.43)
dim(Vy) = dim(Vy) + dim(Vp), (3.44)

P = l+m+1 (3.45)

simplifing the unknown labels

A = am (3.46)
B = bl (3.47)
P = l4+m+1 (3.48)
C = a+b (3.49)
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we have the fisrt solution:

1 1 3 l
P = 202 +20 -1 — (6l — == = — .
2l_l(l+l ), a l(6l 3), b M= 5 (3.50)
then, as b most belong to naturals it's necessary that 1 aquires the numeric values
[ = 1,3 wich make exact the equation system, so we have the second solutions:

P =3 a=3b=31=1 m=1 (3.51)
13 3
= E, CL:5, bzl, m:g (352)

from wich just (3.51) is consistent with the naturals condition. This represent the case
ofthe Inonii-Wigner for the proccess so(2,2) — iso(2(1),1(2)) using the semigroup SS)

Now if we have a more general case in wich the unique initial space that composites the
original algebra we’ll find the following system of equations

dim(Vo)s—eap, r.r. = dim(Vp)m, (3.53)
dim(V1)s—eap, . = dim(Vy)l, (3.54)
dim(Va)s—cap, .. = dim(Ve)n, (3.55)
dim(Vo) = dim(Vy) + dim(Vg) + dim(V¢), (3.56)

P = Il+m+tn+1 (3.57)

3 = am (3.58)

3 = bl (3.59)

6 = cn (3.60)

P = l+m+n+1 (3.61)

9 a+b+c (3.62)

The first two solutions are:
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P = gt (0202 + b2 — 9bn? — 3bn + 6b — 27n + 18),
a=—2(bn—-9n+6),
I) c:g,
| = b
m = =355
(3.63)
p=>3
a=—b
mos (3.64)
l:E
3
m___
_ 2’
3

this is not at all undefined because we have on hand the fact that all the terms in
most belong to naturals numbers so this implies that /1 are discarted and

en = 6 (3.65)
b = 3 (3.66)

so as we know all the variables belong to naturals so it’s naturally necessary that (=1.3
and b = 3, 1 correspondingly. Is important to emphatize that here we obtain at the same
time two unknown variables despite the undefined system of equations and the fact that we
have more than one option is convenient because we ensure a little more that an answer will
be finded. So let’s choose the first answer [ =1 and b =3

3 = am (3.67)

6 = cn (3.68)

P = 1+m+n+1 (3.69)

9 a+3+c. (3.70)

Solution is:
P = ! (2m* + 5m — 2) (3.71)
2m — 1 ’

3

- 2 72

a — (3.72)
1

= —(6m—3 3.73

¢ = —(om-3), (373

2m
— 74
n 51 (3.74)



so using the naturals condition we get inmediatelly the full set of numeric values for the
unknown variables

2m

2m — 1 € N
=
m = 1
— n=2,¢=3a=3 P=5 (3.75)
withn =1,2,...,00. For the other branch | = 3 and b = 1 we get the two exact solutions

P—351,a—30—5n——andP a—lc—7n—$
so that branch is discarded by the naturals condition. In summary the system of equation

aquires analytically the unique numeric solution

a=3,b=3,¢c=3m=1n=21=1, P=5 (3.76)

this implies that there are a possible S-expansion for to pass from the (sample) Lie algebra
G ="Vo1t0Gs_exp = Vo ® Vi @ Vy with a semigroup at least P = 5 elements, with a partition
Ua {91} = {Sma FU{S, U {Sn. } = {1, L {51, } U{S2, } and that way to split the original
algebra in three subspaces Vo @ Vi @ Vs with cardinality a = 3, b =3, ¢ =3, m = 1
correspondingly.

Let’s go beyond in the generalization of the possible procces that we can achieve with the
S—expansion, now in the case that there are two subspaces V;, Vi, for example:

dim(Vo)s—eap, r.e. = dim(Va)m, (3.77)
dim(V)s—cap. . = dim(Va)l, (3.78)
dim(Va)s—cap. r.r. = dim(Ve)n, (3.79)
dim(V3)s—eap. n.r. = dim(Vg)l, (3.80)
dim(Vy)s—eap, e, = dim(Vp)l, (3.81)
dim(Vy) = dim(Va) + dim(Vg) + dim(Ve), (3.82)

dim(Vi) = dim(Vy)+ dim(Vp) + dim(Ve) (3.83)

P = l4+m+n+1 (3.84)
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2 = am (3.85)
3 = bl (3.86)
b= (3.87)
L= 7 (3.88)
2= 90 (3.89)
3 = a+b+c (3.90)
3 = f+yg (3.91)
P = l+m+n+to+l (3.92)
The solution is:
0 i —got2#0 (3.93)
and
6m — 20
—6mo® — 15m?o
P =g 20+9mo2 T5mo+302 ( +9mo® + 9Im?o? |,
—10mo + 6m?
+20° + 30° —go+2=0
» % it A (3.94)
[ % 0—9), 0#0
c= %(6m—20—6m0),
f=1Bo-2),
=1
n=2mg—ra—
according to this we know that
% 1
b= 30-2 b:5(90_6)
_—
o = {1}no={1,2,3,6} (3.95)
_—
o =1 (3.96)
b= 3 (3.97)
fo=1 (3.98)
9 = 2 (3.99)
m = {1,2} (3.100)
a = {21} (3.101)
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but, by the naturals condition

¢ = —(6m—20—6mo) €N
mo
—
-2 € Nm
=
m ¢ (3.102)

wich is contradictory so this sistem doesn’t have a natural solution and has to be
discarted. This implies that there are ngt a possible S-expansion to pass from the (sample)
Lie algebra G = Vo @ Vi t0 Gs_exp = Vo Vi Vo @ V3 & Vy by means of a S-expansion
following the given above requirements.

Whit this analisis we can finally know that it’s possible in some cases to obtain a different
quantity of subspaces between the original Lie algebra and the S-expanded one but always
respetting the identification criterion, that means, the S-expanded subsapces that we create
from the original ones and that exede the number of subspaces of the original Lie algebra
must be considered as the same nature in the sense of the action that perfomr over a vectorial
space. For example if in the original one we had one subspace of rotations the new subspaces
created from this must be rotations too.

3.2 A note on associativity

A note on associativity

The last step consists in analyzing the associative property of the set S. The check
for associativity can be rather tedious if performed by hand, but, fortunately, it can be
implemented by means of a simple computational algorithm. In fact, by mapping the ele-
ments \; of the set S to the set of the integer numbers )\; <> ¢ € N, it is possible to store
the multiplication table of S as a matrix M, in a form in which its elements are given by
XA = N = M(j, k) = i, where ¢ is the index associated with the element );. Associativity
can now be easily tested by checking that, for any 7, j, and k, the following relation holds:

M(M(i, §), k) = M(i, M(j, k)). (3.103)

After the check for associativity, the degeneracy of the multiplication table(s) obtained in
the analytic procedure after having applied the identification criterion is fixed, and we are
left with one (or more) semigroup(s).

However, in Section 4, we will develop a particular example of application of our analytic
method in which, in order to reach the target Bianchi Type II algebra from the Bianchi Type
I algebra, the structure of semigroup is not necessary, since the procedure can be performed
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with abelian set(s), without requiring associativity. This is due to the fact that, in that
case, the Jacobi identities of both the mentioned algebras are trivially satisfied (each term
of the Jacobi identities is equal to zero). In this work, we just mention this particular case,
generalizing the result presented in the literature (see Ref. [20]).

4 Examples of application

In this section, we give some example of application of the analytic method previously
developed. We start with a simple example involving the Bianchi Type I and the Bianchi
Type II algebras, and then we move to more complicated cases. In particular, the last
example presented in this section involves the supersymmetric Lie algebra osp(32/1) and
the hidden superalgebra underlying D = 11 supergravity, largely discussed in [38,39].

The details of the calculations are treated in the Appendix, while in the following we
report and discuss our main results.

4.1 From the Bianchi Type I algebra (BTI) to the Bianchi Type
IT one (BTII)

In the following, we apply the method developed in Section 3 in order to find the possible
semigroup(s) leading from the non-trivial Bianchi Type I algebra (BTI) to the Bianchi Type
IT (BTII) one. To this aim, we first of all analyze the structures of the initial algebra and of
the target one. The only commutator different from zero for the BTT algebra is

[X1, Xo] = X, (4.1)

where X; and X, are the generators of the BTI algebra. For the BTII algebra, instead, we
have

[Y1, Y] =0, (4.2)
[Y1,Y5] =0, (4.3)
[Y2, Y3] =11, (4.4)

where Y7, Y5, and Y3 are the generators of the BTII algebra. The details of the calculations
are treated in Appendix A, while in the following we report our results.
Performing the steps described in Section 3, we obtain the multiplication tables

)\a )\b )\c )\Os
>\a >\a,05 >\Os )\b )\Os

Mo | Aog Aaos Aaog  Aog (4.5)
/\c Ab /\a,Os )\a,OS )‘Os
Mg | Aog  Aog Aos Aog

We can now perform the following identification:

Aa =2, M=2A3, A=A, Aog =\ (4.6)
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Thus, we can rewrite tables (4.5) as follows (where the elements are written in the usual
order):

A A N

AL A2a Ag Ao Mg

Ao | A3 Aaa Aaa Mg (4.7)
Az [ A2a Aoa Aoa M

VR AV VO VY

These are the multiplication tables of the possible sets S’s involved in the S-expansion,0g-
resonant-reduced procedure from the BTI algebra to the BTII one. Here we clearly see that
the tables described in (4.7) also include abelian sets that cannot be defined as semigroup,
since they do not possess the associative property. Fortunately, for both the BTI and BTII
algebras, each term of the Jacobi identity is equal to zero (thus, the Jacobi identity is trivially
satisfied), and thus each possible combination of elements in (4.7) is valid for describing
an expansion procedure involving both resonance and reduction, without the necessity of
requiring associativity. Thus, the multiplication tables (4.7) generalize the result previously
obtained in [20].

We can also perform a last step, in order to find the table(s) in (4.5) which describe
semigroup(s). This step consists in exploiting the required property of associativity, in order
to fix the degeneracy on the multiplication tables (4.5) and finding the semigroup(s) involved
in the process. The calculation is rather tedious to be performed by hand, and we have done
it with a computational algorithm. For completeness, here we report only the significant
relations for checking associativity by hand and understanding which are the semigroups in
(4.5):

(AA) A = A Achs) = Achs = Aoy, (4.8)
AcAa)Aa = Ac(Aaha) = Aada = Aog, (4.9)
(/\c)\b)>\b = >\c(>\b)\b) = )\b)\b = )\QS. (410)

After having checked associativity, we are thus left with the only degeneracy
AcAe = Aa0g- (4.11)

We can now substitute the index a, b, ¢, 0 with numbers. We perform again the identification
(4.6), and we write the multiplication tables thus obtained in terms of \;, with i = 1,2, 3,4,
in the usual order:

A A A3 A
AL Aza A3 A Ny
Aol As A A Mg (4.12)

)\3 )\4 /\4 )\4 )\4
)V RP.VEERD VIR VIRV

We observe that the abelian, commutative and associative tables (4.12) include the multi-
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plication table of the semigroup Sy, described in [20], namely

PV VD VW
ALl A2 A3 Ap A\
Aol Az M A A (4.13)
A3 A A A N
VR [P VIRD VIRV V!

which represents a possible semigroup for moving form a BTI algebra to a BTII algebra,
through a Og-resonant-reduction procedure. The degeneracy appearing in (4.12) (namely
AMA1 = Aay4) shows us that there are two possible semigroups able to give the same result
(one of them is the same described it [20], Sy, while the other one is a new result that we
have obtained with our analytic procedure).

We have thus given an example in which the method described in Section 3 allows us to
find the semigroups for moving from the BTI algebra to a S-expanded, Og-resonant-reduced
one (BTII), once the partitions over subspaces have been properly chosen.

We can now try to achieve the same result, by considering an S-expansion with only a
resonant structure (relaxing the reduction condition). To this aim, we study the system
(3.7), which, in this case, is solved by

= 3, AO — ].7 Al s 2. (414)

Then, performing the usual procedure (see Section 3) and assuming the same identification
presented in the detailed calculations for the previous case (see Appendix A), namely

Xy =Y (4.15)
WX =Y (4.16)
AcX1 =Yo, (4.17)

we can reach the multiplication rules between the elements of the set S, after having faced
the particular situation in which

v =0 (418
[)\le, Aan] - 0, (419)
MpAq [ X1, Xp] =0, (4.20)

where [X1, Xo] = X1 # 0. As we can see in equation (4.18), the generators Y; and Y3 of
the target algebra must commute, while the generators X; and X, of the starting algebra
do not commute; so, the only way for reaching a consistent multiplication rule between the
clements \, and )\, consists in adding a zero element in the set S involved in the process,
such that

Ao Aa = Aog- (4.21)

The inclusion of the zero element is consistent, since this modification just affects the variable
P in the system (3.7), which increases of +1 (namely, P = 4). In this way, the multiplication
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table of the set S acquires both a new row and a new column, without affecting associativity,
in the case of a semigrup table.

We can thus conclude that, in this case, our analytic method shows us the necessity of
including a 0Og-reduction to the resonant process too. Thus, we can reach the following
multiplication rules:

)\a>\a :>\a7
/\c)\a :)\ba
/\b,c)‘b,c :/\m
AoAa =Nogs (4.22)

and the multiplication table, after having performed the identification

Ao =2, A=Az, A. =\, with the extra zero element Ao, = A4, (4.23)
reads
’)\1 N s A A A3 Mg
VDD VD) M A2 A3 A Mg
DI 8 3 A A M Mg (4.24)
Ao | A3 Ag Mg
A )\ A )\ A3 AQ )\4 AQ A4
My e VS PVYEDYED VRV

Let us finally observe that table (4.24), which is abelian (but not associative), is included in
the multiplication tables (4.7), previously obtained in the context of 0g-resonant-reduction.

This last table has its significance because lead us to a very interesting conclusion accord-
ing to the ref [5] , in particular to the theorem I7I.1:

Theorem III.1 Let S = {\,} be an abelian semigroup with 2-selector K,3 and G a Lie
(super)algebra with basis {7},} and structure constants C,,". Denote a basis element of the
direct product S®§G by T{;,o) = AT}, and consider the induced commutator [T(p,a), T(q,ﬁ)] =
AaAg [Ty, Ty]. Then S ® G is also a Lie (super)algebra with structure constants

Clpa)ian) ™ = Kag"Cpq”

For the present example we have to make the following obsevation looking at the Jacobi
identity

[Tm [Tqv TT]] + [Tq7 [TT7 Tp]] + [Trv [Tp’ Tq]] =0

for the S-expanded version

[/\aTzn [/\BTqv )"YTT]] + [)‘BTm [)‘vTrv )‘an” + [)‘va [/\aTm )‘ﬁTpH =0

26



to demonstrate that S ® G satisfy the Jacobi identity and consecuenty (a fundamental
property of a Lie algebra) it has been said that a necessary condition over the set of elements
S = {\} is the associativity because htis property allow us to rewrite the above expression
in the following form

Aa}‘ﬂ)‘v [Tpa [Tqv TTH + )‘ﬁ)‘v)‘a [Tqa [Trv Tp]] + >‘7/\a>‘ﬁ [Tr» [Tq» Tp]] =0
)‘a)‘ﬁ)‘v [Tpa [Tqa TTH + )‘a)‘/f)"y [Tq: [Trv Tp“ + )‘a)‘ﬁ)‘v [Trv [Tqv Tp“ =0

/\a/\B/\v([Tm [Tq7Tr“ + [Tqv [Trva]] + [Tm [TqupH) =0

. 7

~~
=0

where in the second row we have used the associativity property imposed over the set
S = {\} to factorize the triple multiplication A,AgA, and ensure the last equality.

However this is not always a necessary condition as we will see form this example.

form [X;, X»] = X we have

[Tlv [Tlv TQ” + [T17 [T27 Tl]] + [T27 [Th Tl” =0
(T, [T Bl + [T, [T, T + [T, [1, T3] = 0

so we will have for the S-expanded version

[)\aTl) P\BTM )\'yTQ]] + [/\ﬁTla [)‘“/T% )‘aTl]] + [)"YT% [/\OéTh /\ﬁTl]] =0
)\a)\ﬁ)\'y[le [Tl, TQ]] + )\5)\7)\(1 [Tl, [TQ, Tl]] + )\,y)\a)\/g[Tz, [Tl, Tl]] = 0
=0 =0 =0

so the last equality is ensured without impose associativity on the set S = {\}. In base
of this we stablish the following theorem:

Theorem 3. Let S = {\,} be an abelian, discrete and fnite set (magma) S = {\} and G a Lie
(super)algebra with basis {T,,} and structure constants C,,". Denote a basis element of the

direct product S®G by T;,q) = AaT}, and consider the induced commutator [17,,.ay, T(4,5] =
Mg [T, T,]. If there are two subsets of gneratos in G denoted by Z = {T;} and Ty = {1y, },
where:

#1
#1h

(AVARYS
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[Ti7 TOi] =0

115 = T,
ko # 4,
Lok e 1

holds and Z NTy = 0 is suffitient but not necessary. Then the product space S ® G will
be a Lie algebra without imposing complete associativity on the set .S.

Proof:
AaTi M Ty, MTRl] + [AsT5, M Ty Al + AT, [N s3] = 0
(AaAsA) [T, [T5, Till + (AsAyAa) [T, [Th, Ti]] + (A Aas) [T, [T3, Tl = 0
(AaAﬁAV)CEkQLZE:EEl4—(ABAvAa)Cﬁﬂ%[Y},TbJ 4—(A7AaAﬁ)cz;%£ZE¢Z@J =0
=0 =0 =0

for every set Z € G and without the necessary factorization of the triple set product. This
implies that the condition (for factorization)

AadsAy = AsAyda = Ay dads

It is not necessary either. g
So the associativity of the set(s)S = {\} is sufficient but not necessary.in all this cases.

4.2 iso(2,1) from the Og-resonant-reduction of so(2,2)

In this example, our aim is to find the multiplication table(s) of the semigroup(s) connecting
the Lie algebras so(2,2) and iso (2, 1) in three dimensions, through a 0g-resonant-reduction
process, after having properly chosen the partitions over subspaces.

We can write so(2,2) = {J;, P}, with i = 1,2,3, and iso(2,1) = {J;, ]51}, with 7 =
1,2,3, where we have considered J* = %eijkjjk, according to the notation used in [44]. The
commutation relations between the generators of the starting so(2,2) algebra can be simply
written as

[Ji7 JJ] = €¢ijk7 (425)
[ i, Pj] = eijn.P", (4.26)
[P, Pj] = e ", (4.27)
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where 7, 7, k,... = 1,2, 3, and the commutation relations between the generators of the target
iso(2,1) algebra can be written as

~i7 jj] = Gijkjk, (428)

i ~i7 P7:| = Gijkﬁ)k, (429)

2.5 =0, (4.30)

where, again, 7,7, k,... = 1,2,3. Thus, following the procedure described in Section 3, we

reach the multiplication table

‘ Ao A1 Ao
Ao | Ao A1 Ao

Ml A Ay (4.31)
A2 [ A2 Az Ao

The detailed calculations are treated in Appendix B, while in the following we discuss our
result.

Table (4.31) is an abelian, commutative and associative multiplication table (the check
for associativity in this case is simple). Thus, we are left with the semigroup that allows us
to move from the Lie algebra so(2,2) to the Lie algebra iso(2,1) one through 0g-resonant-
reduction, just performing the analytic procedure described in Section 3. We have found out
that a single semigroup (with respect to the chosen partitions) is involved in the process,

and it corresponds to the well known semigroup Sg), which is given by

(4.32)

\os = Aatp; Whena+ 3 <2,
e - Ao, when o + > 2.

As we can see, table (4.31) perfectly fits this description.

4.3 The Maxwell algebra (M) as a Og-resonant-reduction of the
Anti-de Sitter (AdS) Lie algebra
With the analytic procedure described in Section 3, we can find the semigroup linking the

Anti-de Sitter (AdS) and the Maxwell (M) algebras, through the S-expansion (0g-resonant-
reduction) procedure. In the following, we will show that it is exactly the one obtained

in [22-24], that is to say the semigroup 51(52), which satisfies the multiplication law

Aot B h < 3,
Aads = { +p)  whena+f (4.33)

A3, when o + 5 > 3.

We start with the analysis of the two mentioned algebras. The generators of the AdS
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algebra are {J,, P, }, and they satisfy the commutation relations

[Jab7 ch] = 77chcal - nac']bd - 77deac + nadem (434)
[Jab7 Pc] - nbcpa - nacpbv (435)
[Pa, Pb] = Jup. (4.36)

The generators of the Maxwell algebra M are {Ja, Pa, Zay}, and they satisfy the following
commutation relations

_jab, cd:| = MoeZed — NacZva — MoaZac + Nad Zoe, (4.37)
Zu Pu] =0, (4.38)
Zuty Zea| =0, (4.39)
:jaba jcd] = Moeed — NacIbd — ModJac + TadToe, (4.40)
jab, 15@] = nbcpa - nacﬁba (4.41)
'15&71—2,] A ~ (4.42)

We observe that a particular characteristic of the Maxwell algebra is given by the relation
|20 8] = Zao, (4.43)

and that Z,;, commutes with all generators of the algebra, except the Lorentz generators Jy.

Interestingly, the Maxwell algebra M can be obtained with an Inonii-Wigner contrac-
tion of the AdS-Lorentz algebra '3 (of which the Lorentz type algebra £ = {Ju, Zu} is a
subalgebra), whose supersymmetric extension was deeply studied in Ref. [35] in the context
of the supersymmetry invariance of a supergravity theory in the presence of a non-trivial
boundary.

The details of the calculations involved in this example are reported in Appendix C, while
in the following we discuss our main results.

By performing the analytic procedure described in Section 3, we reach the multiplication
table

Mo A Ao A
Mol ro M A s
AlA A A s (4.44)

A2l A2 A3 Az A3
Az | Az Az Az Ay
This table represents an abelian, commutative and associative semigroup, that is exactly the
. 2) . B
well known semigroup Sj;’ found in [22-24].

13This can be easily proved by performing on the AdS-Lorentz (super)algebra (the supersymmetric ex-
tension of the AdS-Lorentz algebra is displayed in Ref. [35]) the following redefinition of the generators
Jab = Jaby Zap — é%Zab, P, — %Pa, (Qa — éQa), which provides us with the Maxwell (super)algebra
(s)M in the limit € — 0 (here we have relaxed, for simplicity, the notation with the symbol “tilde” above
the generators).
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4.4 From the supersymmetric Lie algebra osp(32/1) to the hidden
superalgebra underlying D = 11 supergravity

With this example, we move to superalgebras, and in particular we concentrate on the super-
symmetric Lie algebra osp(32/1) and on the hidden superalgebra underlying supergravity in
eleven dimensions.

Simple supergravity in D = 11 was first constructed in [36]. The bosonic field content
of D = 11 supergravity is given by the metric g,, and by a 3-index antisymmetric tensor
Ay (v, p, ... =0,1,..., D —1); The theory also presents a single Majorana gravitino ¥, in
the fermionic sector. By dimensional reduction (as it was shown in [37]), the theory yields
N = 8 supergravity in four dimensions, which is considered a possibly viable unification
theory of all interactions.

An important task to accomplish was the identification of the supergroup underlying the
theory, and allowing the unification of all elementary particles in a single supermultiplet,
since a supergravity theory whose supergroup is unknown is an incomplete one.

The need for a supergroup was already felt by the inventors of the theory, and in [36]
the authors proposed osp(32/1) as the most likely candidate. However, the field A,,, of the
Cremmer-Julia-Scherk theory is a 3-form rather than a 1-form, and therefore it cannot be
interpreted as the potential of a generator in a supergroup.

The structure of this same theory was then reconsidered in [38,39], in the Free Differ-
ential Algebra (FDA) framework, using the superspace geometric approach. In [38], the
supersymmetric FDA was also analyzed in order to see whether the FDA formulation could
be interpreted in terms of an ordinary Lie superalgebra (in its dual Maurer-Cartan formu-
lation), introducing the notion of Cartan integrable systems. This was proven to be true,
and the existence of a hidden superalgebra underlying the theory was presented for the first
time (the authors got a dichotomic solution, consisting in two different supergroups, whose
1-form potentials can be alternatively used to parametrize the 3-form).

This hidden superalgebra includes, as a subalgebra, the super-Poincaré algebra of the
eleven-dimensional theory, but it also involves two extra bosonic generators Z%, 71
(a,b,--- =0,1,---10), commuting with the 4-momentum P, and having appropriate com-
mutators with the D = 11 Lorentz generators J,. The generators that commute with all
the superalgebra but the Lorentz generators can be named “almost central”.

Furthermore, to close the algebra, an extra nilpotent fermionic generator () must be
included. In the following, we will replace the notation in [38,39] as follows

Zab _>Zab7 (445)
701--as _>Za1,~-a57 (446)
Q/ _>Q/7 (447)

in order to be able to recognize the generators of the target superalgebra from the generators
of starting one, as we have previously done along the paper.

The bosonic generators Z% and Z%% were understood as p-brane charges, sources of
dual potentials [40,41]. The role played by the extra fermionic generator () was much
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less investigated, and the most relevant contributions were given first in [42], and then in
particular in [43], where the results in [38] were further analyzed and generalized.

Recently, in [39], the authors have shown that, as the generators of the hidden super
Lie algebra span the tangent space of a supergroup manifold, then, in the geometrical ap-
proach, the fields are naturally defined in an enlarged manifold, corresponding to the super-
group manifold, where all the invariances of the FDA are diffeomorphisms, generated by Lie
derivatives.

The extra spinor 1-form involved in the construction of the hidden superalgebra allows,
in a dynamical way, the diffeomorphisms in the directions spanned by the almost central
charges to be particular gauge transformations, so that one obtains the ordinary superspace
as the quotient of the supergroup over the fiber subgroup of gauge transformations.

We now want to show that, with the analytic method developed in Section 3, we are able
to find the semigroup which is involved in the S-expansion (0g-resonant-reduction) procedure
for moving from the original osp(32/1) Lie algebra to the hidden superalgebra underlying
supergravity in eleven dimensions.

This achievement tell us that the method described in [38,39], which is based on the
development of the FDA in terms of 1-forms (the Maurer-Cartan formulation of the FDA
has a dual description in terms of commutation relations of the considered Lie algebra, as it
is shown in [7]), lead to the same result (that is to say, to the same hidden superalgebra) that
can be found performing a S-expansion (0g-resonant-reduction) procedure from osp(32/1),
with an appropriate semigroup. We will display the multiplication table of the mentioned
semigroup in the following, and we will see that it is the semigroup Sg’), which satisfies the
multiplication rules

AatBi h < 4,
Aadg = { +y  whena ) (4.48)

A, when a + 5 > 4.

The same result was previously achieved in [5], where the authors showed how to perform
a S-expansion from osp(32/1) to a D’Auria-Fré-like superalgebra (with the same structure
of the D’Auria-Fré superalgebra, but with different details), using Sg’) as semigroup. This
analogy confirms and corroborates the analytic method developed in the present work.

In this example, we also analyze the link between o0sp(32/1) and another superalgebra
included in the dichotomic solution found in [38,39], in which the translations and the
fermionic generators, respectively denoted by P, and @, commute. We will see that the
supersymmetric Lie algebra osp(32/1) and this particular hidden superalgebra are linked by
a S-expansion (Og-resonant-reduction) procedure, in which the semigroup involved in the
process is the semigroup S](EZ), which satisfies the multiplication rules

Ny = { Aats, When a4+ B <3, (4.49)
A3, when a + 5 > 3.

We now want to find the correct semigroup leading from osp(32/1) to the hidden super-

algebra underlying D = 11 supergravity through our analytic method. Let us start from
collecting the useful information coming from the starting algebra osp(32/1). The generators
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of 0sp(32/1) are, with respect to the Lorentz subgroup SO(1,10) C osp(32/1), the following
set of tensors (or spinors)

{Paa Jaba Zal...as,» Qoz}» (450)

where J,,, P,, ), can be respectively interpreted as the Lorentz, translations and supersym-
metry generators, and where Z,, ,. is a 5-index skew-symmetric generator associated with
the physical A, field appearing in D = 11 supergravity.

Now we have to take into account the information coming from the target superalgebra,
that is to say the hidden superalgebra underlying the eleven-dimensional supergravity [38,39].
The generators of the mentioned superalgebra are given by the set

{Paa jab) Zaba Zal...asvc?omé?;}) (451)

where Zab, Zal...as are two extra bosonic generators, and where Q’ is an extra fermionic
generator that controls the gauge symmetry of the theory and allows the closure of the
algebra.

We perform the detailed calculations in Appendix D, while in the following we summarize
our results.

At the end of the whole procedure, we are left with the following multiplication table:

/\O )\1 /\2 )\3 >\4
A do A A A3 Ay
AL {AL A A3 A Mg
A2 Az Az A M A
A3 | A3 Ax Ag A Mg
VR D YRRV VIRV

(4.52)

which is the multiplication table describing the semigroup Sg’), that, as it was also shown
in [5], is exactly the semigroup leading, through a S-expansion procedure (0g-resonant-
reduction), from the osp(32/1) algebra to the hidden superalgebra described in [38, 39].
Thus, we have shown that our analytic method immediately allows us to discover that these
two superalgebras can be linked through a S-expansion procedure (Og-resonant-reduction),

) ) . 3
involving the semigroup SEE).
We now make some consideration on the case in which

[Q,Pa} — 0, (4.53)

that is one of the commutation relations the other superalgebra presented in [38]. In this
case, from the relation

PurQ) = DPaAQ) = AA [P Q=0 = AAe = Ao, (4.54)

we observe that we have to fix
Ay = A, (4.55)
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as we have done (see Appendix D) in the previous case, and also
Ad = Aogs (4.56)

in order to have consistent multiplication rules. Thus, following the usual procedure, we can
build the multiplication table of the set .S, which in this case reads

Mo A Ao A
Mo ho M de A
A A X A Ag (4.57)

Ao | A2 Az Az Ay
Az | Az A3 Az Ag

This is exactly the multiplication table describing the semigroup 51(52), which satisfies the
multiplication rules

(4.58)

e = Aots, When a4+ B <3,
arh A3, when o + 6 > 3.

In Ref. [5], the authors showed that S](;) is the semigroup allowing the S-expansion from
0sp(32/1) to the M-algebra (the algebra of the M-theory). We have now shown that the
same result is reproduced when we are dealing with a S-expansion (0g-resonant-reduction)
from 0sp(32/1) to a particular subalgebra of the hidden superalgebra obtained in [38, 39]
(that is to say, in the case in which @ and P, commute).

Thus, a strong relation between the D’Auria-Fré superalgebra and the M-algebra is ev-
ident. Both of them, as it was shown in [5], can be reached with a S-expansion from

0sp(32/1), respectively with the semigroup Sg) and Sg) (and this fact furnished us another
corroboration of the analytic method developed in Section 3).

Furthermore, in our work we have interestingly shown that the particular subalgebra
(where P, and Q commute) of the hidden superalgebra underlying D = 11 supergravity is
linked to osp(32/1) by the semigroup Sg), which, in [5], was proven to link 0sp(32/1) to the
M-algebra through S-expansion.

Finally, we conclude our observations saying that, previously in [43] and later in [39],
the authors also found a singular solution, which, in our notation, corresponds to consider
the singular limit Q' — 0 in the target superalgebra. In this case, the authomorphism
group of the FDA is enlarged to Sp(32), and the whole procedure resembles an Inonii-
Wigner contraction. Thus, we can clearly see the existence of a strong link between the
mentioned superalgebras, given by the S-expansion (0g-resonant-reduction) and the Inént-
Wigner contraction procedures. However, we will not treat the case involving the Inonii-
Wigner contraction in our work, and we leave these considerations for the future.

5 Comments and possible developments

As we have previously said in the Introduction, a fundamental task to accomplish when
dealing with the S-expansion is to find the appropriate semigroup linking two different
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(super)algebras, but this procedure is not a trivial one, and usually requires a kind of “trial
and error” process. In this paper, we have presented an analytic method able to give us the
multiplication table(s) of the set(s) involved in an S-expansion process (with either resonance
or Og-resonant-reduction) for reaching a target Lie (super)algebra from a starting one, after
having properly chosen the partitions over subspaces of the considered (super)algebras. The
analytic method described in this work gives a simple set of expressions to find the partitions
over the set(s) involved in the process. Then, one can use the information coming from both
the initial (super)algebra and the target one, in order to write the multiplication table(s)
of the set(s). At the end of the procedure, one can check associativity by hand or with
a simple computational algorithm (as we have done in this work), and thus end up with
the complete multiplication table(s) of the semigroup(s) involved in the process. We have
then given some interesting examples of application, starting from simple cases and ending
with a particular case involving supersymmetric algebras. With these examples, we have
reproduced well known results, which have already been presented in the literature, and
we have also generalized some of them. We can thus conclude that our analytic method is
reliable, and it can also be used in more complicated cases.

Future work can include the study of the particular cases in which the number of subspaces
partitions of the target (super)algebra is different from the number of subspaces partition of
the starting one, and the extension (and generalization) of our analytic method to the case of
infinite algebras and semigroups. Furthermore, our analytic procedure can be used in future
works for understanding the possible links that could exist between different (super)algebras
(also in higher dimensional cases) that have not yet been analyzed in the S-expansion context.
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5 Conclusions

In our first work [21] we perform a geometrical analysis of the S-expansion procedure. Here where discovered
the local intrinsical changes that suffers the group manifold in concordance with the different multiplication tables
of the semigroups, this changes are enconded in the My matrices, specifically in the effect that have this matrices
on the metric tensor of the S-expanded Lie (Super)algebra.

This previous work was the cornerstone of the present due to the fact that the expressions constructed to find
an analytical connection between two Lie (Super)algebras by means of the S-expansion procedure have founded its
inspiration on the particular way in which the tensor metric of the Lie group manifold is modified by the (kind
of) tensor metric of the semigroup and by the properties of the direct product ®. So now we have tried to carrier
that new knowledge to the attempt in constructing an analytical and standard procedure that takes the axiomatic
substance of the S-expansion and enlarge its mathematical structure to one that contains the carrier elements
like the composed index A 4 , the linear equation system (3.4) and the Identification Criterion. This objects are
hooked to the principal properties of both algebras (starting/arrival) and meet in the missing part of the necessary
information that would allow us to know if this two algebras share unique conditions that renders the arrival algebra
the direct product of the starting one with a set S (Magma) under very interesting algebraic conditions

Through this analytical overview we have discovered the following;:

o It’s possible to construct an analytical tool (equation system (3.4)) that with a reduced amount of information
coming from two Lie (Super)algebras give us immediately the answer about if this two algebras are linked by
the S-expansion procedure. The answer is yes when the solution (that is always unique) is a set of numbers

P,Ag,...,An_1} such that all of them belong to the naturals N , otherwise there is no way to obtain one
from another using the procedure.

e The information that lies in {Ag,...,Ay_1} specifically, the unique identification between each partition
element on S = U Sa , and a subspace A in the original algebra can be carried to the S-expanded structure
constants. This is very important because the one to one identification give us the closure relationship
between the Sa, under the set multiplication because the need of respecting the one to one nature
of the identification (given by 3.4) implies a necessary resonant behavior between Sa, - Sa, and
[V4, Vp] in this manner the resonance present in the S-expansion reborn in the form of a necessary internal
behavior in the partition S = LI S , due to the proportionality that must exist between the two
algebras in study and its respective subspaces.

e The index in each element of a set, for example the index a in S;, = {A\,;} could be repeated (only) in
other partition set, for example set S3, = {Ap, Ac, A} if the condition A, = A, emerges from the use of
the Identification Criterion. By other hand ,the case in which b = ¢ will imply that it’ produced a vector
identification T7 = T3 in Gg_exp and in consequence its dimensionality reduces violating the (necessary)

numeric value dim (Gs_exp) =, dim (f/z) established by means of (3.4)

o If the generators of the starting algebra G satisfy the theorem 3 then it’s not necessary to require complete
associativity to the set S, so in these cases would conserve just the magma algebraic properties.

e The final multiplication tables are total o partially defined depending on the of abelianity in the starting algebra
G due to the fact that a null commutator [T7,Ts] = 0 will produce null commutators in Gg_exp, independently
of the S element that are multiplied by 77 and T5 (for example) so according to the multiplication table the
bigger the degree of abelianity in the G the more undefined it will be.

In terms of the analytical S-expansion method we have rendered some of its potulates to the level of natural
consequences, like the resonant condition basing us on the idea of proportionality. Now the semigroup (or magma)
definition and its resultant multiplication table is sited as the key that allow us to pass from one Lie algebra to
another one by means of the direct product between the starting algebra G and a set of finite and discrete sets S
whose disjoint union satisfy at least the magma properties.
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"Look again at that dot. That's here. That's home. That's us. On it everyone you
love, everyone you know, everyone you ever heard of, every human being
who ever was, lived out their lives. The aggregate of our joy and suffering,
thousands of confident religions, ideologies, and economic doctrines, every
hunter and forager, every hero and coward, every creator and destroyer of
civilization, every king and peasant, every young couple in love, every mother
and father, hopeful child, inventor and explorer, every teacher of morals,
every corrupt politician, every "superstar,” every "supreme leader," every saint
and sinner in the history of our species lived there-on a mote of dust

suspended in a sunbeam".

Karl Sagan

Pale Blue Dot quote.

Apendix

A Detailed calculations for moving from the Bianchi Type I
algebra (BTI) to the Bianchi Type II algebra (BTII)

The BTI and BTII Lie algebras have two and three generators, respectively. The only
commutator different from zero for the BT algebra is

[X1, Xo] = X3, (A1)
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where X; and X, are the generators of the BTI algebra. For the BTII algebra we have

[Y1, Ya] =0, (A.2
[Y1,Y3] =0, (A.3
Y2, V3] =Y7, (A4)
where Y7, Y5, and Y3 are the generators of the BTII algebra.
Let us consider the following subspaces partition for the BTT algebra:
[Vo, Vo] CVa, (A.5)
[Vo, 1] cVo & W1, (A.6)
[Vi, W] CVa, (A.7)

where we have set Vy = {0} U{X>}, and V; = {X,}. Similarly, we can write the subspaces
partition for the target BTII algebra:

Vo, Vo| Vo, (A.8)
Vo, Th| Vo @ T4, (A.9)
-‘717‘71- C%y (AlO)

where we have denoted with VA, A = 0,1, the subspaces related to the target algebra and
where we have defined Vy = {0} U {¥5}, and V; = {Y3, Y5}. Let us observe that, in this way,
we have the same partition structure both for the initial algebra and for the target one.
We now follow the steps described in the analytic procedure of Section 3, in order to
obtain the possible abelian set(s) (with respect to the chosen partitions) leading from the
BTT algebra to the BTII one.
First of all, we solve the system (3.5), that in this case reads

1=1-(Ay),
P=Ag+ A +1,
since
dim(Vy) =1, dim(Vy) = 1, (A.12)
dim(V1) =2, dim(V;) = 1, (A.13)

neglecting the zero element of the subspaces Vy and V;. Here we have denoted, as usual,
with As, A = 0,1, the cardinality of the subsets Sa, associated with the subspace A, i.e.
the number of elements in Sa ,. Solving the system above, we get the unique solution

P=4 Aj=1, A =2 (A.14)
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Now, since S = {S},} L {Ss,} U {Xo,}, where Ao is the zero element of the set S, we can
write the following partition structure over the set S:

Slo :{)\a}a
521 :{)‘67 )‘c} (A15)

Here the index a, b, ¢ identify general elements of the set S, and they are not running index.
We do not yet identify them with numbers, because there still exists the possibility of having
the same element in different subsets.

The next step consists in finding the multiplication rules between the elements of each
subset in (A.15). Thus we write the adjoint representation of the BTI algebra with respect
to the subspaces partition:

%= (‘D ) ©%= (o D). (.16

01 11

where the index B, C can assume the values 0 or 1, labeling the different subspaces involved
in the partition of the algebra. Thus, we are now able to write the relations (3.14), which,
in this case, read

[(S1, @ Vo) ® ({Xos } @ Vo), (S1, @ Vo) © ({og } ® Vo)] =
— ({20 (©)ho) (S10 8 V5) & ({Aos} ® Vo)
[(S2, ® V1) @ ({Mos } ® V1), (S, @ Vo) © ({Aos} ® Vo)) =
— (K30 ©)lo) (82 V) @ (Mg} @ TA),
[(S2, ® V1) ® ({Xog} @ V), (S2, @ V1) © ({Aos} @ V1)] =
= (K0 (002 (81, @ W) & ({20} © V0).

(A.17)

These relations (which can also be rewritten in a simpler form, such as the one in (3.21))
give us a first view on the possibilities allowed by the multiplication table of the set S. In
fact, we can now write

Slo ) Slo CSlo U {)‘03}7 (A18)
Sgl . Slo CSQl @) {)\OS}, (Alg)
Sgl . Sgl CSlO U {/\QS}, (AQO)

where we have taken into account the presence of the zero element Ay, of the set S. Thus,
we are now able to write the possible multiplication rules between the elements of the set .S,
namely

AaAa :/\a,057 (AQI)
)\b,c)\a =)\b,c,057 (A22)
)\b,c>\b,c :)\a,057 (A23)
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where we have already taken into account the triviality of the multiplications rules

Mo Aos =Aoss (A.24)
AOs /\a,b,c :AOS' (A25)

We have exhausted the information coming from the initial algebra, thus we now use the
information coming from the target one, in order to build up the complete multiplication
table of the set S.

We proceed by writing the relations between the S-expanded generators of the initial
BTT algebra and the generators of the target BTII one, according to the usual S-expansion
procedure described [5]. According to the identification criterion presented in Subsection
3.1, we can perform the identification

AX2 =Y3 (A.26)
MX, =Y (A.27)
AX) =Y. (A.28)

We now write the commutators of the target BTII algebra in terms of the commutators
between the S-expanded, resonant-reduced generators of the BTI one:

[}67 YE’)] Z}/iv
[>\ch7 AaXQ] :)\lev
Ao [X1, Xa] =X X1, (A.29)

Since for the BTI algebra we have [ X, X5] = X, from equation (A.29) we obtain
Acda = X (A.30)

This simple analysis can be performed in order to find the correct multiplication rules be-
tween the elements of the set S , thus we proceed in this way, computing the other commu-
tators and factorizing the product between the elements of S , in order to end up with the
complete multiplication table.

Let us observe that the commutator

[Y1,Y2] =0 (A.31)

does not give us any further information about the multiplication rule between A\, and A., due
to the fact that, when we write it in terms of the commutator between S-expanded generators
and we factorize the product between the elements of S, we are left with A\, (X1, X4] =0,
which reproduces a trivial identity, since [X;, X;] = 0 in the BTT algebra. On the other
hand, from the study of the last commutator we have to consider, we get

[Yh }/3] :Ov
[)\th >\aX2] =07
Mo [X1, Xs] =0. (A.32)
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Since, from the initial BTT algebra, we know that [ X7, X5] = X; # 0, from equation (A.32)
we clearly see that the the zero element Ao, is naturally involved in the procedure, and we

can finally write
A Aa = Aog- (A.33)

Summarizing, by following the identification criterion described in Subsection 3.1, we have
obtained the multiplication rules

Aeda =Np, (A.34)
AN Aa =Aog - (A.35)

Let us notice that these multiplication rules are consistent with those previously obtained
along the procedure, when we have exploited the information coming from the initial BTI
algebra.

We are now able to write the following multiplication tables for the sets S’s involved in
the procedure:
Aa Ab Ae  Aog
/\a )\a,OS /\OS Ab )‘Os
Mo | Aog Aaos Aaos  Aog (A.36)
)\c )\b )\a,Os >\a,05 )\05
dos Wilo, Bl o

S

These are the multiplication tables of the possible sets S’s (with respect to the chosen

partitions) involved in the S-expansion, 0g-resonant-reduced procedure for moving from the
BTTI algebra to the BTII one.

B  Detailed calculations for reaching iso(2, 1), startingfrom so(2, 2)

Both is0(2,1) and so(2,2) have six generators. The commutation relations between the
generators of the starting so(2,2) algebra are

[Jn Jj] = €iijk7 (B-l)

[Ji, Pj] = €. P, (B.2)

[P, Pj] = ei”, (B.3)
where 7, 7, k,... = 1,2, 3, and the commutation relations between the generators of the target
algebra iso(2, 1) read

-ji, ~j] = Eijkjk; (B.4)

J. P;] = e P", (B.5)

7P| =0, (B.6)




where, again, i, j,k,... = 1,2, 3.
We can write the following subspaces partition:

[Vo, Vol CVo, (B.7)
[Vo, Vi] €V, (B.8)
[Vi,i] cVy (B.9)

for so(2,2), where we have set V = {J;} and V; = {F;}, and

-‘707‘70- C%? (BlO)
Vo, V| 1, (B.11)
AARS7 (B.12)

for iso(2, 1), where, in analogy to what we have done for the initial algebra, Vo = {0} @ {J:}
and V) = {P;}. Thus, we can now write:

dim(Vy) =3, (B.13)

dim(V;) =3 (B.14)
for the so(2,2) algebra, and, similarly,

dim(Vy) =3, (B.15)

dim(Vy) =3 (B.16)

for the iso(2,2) one. Now we have all the information we need to know for proceeding. Thus,
we move to the study of the system (3.5), which, in this case, reads

3=3"(Ao),

3=3-(Ay), (B.17)
P=A;+Ag+1.

This system admits the unique solution

P = 3, AO = 1, Al =1. (B18)

Thus, we now know that the set S = {S;,} U {S1,} U {)\o,}, involved in the Og-resonant-
reduction process to reach the algebra iso(2, 1) starting from so(2, 2), must have the following
partition structure:

S1o ={Aa}, (B.19)
St ={ e} (B.20)
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We can now write down the adjoint representation of so(2, 2) with respect to the subspaces

partition:

(C)§s = ((00)80 (00)(1)) - (O = ((09)?1 (COHO> ’

(B.21)

where the index B, can assume the values 0 or 1, labeling the different subspaces, and,
subsequently, we are now able to write relations of the type (3.14), which, in this case, read

[(S1, @ Vo) ® ({Mog } @ VO) , (S1, @ Vo) & ({Aos} @ Vo)] =
= (K890 (O) (51 @ Vo) & ({hog} © V6).
[(S1, @ Vi) @ ({Mog} © V1), (81, @ Vo) © ({Aos } ® Vo)) =
= (K (%) (81, 0 11) & (Do) 2 14).
[(S1, @ V1) @ ({Aos} @ V1), (51, @ V1) & ({Aos} @ V)] =
= (K90, (O (512 V) @ ({hos} © 16).

(B.22)

These relations (which can also be rewritten in a simpler form of the type (3.21)) lead us to

a first view on the multiplication rules between the subsets of the set S, namely

S1o * S19 CS15 U {os},
Sll : Slo CSh U {)\OS},
Sll : 511 CSlo U {)‘Os}’

where we have taken into account the presence of the zero element Ao, of the set S.

In terms of the elements of the subsets, we can now write

/\a)\a :)\a,()s’
AoAa =Ab0gs
A Ay =Aa,06 5

where we have already taken into account the triviality of the multiplications rules

AOS AOS :)\OS )
AogAap =Aog-

(B.23)
(B.24)
(B.25)

(B.26)
(B.27)
(B.28)

(B.29)
(B.30)

Then, by exploiting the information coming from the target algebra, we will be able to

fix the degeneracy present in the above multiplication rules.

To this aim, let us perform the following associations between the S-expanded generators
of the starting algebra and the generators of the target one (according to the identification

criterion described in Subsection 3.1):

>
S

>
o
T &~
I
e &
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Now we can write, according to the S-expansion procedure [5], the commutators of the
target iso(2,1) algebra in terms of the commutators between the S-expanded generators of

the s0(2,2) one:
|:ji> j}i| O(j/w

[)\a,Jia)‘a,Jj] O(/\aJIm
)\a>\a [JZ, Jj] O()\aJk.

Since [J;, J;] o< Ji, equation (B.33) tells us that
Aada = Aa.
Similarly, since [J;, P;] «x Py, the analysis of
i By P,
[Aadiy N Pj] oAy P,
Aoy [Jis Pj] oA Py

gives us
AaXp = Ap.
Finally, from
5. ] =0,
NoPiy A Pj] = 0,
Moy [P, Pj] =0,
we can write
)\b)\b = )\057

since [P;, P;] o< Ji # 0.
Summarizing, we are left with the multiplication rules

)\a>\a - )\av
ANy = Ao,
AAs = Ao,

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)
(B.41)

In this way, we have completely fixed the degeneracy appearing in the multiplication rules
between the elements of the set S and we are finally able to write the multiplication table

of the set S, which reads
| Ao M Ao
/\a /\a )\b /\OS
M| X Aog Ao
Aos | Aog Aog Aog
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Here we have completed the multiplication table with the zero element Ay, by exploiting
the definition Ao Aap = Aos-
After having performed the identification

Aa € Ao, (B.43)
Ap <> At (B.44)
Aog € A2, (B.45)
we can write the above multiplication table as follow:
‘ Ao A Ao
Ao | Ao A1 Ao
Al AL A Ao (B.-46)
A2 [ A2 Az Ao

Table (B.46) is an abelian and associative one (the check for associativity can be performed
either by hand or using a simple computational algorithm), and thus it describes the semi-
group leading from the so(2,2) algebra to the iso(2,1) one (with respect to the partitions
over subspaces that we have chosen).

C Detailed calculations for moving from the Anti-de Sitter (AdS')
algebra to the Maxwell algebra
The AdS Lic algebra has ten gencrators, while the Maxwell algebra (M) counts sixteen gen-

erators. The generators of the AdS algebra are {J, P,}, and they satisfy the commutation
relations

[Jaba ch] - nchcd - nachd - ndeac + nadeca (Cl)
[Jab7 Pc] = nbcPa - nach7 (CQ)
[P, By = Jup. (C.3)

The generators of the Maxwell algebra M are {jab, P, Zab}, and they satisfy the following
commutation relations:

o, ch} = e Zod — NacZva — MbaZac + NaaZye, (C.4)
Zabs pa,] =0, (C.5)
Z abs ~cd] =0, (C.6)
Jaub: ~cd] = Mbeded = NacTod — MbaJac + NadJbe. (C.7)
Nabv Nc] = nbcpa - Uacpm (C.8)
PP = Z (©9)
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The subspace structure of the AdS Lie algebra can be written as

[Vo, Vol Vo, (C.10)
Vo, Vi] Wi, (C.11)
[Vi, Vi] C Vo, (C.12)

where Vy = {Ju} and Vi = {F,}.
The subspace structure of the Maxwell algebra M, in analogy to what we have done for
the AdS algebra, may be written as

i, Vo| CVh, (C.13)
Vo, V| cVo @ 1, (C.14)
-‘717‘71- Cf/(% (C15)

where Vg = {0} U {Ja, Zsp} and Vi = {P,}. Thus, we have

dim(Vp) =6, (C.16
dim(Vy) =4 (C.17)
for the AdS algebra, and
dim(Vp) =12, (C.18)
dim(V;) =4 (C.19)
for the Maxwell one.
Now, we can solve the usual system (3.5), which in this case reads
12=6(A),
P=Ag+A; +1.
This system has the unique solution
P=4 ANy=2 A =1. (C.21)

Thus, we now know that the set S = {S5} L {S1,} U {)\g,}, involved in the Og-resonant-
reduction procedure to reach the Maxwell algebra M starting from the AdS Lie one, must
have the following partition structure:

Sz ={Aa Ao}, (C.22)
S, ={\}- (C.23)
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By following the usual method (see Section 3), now we write down the adjoint represen-
tation of the AdS algebra with respect to the subspaces partition, namely

@ = (D ) ©%= (o D). (C.21)

01 11

where the index B, C can take the values 0 or 1, labeling the different subspaces.
Consequently, we can write relations (3.14) as follows:

(52 © Vo) @ ({0, © V0) . (52, ® Vi) © ({hoy } © V)] =
= (K () (52 @ V) & (Ao} © 1),
(51, ® V) @ ({ho} ®VA)., (52, ® Vi) © ({hog ) © V)] =
= (K (©)h) (S, 2 V) & (Do @ 1),
[(S1, @ V1) @ ({Aog} @ V1), (S1, @ Vi) ® ({Xos} @ V)] =
= (K((ff))(h) (C)(l)l) (S2y ® Vo) ® ({hog} @ Vh) -

These relations (which can be rewritten in the simpler form described in (3.21)) tell us the
composition rules of the subsets of the set S, which read

(C.25)

S20 ’ S20 C520 U {/\Os}? (026)
SQO o Sh CSh U {)\OS}, (027)
Sll o Sll CSQO @) {AOS}, (028)

where we have explicitly taken into account the presence of the zero element Agg.
Thus, we can write the following multiplication rules for the elements of the set S:

)\a,b)\a,b :)\a,b,Osv (029)
Aa,b/\c :)\C,Os7 (C30)
)\c/\c :)‘a,b,Osv (C31)
where we have already taken into account the triviality of the multiplications rules
AogAog =Aog (C.32)
AOS)\a,b,c :)\OS- (C33)

Then, by exploiting the information coming from the target algebra, we will be able to
completely fix the degeneracy still appearing in the above multiplication rules.

Thus, we write the generators of the Maxwell algebra M in terms of the S-expanded
generators of the AdS Lie algebra, performing the following identification (according to the
identification criterion of Subsection 3.1):

)\aJab =Jab7 (C34)
)‘bJab :Zaba (035)
AP, =D, (C.36)
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Consequently, according to the S-expansion procedure described in [5], we can write the
commutators of the target Maxwell algebra in terms of the commutators between the S-
expanded generators of the AdS one, taking into account the commutation relations of the
initial AdS Lie algebra (in the following, we will neglect, for simplicity, the index labeling
the generators, since we just need to exploit the commutators structure).

We get

[J, J] o/,
Mo, Aad] Ao,
Ada [1, 7] chad = Aada = Ad; (C.37)

[J,zs] xP,
Mo, AeP] AP,
Aade [J, Pl AP = A = A (C.38)

J,2] =2,
[)\aJ, )\bJ] OC)\(,J,
Aa b [J, J] oA = ANy = /\b; (039)

|2, P| P,
AP, AcP] AP,
AP, Pl ccAP = Ao = A (C.40)

2P| =0,
(Ao, A P] =0,
M [J, Pl =0 = MA.= Ao, (C.41)
since [J, P] = P # 0;
[Z, Z] —0,
Ao, Ao J] =0,
)\b>\b [J, J] =0 = >\b)\b = )‘057 (042)
since [J, J] = J # 0. From the above relations, we can write the multiplication table

/\a )‘b )\c /\Os
)\a )\a )\b )\c )\05
o | A Ao Aos Aog (C.43)
A | A dos A Aoy
Mg | Mos Mos Aog Ao
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in which we can see that all the degeneracy has been fixed. Then, after having performed
the identification
/\a <~ )\0, /\b — /\2, )\c < /\1, >\OS <~ /\2, (044)

we can write the following multiplication table (where the elements of the set S are written
in the usual order):

A LA A As Ay (C.45)

Table (C.45) represents an abelian, commutative and associative semigroup, named Sg). As

said in [22-24], Sg) is the semigroup involved in the S-expansion (0Og-resonant-reduction)
procedure performed in order to reach the Maxwell algebra M starting from the AdS Lie
algebra, and we have reproduced this result with our analytic method.

D Detailed calculations for reaching the hidden su- peralgebra
underlying D=11 supergravity, startingfrom the supersymmetric
Lie algebra osp(32/1)

In the following, we display the detailed calculations for moving from the supersymmetric
Lie algebra osp(32/1) to the hidden superalgebra underlying D = 11 supergravity, through a
0s-resonant-reduction procedure, and we show how to find the set(s) involved in the process,
once the partitions over subspaces for both the considered superalgebras have been properly
chosen.

The generators of osp(32/1) are

{Paw]aba Zal...a57Qa}- (Dl)
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The commutations relation between these generators can be written as

[Pm Pb]
7.7
[‘]aba ch]

[Paa ch~--cs]

[Jab .- 05]
[Za1~~-a57 Zb1~~-bs]

[P.. Q]
[Jaln Q]

[Zabcd67 Q]

{Q".Q7}

J abs

5 pe,

1 15
1
5 |

c 05
—€abi---bsci - 0521

l abey--eyq r7d
4' dcy-cs e1--eq)

n[a1...a5][61--.co] cshy bsepe+5a1 e5eJd

1
- 3'3'5' €cycn d1dad3zby--bs

1
__Fa )
5La@

1

__Fa 9
e

1

__Face
L@

213 [(PGC NP,

1 abcde
2 |:5' (deC ) abcde:|7

gar 65046566n[010203][d1d2d3]ZC7 011

Q(FabC ) Jab‘| +

(D.2)

where C,, is the charge conjugation matrix and I'y, 'y, I'4pcde are the Dirac matrices in eleven
dimensions. Let us perform the following subspaces partition for the osp(32/1) algebra:

Vo @ Vs,
Vi,

]
]
]
]
]
] Vo @ Vs,

N NN NN N

e N N e e
SICICICECAS
o J O Ot i~ W
N N e e N

where we have set Vo = {Ju}, Vi = {Q.}, and Vo = {P,, Z,, .., }. Thus, the dimensions of
the internal decomposition of osp(32/1) read

dim (V3) =

dim (V) = 55

dim (V;) = _32

(D.9)
(D.10)

(D.11)



The generators of the superalgebra underlying D = 11 supergravity are given by the set
{Paa jab; Zaba Zal...asv Qou Q/(y} (D12)

These generators satisfy the following commutation relations:

{Q,Q} = _(iFaPaJr%T‘”’Zazﬂr%Fal“'“"’Zalmas), D.13
{Q.Qy = o,
{0.Qy = o0,
[@, ~a,: = -2 <8> r.Q',
Q.2 = —ar*q,
[Q, 25 _ () @z) posasy
[jab’ZCd: - _85[[ZZb]d]7
[fab, Z = 2001 2,7
Q| = Tu@,
@] = Tl
_:pa,@f; = [2,@] = [2.@] = [Zur..c.. @] = [P, B] =0,
JU B = o,
0 =
2o 2] = |2 2] = |2 P =0

where the free parameter Fy appearing in Ref. [39] has been consistently fixed to the value
1 (this is due to the possibility of fixing the normalization of the differential form associated
with the extra fermionic generator Q).

We observe that the above algebra actually describes two superalgebras, due to the de-
generacy appearing in the commutation relation (D.13), from which we clearly see that the
generators @ and P, can also commute. In the following, we will discuss the S-expansion,
Og-resonant-reduced procedure for both these superalgebras.

Let us also observe that, in the description of the hidden superalgebra, the coefficients are
written following the notation and conventions presented in Ref.s [38,39], while, when con-
sidering the supersymmetric osp(32/1) Lie algebra, we have adopted the notation presented
in Ref. [5]. However, the coefficients appearing in the mentioned algebras are not relevant
to our discussion, since we just need to know the structure of the algebras for applying our
analytic method.
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We can thus proceed, giving the internal decomposition of the target superalgebra (we
first consider the case in which [Q, Pa} # 0). For the target superalgebra underlying D = 11
supergravity, we can write

dim (VO> = 10, (D.14)

dim(]) = 64, (D.15)

= L+ d62 =413, (D.16)

P, Zay--as

where we have clearly set Vy = {0} U {jab, Zab}, Vi = {Q,Q’}, and V, = {]-Z’a,Zalu_aS}. The
subspaces partition for the target superalgebra satisfies the following relations

Voo < Vi (D.17)
Vil ¢ oW, (D.18)
Vo Ta| ¢ Thes, (D.19)
Vi, ¢ a@Th (D.20)
VL The T, (D.21)
Vo, Va| C Voo Ta, (D.22)

analogously to what we have done for osp(32/1). We can now move to the study of the usual
system (3.5), which, in this case, reads

110 =55(P —1— Ay — Ay),

64 =32(P —1— Ay — Ay), (D.23)
AT3 =4T3(P —1— Ay — Ay), ’

P=Ag+ A +A;+1,

where Ag, A1, Ay respectively denote the cardinality of the subsets related to the subspaces
Vo, Vi, and V5. This system admits the unique solution

P = 6, AO - 2, Al - 2, A2 =1. (D24)

Thus, we are now able to write the following decomposition over the set S involved in the
process:

520 = {/\aa/\b}7 (D25)
521 = {/\07)‘d}7 (D26)
Slg = {)\e}- (D27)
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Now, we build up the adjoint representation with respect to the subspaces partition of the
starting osp(32/1) algebra, namely

(Clo 0 0 0 (O) O
Cos=1 0 @y 0 |, @p=(0©O% 0 (©F],
0 0 (O 0 (C) O
0 0 (O3
(C)gB: 0 (0)51 0

(C)y 0 (O)y

Thus, one can now write the usual relations (3.14) (or their simpler form, given by (3.21))
for the case under analysis, and find the following product structure for the partitions over
the set .S

Soy S92y C Say U{ogts (D.28)
Soy - S2, C Say U{Aogts (D.29)
Say - S1, C S, U{dog}, (D.30)
S, - S2y € (Sg, N S1,) U{og s (D.31)
So, S, C S, U{ gt (D.32)
S1y - S1, C (S9N S1,) U{dog s (D.33)

where we have explicitly taken into account the presence of the zero element Ay . This allows
to reach the multiplication rules

AapAap = Aabos (D.34)
Aapred = Acdog (D.35)
/\a,b>\e = A67057 (D36)
/\b,c)‘b,c = Aa,b,e,OS ) (D37)
Mocde = Aeogs (D.38)
)\e)\e - /\a,b,e,Os) (D39)
where we have already taken into account the triviality of the multiplications rules
AogAog =Aog s (D.40)
)‘Os/\a,b,c,d,e :/\OS- (D41)

We can now fix the degeneracy appearing in the above multiplication rules, by analyzing
the information coming from the target superalgebra. According to the usual S-expansion
procedure (see Ref. [5]), we have to write the commutation relations between the generators
of the target superalgebra in terms of the commutation relations between the generators
of the S-expanded osp(32/1). After having performed the identification (according to the
identification criterion presented in Subsection 3.1)

)\aJab = jaba )\bJab = Za,ba >\(‘Q = Q) AdQ = Qla )\ePa, = Pa» )\eZal...as, = Zal...asa
(D.42)
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we are able to write the commutation relations of the superalgebra underlying D = 11 su-
pergravity in terms of the commutation relations of the S-expanded generators of osp(32/1).
In the following, we will just consider the structure of the commutation relations, since
the explicit values of the coefficients are not relevant to our analysis. For performing this

calculation, we consider the case in which [Q, IBG] # 0.

Thus, taking into account the commutation relations for the initial algebra osp(32/1), we
have:

{Q/» 6:2/} = { @, MQ} = AaAa{Q,Q} =0 —  Aghg = Mg, (D.43)
(Q,Q} = D@ MQ} = AA{Q, Q=0 = Ada= Ao, (D.44)
[ﬁa, Pb] = NP AP = AN P B =0 = A = Mg, (D.45)
[Pa, jbc] = AP Aadbe] = Aeda [Po Joe] X ABPP = AN =A.,  (D.46)
[Jab, ch] = Dadans Aadea] = Aada [as Jea] < A0 TG = Ada = Ao, (DAT)
[P0 @] = NPas M@ = AMa[Pas @ =0 = Ada = o, (D.48)
[Za,,, Q’] = Dodans MQ] = Mda [Jans Q1 = 0 = Apha = Ao, (D.49)
[ﬁa Q] DePo AeQ] = A [P, Q] X M@ = Ao = Ay (D.50)
Zun Q] = Dodur M@ = WALy Qo6 0@ = MAe=As,  (D51)
[jab, ch] — Dadans Moed] = Ao [as Zea) < M0 26 = Ndy= Ny, (D.52)
o, Q] Dadats Ae@] = Ao [Japs Q] X AQ = Aade = Ao, (D.53)
e @) = Do Q) = Ada [T, Q) X M@ = Aada=Aar (D.54)
[Zal” Z, ] DoTan NoTud] = MXo [T Zedl =0 = Moy = Ao, (D.55)
[Nab,ﬁ] = Dodans AP = M [Jans B] =0 = XA = Aoy, (D.56)
{Q. Q) = (2@, \Q} = AAAQ, QY X AP + Noa + Ae Zabeae — (D.57)
— AeAe = Ay, where we have set A\, = A,
and the other commutation relations give us results that agree with the above ones.
We observe that, in equation (D.57), we must set
X = A, (D.58)

in order to get consistent relations. For performing this identification with consistency, we
have also exploited the statement which follows from Theorem 2.
This procedure fixes the degeneracy of the multiplication rules between the elements of
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the subsets of S, and we are now able to write the following multiplication table

)\a )\b )\c )\d )\OS
)\a >\a )\b >\c >\d >\OS
)\b >\b )\OS )\d )\03 AOS
Ae | e Ad A Aog Ao (D-59)
Ad | Ad Aog Aog Aog Ao
Aos | Aog Aog Aos Aog Ao
Then, after having performed the identification
a0, b2, c+1, d<3, 054, (D.60)
we can finally rewrite the table above as follows (in the usual order):
Ao A1 A2 A3 Mg
Al Ao A1 A A3 Ay
M Qe Ay A A D.61)

This is exactly the multiplication table of the semigroup Sg’), which leads, as it was shown
in Ref. [5]) through a S-expansion procedure (0g-resonant-reduction), from the osp(32/1)
algebra to the hidden superalgebra underlying the eleven-dimensional supergravity theory,
described in Ref.s [38,39].
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