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Abstract

Signaling pathways are responsible for the regulation of cell processes, such as, mon-

itoring external environment, transmiting information across membranes, and making

cell fate decisions. Given the increasing amount of biological data available and the

recent discoveries showing that many diseases are related to the disruption of cellular

signal transduction cascades, modeling signaling pathways in cell biology has become

an active research topic in past years. However, reconstruction of signaling pathways

remains a challenge mainly because of the need of systematic approaches for predict-

ing causal relationships, like edge direction and activation/inhibition among interacting

proteins in the signal flow. We propose an approach for predicting signaling pathways

that integrate protein interactions, gene expression, phenotypes, and protein complex

information. Our method first finds candidate pathways using an edge direction algo-

rithm and then defines a graph model to include causal activation relationships among

proteins in candidate pathways using cell cycle gene expression and phenotypes to

infer consistent pathways. Then, we incorporate protein complex coverage for decid-

ing the final predicted signaling pathways. We show that our approach improves the

results of previous approaches, between 21 and 50 %, using different ranking metrics.
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Resumen

Las vı́as de señalización son responsables de la regulación de los procesos celulares,

tales como el monitoreo del ambiente externo, la transmisión de información a través

de la membrana celular, y la toma de desiciones en torno al destino de la célula.

Dada la cantidad creciente de información biológica disponible y los descubrimientos

recientes sobre el hecho que muchas enfermedades están relacionadas con la inter-

rupción de las señalizaciones en cascada, modelar vı́as de señalización en biologı́a

celular ha llegado a ser un tema activo de investigación en los últimos años. A pesar de

esto, la reconstrucción de vı́as de señalización continúa siendo un gran desafı́o, prin-

cipalmente debido a la falta de enfoques sistemáticos para predecir estas relaciones,

tales como orientación de interacciones y la activación o inhibición entre interacciones

de proteı́nas en el flujo de una vı́a. Este trabajo propone un enfoque para prede-

cir vı́as de señalización que integran interacciones de proteı́nas, expresión de genes,

fenotipos, e información de complejos proteicos. Primero, nuestro método encuentra

vı́as candidatas, usando un algoritmo de orientación de aristas, y define un modelo

de grafos para incluir las relaciones de activación entre proteı́nas en las vı́as candi-

datas, usando expresión de genes en el ciclo celular y fenotipos, para inferir pathways

consistentes. Después, incorporamos un algoritmo de cubrimiento de complejos pro-

teicos para elegir las vı́as de señalización predichas finales. Mostramos que nuestro

enfoque mejora los resultados de los enfoques de previas investigaciones, entre un 21

y un 50%, usando diferentes métricas de ranking.
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Chapter 1

INTRODUCTION

Proteins are molecules formed by sequences of amino acids. They ussually interact

with each other to perform specific functions in organisms. Discovering the protein

roles in different functions is an important research area in the biological and biochem-

ical field, because of the impact that such information may have in the creation of new

treatments of several diseases and in the comprehension of functions in living systems.

A kind of cell activity where several proteins work together in sequence is called “sig-

naling pathway”. A signaling pathway can be seen as a linear path in cascade, where

multiple proteins associate and/or modify each other to perform a specific function. In

general, a signaling pathway has a set of proteins whose sequence interaction from

a source to a target produces the activation of transcription factors, which regulate

the gene expression or inhibition. Ahother kind of biological function, where multiple

proteins work together, is called a “protein complex”, where there is a high level of

interaction among the involved proteins, but there is not a linear dependency of their

interactions.
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Chapter 2

STATE OF ART

Diverse technologies of biological experimentation that have been developed through

time, have made possible the compilation of Protein-Protein Interaction (PPI) networks,

which have pairs of protein interactions in a determinated experimental context. There

are several methods that aim to discover interactions between proteins, such as yeast-

two hybrid (Y2H), affinity purification-mass spectrometry (AP-MS) approaches [1], or

interaction reports inferred from mining information in scientific publications. Neverthe-

less, those techniques are not completely reliable, since they can show interactions

that do not happen “in vivo” or are not able to detect interactions that really exist [14].

Those PPI network databases ussually are available to the scientific community and

are used to extract information about how proteins interact in different organisms. On

the other hand, there are databases that keep cured protein complexes (CYC2008 [24],

SGD [4], MIPS [19], PCDq [15] and CORUM [26]) and there are several computational

systems that predict protein complexes [10] [22]. Also, there are databases that collect

information about cured signaling pathways (e.g. Wikipathways and KEGG) [3], as well

as databases that store PPI networks related to a diverse number of diseases [18].

Aditionally, there is the “Gene Ontology Consortium” (GOC), which objective is to

keep the information of biological systems of many organisms updated. The informa-

tion is structured and storaged as ontologies (gene ontology) and annotations (gene

annotation). One of the most interesting analysis that uses the GOC data is the en-

richment analysis, which allows to determine the biological functions where a set of

proteins works. Enrichment is a statistical method that relates a group of significantly

enriched genes that coexpress in certain biological functions. This analysis provides

a better understanding of biological processes in organisms by relating genes them-

selves with different ontologies. There are several software tools that calculate the
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3

enrichment of a set of proteins to verify the degree of association between the genes

in determinated biological functions, such as GO, DAVID and Enrichr [12] [17].

Despite the progress made to date, proteins are molecules that have different and

multiple functions in every organism and, as biological systems are complex, there are

still many gaps about their interactions, behavior and functions. In particular, the pre-

diction of alternative or missing signaling pathways, as well as their relation to protein

complexes and diseases, may provide insight on how regulation processes or crosstalk

works [27].

From the computer science point of view, PPIs can be modeled as undirected

graphs [21] and signaling pathways can be seen as paths in a directed graph. The

problem gets more complex when PPIs include information about the confidence of the

interaction’s actual existence between every pair of proteins, which is usually modeled

as undirected weighted graphs [33] [11]. One of the most interesting models is the use

of hypergraphs, which is used to model and store specific functions of proteins and

their interactions. There are other alternatives like adapted hypergraphs, also called

signaling hypergraphs [25]. Such work models reactions as complex assembly and

dissociation, combinatorial regulation, and protein activation/inactivation.

Prediction of biological signaling pathways from PPIs is a complex task, mainly

because of the large size of PPI networks and also because signaling pathways are di-

rected. Thus, there is a high number of possible signaling pathways to consider from a

PPI database, which can produce high rates of false positives and false negatives in the

results. This is why it is necessary to develop new methods capable of distinguishing,

only the signaling pathways with a good chance of actually existing. The identification

of signaling pathways is a critical point to understand biological processes, as well as

pathological alterations of these functions that may trigger diseases. In this sense,

several researches have showed that the irregular behaviour of certain proteins trigger

many diseases [3, 8, 2, 16].

To date, this problem has been approached from many points of view. Gitter [8]

finds pathways starting from a weighted PPI (to represent the degree of confidence

between the proteins in every interaction) and predicts alternative pathways using a

random orientation algorithm and a local search one. Their proposal aims to maximize
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all weights from interactions in every pathway, since a pathway is more reliable if the

multiplication of its weights is greater. The authors first build a high quality PPI network,

where all the considered interactions are obtained from different databases and they

take in consideration their correlation with scientific reports, so every interaction in

the PPI is documented and takes a different weight value according to the number of

publications that support it.

Cao [3] shows a pathway prediction tool that uses a distance based metric (DSD:

Diffusion State Distance), measuring the topological similarity of proteins in a network,

adding information from databases to make it more specific (e.g. experiments, num-

ber of researches that prove the interactions and reference pathways). Shin [29] uses

a shortest path algorithm based on Dijkstra [6], choosing the best pathways as the

ones that minimize the pathway length. Nguyen [20] uses the genetic algorithm [5],

which optimizes the fitness (objective function) in terms of degree of confidence for

each candidate pathway (like Gitter’s algorithm) to solve the problem. Vinayagam et

al. [32] proposed a computational model that predicts activation/inhibition performing

phenotype correlation among proteins and build a signed PPI network for Dropsophila

melanogaster, where the sign is positive for activation and negative for inhibition re-

lationships. Even though there are some approaches that integrate some biological

knowledge for signaling pathway predictions, genome scale reconstruction of signaling

pathways is still challenging, mainly because causal relationships are difficult to infer

[32].

As mentioned, there are many approaches to solve the problem, but the information

used is not based on biological data, temporal relations, protein complexes associa-

tion, enrichment or any other information that can add biological context knowledge to

improve the penality of the predicted pathways. This idea was derived from [30], where

it is studied the relation of temporality (via Cell cycle dynamics and protein expression)

with protein complexes, in order predict protein complexes, showing that the use of that

biological information improves the model for this kind of predictions.

In this work, we propose an algorithm that allows us to integrate the information

about PPIs with biological protein knowledge available in public databases, in order to

provide biological context for every pathway and its interactions. Our approach is based



5

on two steps. The first step applies an edge orientation and local search algorithm in

the input PPI to find candidate signaling pathways, whereas the second step consists

of defining a graph model and a decision algorithm that includes temporal biological

data to determine which candidate pathways are biologically consistent. Information

like Cell Cycle dynamics in pathways and protein complexes are the best choices. We

evaluated our method using the ranking metrics proposed by Gitter et al. [8], included

other centrality measures, and found that relating biological information with PPIs to

predict signaling pathways using our method improves precision in the predictions.



Chapter 3

MAIN WORK

3.1 Biological knowledge

Research proposals have developed a wide range of biological knowledge describing

biological processes, components, or structures in which individual genes and pro-

teins are known to be involved, such as protein complexes, signaling pathways and

crosstalks.

3.1.1 Cell cycle information

The cell cycle is a set of events where the cell grows and develops processes that

lead to the duplication of its DNA and subsequently cell division. The cell cycle has

four phases: G1, S, G2 and M, which happen in sequence and, in each one of them,

the cell components fulfill specific functions. The G1 and G2 phases are gaps, the S

phase represents the synthesis (replication of its DNA) and the M phase represents

the mitosis and cytokinesis. Also, there are two checkpoints, where the cell verifies if

its ready to continue with the next phase. Those checkpoints are G1/S (at the end of

G1) and G2/M (at the end of G2) [9].

There are many datasets related to the mitotic cell cycle. These datasets include

microarray-based time courses of mRNA expression, mass-spectrometry-based pro-

teomics on protein expression during the cell cycle, systematic screens for cyclin-

dependent kinase (CDK) sustrates and high-content screening for knockdown phe-

notypes. All these datasets provide a high detail of information on the mitotic cell

cycle and its many regulatory layers. As combining and analyzing all this informa-

tion is a complex task, Cyclebase [28] aims to address this problem by proccesing

6
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different datasets, mapping them to common gene identifiers and normalizing experi-

ments onto a common timescale, facilitating direct comparison of expression profiles

between all experiments within an organism. Current Cyclebase content is updated

with new mRNA and protein expression data, and integrated cell cycle phenotype in-

formation from high content screens and model organism databases. Cyclebase also

provides an easy way of obtaining information about cell cycle peak gene expression

and phenotypes of indivual genes. Figure 3.1 shows the information available for a

gene (YBR088C) in yeast (Saccharomyces cerevisiae), where it is displayed the gene

expression in the different phases of the cell cycle and the time course experiments,

where it is observed the periodic behavior of the gene. In addition we show a sample of

the information observed for each gene related to the peak expression and phenotype

for a set of yeast genes, including YBR088C.

3.1.2 Protein Complex information

Proteins are known to participate in several biological processes such as transport,

signaling, metabolic and enzymatic catalysis. Most proteins interact with others form-

ing functional units, called protein complexes, which allows them to perform biological

functions in a collaborative way. Many proteins participate in different protein com-

plexes according to the function needs of the organism. Understanding the functions of

proteins is important for many diseases since some research studies have shown that

the deletion of some proteins in a network can have lethal effects on organisms [13].

This has been an important motivation for the research community to propose different

prediction methods for protein functions, protein complexes and signaling pathways

[8, 14, 31].

In the context of yeast, one of the first gold standards datasets of protein com-

plexes was cataloged by Munich Information Center for Protein Sequences (MIPS).

MIPS contains 203 curated protein complexes. Another known gold standard for yeast

is the SGD (Saccharomyces Genome Database), which currently contains 323 yeast

complexes. CYC2008 is the most recent gold standard dataset of protein complexes

for yeast [24]. It contains 408 manually curated heteromeric protein complexes, which

reliability is supported by the current literature. CYC2008 has been used as a reference
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by many protein complex prediction tools [31]. The CYC2008 reference was compiled

with the intention of defining an up-to-date gold standard that considers the new yeast

complexes identified in small-scale and large-scale experiments as well as the protein

complexes cataloged in MIPS and SGD.

3.1.3 Enrichment information

One of the most interesting approaches is the gene set enrichment analysis. In gen-

eral, the enrichment analysis is an association of a set of proteins with a functional

biological term [17]. To perform this analysis it has been developed a representation

of genes and their attributes from several species, which is called the Gene Ontol-

ogy. This representation keeps a vocabulary of genes and all their attributes, so all

the species data are unified in the same nomenclature. All of this effort allows us to

extract computational analysis of a set of genes, to see how much they are related.

The ontology is formed by gene product properties and is defined by three domains:

• Biological process: role in operations needed to the functioning of living organ-

isms.

• Molecular function: activities or events at a molecular level.

• Cellular component: localization of components in the cell.

One of the first forerunner tools available to make this analysis was the GO and then,

many others have been developed, such as FatiGO, BiNGO, Enrichr and TermFinder.

These tools are available for several species, but mostly for homo sapiens and yeast,

and there are the three onthologies available so people can select any of them to make

the analysis. Within the information used for the process, we can find chromosome

location of genes, computationally predicted targets of microRNAs, transcription factors

and membership of genes in pathway databases. All of the tools return a statistical

value (called p-value) that measures the degree of relationship of the set of proteins

according to the different biological criteria of each analysis. This value can take ranges

between zero and one. The lower the value, the more related are the set of proteins

analyzed.
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3.1.4 Gold Standard Signaling Pathways

Several databases keep cured signaling pathways, such as KEGG, Wikipathways and

Science Signaling Database of Cell Signaling. They keep relevant information about

pathways, such as their names, the proteins involved, their interactions, directions,

activation/inhibition relationships, localization within the cell, function in the cell and

scientific reports related to their interactions. They are called Gold Standard as they

are a experimentally tested reference and are the main objective to get in prediction

researches.

3.2 Method

In this section, we define the signaling pathway discovery problem and propose a

method that incorporates biological data to infer causal or temporal relationship in

the signal flow. Our method consists of composing an edge orientation optimization

heuristic with a graph model and decision algorithms based on biological data.

3.2.1 Problem formulation

Let G(V,E,w) be a weighted undirected graph, which models a PPI network with pro-

teins as vertices in V , protein interactions as edges in E, and weights, w, as the con-

fidence of a real protein interaction. We denote w(e) as the weight (confidence) of an

edge e in G(V,E,w). Let also assume a set of (si, ti) pairs of source, target proteins in

V and a maximum path length h in G for each pair (s, t).

We formulate the problem of discovering signaling pathways in two steps. The first

step has the goal of defining an edge orientation and a fast heuristic for detecting can-

didate pathways, which do not include temporal information of biological relationships

among genes or proteins. The second problem is defined as decision rules, where

each candidate pathway is tested using biological data that include temporal dynamics

using cell cycle and protein complexes. As a result, we obtain a set of signaling path-

ways, which we called consistent pathways. Then, each consistent pathway is tested

for protein complex coverage. As a result, we obtain predicted pathways.
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Definition 3.2.1. Candidate pathway.

The first problem is to orient edges e = (u, v) ∈ E in an undirected graph, G(V,E,w),

from vertices u to v or from v to u so that all possible paths between sources and targets

of length at most h is maximized. Each path is defined as P = {si, v1, v2, . . . , vj, ti},
where each pair of consecutive vertices in a path form an edge (vj, vj+1) ∈ E and

the first vertex is a source, si, and the last is a target, ti. We denote these paths as

candidate pathways.

Definition 3.2.2. Consistent pathway.

Given, P = {P1, P2, . . . , Pn} a set of candidate pathways, where a candidate pathway

Pi = {v1, v2, . . . , vj} is a path in G, v1 = si, and vj = ti. A consistent pathway is a

candidate pathway where all of its edges, formed by proteins, satisfy temporal cell-

cycle dynamics, or protein complex rules (after a candidate pathway is processed by

Algortithm 1).

Definition 3.2.3. Predicted pathway.

Given Pc = {Pc1, Pc2, . . . , Pcm} a set of consistent pathways, and covPercent a protein

complex coverage percentage. A predicted pathway is a consistent pathway where

all of its edges formed by proteins satisfy a certain percentage of coverage, given by

covPercent. These pathways are obtained after the consistent pathways are processed

by Algorithm 2.

3.2.2 Approach

Our approach finds candidate pathways using edge orientation of PPI networks and a

fast heuristic for determining simple paths of length at most L. Gitter et al. [8] showed

that determining the maximum edge orientation in a graph is NP-hard, and the au-

thors proposed a random orientation algorithm with local search that provides the best

results for finding signaling pathways. However, their proposal does not consider the

temporal dynamics involved in signaling pathways. Our proposal uses Gitter’s algo-

rithm as a first step, but includes a second step adding decision rules to examine each

candidate pathway to consider temporal dynamics. We model such dynamic using

cell cycle phases and protein phenotypes as well as the protein involvement in protein
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complexes.

We define a cell cycle graph CG = (A,B), where A represents the cell cycle

phases, B their transitions and N(x) returns the transitions from one phase to others

in CG.

A = {G1, G1/S, S,G2, G2/M,M}

B = {(x, y) ∈ A× A}

N(x) = {y ∈ A/(x, y) ∈ B} (3.1)

Figure 3.2 shows this graph representation. As the information extracted from

databases such as Cyclebase include checkpoints (G1/S and G2/M), we used them

as a part of the cycle, so that the sequence remains in order. Thus, if we can follow the

sequence of proteins in cell cycle, the first protein being in a certain phase, the next

one can be in the same phase or in the following one.

We incorporate temporality in the form of cell cycle phases to check if two consecu-

tive proteins in a candidate pathway are likely to participate in a pathway. If all proteins

forming edges in a candidate pathway satisfy the expected transitions in the cell cy-

cle dynamics or the protein complex involment, the candidate pathway is a consistent

pathway. We model the cell cycle transition as the function 3.2.

T : V 7→ C ⊆ A (3.2)

We define function T based on cell cycle peak expression, Tpk, and cell cycle phe-

notype Tph, using the information available in Cyclebase 3.0 1; and using the domain V

as we showed in section 3.1 Problem formulation

In addition, we consider the protein complex involment function

L : V 7→ R ⊆ PC (3.3)

to map proteins to protein complexes where they participate, where PC are gold

standard complexes.

1https://cyclebase.org/CyclebaseSearch
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Then, given CG(A,B) and P = {P1, P2, . . . , Pn} , we decide whether a candidate

pathway P is TRUE or FALSE as shown in Algorithm 1. Consistent pathways are

candidate pathways that are TRUE after applying Algorithm 1.

Algorithm 1 Signaling consistent pathway decision using cell-cycle and protein com-
plex rules.
Input: Candidate pathway P (where P ∈ P), functions Tpk, Tp, L.
Output: Returns TRUE (consistent pathway) if a candidate pathway satisfies the cell-

cycle dynamics and protein complex rules.
1: for vi, vi+1 ∈ P do
2: if (|Tpk(vi+1)∩N(Tpk(vi))|)∨ (|Tph(vi+1)∩N(Tpk(vi))|)∨ (|Tpk(vi+1)∩N(Tph(vi))|)∨

(|Tph(vi+1) ∩N(Tph(vi))|) then
3: continue
4: else if (|L(vi) ∩ L(vi+1)|) then
5: continue
6: else
7: return FALSE
8: end if
9: end for

10: return TRUE

The first part of the Algorithm 1 (Cell Cycle rule) evaluates whether a protein-protein

interaction, (vi, vi+1) is related by:

1. Peaks of expression: where vi+1 peak must be in the next phase of vi peak.

2. Peaks and phenotypes: where vi+1 phenotype must be in the next phase of vi.

3. Phenotypes and peaks: where vi+1 peak must be in the next phase of vi pheno-

type.

4. Phenotypes: where vi+1 phenotype must be in the next phase of vi phenotype.

The second part (complex rule), is evaluated only when the interactions are not

satisfied by the cell cycle rule. Then, the algorithm verifies whether the proteins in

the interaction belong to a protein complex in common. If none of these two parts are

satisfied, we discard such interaction and, subsequently, the candidate pathway.

A third part was added to the algorithm. Taking advantage of the high relation

between the proteins when they collaborate in a complex, we tested all the proteins
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of each consistent pathway to calculate the highest percentage of coverage that the

complexes had on the pathways. This can be seen in Algorithm 2, where we compute

the number of common protein complexes where proteins in a consistent pathway par-

ticipate in (lines 1-3 in Algorithm 2). Then, we compute the protein complex coverage r

(line 4 in Algorithm 2) and choose over a threshold given by covPercent. This process

helps us to see the level of cohesion within the pathway, showing that certain proteins

in it carry out functions together, beyond temporality.

Algorithm 2 Signaling consistent pathway with protein complex coverage.
Input: Consistent pathway Pc and covPercent (protein complex coverage percentage).
Output: Returns TRUE (Predicted pathway) if a consistent pathway satisfies the pro-

tein complex coverage.
1: for vi ∈ Pc do
2: Freq[L(vi)] + +
3: end for
4: r = max(Freq)/|Pc|
5: if r >= covPercent then
6: return TRUE
7: else
8: return FALSE
9: end if

Enrichment analysis

For this analysis, we build a PPI with modified weights of the interactions, based on

enrichment analysis. In order to do this, we use the same interactions from the PPI

used by Gitter et al. [8] and we calculate via BINGO all the p-values for every inter-

action in the PPI, using biological process. After that, we replace the weight of each

interaction with the p − value calculated for such interaction. As the p-values between

a group of proteins is better if it is lower, we use the complement of this value, that is

1− (p− value) so, in this way, we can still use the same metrics for evaluation, as they

take higher values as better. After we generate the new enriched PPI, we use Gitter’s

algorithm to generate candidate pathways and then, we evaluate them.
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3.2.3 Ranking Metrics

In order to evaluate if a predicted pathway is a true positive, we consider that at least

three of the five interactions are consecutive in at least one reference pathway. Thus,

true positive pathways are the ones that are a complete match (i.e. those that match

all five interactions in sequence) or a partial match (i.e. those that match three or

four interactions in sequence). As measuring pathways are biologically meaningful,

true pathways are evaluated using different ranking metrics. We divide these ranking

metrics as edge and path metrics, and vertex centrality metrics. The definition of true

positives and ranking metrics is the same as the one used in Gitter et al. [8], with the

exception of the betweenness and closeness vertex centrality metrics which we added

in our the evaluation.

Edge and path metrics

The main path and edge metrics are displayed in Equation 3.4. The Path Weight is the

multiplication of all the edge weight values (w(e)) from a pathway P . The Edge Weight

returns the minimum, average or maximun weight of an interaction in a pathway. The

Edge Use is the number of times a certain edge is present in all predicted pathways.

Path weight was used to break ties when ranking by other metrics. Edge Weight and

Edge Use are considered as in their maximum, average and minimum values.

PathWeigh =
∏
e∈Pp

w(e) (3.4)

EdgeWeight = ∀e∈Ppw(e)

EdgeUse = ∀e∈PpFreq(e)

Vertex centrality metrics

We also consider vertex centrality metrics as in degree, betweenness and closeness as

seen in Equation 3.5. Degree measures the number of connections that a vertex has in

the graph. Equation 3.5 provides its definition, where |N(v)| is the number of neighbors

of vertex v. Betweenness measures the number of shortest paths passing through
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a vertex in a graph, Equation 3.5 shows its equation, where σst(v) is the number of

paths that pass through v and σst is the total number of shortest paths, and Closeness

measures how many steps are required to access from a vertex v all other vertices of

a graph, and is defined as the inverse of the average length of the shortest paths to all

the other vertices in a graph where d(v, i) is the number of steps from vertex v to vertex

i.

Degree(v) = |N(v)| (3.5)

Betweenness(v) =
∑
s 6=v 6=t

σst(v)

σst

Closeness(v) =
|V | − 1∑
i 6=v(d(v, i))

After computing all metrics in Equations 3.4 and 3.5 for all predicted pathways, we

analyse the top-k pathways, to see which of the top k predicted pathways of a selected

ranking, were true positives (predicted pathways in the gold standard pathways).

3.3 Evaluation

This section describes the experimental setup used for applying the proposed method.

This setup consists of the input datasets, the gold standards, evaluation metrics and

alternative methods used for comparison.

3.3.1 Experimental setup

We used the input PPI network defined in Gitter et al. [8], which consists of high

confident interactions driven by the union and analysis of different PPI databases such

as MINT, BioGrid, and IntAct. This PPI contains 3,446 proteins and 10,944 interactions.

To obtain a set of reference pathways, we use the Gold Standard Pathways obtained

by Gitter et al [8], which are real pathways extracted from KEGG and Science Signal-

ing Database of Cell Signaling. As they stated, signaling pathways from KEGG (MAPK

signaling pathway) and the Science Signaling Database of Cell Signaling (Pheromone
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Source standard
name

Source system-
atic name

Target standard
name

Target system-
atic name

SLN1 YIL147C CDC42 YLR229C
YCK1 YHR135C HOG1 YLR113W
YCK2 YNL154C STE7 YDL159W
SHO1 YER118C STE20 YHL007C
MF(ALPHA)2 YGL089C DIG2 YDR480W
MID2 YLR332W DIG1 YPL049C
RAS2 YNL098C PBS2 YJL128C
GPR1 YDL035C FUS3 YBL016W
BCY1 YIL033C STE5 YDR103W
STE50 YCL032W GPA1 YHR005C
MSB2 YGR014W MSN1 YOL116W
SIN3 YOL004W FKS2 YGR032W
RGA1 YOR127W FUS1 YCL027W
RGA2 YDR379W STE12 YHR084W
ARR4 YDL100C SWI4 YER111C
MF(ALPHA)1 YPL187W FLO11 YIR019C

Table 3.1: List of sources and targets used

pathway and High Osmorality Glycerol pathway) contain an average of 5 edges be-

tween a source and its closest target. This is why we set L=5 in our experiments.

This value was calculated by getting the shortest path from any source to each target,

with a PPI with only interactions from each of the 3 pathways in evaluation. This study

is useful to bound the length of the reference pathways and the predicted pathways,

since the longer the pathway, the more computational resources (memory and time)

are needed. In all gold standard pathways, we discarded inhibition interactions and

only considered activation interactions, because inhibition interactions lead to stopping

in the cascade of interactions. From the reference PPI from KEGG and Science Sig-

naling Database of Cell Signaling (where the gold standard is made from), there were

only four inhibition interactions.

We generated the reference pathways from a list of 16 sources and 16 targets

chosen in the same research, as a list of vertices without a father vertex (in the case

of sources) and a list of vertices without children (in the case of targets), which can

be seen in Table 3.1. These sources and targets were used to generate the candidate

pathways in the initial step.
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Config Description
G Gitter’s method, using the best values from 10

tests (as it is a random model, results may
vary).

GcovPercent Gitter’s method plus protein complex coverage
(i.e. using candidate pathways as input and pro-
tein complex coverage in Algorithm 2).

GC Gitter for candidate pathways plus applying Cell
cycle rule (defined in part Algorithm 1).

GCC Gitter for candidate pathways, applying Cell cy-
cle rule and protein complex rule (defined in Al-
gorithm 1).

GCCcovPercent Gitter for candidate pathways, applying Cell cy-
cle rule, protein complex rule (defined in Algo-
rithm 1), and protein complex coverage (defined
in Algorithm 2).

Enrich The same procedure as Gitter, but with a Gene
Set Enrichment Analysis based PPI.

Table 3.2: Method configurations.

Also, we include biological datasets that register the peak expression and pheno-

types availabe in Cyclebase [28] and yeast protein complex gold standards CYC2008

[24], which we considered as input for our pathway prediction method. We use a rank-

ing scheme choosing the top-k predicted pathways that considers different pathway

metrics. These pathway metrics are based on path and edge (in Equation 3.4) and a

centrality measure (Degree) as used in Gitter et al. [8]. We also include betweenness

and closeness centrality measures as seen in Equation 3.5.

We used as parameters, the length of the pathways to consider, covPercent, in-

tended to consider different ratio of protein complex coverage, top-k, using different

k values. We compared our method using different configurations, as we can see in

Table 3.2. Here we include Gitter’s method to see every configuration tested.

3.3.2 Results

As mentioned in previous section, we used Gitter’s PPI network, path length of 5 in-

teractions and top-k as it is used in Gitter et al. [8]. We evaluated all configurations
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described in Table 3.2, using covPercent = 0, 10, 20, 30, 40, 50 % for all metrics defined

in Equations 3.4 and 3.5. In addition, the influence of enrichment on signaling path-

ways was tested with the p-value complement method. Table 3.3 presents the results

of the total number of true positives by sorting the predicted pathways by the path and

edge metrics and taken the top-100. We observed that the best results are achieved

by using Cell cycle and protein complex rules using protein complex coverage of 20%

and 30% (GCCcov20% and GCCcov30%) with Path Weight metric, where we are able

to achieve 47 true positives over the first 100 predicted pathways. We can see that

the metrics with Minimum and Average Edge Weight achieve the second and third best

combinations. Using only cell cycle and protein complex rules also provide good qual-

ity, but not as good as using protein complex coverage. Furthermore, we observed that

using centrality metrics do not perform as well as edge and path metrics as seen in Ta-

ble 3.4. In any case, we can see that using cell cycle and protein rules as well as protein

complex coverage are better alternatives than using only the random edge orientation

with local search proposed by Gitter et al. [8], since the true positives increment be-

tween 21% and 27%. The results with the enriched PPI are similar in every edge and

path metric, but the performance is lower than the other configurations, staying below

Gitter’s results. In addition, the influence of enrichment on signaling pathways was

tested with the p-value complement method.

We also measure true positives for different number of top-k predicted pathways.

Figure 3.3 shows the number of true positive pathways for a range between 10 and

100 top pathways. We observed that all our combined configurations of our method

provides much better results than the pathways predicted by Gitter [8], and for small

number of top pathways, between 10 and 50, we obtain a good number of true posi-

tives, like 8 for the top-10 and 31 for the top-50. Figure 3.4 includes the results for the

top-500 pathways, where we observed that our method keeps improving over Gitter,

and the best results are obtained when a coverage percentage between 0% and 30%.

Also, it can be seen that with k < 100, Random + local (Gitter’s approach) search is

lower in the number of true positives than our method, but with k > 100 our method

(between the coverage 0% to 30%) almost doubles the matches that are achieved by

Gitter et al. [8].
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Method Path
Weight

Max
Edge
Weight

Avg
Edge
Weight

Min
Edge
Weight

Max
Edge
Use

Avg
Edge
Use

Min
Edge
Use

G 31 7 31 34 0 0 0
Gcov10% 31 7 31 34 0 0 0
Gcov20% 32 7 32 37 0 1 8
Gcov30% 32 7 32 37 0 0 8
Gcov40% 28 3 28 26 0 0 0
Gcov50% 28 3 28 26 0 0 0
GC 41 12 43 36 7 4 3
GCC 45 17 44 42 6 2 0
GCCcov10% 45 17 44 42 6 2 0
GCCcov20% 47 17 45 46 0 1 5
GCCcov30% 47 17 45 46 0 1 5
GCCcov40% 40 10 42 41 0 0 0
GCCcov50% 40 10 42 41 0 0 0
Enrich 27 24 26 29 17 22 26

Table 3.3: Ranking results (path and edge measures) from the top100 consistent sig-
naling pathways.

Method Max
De-
gree

Avg
De-
gree

Min
De-
gree

Max
BETW

Avg
BETW

Min
BETW

Max
Close-
ness

Avg
Close-
ness

Min
Close-
ness

G 3 0 0 4 1 13 7 0 0
Gcov10% 3 0 0 7 5 7 7 3 0
Gcov20% 3 0 0 7 5 7 7 3 0
Gcov30% 3 0 0 7 5 7 7 3 0
Gcov30% 3 0 0 7 5 7 7 3 0
Gcov40% 1 0 0 7 5 7 7 3 0
Gcov50% 1 0 0 7 5 7 7 3 0
GC 9 0 0 4 4 13 4 0 0
GCC 7 0 0 4 4 13 4 0 0
GCCcov10% 7 0 0 4 4 13 4 0 0
GCCcov20% 7 0 0 4 4 13 4 0 0
GCCcov30% 7 0 0 4 4 13 4 0 0
GCCcov40% 1 0 0 4 4 13 4 0 0
GCCcov50% 1 0 0 4 4 13 4 0 0
Enrich 17 15 19 2 2 10 2 0 0

Table 3.4: Ranking results (vertex centrality measures) from the top100 consistent
signaling pathways.
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Figure 3.5 shows the best results using Gcov20% and Gcov30% (for Random edge

orientation and random search) and our method with Gcov20% and GCCcov30% (Ran-

dom edge orientation with random search and cell cycle and protein complex rules).

We also observed that, when the percentage of coverage increases over 30%, the

number of predicted pathways is decreased. Results from a test with coverage Per-

centage over 50% are not shown as the set of predicted pathways falls abruptly to 8,

so we can not measure the matches with k < 5 (as we do with the rest of the experi-

ments).

As an example, Figure 3.6 displays the top20 predicted pathways. There are 4 com-

plete matched predicted pathways in the top20 (Figure 3.6a) and there are 13 partially

matched pathways in the top 20 (Figure 3.6b). All of them share the same source pro-

tein (YCL032W) but they have different targets. We observe that, the interactions from

YLR362W to YDR103W and from YDR103W to YDL159W, are the most repeated in

the 13 predicted pathways from Figure 3.6b, which can be an indicator of a high level

of certainty.

3.4 Visualization

In order to help the analysis of predicted pathways, we developed a visualization tool

that processes the predicted pathways and displays them as a directed graph. This tool

was developed using visNetwork package in R, and displays the pathways in HTML

format, so it can be seen through any browser. As it can be seen in Figure 3.7, it can

distinguish the reference from the predicted pathways, displaying true interactions in

blue and interactions that are not in the gold standard in red. Also, users can select

for highlighting individual proteins, or a group of proteins having a common attribute.

Other allowed actions are zooming in and out, moving proteins (vertices) of place and

show information about each protein.
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Cyclebase 3.0 - AdvancedSearch https://cyclebase.org/Advanced Search?type=4932

1 of 2 12/20/2017 11:46 AMFigure 3.1: Capture from Cyclebase 3.0. Information available for protein YBR088C
(top), including temporal expression data from eight experiments (middle) with nor-
malized results of all experiments in every part of the cycle, and a set of genes
with corresponding peak expression phase and phenotype (bottom). Source:
www.cyclebase.org
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Figure 3.2: Graph represetantion of a cell cycle CG(A,B). Source: Prepared by the
authors.
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Figure 3.6: Top20 pathways from our GCCov20% method (a) Pathways completely
matched (b) Pathways partially matched, with 3 or more interactions right. In red are
interactions from partially matched pathways and in blue are interactions from com-
pletely matched pathways. Source: Prepared by the authors.

.
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Figure 3.7: Caption of the visualization in a browser, where it is shown a reference
pathway and predicted pathways (the same from Figure 3.6b). The reference pathway
it is shown with blue edges and the red ones belong to predicted pathways. Source:
Prepared by the authors.



Chapter 4

CONCLUSIONS AND FUTURE WORK

We study whether if adding biological knowledge to predict signaling pathways im-

proves the results of matched predicted pathways over reference pathways. We showed

that the most useful information is about cell cycle and protein complexes. As the use

of cell cycle information was shown with the peaks of expression and phenotypes, it

may be a good idea to test the cell cycle with a greater level of detail. That is, instead

of using the expression peaks, all the experimental data of the proteins could be used

to determine all the phases where the proteins express the most. This does not limit

to a single peak, but considers all phases in which the protein has high levels of ex-

pression. This study should consider that the experiments have been carried out under

different parameters, so that the expression values are not directly comparable. This

can be managed by normalizing the values according to each type of experiment and

they should be aligned onto a common time-scale (in percent of the cell cycle, where

each phase represents a 25% out of a 100% that is the complete cell cycle) [7]. This

level of detail, can help to discriminate the pathways in a more specific way, having

more precise consistent pathways according to the biological behavior. Although the

performance of our algorithm is better than other methods, there is still a task to be

solved in this area, because the rate of true positives (47 out of 100) is still low for a

prediction algorithm. A future implementation of our work can be tested for human PPIs

and pathways. This could need more information than what it is in Cyclebase because

the proteins of humans do not behave in the same way as those of yeast. In yeast,

the behavior of proteins is periodic in the cycle, however in humans that is not always

true, so the behavior of each human protein does not necessarily repeat itself in each

cycle, which makes it difficult to detect expression peaks. Within the information that

can be used for human testing there are protein databases related to diseases. There

26
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are several databases that show which proteins influence certain diseases. These re-

lations are important because it is the key to understand diseases medically and for

drug development to treat them [23].
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