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Resumen

El objetivo de esta tesis es contribuir al desarrollo de métodos numéricos para resolver

ecuaciones provenientes del modelado de dispositivos de recolección de energia solar.

El diseño óptimo de una celda solar fotovoltaica requiere de técnicas numéricas eficientes que

proporcionen aproximaciones precisas de la solución de los problemas de Maxwell o Helmholtz,

ya que estas ecuaciones generalmente se resuelven para una amplia gama de parámetros ópticos

y f́ısicos. Nuestro trabajo se basa en dos técnicas: Modelos Asintóticos en estructuras que

contengan capas delgadas y un enfoque de Capas Perfectamente Acopladas (PML:“Perfectly

Matched Layers” en inglés) para manejar de forma eficiente las condiciones de radiación. Aunque

estas técnicas se pueden usar en diferentes tipos de estructuras, en este trabajo consideramos

estructuras de difracción periódicas.

En primer lugar, formulamos un modelo asintótico para la implementación en el método

de elementos finitos para calcular la difracción a partir de una estructura plana multicapa que

contiene una rejilla de difracción delgada. La capa delgada que contiene a la rejilla se reemplaza

por una interfaz plana con condiciones de transmisión que difieren de las condiciones de con-

tinuidad estándar, eliminando aśı la necesidad de representar la capa de rejilla mediante una

malla fina. Los parámetros que definen la rejilla superficial se eliminan de la geometŕıa y pasan

a las condiciones de transmisión. El utilizar el modelo asintótico reduce considerablemente el

costo computacional de optimizar la forma de la rejilla, ya que no es necesario volver a re-mallar

en cada paso de optimización.

En la segunda parte de la tesis describimos un modelo asintótico alternativo para la misma

estructura multicapa para el que proporcionamos estimaciones teóricas del error.

Finalmente, presentamos un enfoque PML para el cálculo por elementos finitos de difracción

mediante rejillas metálicas de relieve superficial. Usamos una función de absorción no integrable

que nos permite utilizar capas de absorción delgadas, lo que reduce el tiempo de cálculo al

simular este tipo de estructura. Además, determinamos numéricamente la mejor elección de los

parámetros de la capa absorbente y mostramos que son independientes de la longitud de onda.
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Abstract

The goal of this thesis is to contribute to the development of numerical methods for solving

equations arising from modeling light harvesting devices.

The optimal design of a photovoltaic solar cell requires efficient solvers that provide accurate

approximations of the solution of Maxwell or Helmholtz problems, because these equations are

usually solved for a wide range of optical and physical parameters. Our work focuses on two

techniques: Asymptotic Models in structures having thin layers and a Perfectly Matched Layer

(PML) approach to efficiently handle the radiation conditions. Even though these techniques

can be used in different types of structures, in this work we consider one dimensional periodic

diffraction gratings.

First, we formulate an asymptotic model for implementation in the finite-element method to

calculate diffraction from a planar multilayered structure having a shallow surface-relief grating.

The thin grating layer containing the shallow grating is replaced by a planar interface with

transmission conditions that differ from the standard continuity conditions, thereby eliminating

the necessity of representing the grating layer by a fine mesh. The parameters defining the shallow

surface-relief grating are thereby removed from the geometry to the transmission conditions.

Adoption of the asymptotic model will considerably reduce the computational cost of optimizing

the grating shape, since there is no need to re-mesh at every optimization step.

In the second part of the thesis we describe a different asymptotic model for the same

multilayered structure and provide theoretical error estimates with respect to the thickness of

the grating layer.

Finally, we introduce a PML approach for finite element calculations of diffraction by metallic

surface-relief gratings. We use a non-integrable absorbing function which allows us to use thin

absorbing layers, which reduces, the computational time when simulating this type of structure.

In addition, we numerically determine the best choice of the absorbing layer parameters and

show that they are independent of the wavelength.
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Introducción

0.1 Descripción del Problema

0.1.1 Geometŕıa

Una rejilla de difracción periódica es una estructura tridimensional que consiste en un re-

flector posterior metálico con corrugaciones periódicas en su superficie (también conocido como

relieve superficial) como muestran las Figuras 1 y 2. En la parte superior de este reflector pos-

terior, se coloca un material multicapas. La Figura 3 muestra una sección transversal de la

estructura de la Figura 1 que tiene corrugaciones rectangulares.

El reflector trasero metálico tiene una permitividad eléctrica relativa εm tal que Re(εm) < 0

y Im(εm) > 0. El material multicapas tiene Nl capas de permitividades eléctricas relativas εj ,

j = 1, 2, ..., Nl, tal que Re(εj) > 0. La altura total de la estructura se denota por Lt. Las regiones

por encima y por debajo de la estructura están ocupadas por aire, por lo tanto, la permitividad

relativa es igual a 1.

Observación 0.1.1 Una variedad de opciones de materiales son posibles. Por ejemplo, en un

concentrador óptico Im(εj) = 0, mientras que una celda solar puede tener una parte de un

componente (como vidrio) para el cual Im(εj) = 0 y otras de otros componentes (como semi-

conductores) donde Im(εj) > 0.

Consideramos dos tipos de rejillas:

1. Rejilla unidimensional: La estructura es invariante con respecto al eje y como se muestra

en la Figura 1. Considerando una sección transversal en el plano xz, el problema puede

reducirse a dos dimensiones. Las corrugaciones son L-periódicas en el eje x.

2. Rejilla bidimensional: Las corrugaciones son periódicas en el eje x y periódicas en el

eje y como se muestra en la Figura 2.

Estas tesis se enfoca en la difraccián plana donde se consideran rejillas unidimensionales.

Notar que un periodo L t́ıpico para este problema es del orden de cientos de nanómetros (nm).

1
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Figure 1: Estructura con una rejilla unidimensional (figura hecha por el autor).
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Figure 2: Estructura con una rejilla bidimensional (figura hecha por el autor).

0.1.2 Campo incidente

Una dependencia exp(−iωt) en el tiempo t está impĺıcita, donde ω denota la frecuencia

angular y i =
√
−1. El número de onda del espacio libre, la inpedancia intŕınseca del espacio libre

y longitud de onda del espacio libre se denotan por k0 = ω
√
ε0µ0, η0 =

√
µ0/ε0 y λ0 = 2π/k0,

respectivamente, donde µ0 es la permeabilidad y ε0 la permitividad del espacio libre. Todas

estas cantidades son datos dados del problema. En particular, el rango de longitud de onda de

interés del espectro solar es λ0 ∈ [400, 1000] nm. Los vectores están en negrita, y los vectores

cartesianos unitarios se identifican como ûx, ûy, y ûz.

Observación 0.1.2 La permitividad eléctrica relativa de todos los materiales introducidos en

la Sección 0.1.1 dependen de λ0 y los datos están disponibles ([19]).

La parte superior de la estructura está iluminada por una onda plana incidente oblicua cuyos

fasores campo eléctrico y magnético están dados por

Einc(r) = A exp(ik · r), H inc(r) =
1

iωµ0
∇×Einc(r), z ≥ Lt, (1)

donde r = xûx + yûy + zûz es el vector de posición, el vector de onda está dado por

k = k0 x sin θûx − k0(z − Lt) cos θûz,
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Figure 3: Sección transversal de una estructura con una rejilla unidimensional (figura hecha por

el autor).

y A = ap (cos θûx + sin θûz) + asûy.

Aqúı, θ es el angulo de incidencia con respecto al eje z como se muestra en la Figure 1, as
es la amplitud de la componente llamada polarización s, y ap es la amplitud de la componente

llamada polarización p (ap y as son constantes). Cada uno de estos componentes se puede tratar

por separado.

0.1.3 Ecuaciones de Maxwell

El campo total satisface las ecuaciones de Maxwell en el dominio de la frecuencia en R3:

∇×E = iωµ0H (2a)

∇×H = −iωε0εrE. (2b)

Ya que el dominio es “infinito” en la dirección y y la solución es independiente de la variable

y, podemos descomponerlo en dos estados de polarización de la siguiente manera:

• Modo Transversal Magnético (TM) o estado de polarización p. El campo magnético

H es paralelo al eje y:H = (0, Hy, 0), donde Hy es independiente de y, y el campo eléctrico

está dado por E = (Ex, 0, Ez); entonces, de (2), Hy satisface

∇ ·
(

1

εr
∇
(
− η0Hy

))
− k2

0η0Hy = 0. (3)
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• Modo Transversal Eléctrico (TE) o estado de polarización s. El campo eléctrico E

es paralelo a el eje y: E = (0, Ey, 0), donde Ey es independiente de y, y el campo magnético

está dado por H = (Hx, 0, Hz); entonces, de (2), Ey satisface el problema de Helmholtz

∆Ey + k2
0εrEy = 0. (4)

Aqúı, enfatizamos que εr(x, z) depende de x, z y λ0, pero es constante en cada material.

Estas dos ecuaciones de Helmholtz pueden ser escritas en la forma

∇ · [B(x, z)∇u(x, z)] + k2
0b(x, z)u(x, z) = 0, (x, z) ∈ (0, L)× (0, Lt), (5)

donde, dependiendo del estado de polarización,

u(x, z) =

{
Ey(x, z)

−η0Hy(x, z)
, B(x, z) =

{
1

1/εr(x, z)
, b(x, z) =

{
εr(x, z)

1
, pol. state =

{
s

p
.

Adicionalmente, las componentes correspondientes de la onda plana incidente (1) son:

uinc(x, z) =

{
as exp{ik0[x sin θ − (z − Lt) cos θ]}, para la polarización s,

ap exp{ik0[x sin θ − (z − Lt) cos θ]}, para la polarización p.
(6)

El carácter periódico de la estructura y el hecho de que la onda incidente es cuasi-periódica,

en el sentido de que

uinc(x+ L, z) = exp(iαL)uinc(x, z) for z ≤ 0

con α := k0 sin θ, implica que, si u es una solución de el problema, entonces v(x, z) = exp(−iαL)u(x+

L, z) es una solución también. Además, es suficiente buscar soluciones cuasi-periódicas, en el

mismo sentido que arriba, es decir,

u(L, z) = exp(iαL)u(0, z),

∂u

∂x
(L, z) = exp(iαL)

∂u

∂x
(0, z),



 z ∈ R. (7)

Para plantear completamente el problema, necesitamos especificar una condición de radiación

arriba y debajo de la estructura.

0.1.4 Condiciones de Radiación

El campo eléctrico total de los campos reflejado y transmitido se puede establecer como

Eref(x, z) =
∑

n∈Z

(
asr

(n)
s ûy + apr

(n)
p p+

n

)
exp

[
i
(
κ(n)x− α(n)(Lt − z)

)]
, z ≥ Lt , (8a)

y

Etr(x, z) =
∑

n∈Z

(
ast

(n)
s ûy + apt

(n)
p p−n

)
exp

(
i
[
κ(n)x− α(n)z

])
, z ≤ 0 , (8b)

respectivamente, donde

κ(n) = k0 sin θ + 2πn/L, (9)
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α(n) =





+
√
k2

0 − (κ(n))2, k2
0 ≥ (κ(n))2

+i
√

(κ(n))2 − k2
0, k2

0 < (κ(n))2
, (10)

y

p±n = ∓α
(n)

k0
ûx +

κ(n)

k0
ûz. (11)

Aqúı, los coeficientes de reflexión de orden n son denotados por r
(n)
s y r

(n)
p , y los coeficientes

de transmisión correspondientes por t
(n)
s y t

(n)
p .

Si u+(x, z) (campo reflejado total) y u−(x, z) (campo transmitido total) denotan la solución

u(x, z), arriba (z > Lt) y debajo (z < 0) de la estructura, respectivamente, entonces, Ecs. (1),

(8a) y (8b) conducen a las expansiones

u+(x, z) =aq

{
uinc(x, z) +

∑

n∈Z
r(n)
q exp

[
i
(
α(n)x− β(n)(Lt − z)

)]}
, z > Lt , (12)

y
u−(x, z) = aq

∑

n∈Z
t(n)
q exp

{
i
[
α(n)x− β(n)z

]}
, z < 0 . (13)

Las funciones u(x, z) y u−(x, z) deben acoplarse apropiadamente usando condiciones de

continuidad estándar sobre el plano z = 0, y las funciones u(x, z) y u+(x, z) deben acoplarse de

la misma manera sobre el plano z = Lt. Entonces, se deben cumplir las condiciones

u−(x, 0) = u(x, 0)

∂u−

∂z (x, 0) = B(x, 0)∂u∂z (x, 0)

u+(x, Lt) = u(x, Lt)

∂u+

∂z (x, Lt) = B(x, Lt)
∂u
∂z (x, Lt)





, x ∈ [0, L]. (14)

0.1.5 Problema modelo

En resumen, el problema a resolver en el dominio truncado Ω := (0, L)×(0, Lt) es el siguiente





∇ · (B∇u) + k2
0bu = 0 in Ω,

u(L, z) = eiαLu(0, z), z ∈ (0, Lt),

∂u
∂x(L, z) = eiαL ∂u∂x(0, z), z ∈ (0, Lt),

u− = u on z = 0,

∂u−

∂z = B ∂u
∂z on z = 0,

u+ = u on z = Lt,

∂u+

∂z = B ∂u
∂z on z = Lt,

(15)

con u± como se dan en (12)-(13).
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0.2 Técnicas presentadas en la tesis para abordar el problema

modelo

Este problema se resolvió numéricamente mediante el uso de diferentes técnicas. Hoy en

d́ıa, las técnicas numéricas más comúnmente utilizadas para el análisis de rejillas son la teoŕıa

rigurosa de ondas acopladas (RCWA) [12, 46, 26, 39], el método de elementos finitos (FEM)

[48, 60] y el método de las diferencias finitas en el dominio del tiempo (FDTD) [31].

En la presente tesis, restringiremos nuestra atención a la optimización del enfoque FEM como

se presenta en [60]. En particular, presentaremos tres modelos alternativos que aproximan las

ecuaciones (15) que conducen a un ahorro del costo computacional. Los primeros dos consisten

en modelos asintóticos para la capa delgada que contiene la rejilla. El tercero consiste en utilizar

una PML para evitar el uso de las condiciones de radiación.

0.2.1 Primer modelo asintótico

En el Caṕıtulo 1 consideramos una estructura, similar a la presentada en la Figura 3, donde

el ancho de la rejilla, denotada en este caso por δ, es pequeño en comparación con el tamaño

total del dominio acotado.

La idea es primero re-escalar la región de la rejilla Ωδ haciendo un cambio de variables y

luego, en el dominio escalado, expandir formalmente la solución como una serie de potencias

con respecto al parámetro δ. La solución encima y debajo de Ωδ también se escribe como series

de potencias de δ. Entonces, reemplazando estos desarrollos en (15), obtenemos un conjunto

de ecuaciones de Helmholtz que satisfacen cada uno de los términos de las series. Además,

la región delgada Ωδ es reemplazada por una interfaz Γ donde las condiciones de transmisión

deben definirse adecuadamente. Finalmente, en la serie formal de potencias para la solución, los

términos de orden δ3 o superiores se desprecian, lo que lleva a una aproximación de segundo

orden como muestran nuestros experimentos numéricos. Además, generalizamos este enfoque y

obtenemos las correspondientes expansiones asintóticas en el caso en que la rejilla está en la

parte superior de una superficie curva.

Este enfoque nos permite evitar la discretización de la capa delgada Ωδ. Observemos que

tal discretización necesitaŕıa elementos muy pequeños (su diámetro debeŕıa ser al menos más

pequeño que δ) lo que llevaŕıa a un alto costo computacional.

Los resultados de este trabajo fueron publicados en:

I Cinthya Rivas, Manuel E. Solano, Rodolfo Rodŕıguez, Peter B. Monk and

Akhlesh Lakhtakia: Asymptotic model for finite-element calculations of diffraction by

shallow metallic surface-relief gratings. J. Opt. Soc. Am. A. 34, 68–79 (2017).

0.2.2 Segundo modelo asintótico

En el Caṕıtulo 2 consideramos la misma estrucura del modelo anterior. Lejos de la rejilla

asumimos nuevamente que la solución puede ser escrita en una serie de potencias en términos

de δ. Los coeficientes de esta expansión son suaves hasta la rejilla. Sin embargo, la expansión
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aproxima la solución sólo suficientemente lejos de la rejilla (aproximación del campo lejano).

Cerca de la rejilla, suponemos que existe otro desarrollo en potencias de δ. Además, hay un

dominio de acople, donde ambos desarrollos son válidos. El método se basa en hacer coincidir

estos dos desarrollos en la zona de acople delgada. De este modo, obtenemos expĺıcitamente las

ecuaciones satisfechas por los primeros términos de la serie de potencias, truncando los términos

de orden δ2 o superiores.

Este enfoque conduce a un modelo asintótico de orden δ2, inferior al modelo anterior. Sin

embargo, para este modelo asintótico, bajo suposiciones de suavidad apropiadas, logramos probar

la convergencia de la solución (lo que no se ha demostrado para el primer modelo).

Los resultados de este trabajo aparecen el el siguiente art́ıculo que aún se encuentra en etapa

de preparación.

I Cinthya Rivas, Manuel E. Solano, Rodolfo Rodŕıguez and Peter B. Monk:

An asymptotic model based on matching far and near fields for thin gratings problems.

(Trabajo en preparación).

0.2.3 Una capa perfectamente acoplada

La imposición de las condiciones de contorno en (15) en las superficies z = 0 y z = Lt
ivolucran operadores DtN (Dirichlet to Neumann) adecuados. Por ejemplo, la técnica imple-

mentada en [57] y [60] considera una aproximación de elementos finitos dentro del dispositivo

y una representación de los operadores DtN basada en un desarrollo de Fourier de los campos

en las regiones no acotadas encima y debajo de la estructura. Su principal inconveniente es el

costo computacional potencialmente alto debido al hecho de que, en nuestra implementación,

las ecuaciones deben resolverse tantas veces como el número de términos en la serie de Fourier

truncada.

En el Caṕıtulo 3 proponemos un enfoque diferente que utiliza una Capa Perfectamente

Acoplada (PML) colocada encima y debajo de la estructura. La PML es una capa artificial

que absorbe las ondas evanescentes de propagación salientes sin reflexiones. En este caso, las

ecuaciones deben resolverse en un dominio ligeramente más grande pero sólo una vez, lo que se

traduce en una reducción significativa del costo computacional. En particular, procedemos como

en [5] y utilizamos una función de absorción no-integrable, que se ha demostrado que es libre

de reflexiones espúreas. Además, ya que la integral de la función de absorción es infinita, las

ondas salientes son rápidamente absorbidas, lo que nos permite utilizar una PML con un ancho

significativamente más pequeño que en otros enfoques (ver, por ejemplo, [13]). En este caṕıtulo

también demostramos que la PML introducida en [5] se puede adaptar para absorver también

los modos evanescentes y oresentamos experimentos numéricos que nos permiten mostrar la

eficiencia de este enfoque.

Los resultados de este trabajo fueron publicados en:

I Cinthya Rivas, Rodolfo Rodŕıguez and Manuel E. Solano: A perfectly matched

layer for finite-element calculations of diffraction by metallic surface-relief gratings. Wave

Motion 78, 68–82 (2018).
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0.3 Problem description

0.3.1 Geometry

A periodic diffraction grating is a three dimensional structure that consists of a metallic

back-reflector with periodic corrugations on its surface (also known as surface-relief) as Figures 4

and 5 show. On top of this back-reflector, a multilayered material is placed. Figure 6 shows a

cross-section of the structure in Figure 4 having rectangular corrugations.

The metallic back-reflector has relative electric permittivity εm such that Re(εm) < 0 and

Im(εm) > 0. The multilayered material has Nl layers of relative electric permittivities εj , j =

1, 2, ..., Nl, such that Re(εj) > 0. The total height of the structure is denoted by Lt. The regions

above and below the structure are occupied by air, hence the relative permittivity there is equal

to 1.

Remark 0.3.1 A variety of choices of materials are possible. For example in an optical concen-

trator Im(εj) = 0, while a solar cell can have component parts (like glass) for which Im(εj) = 0

and others (like semi-conductor) where Im(εj) > 0.

We consider two types of gratings:

1. One-dimensional grating: The structure is invariant with respect to the y axis as Fig-

ure 4 shows. Considering a cross section on the xz-plane, the problem can be reduced to

two dimensional. The corrugations are L-periodic on the x-axis.

2. Two-dimensional grating: The corrugations are periodic on the x-axis and periodic on

the y-axis as Figure 5 shows.

These thesis focus on planar diffraction where one-dimensional gratings are considered. Let

us remark that a typical period L for this problem is of the order of hundreds of nanometers

(nm).

8
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Figure 4: Structure with an one-dimensional grating (figure produced by author).

Metal
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Z

Y

Figure 5: Structure with a two-dimensional grating (figure produced by author).

0.3.2 Incident field

An exp(−iωt) dependence on time t is implicit, with ω denoting the angular frequency and

i =
√
−1. The free-space wavenumber, the intrinsic impedance of free-space and the free-space

wavelength are denoted by k0 = ω
√
ε0µ0, η0 =

√
µ0/ε0 and λ0 = 2π/k0, respectively, with

µ0 being the permeability and ε0 the permittivity of free space. All these quantities are given

data of the problem. In particular, the wavelength range of interest of the solar spectrum is

λ0 ∈ [400, 1000] nm. Vectors are in boldface, and the Cartesian unit vectors are identified as ûx,

ûy, and ûz.

Remark 0.3.2 The relative electric permittivity of all the materials introduced in Section 0.3.1

depend on λ0 and the data is available ([19]).

The top of the structure is illuminated by an obliquely incident plane wave whose electric

and magnetic field phasor are given by

Einc(r) = A exp(ik · r), H inc(r) =
1

iωµ0
∇×Einc(r), z ≥ Lt, (16)

where r = xûx + yûy + zûz is the position vector, the wave vector is given by

k = k0 x sin θûx − k0(z − Lt) cos θûz,
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Figure 6: Cross-section of a structure with an one-dimensional grating (figure produced by

author).

and A = ap (cos θûx + sin θûz) + asûy.

Here, θ is the angle of incidence with respect to the z axis as Figure 4 shows, as is the

amplitude of the so called s-polarized component, and ap is the amplitude of the so called p-

polarized component (ap and as are given constants). Each of these components can be dealt

with separately.

0.3.3 Maxwell’s equations

The total fields satisfy the frequency-domain Maxwell equations in R3:

∇×E = iωµ0H (17a)

∇×H = −iωε0εrE. (17b)

Since the domain is “infinite” in the y-direction and the solution is independent of the

variable y, we can decompose it into two polarization states as follows:

• Transverse Magnetic mode (TM) or p-polarization state. The magnetic field H is

parallel to the y axis: H = (0, Hy, 0), where Hy is independent of y, and the electric field

is given by E = (Ex, 0, Ez); so, from (17), Hy satisfies

∇ ·
(

1

εr
∇
(
− η0Hy

))
− k2

0η0Hy = 0. (18)
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• Transverse Electric mode (TE) or s-polarization state. The electric field E is

parallel to the y axis: E = (0, Ey, 0), where Ey is independent of y, and the magnetic field

is given by H = (Hx, 0, Hz); so, from (17), Ey satisfies the Helmholtz problem

∆Ey + k2
0εrEy = 0. (19)

Here, we emphasize that εr(x, z) depends on x, z and λ0, but is constant in each material.

These two Helmholtz equations can be written in the form

∇ · [B(x, z)∇u(x, z)] + k2
0b(x, z)u(x, z) = 0, (x, z) ∈ (0, L)× (0, Lt), (20)

where, depending on the polarization state,

u(x, z) =

{
Ey(x, z)

−η0Hy(x, z)
, B(x, z) =

{
1

1/εr(x, z)
, b(x, z) =

{
εr(x, z)

1
, pol. state =

{
s

p
.

In addition, the corresponding components of the incident plane wave (16) are:

uinc(x, z) =

{
as exp{ik0[x sin θ − (z − Lt) cos θ]}, for the s-polarization,

ap exp{ik0[x sin θ − (z − Lt) cos θ]}, for the p-polarization.
(21)

The periodic character of the structure and the fact that the incident wave is quasi-periodic

in the sense that

uinc(x+ L, z) = exp(iαL)uinc(x, z) for z ≤ 0

with α := k0 sin θ, implies that, if u is a solution of the problem, then v(x, z) = exp(−iαL)u(x+

L, z) is a solution too. Therefore, it is enough to search for quasi-periodic solutions, in the same

sense as above, namely,

u(L, z) = exp(iαL)u(0, z),

∂u

∂x
(L, z) = exp(iαL)

∂u

∂x
(0, z),



 z ∈ R. (22)

In order to fully pose the problem, we need to specify a radiation condition above and below

the structure.

0.3.4 Radiation conditions

The total electric field of the reflected and the transmitted fields can be stated as

Eref(x, z) =
∑

n∈Z

(
asr

(n)
s ûy + apr

(n)
p p+

n

)
exp

[
i
(
κ(n)x− α(n)(Lt − z)

)]
, z ≥ Lt , (23a)

and

Etr(x, z) =
∑

n∈Z

(
ast

(n)
s ûy + apt

(n)
p p−n

)
exp

(
i
[
κ(n)x− α(n)z

])
, z ≤ 0 , (23b)

respectively, where

κ(n) = k0 sin θ + 2πn/L, (24)
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α(n) =





+
√
k2

0 − (κ(n))2, k2
0 ≥ (κ(n))2

+i
√

(κ(n))2 − k2
0, k2

0 < (κ(n))2
, (25)

and
p±n = ∓α

(n)

k0
ûx +

κ(n)

k0
ûz. (26)

Here, the reflection coefficients of order n are denoted by r
(n)
s and r

(n)
p , and the corresponding

transmission coefficients by t
(n)
s and t

(n)
p .

Let u+(x, z) (reflected total field) and u−(x, z) (transmitted total field) denote the solution

u(x, z), above (z > Lt) and below (z < 0) the structure, respectively. Then, Eqs. (16), (23a) and

(23b) lead to the expansions

u+(x, z) =aq

{
uinc(x, z) +

∑

n∈Z
r(n)
q exp

[
i
(
α(n)x− β(n)(Lt − z)

)]}
, z > Lt , (27)

and
u−(x, z) = aq

∑

n∈Z
t(n)
q exp

{
i
[
α(n)x− β(n)z

]}
, z < 0 . (28)

The functions u(x, z) and u−(x, z) must be appropriately matched using standard continuity

conditions on the plane z = 0, and the functions u(x, z) and u+(x, z) match in the same way on

the plane z = Lt. Hence, we have to enforce the conditions

u−(x, 0) = u(x, 0)

∂u−

∂z (x, 0) = B(x, 0)∂u∂z (x, 0)

u+(x, Lt) = u(x, Lt)

∂u+

∂z (x, Lt) = B(x, Lt)
∂u
∂z (x, Lt)





, x ∈ [0, L]. (29)

0.3.5 Problem model

In summary, the problem to solve in the truncated domain Ω := (0, L) × (0, Lt) is the

following





∇ · (B∇u) + k2
0bu = 0 in Ω,

u(L, z) = eiαLu(0, z), z ∈ (0, Lt),

∂u
∂x(L, z) = eiαL ∂u∂x(0, z), z ∈ (0, Lt),

u− = u on z = 0,

∂u−

∂z = B ∂u
∂z on z = 0,

u+ = u on z = Lt,

∂u+

∂z = B ∂u
∂z on z = Lt,

(30)

with u± as given in (27)-(28).
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0.4 Techniques presented in the thesis to address the model

problem

This problem was numerically solved by using different techniques. Nowadays, the most

commonly used numerical techniques for grating analysis are the rigorous coupled-wave approach

(RCWA) [12, 46, 26, 39], the finite element method (FEM) [48, 60], and the finite-difference

time-domain (FDTD) method [31].

In the present thesis we will restrict own attention to optimizing the FEM approach as

reported in [60]. In particular, we will introduce three alternative models approximating Equa-

tions (30) that lead to a saving of computer cost. The first two consist of asymptotic models for

the thin layer containing the grating. The third one consists of using a PML to avoid using the

radiation conditions.

0.4.1 First asymptotic model

In Chapter 1 we consider a structure, similar to the one depicted in Figure 6, where the

thickness of the grating, denoted in this case by δ, is small compared to the total size of the

bounded domain.

The idea is first to re-scale the grating region Ωδ by a change of variables and then to formally

expand the solution in the scaled domain as a power series with respect to the parameter δ.

The solution above and below Ωδ is also written as a power series on δ. Then, replacing these

expansions in (30), we obtain a set of Helmholtz equations satisfied by each term of the series. In

addition, the thin region Ωδ is replaced by an interface Γ, where the transmission conditions must

by properly defined. Finally, in the formal power series for the solution, the terms of order δ3 or

higher are neglected, leading to a second order approximation as our numerical experiments show.

Moreover, we generalize this approach and obtain the corresponding asymptotic expansions in

the case where the grating is on top of a curved surface.

This approach allows us to avoid discretization of the thin layer Ωδ. Let us remark that such

a discretization would need of very small elements (their diameter ought to be at least smaller

than δ) which would lead to an expensive computer cost.

The results of this work has been published in:

I Cinthya Rivas, Manuel E. Solano, Rodolfo Rodŕıguez, Peter B. Monk and

Akhlesh Lakhtakia: Asymptotic model for finite-element calculations of diffraction by

shallow metallic surface-relief gratings. J. Opt. Soc. Am. A. 34, 68–79 (2017).

0.4.2 Second asymptotic model

In Chapter 2 we consider the same structure as for the previous model. Far from the grating

we again assume that the solution can be written as a power series in terms of δ. The coefficients

of this expansion are smooth up to the grating. However, the expansion approximates the solution

only sufficiently far from the grating (far field approximation). Near the grating, we assume

that there exists another expansion in power of δ. Moreover, there is an overlapping domain,
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where both expansion are valid. The method based on matching these two expansions on thin

overlapping zone. By so doing, we obtain explicitly the equations satisfied by the first terms in

the power series, by truncating the δ2 or higher order terms.

This approach leads to an asymptotic model of order δ2, which is poorer than that of the

previous model. However, we succeeded in proving the convergence of the solution of this asymp-

totic model under appropriate smoothness assumptions (that has not been proved for the first

model).

The results of this work are contained in the following ongoing paper

I Cinthya Rivas, Manuel E. Solano, Rodolfo Rodŕıguez and Peter B. Monk:

An asymptotic model based on matching far and near fields for thin gratings problems.

(In process).

0.4.3 A perfectly matched layer

The boundary conditions in (30) on the surfaces z = 0 and z = Lt involve suitable Dirichlet-

to-Neumann operators. For instance, the technique implemented in [57] and [60] considers a

Fourier-FEM approach that involves a finite element approximation inside the device and a

representation of the DtN operators based on a Fourier series expansion of the fields in the

unbounded regions above and below the structure. Its main drawback is the potentially high

computational cost due to the fact that, in our implementation, the equations need to be solved

as many times as the number of terms in the truncated Fourier series.

In Chapter 3 we propose a different approach that uses a Perfectly Matched Layer (PML)

placed above and below the structure. A PML is an artificial layer that absorbs the outward

propagating and evanescent waves. In this case, the equations will be solved in a slightly bigger

domain but only once, which leads to a significant reduction of the computational cost. In

particular, we proceed as in [5] and use a non-integrable absorption function, which was proved

to be free of spurious reflections. Moreover, since the integral of the absorption function is infinite,

the outgoing waves are rapidly absorbed, allowing us to use a PML with thickness significantly

smaller than in other approaches (see, for instance, [13]). Furthermore, we show in this chapter

that the PML introduced in [5] can be adapted to absorb also evanescent modes.

We report numerical experiments that allow us to assess the efficiency of this approach.

The results of this work has been published in

I Cinthya Rivas, Rodolfo Rodŕıguez and Manuel E. Solano: A perfectly matched

layer for finite-element calculations of diffraction by metallic surface-relief gratings. Wave

Motion 78, 68–82 (2018).



Chapter 1

A first asymptotic model for

finite-element calculations of

diffraction by shallow metallic

surface-relief gratings

1.1 Introduction

A surface-relief grating is a momentum adder or subtractor, by virtue of the Floquet–Bloch

theorem [23, 8, 63]. To the momentum of an incident plane wave, the grating can add (or

subtract) discrete amounts of momentum parallel to the mean plane of the grating, thereby

coupling the incident plane wave to either nonspecularly reflected/transmitted plane waves that

transport energy away from the grating [44] and/or surface waves whose propagation is guided

by the mean plane of the grating [51]. Accordingly, surface-relief gratings are used to reflect or

transmit light in nonspecular directions [44, 43] and launch surface waves for optical sensing of

analytes [29] as well as to harvest solar energy [56, 58], among other applications.

The discrete amounts of momentum that can be added or subtracted depend on the period L

of the grating as well as the free-space wavelength λ0 of the incident light. While the corrugation

depth δ of the grating plays an important role in how the addition or subtraction process occurs

without violation of the principle of conservation of energy, even corrugation depths that are

a small fraction of λ0 can be effective in the excitation of surface waves and enhancement of

optical absorptance [27, 49].

Optimal design of a surface-relief grating for a specific application requires the use of rapid

and accurate solvers for the frequency-domain Maxwell equations. The optimization process is

computationally expensive since these equations must be repeatedly solved for a wide range of

optical and geometrical parameters [58, 60]. Several numerical techniques have been formulated

to solve the frequency-domain Maxwell equations in structures containing surface-relief gratings.

These numerical techniques include the exact modal method [24] and the method of moments

[33, 25]. Nowadays, the most commonly used numerical techniques for grating analysis are the

15
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rigorous coupled-wave approach (RCWA) [12, 46, 26, 39], the finite element method (FEM)

[48, 60], and the finite-difference time-domain (FDTD) method [31]. The electromagnetic field

phasors are expanded in the RCWA in Fourier series with respect to the direction(s) of periodic-

ity, whereas space is discretized through a mesh in the FEM. Even though both the RCWA and

the FEM have advantages and disadvantages [61, 59], the FEM is ideally suited for complicated

geometries. We also mention hybrid techniques wherein the electromagnetic field phasors are

expanded globally in Fourier series with respect to the direction(s) of periodicity (just as in

RCWA), but the electromagnetic field phasors inside a unit cell are formulated using either the

T-matrix method [36] or the FEM [18].

A 1D surface-relief grating is commonly specified as the interface z = g(x) = g(x ± L) of

two dissimilar media. The representation of fields inside the grating layer min
x
{g(x)} < z <

max
x
{g(x)} of thickness δ = max

x
{g(x)}−min

x
{g(x)} > 0 has been a topic of research ever since

the time of Rayleigh [53, 45, 37, 62]. An FEM solver can be computationally expensive when

the grating layer is electrically thin (i.e., δ/λ0 � 1), because an extremely fine mesh is needed

to adequately resolve a thin geometric feature. The same issue arises even for electrically thin

layers that are homogeneous.

One way to treat a surface-relief grating with smooth corrugations is to planarize it using

a carefully devised mapping. Two very different planarization approaches involve (i) transfor-

mative optics wherein the periodically corrugated interface is mapped into a flat interface by a

change of spatial variables [11] and (ii) a series of perturbations [49]. The transformation-optics

approach results in spatially dependent constitutive parameters, but opens the way to a Fourier-

series-based solver (such as the RCWA) for the resulting equations since the interface has been

flattened. This approach will not work directly for sawtooth or rectangular gratings, but does

yield a popular numerical technique for grating problems [40, 41, 32, 17]. In the perturbative

method [49], the smooth corrugation is considered as the deformation of a flat interface via

a Taylor series, and the effect of this deformation can be computed by solving a perturbative

sequence of boundary-value problems by a Fourier technique. Both s and p-polarized incident

waves have been considered and this approach is attractive because higher-order correctors can

be incorporated.

Recently, Delourme et al. replaced an electrically thin annulus [14] and an electrically thin

plate of finite extent [15, 16], both periodically nonhomogeneous by a circle and a finite-sized

plane, respectively, on which they imposed transmission conditions that are different from the

standard continuity conditions for the tangential components of the electric and magnetic field

phasors on bi-medium interfaces. This planarization approach has been used by Özdemir et al.

[50] for homogeneous and electrically thin regions of finite extent, and by Maurel et al. [52] for

a periodic array of metallic bumps deposited on the planar surface of a dielectric material filling

a half space.

Thus the planarization approach initiated by Delourme et al. [14, 15, 16] for regions of fi-

nite extent is applicable to electrically thin grating layers of infinite transverse extent, whether

involving highly dissipative or weakly dissipative materials. When this (i.e., the third) planariza-

tion approach is used, there is no need to have extremely small elements in the FEM mesh for
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the grating layer. Moreover, the FEM mesh can be fixed for all possible geometric changes in the

grating layer during an optimization process, which makes this technique suitable for determining

optimal designs. Clearly, the third planarization approach differs from the first two planarization

approaches, i.e., the transformation-optics approach [11] and the perturbative approach [49].

In this chapter, we adapt the third planarization approach to devise an asymptotic model so

that the FEM can be implemented for shallow metallic gratings used as backreflectors in solar-

cell structures [56, 58, 60]. Whether the incident plane wave is s- or p-polarized, the electrically

thin grating layer is replaced by a planar interface across which certain transmission conditions

hold and the Helmholtz equation is solved using the FEM. The grating interface can have

corrugations that are rectangular, sawtooth, or of other shapes. This method is also applicable

for an electrically thin homogeneous layer [50] since that layer can be conceptualized as a special

case of a grating layer. Let us also note that, as we are focused on the interface of a metal and an

absorbing semiconductor in a solar cell, we implement the FEM using a Dirichlet-to-Neumann

map as a truncation boundary condition. However, other truncation boundary methods could

be similarly used e.g., the perfectly-matched-layer method [3] and RCWA [30].

This chapter is organized as follows. The boundary-value problem is set up and the asymp-

totic model is formulated in Section 1.2, when the grating geometry is invariant along the y

axis, and the wave vector of the incident plane wave lies wholly in the xz plane. Numerical

results to evaluate the performance of the FEM incorporating the third planarization approach

are presented and discussed in Section 1.3 for both s- and p-polarization states of the incident

plane wave. In the appendix we show that our approach can be generalized for application to a

large-amplitude smooth grating perturbed by a thin grating with a smaller period [38].

An exp(−iωt) dependence on time t is implicit, with ω denoting the angular frequency and

i =
√
−1. The free-space wavenumber, the free-space wavelength, and the intrinsic impedance of

the free space are denoted by k0 = ω
√
ε0µ0, λ0 = 2π/k0, and η0 =

√
µ0/ε0, respectively, with µ0

being the permeability and ε0 the permittivity of free space. Vectors are in boldface; Cartesian

unit vectors are identified as ûx, ûy and ûz; and the position vector r = xûx + yûy + zûz.

1.2 Theory

1.2.1 Boundary-value problem

The solar-cell structure is assumed to occupy the region

Φδ =

{
r ∈ R3 : |x| <∞, |y| <∞,−Lm −

δ

2
< z <

δ

2
+ Ld

}
.

Within this region the relative permittivity εr(x, z) = εr(x±mL, z), m ∈ Z = {0,±1,±2, ...}
is a function of x ∈ (−∞,∞) with period L and also varies with z ∈

(
−Lm − δ

2 ,
δ
2 + Ld

)

but not with y ∈ (−∞,∞). The half spaces
{
r ∈ R3 : |x| <∞, |y| <∞, z < −Lm − δ

2

}
and{

r ∈ R3 : |x| <∞, |y| <∞, z > δ
2 + Ld

}
are occupied by air; hence, the relative permittivity

εr(x, z) ≡ 1 in both these half spaces.
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Figure 1.1: Unit cell Ω = Ω+ ∪Ωδ ∪Ω− of the solar-cell structure containing the grating layer of

thickness δ. The region Ω+ lying above the plane Γ+ is occupied by an isotropic dielectric material

(shaded green). The region Ω− lying below the plane Γ− is occupied by an isotropic metal (shaded

brown). Interposed between the planes Γ− and Γ+, the grating layer Ωδ is magnified for clarity,

but actually δ � L for the planarization approach applied here (figure produced by author).

The unit cell

Ω =

{
r ∈ R3 : 0 < x < L, |y| <∞,−Lm −

δ

2
< z <

δ

2
+ Ld

}

of the solar-cell structure is shown schematically in Figure 1.1, wherein we define the plane

Γ =
{
r ∈ R3 : 0 < x < L, |y| <∞, z = 0

}
.

The domain Ω is subdivided into the following three non-overlapping regions

Ω− =
{
r ∈ R3 : 0 < x < L, |y| <∞, −Lm − δ

2 < z < − δ
2

}

Ωδ =
{
r ∈ R3 : 0 < x < L, |y| <∞, − δ

2 < z < δ
2

}

Ω+ =
{
r ∈ R3 : 0 < x < L, |y| <∞, δ2 < z < δ

2 + Ld
}





(1.2.1)

separated by the non-intersecting planes

Γ− =
{
r ∈ R3 :

(
r + δ

2 ûz

)
∈ Γ
}

Γ+ =
{
r ∈ R3 :

(
r − δ

2 ûz

)
∈ Γ
}
}
. (1.2.2)
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The grating layer Ωδ is thus bounded by the planes Γ− and Γ+, with min
x
{g(x)} = −δ

2
and

max
x
{g(x)} =

δ

2
. Each of these three regions have different dielectric properties: Ω− is occupied

by a homogeneous metal of relative permittivity ε−r , Ω+ is occupied by an isotropic dielectric

material of relative permittivity ε+
r , and Ωδ is occupied by a periodically nonhomogeneous

material with relative permittivity εδr(x, z) = εδr(x± L, z).
The boundary z = δ

2 + Ld of the solar-cell structure is illuminated by an obliquely incident

plane wave whose electric field phasor is given by

Einc(r) = [asûy +ap(ûx cos θ+ûz sin θ)] exp

{
ik0

[
x sin θ −

(
z − δ

2
− Ld

)
cos θ

]}
, z ≥ δ

2
+Ld,

(1.2.3)

where θ is the angle of incidence with respect to the z axis, as is the amplitude of the s-polarized

component, and ap is the amplitude of the p-polarized component. The electric field phasors of

the reflected and transmitted fields can be stated respectively as

Eref(r) =
∑

n∈Z

(
asr

(n)
s ûy + apr

(n)
p p+

n

)
exp

{
i

[
κ(n)x+ α(n)

(
z − δ

2
− Ld

)]}
, z >

δ

2
+ Ld, (1.2.4)

Etr(r) =
∑

n∈Z

(
ast

(n)
s ûy + apt

(n)
p p−n

)
exp

{
i

[
κ(n)x− α(n)

(
z + Lm +

δ

2

)]}
, z < −Lm −

δ

2
,

where

κ(n) = k0 sin θ + 2πn/L, (1.2.5)

α(n) =





+
√
k2

0 − (κ(n))2, k2
0 ≥ (κ(n))2

+i
√

(κ(n))2 − k2
0, k2

0 < (κ(n))2
, (1.2.6)

and

p±n = ∓α
(n)

k0
ûx +

κ(n)

k0
ûz. (1.2.7)

The reflection coefficients of order n ∈ Z are denoted by r
(n)
s and r

(n)
p , and the corresponding

transmission coefficients by t
(n)
s and t

(n)
p . For an s-polarized incident plane wave, the absorptance

is defined as

As = 1−
∑

n∈Z

[(
|r(n)
s |2 + |t(n)

s |2
) Re(α(n))

α(0)

]
∈ [0, 1]; (1.2.8)

for a p-polarized incident plane wave, the absorptance is given by

Ap = 1−
∑

n∈Z

[(
|r(n)
p |2 + |t(n)

p |2
) Re(α(n))

α(0)

]
∈ [0, 1]. (1.2.9)

Both quantities are functions of λ0 and θ.
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1.2.2 Scalar equations and boundary conditions

The time-harmonic form of the Maxwell curl equations is given by

∇×E(r) = iωµ0H(r),

∇×H(r) = −iωε0εr(x, z)E(r),

}
, r ∈ Ω. (1.2.10)

After decoupling the s- and p-polarization states since the fields do not depend on y, equa-

tions (1.2.10) reduce to the Helmholtz equation

∇ • [B(x, z)∇u(x, z)] + k2
0b(x, z)u(x, z) = 0, r ∈ Ω, (1.2.11)

where

u(x, z) = Ey(x, z), B(x, z) = 1, b(x, z) = εr(x, z), (1.2.12)

for the s polarization state, and

u(x, z) = −η0Hy(x, z), B(x, z) =
1

εr(x, z)
, b(x, z) = 1, (1.2.13)

for the p polarization state.

The solution u(x, z) is denoted by u+(x, z) and u−(x, z), respectively, for z > δ
2 + Ld and

z < −Lm − δ
2 . Equations (1.2.3)–(1.2.5) lead to the expansions

u+(x, z) = aq exp

{
i

[
κ(0)x− α(0)

(
z − δ

2
− Ld

)]}

+aq
∑

n∈Z
r(n)
q exp

{
i

[
κ(n)x+ α(n)

(
z − δ

2
− Ld

)]}
, z >

δ

2
+ Ld, (1.2.14)

u−(x, z) = aq
∑

n∈Z
t(n)
q exp

{
i

[
κ(n)x− α(n)

(
z + Lm +

δ

2

)]}
, z < −Lm −

δ

2
, (1.2.15)

where q ∈ {p, s}.
The functions u(x, z) and u−(x, z) must be appropriately matched using standard continuity

conditions on the plane z = −Lm− δ
2 , and the functions u(x, z) and u+(x, z) match in the same

way on the plane z =
δ

2
+ Ld. Hence, with ρ > 0, we have to enforce the conditions

u−
(
x,−Lm − δ

2

)
= u

(
x,−Lm − δ

2

)

∂u−

∂z

(
x,−Lm − δ

2

)
= B

(
x,−Lm − δ

2

)
∂u
∂z

(
x,−Lm − δ

2

)

u+
(
x, δ2 + Ld

)
= u

(
x, δ2 + Ld

)

∂u+

∂z

(
x, δ2 + Ld

)
= B

(
x, δ2 + Ld

)
∂u
∂z

(
x, δ2 + Ld

)





, x ∈ [0, L]. (1.2.16)

In addition, u(x, z) satisfies the quasi-periodicity conditions

u(L, z) = exp(iκ(0)L)u(0, z)

ν • ∇u(L, z) = exp(iκ(0)L)ν • ∇u(0, z)

}
, z ∈

(
−Lm −

δ

2
,
δ

2
+ Ld

)
, (1.2.17)

where the unit vector ν = ûz is normal to the plane Γ.
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1.2.3 Asymptotic model

Equations (1.2.11)–(1.2.17) constitute the full model which we approximate by an asymptotic

model (valid in the limit δ → 0) where Ωδ is replaced by the plane Γ. In the asymptotic model,

the approximation of the fields must satisfy certain approximate transmission conditions (ATCs)

across Γ.

There is no unique way to prescribe the ATCs. For instance, Maurel et al. [52] used an

approach similar to the one analyzed by [14, 15, 16] where each term of the power series in

the asymptotic expansions is written as a Taylor series around z = 0 (i.e., the plane Γ). Then,

both fields are matched in a suitable overlapping region. Undertaking this approach, Maurel et

al. derived ATCs correct to order δ, with the coefficients (usually called interface parameters)

in the ATCs determined by solving the partial differential equations satisfied by the fields in

the asymptotic expansions. The solution of these equations might be costly, depending on the

corrugation shape. However, in particular cases such as the rectangular corrugations considered

by Maurel et al. [52], the interface parameters can be approximately determined.

Özdemir et al. [50] proposed another way to define the ATCs, provided that the thin layer

Ωδ is occupied by a homogeneous material, i.e., when εδr(x, z) depends on neither x nor z. We

generalize their approach to our setting, wherein εδr(x, z) = εδr(x± L, z), as follows.

Although u(x, z) is represented by equations (1.2.14) and (1.2.15), respectively, for z > δ
2 +Ld

and z < −Lm− δ
2 , respectively, we need to represent u(x, z) in Ω as well. This is done by adopting

separate representations in the three parts of Ω; thus,

u(x, z) =





u−δ (x, z)

uδ(x, z)

u+
δ (x, z)

, r ∈





Ω−

Ωδ

Ω+

. (1.2.18)

Concurrently, we define

B(x, z) =





B−(x, z)

Bδ(x, z)

B+(x, z)

, b(x, z) =





b−(x, z)

bδ(x, z)

b+(x, z)

, r ∈





Ω−

Ωδ

Ω+

. (1.2.19)

Equation (1.2.11) then devolves into the three partial differential equations

∇ •
[
B±(x, z)∇u±δ (x, z)

]
+ k2

0b
±(x, z)u±δ (x, z) = 0, r ∈ Ω±, (1.2.20)

and

∇ •
[
Bδ(x, z)∇uδ(x, z)

]
+ k2

0b
δ(x, z)uδ(x, z) = 0, r ∈ Ωδ. (1.2.21)

Equations (1.2.20) and (1.2.21) must be solved subject to the continuity conditions
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u−δ
(
x,− δ

2

)
= uδ

(
x,− δ

2

)

B−
(
x,− δ

2

) ∂u−δ
∂z

(
x,− δ

2

)
= Bδ

(
x,− δ

2

)
∂uδ

∂z

(
x,− δ

2

)

u+
δ

(
x, δ2

)
= uδ

(
x,− δ

2

)

B+
(
x, δ2

) ∂u+
δ

∂z

(
x, δ2

)
= Bδ

(
x,− δ

2

)
∂uδ

∂z

(
x, δ2

)





, x ∈ [0, L]. (1.2.22)

In our asymptotic model, the domain Ωδ is replaced by the plane Γ. Hence, the functions

Bδ(x, z) and bδ(x, z) must be approximated by functions that can only depend on x. In particular,

we average the relative permittivity over z ∈
(
− δ

2 ,
δ
2

)
as

εr(x) =
1

δ

∫ δ
2

− δ
2

εr(x, z)dz (1.2.23)

and set

Bδ(x) =





1
(
εr(x)

)−1 , bδ(x) =

{
εr(x)

1
, pol. state =

{
s

p
. (1.2.24)

Next, we scale the solution in Ωδ with respect to the thickness of the grating layer by changing

the variable z to ξ =
z

δ
. This scaling defines the domain

Ω̃δ =

{
r̃ = xûx + yûy + ξûz ∈ R3 : 0 < x < L, |y| <∞, −1

2
< ξ <

1

2

}

and allows us to remove the dependences of various quantities on the small parameter δ. After

defining the scaled function ũδ (x, ξ) = uδ(x, δξ), and using the chain rule as well as the z-

averaged quantities introduced in equations (1.2.24), (1.2.21) can be rewritten approximately

as

∂

∂x

(
Bδ(x)

∂ũδ(x, ξ)

∂x

)
+

1

δ2

∂

∂ξ

(
Bδ(x)

∂ũδ(x, ξ)

∂ξ

)
+ k2

0b
δ(x)ũδ(x, ξ) = 0, r̃ ∈ Ω̃δ. (1.2.25)

Let us now assume that ũδ (x, ξ) can be written as the power series

ũδ (x, ξ) =

∞∑

j=0

δj ũδj

(
x,
z

δ

)
. (1.2.26)

Then, after inserting the asymptotic expansion on the right side of (1.2.26) into (1.2.25),

equating the terms having the same powers of δ, and using the convention that ũδ` = 0 for ` < 0,

we obtain

∂

∂x

(
Bδ(x)

∂ũδj−2(x, ξ)

∂x

)
+
∂

∂ξ

(
Bδ(x)

∂ũδj(x, ξ)

∂ξ

)
+k2

0b
δ(x)ũδj−2(x, ξ) = 0, r̃ ∈ Ω̃δ, j ∈ {0, 1, ....}.

(1.2.27)
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Let us also assume that the solution can be represented in each of the regions Ω− and Ω+

as a power series with respect to δ; i.e.,

u±δ (x, z) =
∞∑

j=0

δj ϕ±j (x, z). (1.2.28)

As is usual in asymptotic models of this type, the functions ϕ±j are assumed to be at least

once differentiable with respect to z. In addition, due to the quasi-periodicity conditions in

equations (1.2.17), it is natural to assume that ϕ±j are quasi-periodic with respect to x.

After replacing Bδ(x, z) by its averaged value Bδ(x) and uδ(x, z) by ũδ (x, ξ) in equa-

tions (1.2.22), those continuity conditions simplify to

u−δ
(
x,− δ

2

)
= ũδ

(
x,−1

2

)

B−
(
x,− δ

2

) ∂u−δ
∂z

(
x,− δ

2

)
= 1

δB
δ(x)∂ũ

δ

∂ξ

(
x,−1

2

)

u+
δ

(
x, δ2

)
= ũδ

(
x, 1

2

)

B+
(
x, δ2

) ∂u+
δ

∂z

(
x, δ2

)
= 1

δB
δ(x)∂ũ

δ

∂ξ

(
x, 1

2

)





, x ∈ [0, L]. (1.2.29)

On using equations (1.2.26) and (1.2.28) in equations (1.2.29) and after equating the terms

with the same powers of δ, we finally obtain the continuity conditions

ϕ−j
(
x,− δ

2

)
= ũδj

(
x,−1

2

)

B−
(
x,− δ

2

) ∂ϕ−j−1

∂z

(
x,− δ

2

)
= Bδ(x)

∂ũδj
∂ξ

(
x,−1

2

)

ϕ+
j

(
x, δ2

)
= ũδj

(
x, 1

2

)

B+
(
x, δ2

) ∂ϕ+
j−1

∂z

(
x,− δ

2

)
= Bδ(x)

∂ũδj
∂ξ

(
x, 1

2

)





, x ∈ [0, L], j ∈ {0, 1, ....}. (1.2.30)

Let

v(x, z) =

{
v−(x, z)

v+(x, z)
, r ∈

{
Ω−

Ω+ (1.2.31)

be any function defined in Ω− ∪Ω+. We denote by [v] and 〈v〉, respectively, the jump and mean

values of v defined as

[v] (x) = v+

(
x,
δ

2

)
− v−

(
x,−δ

2

)

〈v〉 (x) =
1

2

(
v+

(
x,
δ

2

)
+ v−

(
x,−δ

2

))




, x ∈ [0, L]. (1.2.32)
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Using this notation along with Barrow’s rule in equations (1.2.30), we obtain the relations

Bδ(x)
∂ũδj
∂ξ

(x, ξ) =

〈
B
∂ϕj−1

∂z

〉
(x) +

1

2

[∫ ξ

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδj(x, τ)

∂τ

)
dτ

−
∫ 1

2

ξ

∂

∂τ

(
Bδ(x)

∂ũδj(x, τ)

∂τ

)
dτ

]

ũδj(x, ξ) = 〈ϕj〉 (x) +
1

2

[∫ ξ

− 1
2

∂ũδj
∂τ

(x, τ) dτ −
∫ 1

2

ξ

∂ũδj
∂τ

(x, τ) dτ

]

[
B
∂ϕj
∂z

]
(x) =

∫ 1
2

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδj+1(x, τ)

∂τ

)
dτ

[ϕj ] (x) =

∫ 1
2

− 1
2

∂ũδj
∂τ

(x, τ)dτ





, (1.2.33)

x ∈ [0, L], ξ ∈
[
−1

2 ,
1
2

]
, j ∈ {0, 1, ...}. See Appendix 1.5 for more details.

Using these relations, we write
[
B
∂ϕj
∂z

]
(x) and [ϕj ](x) in terms of

〈
B
∂ϕj−1

∂z

〉
(x) and 〈ϕj−1〉 (x).

In particular, for j = 0, 1, 2, we get:

[ϕ0](x) = 0
[
B
∂ϕ0

∂z

]
(x) = 0

[ϕ1] (x) =

(
Bδ(x)

)−1 〈
B ∂ϕ0

∂z

〉
(x)

[
B
∂ϕ1

∂z

]
(x) = −

(
∂
∂x

(
Bδ(x) ∂

∂x

)
+ k2

0b
δ(x)

)
〈ϕ0〉 (x)

[ϕ2] (x) =

(
Bδ(x)

)−1 〈
B ∂ϕ1

∂z

〉
(x)

[
B
∂ϕ2

∂z

]
(x) = −

(
∂
∂x

(
Bδ(x) ∂

∂x

)
+ k2

0b
δ(x)

)
〈ϕ1〉 (x)





, x ∈ [0, L]. (1.2.34)

See Appendix 1.5 for more details.

Let us now restrict the summation on the right side of equation (1.2.28) to j ∈ {0, 1, 2} so

that

u±δ (x, z) ≈ u±δ,2(x, z) = ϕ±0 (x, z) + δϕ±1 (x, z) + δ2ϕ±2 (x, z). (1.2.35)
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For x ∈ [0, L], equations (1.2.34) then yield

[uδ,2](x) = [ϕ0](x) + δ [ϕ1] (x) + δ2 [ϕ2] (x)

= δ

(
Bδ(x)

)−1〈
B
∂ϕ0

∂z

〉
(x) + δ2

(
Bδ(x)

)−1〈
B
∂ϕ1

∂z

〉
(x)

= δ

(
Bδ(x)

)−1(〈
B
∂ϕ0

∂z

〉
(x) + δ

〈
B
∂ϕ1

∂z

〉
(x)

)

= δ

(
Bδ(x)

)−1(〈
B
∂uδ,2
∂z

〉
(x)− δ2

〈
B
∂ϕ2

∂z

〉
(x)

)

= δ

(
Bδ(x)

)−1〈
B
∂uδ,2
∂z

〉
(x)− δ3

(
Bδ(x)

)−1〈
B
∂ϕ2

∂z

〉
(x)

and

[
B
∂uδ,2
∂z

]
(x) =

[
B
∂ϕ0

∂z

]
(x) + δ

[
B
∂ϕ1

∂z

]
(x) + δ2

[
B
∂ϕ2

∂z

]
(x)

= −δ
(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k2

0b
δ(x)

)
〈ϕ0〉 (x)− δ2

(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k2

0b
δ

)
〈ϕ1〉 (x)

= −δ
(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k2

0b
δ(x)

)(
〈ϕ0〉 (x) + δ 〈ϕ1〉 (x)

)

= −δ
(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k2

0b
δ(x)

)(
〈uδ,2〉 (x)− δ2 〈ϕ2〉 (x)

)

= −δ
(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k2

0b
δ(x)

)
〈uδ,2〉 (x) + δ3

(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k2

0b
δ(x)

)
〈ϕ2〉 (x).

Neglecting terms of order δ3, we finally obtain the following transmission conditions for

u±δ,2(x, z):

[uδ,2] (x) = δ

(
Bδ(x)

)−1 〈
B
∂uδ,2
∂z

〉
(x)

[
B
∂uδ,2
∂z

]
(x) = −δ

(
∂
∂x

(
Bδ(x) ∂

∂x

)
+ k2

0b
δ(x)

)
〈uδ,2〉 (x)




, x ∈ [0, L]. (1.2.36a)

These conditions are called ATCs because they correspond to approximations up to second

order of the transmission conditions satisfied by u±δ,2. The interface parameters are Bδ(x) and

bδ(x). In addition, according to (1.2.20), u±δ,2 satisfy the partial differential equations

∇ •

(
B±∇u±δ,2(x, z)

)
+ k2

0b
±(x, z)u±δ,2(x, z) = 0, r ∈ Ω±, (1.2.36b)

together with the bottom and top transmission conditions in equations (1.2.16) and the quasi-

periodic boundary conditions in equations (1.2.17). After solving equations (1.2.36) for u±δ,2(x, z),

we can approximately determine u±δ (x, z) in Ω±.
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In the asymptotic model thus, δ has been removed from the geometry (i.e., the region Ωδ has

been flattened into the plane Γ) and is now contained in the expansion coefficients of the solution

in Ω±. Since terms of order δ3 were neglected, the best possible truncation error is likely to be of

order δ3. As we show in Section 1.3, this indeed occurs for grating layers that are homogeneous,

but a slower convergence (better than second order) is observed for nonhomogeneous grating

layers possibly due to the replacement of εr(x, z) by εr(x) in the region Ωδ and to the effect of

the corrugation in the FEM solution. This issue would require further investigation and will be

addressed elsewhere, since the goal of this chapter is to describe and numerically analyze the

behavior of the method. The convergence of the asymptotic model can be studied following the

procedure of Delourme et al. [14, 15].

1.3 Numerical results

Let us now demonstrate numerically the convergence properties of the asymptotic model. We

chose to solve equations (1.2.36) using standard Lagrange FEM with third-degree polynomials,

subject to the transmission conditions in equations (1.2.16) across the planes z = δ
2 + Ld and

z = −Lm − δ
2 , following the procedure described, for instance, by Solano et al. [59].

Results are presented for three examples. In the first two examples we focus on the conver-

gence of the asymptotic model at the fixed wavelength λ0 = 450 nm. In the third example we

examine the performance of the asymptotic model in the range λ0 ∈ [400, 1000] nm. For all three

examples, we fixed L = 400 nm, Ld = 125 nm, and Lm = 50 nm. We also fixed θ = 0 deg, as

most solar cells are illuminated normally to maximize photonic absorption. The material with

the relative permittivity ε+
r was taken to be evaporated silver whereas that with the relative

permittivity ε−r was amorphous silicon nitride, both ε+
r and ε−r being frequency dependent [19].

The chosen value of Lm exceeds the skin depth of silver, ensuring that transmission into the half

space z < Lm − δ
2 is minuscule at best. We chose values of δ between 0.3906 nm and 12 nm.

Then, the maximum value of δ is 6.67% of the total height Lm+Ld+δ of the solar-cell structure,

and the minimum value of δ is 0.22% of the total height.

Finally, the series on the right sides of equations (1.2.14) and (1.2.15) have to be truncated

so that |n| ≤ Mt. This truncation error is the same for both the full and asymptotic models.

Since our goal with the first two examples was to analyze convergence with respect to δ, the

value of Mt will have a minor influence. For the first example, it is enough to consider Mt = 0

because the backreflector is planar. For the second example, we fixed Mt = 3 in order to speed

up the calculations. For the third example, we took Mt = 10 in order to diminish the influence

of this truncation error when examining the absorptance spectra.

The domain Ω was discretized into Ne triangular elements, with the length of the largest

edge denoted by h. Let uq,hδ,2 (x, z) and Ahq denote the values of uqδ,2(x, z) and Aq, respectively,

delivered by our asymptotic model for a specific choice of h when the polarization state of the

incident plane wave is either q = s or q = p. The errors in our calculations are of two types:

(i) those due to the use of the FEM and (ii) those due to the asymptotic model. Let us note

that, in the asymptotic model, the thickness δ of the grating layer has no relationship to the

discretization length h.
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The main steps to implement FEM for the asymptotic model are as follows:

1. First, as is usual in FEM, we write down a variational formulation of equations (1.2.36).

That is, we look for the quasi-periodic solution u±δ,2 of the variational problem

A(u±δ,2, v
±) = −2iα(0)

∫ L

0
uinc(x, z

+)v+(x, z+) dx (1.3.1)

for all test functions v+ and v− over the domains Ω+ and Ω−, respectively, where

A(u±δ,2, v
±) =

∫

Ω±

[
B±(x, z)∇u±δ,2(x, z) · ∇v±(x, z)− k2

0b
±(x, z)u±δ,2(x, z)v±(x, z)

]
dr

+δ

∫

Γ
Bδ(x)

∂ 〈uδ,2〉 (x)

∂x

∂ 〈v〉 (x)

∂x
dx− δk2

0

∫

Γ
bδ(x) 〈uδ,2〉 (x) 〈v〉 (x)dx

+
1

δ

∫

Γ
Bδ(x)[uδ,2](x)[v](x)dx−

∫ L

0

(
B±(x, z±)

∂u±δ,2(x, z±)

∂z

)
v±(x, z±) dx,

where z+ = Ld+
δ

2
and z− = −Lm−

δ

2
, uinc represents the incident plane wave described

via (1.2.3), and u± are given by equations (1.2.14) and (1.2.15) after the summations∑
n∈Z(·) therein have been replaced by

∑Mt
n=−Mt

(·). More details are available elsewhere

[59]. Basically, the only difference between the standard FEM applied to grating problems

and the FEM applied to this asymptotic model is the presence of the last three terms in

the bilinear form A.

2. The domains Ω+ and Ω− are meshed by triangular elements so that the nodes in both

meshes coincide at the interface Γ.

3. Finally, the variational formulation is discretized by piecewise polynomials, continuous in

the domains Ω+ and Ω− but allowing jumps across Γ. This leads to a linear system that

can be solved [59].

1.3.1 Example 1: Planar Backreflector

Let us begin by choosing the backreflector as planar and the material occupying Ωδ to have

the uniform relative permittivity εδr(x, z) ≡ −1.0976 + 0.3325i. For this problem, the solution

uq(x, z), q ∈ {s, p}, of (1.2.11) can be exactly determined everywhere using a textbook approach

[9]. For each polarization state, we computed the relative errors

euq =

(∫

Ω+∪Ω−
|uq − uq,hδ,2 |2 dx dz

)1/2

(∫

Ω+∪Ω−
|uq|2 dx dz

)1/2
and eAq =

|Aq −Ahq |
|Aq|

, q ∈ {s, p} . (1.3.2)
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Figure 1.2: Calculated values of the relative errors eup (identified by blue ◦) and eAp (red �
) versus δ when h = 2.21 nm for the planar metallic backreflector of Section 1.3.1. Black line

indicates the δ3 dependence (figure produced by author).

Since eus and eup evinced similar trends with respect to changes in h and δ, and so did As
and Ap, let us confine our attention to the p-polarization state in the remainder of Section 1.3.1.

First, in order to evaluate the performance of the asymptotic model with respect to the

parameter δ, eup and eAp are plotted versus δ in Figure 1.2, for the smallest value of h (= 2.21 nm)

in our study. This value of h corresponds to Ne = 61440 elements when δ = 12.5 nm, 59392

elements when δ = 6.255 nm, and 58368 elements when δ = 3.125 nm. If δ ≤ 1.5625 nm, the

number of elements (57856) is only somewhat smaller than for δ = 3.125 nm, because only one

layer of elements fits in Ωδ. Both eup and eAp are of order δ3, as expected.

Table 1.1: Relative error eup versus δ (nm) and h (nm) for Example 1 (Section 1.3.1). The

number Ne of triangular elements is shown in parentheses for each of the three values of h in

the table (table produced by author).

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584)

12.5 4.8053×10−4 4.7755×10−4 4.7750×10−4

6.25 9.6565×10−5 6.9828×10−5 6.9664×10−5

3.125 7.0314×10−5 1.0299×10−5 9.3360×10−6

1.5625 7.0992×10−5 4.4827×10−6 1.1926×10−6

0.7812 7.1811×10−5 4.3592×10−6 2.9804×10−7

0.3906 7.2338×10−5 4.3853×10−6 2.8574×10−7

Next, in order to validate our FEM solver, in Figure 1.3 we display eup versus h for δ =

0.3906 nm. Standard FEM theory [10] predicts that the rate of convergence of eup must be
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of order h4. In Figure 1.3 we observe exactly this trend, except for the smallest value of h

where it seems that the aymptotic-model error dominates the FEM error and that is why the

h4 dependence can not be observed for the smaller values of h.

In Table 1.1 we display values of the relative error eup while varying δ (from top to bot-

tom) and h (from left to right). All values of eup are smaller than 0.05%. In the first row,

we observe that the asymptotic-model error dominates the FEM error for δ = 12.5 nm, since

eup does not significantly decrease as h decreases. Similar conclusions were found to hold for

δ ∈ {6.25, 3.125, 1.5625} nm, i.e., the asymptotic-model error starts to dominate the FEM error

when h < 17.68 nm. On the other hand, when δ is small, for example 0.3906 nm, the FEM error

dominates the asymptotic-model error. In fact, eup decreases 16 times when h is halved, i.e., the

rate of convergence is of order h4 as predicted by the standard FEM theory [10]. The trends

evident in Table 1.1 for eup are mirrored by those in Table 1.2 for eAp .

Figure 1.3: Calculated values (identified by blue ◦) of the relative error eup versus h when

δ = 0.3906 nm for the planar metallic backreflector of Section 1.3.1. Black line indicates the h4

dependence (figure produced by author).

Table 1.2: Same as Table 1.1 but values of the relative error eAp are shown (table produced by

author).

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584)

12.5 2.0134×10−3 2.0090×10−3 2.0090×10−3

6.25 3.4851×10−4 3.4305×10−4 3.4307×10−4

3.125 5.5617×10−5 4.9543×10−5 4.9574×10−5

1.5625 1.3120×10−5 7.5367×10−6 6.8810×10−6

0.7812 6.7215×10−6 9.6876×10−7 2.2527×10−7

0.3906 6.7553×10−6 1.0040×10−6 2.6115×10−7
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1.3.2 Example 2: Periodic Backreflector with Rectangular Corrugations

Next, we consider the backreflector to have rectangular corrugations of height δ and width

L1 = ζL, as shown in Figure 1.1. In the unit cell Ω, the grating profile is described by the

function

g(x) =





− δ
2 , 0 ≤ x < (1− ζ)L/2,

δ
2 , (1− ζ)L/2 < x < (1 + ζ)L/2,

− δ
2 , (1 + ζ)L/2 < x ≤ L,

(1.3.3)

with

εδr(r) =

{
ε+
r

ε−r
, z

{
> g(x)

< g(x)
, r ∈ Ωδ . (1.3.4)

As an exact solution u cannot be found for the chosen backreflector, we designated by ŭ(x, z)

the FEM solution obtained with the full model and the smallest value of the discretization length

h (= 2.21 nm) in our study, and by Ă the corresponding absorptance. Using these results as the

reference solution, we determined for ζ = 0.5 the relative errors

eŭq =

(∫

Ω+∪Ω−
|ŭq − uq,hδ,2 |2 dx dz

)1/2

(∫

Ω+∪Ω−
|ŭq|2 dx dz

)1/2
and eĂq =

|Ăq −Ahq |
|Ăq|

, q ∈ {s, p} , (1.3.5)

as functions of δ and h. Since the solution depends on δ, we calculated the reference solution

for each value of δ. This FEM-reference solution has been validated by comparing it with an

RCWA solution. In fact, we have observed that the FEM-reference and RCWA solutions agree

within 3% in absorptances and within 5% in the fields.

The solution up(x, z) from the full model [59] contains strong singularities near metallic cor-

ners, due to the type of partial differential equation involved. Hence, in principle, any numerical

approximation of the actual solution will not be very accurate, unless the mesh is sufficiently

fine in the proximities of corners. This is a classical problem in grating theory [43, 42], specially

for p polarization. This issue affects not only the asymptotic model, but also the full model [48]

and the RCWA [61].

The relative errors eŭs and eŭp versus δ are presented in Figure 1.4 for h = 8.84 nm. Re-

gardless of the polarization state of the incident plane wave, the convergence rate of eŭq is δ2.

Compared to the data in Figure 1.2 for the planar backreflector, the shallow rectangular corru-

gations lower the convergence rate from δ3 to δ2. However, the convergence rate of the relative

error eĂp is of order δ3 for the smallest values of δ, and that of eĂs is faster than δ2 but slower

than δ3, in Figure 1.4. We believe that the slightly more erratic behavior of the convergence

curve for eŭp than of the convergence curve for eŭs in Figure 1.4 is due to loss of accuracy of the

FEM solution and not to the approximations introduced by the formulation of the asymptotic

model, as discussed in the previous paragraph.
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Figure 1.4: Calculated values of the relative errors eŭs (identified by blue +), eŭp (blue ◦), eĂs
(red �) and eĂp (red �) versus δ when h = 8.84 nm for the metallic backreflector with rectangular

corrugations described in Section 1.3.2. Solid-black and dashed-black lines indicate the δ2 and

δ3 dependences, respectively (figure produced by author).

Table 1.3: Relative error eŭs versus δ (nm) and h (nm) for Example 2 (Section 1.3.2). The

number Ne of triangular elements is shown in parentheses for each of the three values of h in

the table (table produced by author).

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584)

12.5 8.1484×10−3 8.1583×10−3 8.1610×10−3

6.25 2.2067×10−3 2.2049×10−3 2.2050×10−3

3.125 5.8389×10−4 5.7720×10−4 5.7700×10−4

1.5625 1.6766×10−4 1.4817×10−4 1.4790×10−4

0.7812 8.4321×10−5 3.7952×10−5 3.7471×10−5

0.3906 7.5265×10−5 1.0713×10−5 9.4435×10−6

Clearly, eŭs < eŭp in Figure 1.4. This also becomes clear from Tables 1.3 and 1.4 wherein

values of eŭs and eŭp , respectively, have been stated for several different combinations of δ and

h. Whereas eŭs < 1%, eŭp < 16.5% if δ ≤ 6.25 nm and eŭp < 4.5% if δ ≤ 3.125 nm. Let us

emphasize that the errors reported in Tables 1.3 and 1.4 comprise both the asymptotic-model

error and the FEM error. These errors will become small only if both δ and h are sufficiently

small. For instance, in both tables, the relative errors do not decrease with h for the first three

values of δ, indicating that the asymptotic-model error dominates the FEM error.
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Table 1.4: Same as Table 1.3 but values of the relative errors eŭp are shown (table produced by

author).

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584)

12.5 4.8796×10−1 4.7586×10−1 4.7932×10−1

6.25 1.6456×10−1 1.5966×10−1 1.5676×10−1

3.125 4.4783×10−2 4.2526×10−2 4.2038×10−2

1.5625 1.6742×10−2 1.4983×10−2 1.4627×10−2

0.7812 6.0305×10−3 5.1347×10−3 4.8565×10−3

0.3906 2.5209×10−3 1.1464×10−3 8.7120×10−4

Table 1.5: Same as Table 1.3 but values of the relative errors eĂs are shown (table produced by

author).

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584)

12.5 2.2388×10−4 1.9706×10−4 1.9077×10−4

6.25 2.7147×10−6 7.6646×10−6 9.5258×10−6

3.125 2.6225×10−6 3.3044×10−6 3.9308×10−6

1.5625 4.4622×10−6 4.5824×10−7 7.6397×10−7

0.7812 4.7835×10−6 2.3190×10−8 2.0315×10−7

0.3906 4.8536×10−6 8.2720×10−7 1.2497×10−7

Table 1.6: Same as Table 1.5 but values of the relative errors eĂp are shown (table produced by

author).

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584)

12.5 3.9201×10−1 3.8388×10−1 3.9209×10−1

6.25 1.9463×10−1 1.8249×10−1 1.7844×10−1

3.125 6.8556×10−2 5.9692×10−2 5.6689×10−2

1.5625 2.9210×10−2 2.1863×10−2 1.9990×10−2

0.7812 5.9780×10−3 3.7796×10−3 1.9480×10−3

0.3906 3.0921×10−3 8.1344×10−4 2.6633×10−4

In Tables 1.5 and 1.6 values of eĂs and eĂprespectively, have been stated for several different

combinations of δ and h, whereas eĂs < 1%, eĂp < 19.5% if δ ≤ 6.25 nm and eŭp < 7.0% if
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δ ≤ 3.125 nm. These tables also indicate that eĂs < eĂp , in line with Figure 1.4.

1.3.3 Example 3: Periodic Backreflector with Sawtooth Corrugations

In the last example, we consider the backreflector to have sawtooth corrugations described

by the function

g(x) =





− δ
2 , 0 ≤ x < (1− ζ)L/2,

δ

ζL

(
L

2
− x
)
, (1− ζ)L/2 < x < (1 + ζ)L/2,

− δ
2 , (1 + ζ)L/2 < x ≤ L.

(1.3.6)

All results provided here were calculated with ζ = 0.5. When δ = 1.5625 nm and the incident

light is s-polarized, the absorptances provided by both the full and asymptotic models agree very

well. In fact, for this case, the relative error between the full and asymptotic models is at most

1% for any wavelength λ0 ∈ [400, 1000] nm. On the other hand, for the p-polarized incidence

case, the relative error was usually less than 5% but could be as high as 15%.

In Figure 1.5 we display the values of absorptances, computed with the asymptotic model,

versus the ratio λ0/L for different values of δ/L > 0, with h = 4.42 nm. We also present the

exact solution for δ = 0. These results show that the asymptotic model predicts the absorptance,

including resonances, for a shallow sawtooth grating quite well for incident wave of either linear

polarization state.

We have also calculated absorptances (not displayed) with the full model for comparison. For

s polarization, the results from the full and the asymptotic models do not differ by more than

1%. For p-polarization, the results of both models agree within 5% in almost the entire spectral

regime of interest. The only difference is that the Ap-peaks calculated with the full model are

shifted between 1% and 2% with respect to the Ap-peaks calculated with the asymptotic model,

the shifts being smaller for lower δ.

Figure 1.5: Absorptances As and Ap versus λ0/L for δ/L ∈ {0, 0.00195, 0.00391, 0.00781}, when

h/L = 0.011. Top panel: s polarization. Bottom panel: p polarization (figure produced by au-

thor).
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1.4 Extension for Γ curved

The asymptotic model can be generalized to the case of

Γ = {r ∈ R3 : 0 < x < L, |y| <∞, z = f(x)}

being a curved surface instead of a plane, with the surfaces Γ± still defined through equa-

tions (1.2.2). The generalization is useful for application to a large-amplitude smooth grating

perturbed by a thin grating with a smaller period [38].

The domain Ω is subdivided into the following three non-overlapping regions:

Ω− =
{
r ∈ R3 : 0 < x < L, |y| <∞, −Lm + f(x)− δ

2 < z < f(x)− δ
2

}

Ωδ =
{
r ∈ R3 : 0 < x < L, |y| <∞, f(x)− δ

2 < z < f(x) + δ
2

}

Ω+ =
{
r ∈ R3 : 0 < x < L, |y| <∞, f(x) + δ

2 < z < f(x) + δ
2 + Ld

}




. (1.4.1)

Figure 1.6 shows an example of the unit cell wherein the surfaces Γ and Γ± are non-planar.

Figure 1.6: Analogous to Figure 1.1 but the surfaces Γ, Γ−, and Γ+ are surfaces nonplanar (figure

produced by author).

Let us suppose that Γ is parameterized as Γ = {(s, f(s)), s ∈ [0, L]}. Then, the curvature of

Γ is defined as

C(s) =

[
1 +

(
df(s)

ds

)2
]−3/2

d2f(s)

ds2
∀s ∈ [0, L]. (1.4.2)

We observe that the boundary-value problem described in Section 1.2 corresponds to f(x) =

0.

Now, instead of working with the Cartesian coordinate system, we map the point (x, z)

to a point (s, ν) in the curvilinear system inspired by the nonplanar Γ. In order to find this

mapping, we take (s, f(s)) ∈ Γ, and denote by ν(s) the normal to Γ at that point. Then, we

write (s, f(s)) + νν(s) = (x(s, ν), z(s, ν)) for s ∈ [0, L] and ν ∈ [− δ
2 ,

δ
2 ]. In this case, r =

x(s, ν)ûx + yûy + z(s, ν)ûx ∈ Ωδ and the change of variable to scale the domain Ωδ is ξ =
ν

δ
.

In addition, we need u(r±ρν(s)) evaluated at r ∈ Γ in the limit ρ→ 0. The latter function can
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be obtained using the operator

D =

∂

∂z
− df(s)

ds
∂
∂s

[
1 +

(
df(s)

ds

)2
]1/2

. (1.4.3)

We set

εr(s) =
1

δ

∫ δ
2

− δ
2

εr(x(s, ν), z(s, ν))dν,

and define Bδ(s) and bδ(s) analogously to the quantities defined in equations (1.2.24). Hence,

writing the differential operators in this curvilinear coordinate system and considering the chain

rule for the scaled variable ξ, equation (1.2.21) yields

1

A(s, ξ)

∂

∂s

(
Bδ(s)

A(s, ξ)

∂ũδ(s, ξ)

∂s

)
+

δ−2

A(s, ξ)

∂

∂ξ

(
A(s, ξ)Bδ(s)

∂ũδ(s, ξ)

∂ξ

)
+k2

0b
δ(s)ũδ(s, ξ) = 0, r̃ ∈ Ω̃δ,

(1.4.4)

where A(s, ξ) = 1 + δξC(s). Then, for each r̃ ∈ Ω̃δ, the analog of (1.2.27) is

∂
∂ξ

(
Bδ(s)

∂ũδj (s,ξ)

∂ξ

)
+

[
3ξC(s) ∂∂ξ

(
Bδ(s)

∂ũδj−1(s,ξ)

∂ξ

)
+ C(s)Bδ(s)

∂ũδj−1(s,ξ)

∂ξ

]

+

[
3ξ2C(s)2 ∂

∂ξ

(
Bδ(s)

∂ũδj−2(s,ξ)

∂ξ

)
+ 2ξC(s)2Bδ(s)

∂ũδj−2(s,ξ)

∂ξ + ∂
∂s

(
Bδ(s)

∂ũδj−2(s,ξ)

∂s

)
+ k2

0b
δ(s)ũδj−2(s, ξ)

]

+

[
ξ3C(s)3 ∂

∂ξ

(
Bδ(s)

∂ũδj−3(s,ξ)

∂ξ

)
+ ξ2C(s)3Bδ(s)

∂ũδj−3(s,ξ)

∂ξ + ξC(s) ∂∂s

(
Bδ(s)

∂ũδj−3(s,ξ)

∂s

)

−ξC ′(s)Bδ(s)
∂ũδj−3(s,ξ)

∂s + 3ξC(s)k2
0b
δ(s)ũδj−3(s, ξ)

]
+ 3ξ2C(s)2k2

0b
δ(s)ũδj−4(s, ξ)

+ ξ3C(s)3k2
0b
δ(s)ũδj−5(s, ξ) = 0, r̃ ∈ Ω̃δ, j ∈ {0, 1, ....} .

(1.4.5)

Moreover, most of the equations grouped as equations (1.2.34) remain unchanged, except for

[BDϕ1] (s) = −
(
∂
∂s

(
Bδ(s) ∂∂s

)
+ k2

0b
δ(s)

)
〈ϕ0〉 (s)− C(s) 〈BDϕ0〉 (s),

[BDϕ2] (s) = −
(
∂
∂s

(
Bδ(s) ∂∂s

)
+ k2

0b
δ(s)

)
〈ϕ1〉 (s)− C(s) 〈BDϕ1〉 (s),




, s ∈ [0, L].

(1.4.6)

Finally, the transmission conditions for u±δ,2 become

[uδ,2] (s) = δ

(
Bδ(s)

)−1

〈BDuδ,2〉 (s)

[BDuδ,2] (s) = −δ
(
∂
∂s

(
Bδ(s) ∂∂s

)
+ k2

0b
δ(s)

)
〈uδ,2〉 (s)− δC(s) 〈Duδ,2〉 (s)




, s ∈ [0, L].

(1.4.7)

Clearly, equations (1.2.25), (1.2.34)4, (1.2.34)6, and (1.2.36a) are simplifications for the fore-

going equations for planar Γ (i.e., C(s) = 0∀s ∈ [0, L]).
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1.5 Appendix

1.5.1 Derivation of equations (1.2.33)

From the definition of mean value (1.2.32) and continuity conditions (1.2.30) we have

〈
B
∂ϕj−1

∂z

〉
(x) =

1

2

(
B+

(
x,
δ

2

)
∂ϕ+

j−1

∂z

(
x,
δ

2

)
+B−

(
x,−δ

2

)
∂ϕ−j−1

∂z

(
x,−δ

2

))

=
1

2

(
Bδ(x)

∂ũδj
∂ξ

(
x,

1

2

)
+Bδ(x)

∂ũδj
∂ξ

(
x,−1

2

))
, x ∈ [0, L].

On the other hand, using Barrow’s rule, we have

∫ ξ

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδj(x, τ)

∂τ

)
dτ −

∫ 1
2

ξ

∂

∂τ

(
Bδ(x)

∂ũδj(x, τ)

∂τ

)
dτ

= 2Bδ(x)
∂ũδj
∂ξ

(x, ξ)−Bδ(x)
∂ũδj
∂ξ

(
x,−1

2

)
−Bδ(x)

∂ũδj
∂ξ

(
x,

1

2

)
, x ∈ [0, L], ξ ∈

[
−1

2
,
1

2

]
.

Then, for x ∈ [0, L], ξ ∈
[
−1

2 ,
1
2

]
, we obtain

〈
B
∂ϕj−1

∂z

〉
(x) +

1

2

[∫ ξ

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδj(x, τ)

∂τ

)
dτ −

∫ 1
2

ξ

∂

∂τ

(
Bδ(x)

∂ũδj(x, τ)

∂τ

)
dτ

]

= Bδ(x)
∂ũδj
∂ξ

(x, ξ).

Analogously, for the second equation (1.2.33), from definition of mean value (1.2.32), conti-

nuity conditions (1.2.30) and Barrow’s rule, we have

〈ϕj〉 (x) +
1

2

[∫ ξ

− 1
2

∂ũδj
∂τ

(x, τ) dτ −
∫ 1

2

ξ

∂ũδj
∂τ

(x, τ) dτ

]

=
1

2

(
ϕ+
j

(
x,
δ

2

)
+ ϕ−j

(
x,−δ

2

))
+

1

2

[∫ ξ

− 1
2

∂ũδj
∂τ

(x, τ) dτ −
∫ 1

2

ξ

∂ũδj
∂τ

(x, τ) dτ

]

=
1

2

(
ũδj

(
x,

1

2

)
+ ũδj

(
x,−1

2

))
+

1

2

[
2ũδj (x, ξ)− ũδj

(
x,−1

2

)
− ũδj

(
x,

1

2

)]

= ũδj (x, ξ) .
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For the third equation (1.2.33), using Barrow’s rule, continuity conditions (1.2.30) and the

definition of jump (1.2.32), we have
∫ 1

2

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδj+1(x, τ)

∂τ

)
dτ = Bδ(x)

∂ũδj+1

∂ξ

(
x,

1

2

)
−Bδ(x)

∂ũδj+1

∂ξ

(
x,−1

2

)

= B+

(
x,
δ

2

)
∂u+

δ

∂z

(
x,
δ

2

)
−B−

(
x,−δ

2

)
∂u−δ
∂z

(
x,−δ

2

)

=

[
B
∂ϕj
∂z

]
(x).

Proceeding as in the previous step, we obtain
∫ 1

2

− 1
2

∂ũδj
∂τ

(x, τ)dτ = ũδj

(
x,

1

2

)
− ũδj

(
x,−1

2

)

= ϕ+
j

(
x,
δ

2

)
− ϕ−j

(
x,−δ

2

)

= [ϕj ] (x).

1.5.2 Derivation of equations (1.2.34)

Equations for j=0

For j = 0, (1.2.27) reduces to

∂

∂ξ

(
Bδ(x)

∂ũδ0(x, ξ)

∂ξ

)
= 0, r̃ ∈ Ω̃δ. (1.5.1)

This implies that Bδ(x)
∂ũδ0
∂ξ (x, ξ) is a function that does not depend of ξ in Ω̃δ. From conti-

nuity conditions (1.2.30) we have

Bδ(x)
∂ũδ0
∂ξ

(
x,±1

2

)
= 0, x ∈ [0, L].

Thus,
∂ũδ0
∂ξ

(x, ξ) = 0, x ∈ [0, L], ξ ∈
[
−1

2
,
1

2

]
, (1.5.2)

and then

[ϕ0] (x) =

∫ 1
2

− 1
2

∂ũδ0
∂τ

(x, τ) dτ = 0. (1.5.3)

Analogously, for j = 1, (1.2.27) reduces to

∂

∂ξ

(
Bδ(x)

∂ũδ1(x, ξ)

∂ξ

)
= 0, r̃ ∈ Ω̃δ. (1.5.4)

Thus, [
B
∂ϕ0

∂z

]
(x) =

∫ 1
2

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδ1(x, τ)

∂τ

)
dτ = 0. (1.5.5)
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Equations for j=1

Using the relation

Bδ(x)
∂ũδ1
∂ξ

(x, ξ) =

〈
B
∂ϕ0

∂z

〉
(x)+

1

2

[∫ ξ

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδ1(x, τ)

∂τ

)
dτ −

∫ 1
2

ξ

∂

∂τ

(
Bδ(x)

∂ũδ1(x, τ)

∂τ

)
dτ

]

and (1.5.4), we have

∂ũδ1
∂ξ

(x, ξ) =

(
Bδ(x)

)−1〈
B
∂ϕ0

∂z

〉
(x), x ∈ [0, L], ξ ∈

[
−1

2
,
1

2

]
. (1.5.6)

Then,

[ϕ1] (x) =

∫ 1
2

− 1
2

∂ũδ1
∂τ

(x, τ)dτ =

(
Bδ(x)

)−1〈
B
∂ϕ0

∂z

〉
(x). (1.5.7)

For the jump of B ∂ϕ1

∂z we use (1.2.27) for j = 2:

∂

∂ξ

(
Bδ(x)

∂ũδ2(x, ξ)

∂ξ

)
= −

(
∂

∂x

(
Bδ(x)

∂ũδ0(x, ξ)

∂x

)
+ k2

0b
δ(x)ũδ0(x, ξ)

)
, r̃ ∈ Ω̃δ. (1.5.8)

In turn, from (1.5.2) and the relation

ũδ0(x, ξ) = 〈ϕ0〉 (x) +
1

2

(∫ ξ

− 1
2

∂ũδ0
∂τ

(x, τ) dτ −
∫ 1

2

ξ

∂ũδ0
∂τ

(x, τ) dτ

)
,

we have

ũδ0(x, ξ) = 〈ϕ0〉 (x), x ∈ [0, L], ξ ∈
[
−1

2
,
1

2

]
. (1.5.9)

Thus, from (1.5.8) and (1.5.9), we have

∂

∂ξ

(
Bδ(x)

∂ũδ2(x, ξ)

∂ξ

)
= −

(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k2

0b
δ(x)

)
〈ϕ0〉 (x), x ∈ [0, L], ξ ∈

[
−1

2
,
1

2

]

(1.5.10)

and then

[
B
∂ϕ1

∂z

]
(x) =

∫ 1
2

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδ2(x, τ)

∂τ

)
dτ = −

(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k2

0b
δ(x)

)
〈ϕ0〉 (x).

(1.5.11)

Equations for j=2

Using the relation

Bδ(x)
∂ũδ2
∂ξ

(x, ξ) =

〈
B
∂ϕ1

∂z

〉
(x)+

1

2

[∫ ξ

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδ2(x, τ)

∂τ

)
dτ −

∫ 1
2

ξ

∂

∂τ

(
Bδ(x)

∂ũδ2(x, τ)

∂τ

)
dτ

]
,
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and (1.5.10), we have

Bδ(x)
∂ũδ2
∂ξ

(x, ξ) =

〈
B
∂ϕ1

∂z

〉
(x)− 1

2

[∫ ξ

− 1
2

dτ −
∫ 1

2

ξ
dτ

](
∂

∂x

(
Bδ

∂

∂x

)
+ k2

0bδ

)
〈u0〉 (x)

=

〈
B
∂ϕ1

∂z

〉
(x)− ξ

(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k2

0bδ(x)

)
〈ϕ0〉 (x).

Then,

[ϕ2] (x) =

∫ 1
2

− 1
2

∂ũδ2
∂τ

(x, τ)dτ

=

∫ 1
2

− 1
2

(
Bδ(x)

)−1 [〈
B
∂ϕ1

∂z

〉
(x)− τ

(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k2

0b
δ(x)

)
〈u0〉 (x)

]
dτ

=

(
Bδ(x)

)−1〈
B
∂ϕ1

∂z

〉
(x). (1.5.12)

To determine the jump of B ∂ϕ2

∂z we use equation (1.2.27) for j = 3:

∂

∂ξ

(
Bδ(x)

∂ũδ3(x, ξ)

∂ξ

)
= −

(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k0bδ(x)

)
ũδ1(x, ξ), r̃ ∈ Ω̃δ. (1.5.13)

In turn, from (1.5.6) and the relation

ũδ1(x, ξ) = 〈ϕ1〉 (x) +
1

2

(∫ ξ

− 1
2

∂ũδ1
∂τ

(x, τ) dτ −
∫ 1

2

ξ

∂ũδ1
∂τ

(x, τ) dτ

)
,

we have

ũδ1(x, ξ) = 〈ϕ1〉 (x) +

(
Bδ(x)

)−1〈
B
∂ϕ0

∂z

〉
(x)ξ, x ∈ [0, L], ξ ∈

[
−1

2
,
1

2

]
. (1.5.14)

Thus, from (1.5.13) and (1.5.14), we have

∂

∂ξ

(
Bδ(x)

∂ũδ3(x, ξ)

∂ξ

)
=

(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k0bδ(x)ξ

)(
〈ϕ1〉 (x) +

(
Bδ(x)

)−1〈
B
∂ϕ0

∂z

〉
(x)

)

(1.5.15)

and then

[
B
∂ϕ2

∂z

]
(x) =

∫ 1
2

− 1
2

∂

∂τ

(
Bδ(x)

∂ũδ3(x, τ)

∂τ

)
dτ = −

(
∂

∂x

(
Bδ(x)

∂

∂x

)
+ k0bδ(x)

)
〈ϕ1〉 (x).

(1.5.16)



Chapter 2

A second asymptotic model for thin

grating problems

2.1 Introduction

In the previous chapter we have devised an asymptotic model for calculating electromag-

netic diffraction and absorption in planar multilayered structures having a shallow surface-relief

grating. Our numerical results demonstrated that when we truncate the asymptotic expansion

of the solution to second order terms, we obtain, for s-polarization, third-order convergence

with respect to the thickness δ of the grating layer, and at least second-order convergence for

p-polarization. Nevertheless it was not possible to develop the mathematical framework to ob-

tain theoretical error estimates for this approach. For this reason, in this chapter, we describe

a different asymptotic model where an error analysis can be obtained based on the arguments

from [14]. Far from the grating, we again assume that the solution can be written as a power

series in terms of δ. The coefficients of this expansion are smooth up to the grating. However,

the series expansion approximates the solution only sufficiently far from the grating (far field

approximation). Near the grating, we assume that there exists another expansion in powers of δ.

Moreover, there is an overlapping domain, where both expansions are valid. The method is based

on matching these two expansions on a thin overlapping zone. In this alternative approach, if

we truncate the asymptotic expansion of the solution to first order terms, under appropriate

assumptions, we can prove second order convergence of the error with respect to δ.

The disadvantage of this new approach is that terms of order δ2 are neglected in the asymp-

totic expansion, in contrast with the model in Chapter 3, where the neglected terms were of

order δ3. This is due to the fact that it is not possible to obtain an explicit expression for the

transmission conditions associated to second order terms and that is the reason why we could

not include them in the asymptotic expansion. The advantage, as mentioned before, is that we

can provide theoretical error estimates.

This chapter is organized as follows. In Section 2.2 we describe the boundary-value pro-

blem. In Section 2.3 we formulate the asymptotic model. In Section 2.4 we prove error estimates

for the asymptotic expansion of the solution. In Section 2.5 we introduce alternative transmi-

40
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ssion conditions in order to implement the method. Finally in Section 2.6, we report numerical

examples.

2.2 Model Problem

The free-space wavenumber, the free-space wavelength, and the intrinsic impedance of the

free space are denoted by k0 := ω
√
ε0µ0, λ0 := 2π/k0, and η0 :=

√
µ0/ε0, respectively, with

µ0 > 0 being the permeability and ε0 > 0 the permittivity of free space. The relative electric

permittivity εr is a complex-valued piecewise constant function specified below. In this chapter

vectors are written in boldface, Cartesian unit vectors are identified as ûx, ûy and ûz and the

position vector reads r = xûx + yûy + zûz.

The solar-cell structure is assumed to occupy the region

Φ := {r ∈ R3 : |x| <∞, |y| <∞, −Lm < z < Ld}.

Within this region the relative permittivity εr(x, z) = εr(x±mL, z), m ∈ Z = {0,±1,±2, ...}
is a function of x ∈ (−∞,∞) with period L and also varies with z ∈ (−Lm, Ld) but not with

y ∈ (−∞,∞). The half spaces {r ∈ R3 : |x| < ∞, |y| < ∞, z < −Lm} and {r ∈ R3 : |x| <
∞, |y| <∞, z > Ld} are occupied by air; hence, the relative permittivity is given by εr(x, z) ≡ 1

in both half spaces.

Figure 2.1: Vertical section of the domain Ω̃ (figure produced by author).

We denote by

Ω̃ := {r ∈ R3 : 0 < x < L, |y| <∞, −Lm < z < Ld} ⊂ Φ,

Γ̃+ := {r ∈ R3 : 0 < x < L, |y| <∞, z = Ld},
Γ̃− := {r ∈ R3 : 0 < x < L, |y| <∞, z = −Lm}.

A section for y fixed of the domain is shown schematically in Fig. 2.1.

The region (0, L)×R× (δ/2, Ld) is occupied by an isotropic homogeneous dielectric material

of relative permittivity ε+
r . The region (0, L)×R× (−Lm,−δ/2) is occupied by a homogeneous
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metal of relative permittivity ε−r . In the middle region (0, L)×R× (−δ/2, δ/2) we assume that

the relative permittivity εgr varies only with x.

In summary we have the assumption:

Assumption 2.2.1 The relative permittivity of the entire structure is given by

εr(x, z) :=





ε+
r , (x, z) ∈ (0, L)×

(
δ
2 , Ld

)

εgr(x), (x, z) ∈ (0, L)×
(
− δ

2 ,
δ
2

)

ε−r , (x, z) ∈ (0, L)×
(
−Lm,− δ

2

)
, (2.2.1)

Moreover, we assume εgr to be a bounded function with bounded derivatives of any order with

respect to x for all z ∈ [−Lm, Ld].

Figure 2.2: Vertical section of a domain with a metallic corrugation (figure produced by author).

In applications, for instance in [57], on the surface of the metal, a metallic corrugation of

height δ and width L1 is considered as Figure 2.2 shows. In such a case, the region ((L −
L1)/2, (L + L1)/2) × R × (−δ/2, δ/2) has also relative permittivity ε−r . In addition, the region

(0, (L − L1)/2) ∪ ((L + L1)/2, L) × R × (−δ/2, δ/2) is occupied by the dielectric material with

permittivity ε+
r . Namely,

εgr(x) =





ε+
r , x ∈

(
0, L−L1

2

)
∪ (L+L1

2 , L),

ε−r , x ∈
(
L−L1

2 , L+L1
2

)
.

In this case the function εgr is piecewise constant. Let us remark that this kind of functions

are not included in our theoretical analysis. In fact, for the latter, we will have to assume that εgr
is a smooth function of x (actually, a function with bounded second derivatives). Nevertheless,

our numerical experiments show that the proposed strategy works fine for piecewise constant

functions εgr as those appearing in applications.
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Also, in applications, a coefficient εgr that depends on z may appear. For instance, in the

previous chapter, we consider the sawtooth grating, which corresponds to an εgr depending on

z. In such a case, it would be possible to replace εgr by an appropriate average as in (1.2.23).

However, such a case do not lie in our theoretical framework and would need of an alternative

analysis.

2.2.1 Scalar Equations and Boundary Conditions

The time-harmonic form of the Maxwell equations is given by

∇×E(r) = iωµ0H(r),

∇×H(r) = −iωε0εr(x, z)E(r),

}
r ∈ Ω̃. (2.2.2)

The boundary Γ̃+ of the solar-cell structure is illuminated by an obliquely incident plane

wave whose electric field phasor is given by

Einc(r) = [asûy + ap(ûx cos θ + ûz sin θ)] exp {ik0 [x sin θ − (z − Ld) cos θ]} , z ≥ Ld, (2.2.3)

and the corresponding magnetic field phasor by

H inc =
1

iωµ0
∇×Einc, z ≤ 0, (2.2.4)

where θ is the angle of incidence with respect to the z axis, as is the amplitude of the s-polarized

component, and ap the amplitude of the p-polarized component.

Figure 2.3: Domain Ω (figure produced by author).
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Since all the quantities do not depend on y, these equations can be written in any section

for y fixed. With this aim we define (see Fig. 2.3.)

Ω :=
{

(x, y) ∈ R2 : 0 < x < L, −Lm < z < Ld
}
⊂ Φ,

Γ+ := {(x, y) ∈ Ω : z = Ld} ,
Γ− := {(x, y) ∈ Ω : z = −Lm} ,
Ω+
δ :=

{
(x, y) ∈ Ω : δ

2 < z < Ld
}
,

Ωδ :=
{

(x, y) ∈ Ω : − δ
2 < z < δ

2

}
,

Ω−δ :=
{

(x, y) ∈ Ω : −Lm < z < − δ
2

}
,

and recall that, by virtue of (2.2.1)

εr(x, z) :=





ε+
r , (x, z) ∈ Ω+

δ

εgr(x), (x, z) ∈ Ωδ

ε−r , (x, z) ∈ Ω−δ

. (2.2.5)

After decoupling the s- and p-polarization states, since the fields do not depend on y,

Eqs. (2.2.2) reduce to the Helmholtz equation

∇ • [B(x, z)∇u(x, z)] + k2
0b(x, z)u(x, z) = 0, (x, z) ∈ Ω, (2.2.6)

where

u(x, z) = Ey(x, z), B(x, z) = 1, b(x, z) = εr(x, z), (2.2.7)

for the s-polarization state, and

u(x, z) = −η0Hy(x, z), B(x, z) = 1
εr(x,z)

, b(x, z) = 1, (2.2.8)

for the p-polarization state.

The data of each of these two problems are computed from the corresponding components

of the incident plane wave (2.2.3):

uinc(x, z) =

{
as exp{ik0[x sin θ − (z − Ld) cos θ]}, for the s-polarization,

ap exp{ik0[x sin θ − (z − Ld) cos θ]}, for the p-polarization.
(2.2.9)

The total field u also satisfies the following relations

{
B(x, z)∂u∂z (x, z) = T−u(x, z) on Γ−,

B(x, z)∂u∂z (x, z)−B(x, z)∂uinc∂z (x, z) = T+(u(x, z)− uinc(x, z)) on Γ+,
(2.2.10)

where T− and T+ are the corresponding Dirichlet to Neumann Operator (see [13]).
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In addition, u(x, z) satisfies the quasi-periodicity conditions

u(L, z) = exp(iαL)u(0, z),

∂u
∂x(L, z) = exp(iαL)∂u∂x(0, z),

}
z ∈ (−Lm, Ld), (2.2.11)

where α := k0 sin θ.

Altogether, we arrive at the following problem





∇ • (B(x, z)∇u(x, z)) + k2
0b(x, z)u(x, z) = 0 in Ω,

u(L, z) = eiαLu(0, z), z ∈ (−Lm, Ld),
∂u
∂x(L, z) = eiαL ∂u∂x(0, z), z ∈ (−Lm, Ld),
B(x, z)∂u∂z (x, z) = T−u(x, z) on Γ−,

B(x, z)∂u∂z (x, z)−B(x, z)∂uinc∂z (x, z) = T+(u(x, z)− uinc(x, z)) on Γ+,

(2.2.12)

Next step is to write a variational formulation of this problem. With this end we define

H1
α(Ω) := {v ∈ H1(Ω) : v(L, z) = eiαLv(0, z)}

By testing the first equation in (2.2.12) with v ∈ H1
α(Ω) and integrating by parts, we obtain

the following problem: Find u ∈ H1
α(Ω) such that

a(u, v) = L(v), ∀ v ∈ H1
α(Ω), (2.2.13)

where

a(v, w) :=

∫

Ω

(
B∇v • ∇w − k2

0bvw
)
dx−

∫

Γ+

T+vw ds−
∫

Γ−
T−vw ds, v, w ∈ H1

α(Ω),

L(v) :=

∫

Γ+

(
B
∂uinc
∂z

− T+uinc

)
v ds, v ∈ H1

α(Ω).





(2.2.14)

Assumption 2.2.2 We assume that the problem (2.2.13) is well posed for all but at most a

sequence of countable frequencies ωj with |ωj | → +∞. In such a case, we consider only ω 6= ωj.

Then, there exists a constant C > 0 such that

‖v‖H1(Ω) ≤ C sup
w∈H1

α(Ω),w 6=0

|a(v, w)|
‖w‖H1(Ω)

∀ v ∈ H1
α(Ω). (2.2.15)

Moreover, we assume that C is independent of δ.
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2.3 Asymptotic Model

Figure 2.4: Decomposition of the domain Ω (figure produced by author).

For the asymptotic model we will consider an alternative partition of the domain Ω = Ω+∪Ω−

where
Ω+ := (0, L)× (0, Ld),

Ω− := (0, L)× (−Lm, 0).
(2.3.1)

Moreover, the relative permittivity εr is now assumed to be now

εr(x, z) :=

{
ε+
r , (x, z) ∈ Ω+

ε−r , (x, z) ∈ Ω−
. (2.3.2)

We will model the behavior on the grating layer Ωδ by appropriate transmission conditions

on the interface

Γ := (0, L)× {0}. (2.3.3)

For any function v : Ω+ ∪ Ω− → C we will denote v+ := v|Ω+ and v− := v|Ω− , and, in

general, we will identify v with the pair of functions (v+, v−).

Note that B± and b± are constant.

Equations (2.2.12) constitute the full model which we approximate by an asymptotic model

(valid in the limit δ → 0). In the asymptotic model, the approximation of the fields must satisfy

certain approximate transmission conditions (ATCs) across Γ.

Proceeding as in [14] we consider two different expansions of the solution u(x, z): in the far

field zone (|z| � δ/2) and in the near field zone ( |z| ∼ δ/2).

Assumption 2.3.1 Outside of the grating, we assume that u can be expanded in a standard

power series of δ:

u(x, z) =





∞∑

n=0

δnu+
n (x, z), z ≥ δ/2,

∞∑

n=0

δnu−n (x, z), z ≤ −δ/2,
(2.3.4)
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where the far field terms u±n are defined in Ω±. Moreover, we assume that u±n are quasi-periodic

and infinitely smooth in Ω± up to Γ and that u±n can be expanded in a power series with respect

to the z-coordinate around zero, i.e.:

u±n (x, z) =
∑

k∈N

zk

k!

∂ku±n
∂zk

(x, 0), (x, z) ∈ Ω±. (2.3.5)

Assumption 2.3.2 Near the grating, we assume that there exists another expansion, which

after rescaling by δ, can be written as follows:

u(x, z) =

∞∑

n=0

δnUn

(
x,
z

δ

)
, |z| ≤ 2δ, (2.3.6)

where Un(x, ξ) are quasi-periodic continuous functions in [0, L]× [−2, 2] with B(x, δξ)∂Un∂ξ (x, ξ)

also continuous. Furthermore, we assume that Un are infinitely smooth for 1
2 ≤ |ξ| ≤ 2.

In what follows, we will consider auxiliary zones where both expansions hold true. This zones

should be disjoint with the grating layer but they should approach the interface Γ when δ goes

to zero. Because of this, we define the following overlapping zones, where expansions (2.3.4) and

(2.3.6) are valid.

C+
δ := (0, L)× (δ, 2δ),

C−δ := (0, L)× (−2δ,−δ).

2.3.1 Far fields equations

To derive the equations satisfied by the far field terms u±n , we insert the asymptotic expansion

(2.3.4) into Eqs. (2.2.12) and extend the equation to the whole Ω±. Then, equating the terms

having the same powers of δ we obtain:





∇ •
(
B±∇u±n (x, z)

)
+ k2

0b
±u±n (x, z) = 0 in Ω±,

u±n (L, z) = eiαLu±n (0, z) z ∈ (−Lm, Ld) ,
∂u±n
∂x

(L, z) = eiαL
∂u±n
∂x

(L, z) z ∈ (−Lm, Ld) ,

B−
∂u−n
∂z

(x, z) = T−u−n (x, z) on Γ−,

B+∂u
+
0

∂z
(x, z)−B+∂uinc

∂z
(x, z) = T+(u+

0 (x, z)− uinc(x, z)),

B+∂u
+
n

∂z
(x, z) = T+u+

n (x, z), n ≥ 1





on Γ+.

(2.3.7)
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The variational statement of the problem (2.3.7) is to find (u−n , u
+
n ) ∈ H1

α(Ω−) × H1
α(Ω+)

such that
∫

Ω−

(
B−∇u−n • ∇v− − k2

0b
−u−n v−

)
dx+

∫

Ω+

(
B+∇u+

n
• ∇v+ − k2

0b
+u+

n v
+
)
dx

−
∫

Γ−
T−u−n v− ds−

∫

Γ+

T+u+
n v

+ ds−
∫

Γ
B−

∂u−n
∂z

v− ds+

∫

Γ
B+∂u

+
n

∂z
v+ ds

=





∫

Γ+

(
B+∂uinc

∂z
− T+uinc

)
v ds n = 0,

0 n ≥ 1,
∀ (v−, v+) ∈ H1

α(Ω−)×H1
α(Ω+).

Note that to determine u±n entirely, we need to prescribe the transmission conditions on Γ.

2.3.2 Near fields equations

To determine the transmission conditions, we will resort to an asymptotic expansion based

on the original partition of the domain Ω into the subdomains Ω+
δ , Ωδ and Ω−δ (see (2.2.1)).

With this aim, we rescale the solution u of problem (2.2.13) with respect to the thickness of the

grating layer by changing the variable z to ξ := z
δ . Then, to any function U(x, ξ) we associate

the function

U δ(x, z) := U
(
x,
z

δ

)
. (2.3.8)

For the next calculations, we use the chain rule:

∂U δ

∂z
=

1

δ

∂U

∂ξ
. (2.3.9)

The ansatz (2.3.6) can be rewritten as

u(x, z) =
∑

n∈N
δnU δn(x, z). (2.3.10)

Using the chain rule (2.3.9), we obtain for ξ := z
δ

∇ • [B(x, z)∇U δn(x, z)] + k2
0b(x, z)U

δ
n(x, z)

= 1
δ2

∂
∂ξ

(
B(x, δξ)∂Un(x,ξ)

∂ξ

)
+ ∂

∂x

(
B(x, δξ)∂Un(x,ξ)

∂x

)
+ k2

0b(x, δξ)Un(x, ξ).
(2.3.11)

Since u solves the homogeneous Helmholtz equation (2.2.6) and Un are assumed to be smooth,

then ∑

n∈N
δn
[
∇ • [B∇U δn] + k2

0bU
δ
n

]
= 0. (2.3.12)

Equating the terms from (2.3.11) having the same powers of δ, and using the convention

that U δ` = 0 for ` < 0, we obtain the following equations satisfied by the near field terms Un:
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



∂

∂ξ

(
B(x, δξ)

∂Un(x, ξ)

∂ξ

)
= −

(
∂

∂x

(
B(x, δξ)

∂Un−2(x, ξ)

∂x

)
+ k20b(x, δξ)Un−2(x, ξ)

)
(x, ξ) ∈ (0, L)× (−2, 2) ,

Un(L, ξ) = eiαLUn(0, ξ) ξ ∈ (−2, 2) ,

∂Un
∂x

(L, ξ) = eiαL
∂Un
∂x

(0, ξ) ξ ∈ (−2, 2) .

(2.3.13)

2.3.3 Determination of matching conditions

To determine the terms u−n , u+
n and Un, we need additional matching conditions that will be

obtained from the fact that the far and near fields coincide on the overlapping zones C±δ .

From Assumption 2.3.1 and (2.3.4), outside the grating (in particular in C±δ ) we have that

u(x, z) =

∞∑

n=0

∞∑

k=0

δn
zk

k!

∂ku±n
∂zk

(x, 0). (2.3.14)

For the near field, we want to know the behavior of the terms Un in the overlapping areas,

i.e. for 1 ≤ ξ ≤ 2.

Proposition 2.3.1 There exist infinitely smooth quasi-periodic functions p±n,k such that

Un(x, ξ) =
n+1∑

k=0

p±n,k(x)ξk, x ∈ (0, L), |ξ| ≥ 1/2. (2.3.15)

Let us remark that the equation (2.3.15) is an abbreviated form of writing

Un(x, ξ) =





n+1∑

k=0

p+
n,k(x)ξk, x ∈ (0, L), 1/2 ≤ ξ ≤ 2

n+1∑

k=0

p−n,k(x)ξk, x ∈ (0, L), −2 ≤ ξ ≤ −1/2

(2.3.16)

Proof. We proceed as in [14] in the simpler framework of out problem. The proof is done by

induction on n, considering that, for |ξ| ≥ 1/2, the coefficients B(x, δξ) = B± and b(x, δξ) = b±

are constant:

• For n = 0 and |ξ| ≥ 1/2, the first equation in (2.3.13) reduces to

∂

∂ξ

(
B±

∂U0(x, ξ)

∂ξ

)
= 0.

Then, there exist functions p±0,0(x) and p±0,1(x) such that

U0(x, ξ) = p±0,0(x) + p±0,1(x)ξ, x ∈ (0, L), 1/2 ≤ |ξ| ≤ 2.

Moreover, since we have assumed that Un is infinitely smooth for 1 ≤ |ξ| ≤ 2, we derive

that p±0,0(x) and p±0,1(x) are infinitely smooth too.
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• For n = 1 and |ξ| ≥ 1/2, , the first equation in (2.3.13) reduces to

∂

∂ξ

(
B±

∂U1(x, ξ)

∂ξ

)
= 0.

Then, as above, there exist smooth functions p±1,0(x) and p±1,1(x) such that

U1(x, ξ) = p±1,0(x) + p±1,1(x)ξ, x ∈ (0, L), 1/2 ≤ |ξ| ≤ 2.

• For n = 2 and |ξ| ≥ 1/2, the first equation in (2.3.13) reduces to

∂

∂ξ

(
B±

∂U2(x, ξ)

∂ξ

)
= −

[
∂

∂x

(
B±

∂U0(x, ξ)

∂x

)
+ k2

0b
±U0(x, ξ)

]

= −
[
∂

∂x

(
B±

∂

∂x

(
p±0,0(x) + p±0,1(x)ξ

))
+ k2

0b
±
(
p±0,0(x) + p±0,1(x)ξ

)]

= −
[
B±

∂2p±0,0(x)

∂x2
+ k2

0b
±p±0,0(x) +

(
B±

∂2p±0,1(x)

∂x2
+ k2

0b
±p±0,1(x)

)
ξ

]
.

Then, once more, there exist smooth functions p±2,0(x), p±2,1(x), p±2,2(x) and p±2,3(x) such

that

U2(x, ξ) = p±2,0(x) + p±2,1(x)ξ + p±2,2(x)ξ2 + p±2,3(x)ξ3, x ∈ (0, L), 1/2 ≤ |ξ| ≤ 2.

where,

p±2,2(x) = − 1

2B±

[
B±

∂2p±0,0(x)

∂x2
+ k2

0b
±p±0,0(x)

]

and

p±2,3(x) = − 1

6B±

[
B±

∂2p±0,1(x)

∂x2
− k2

0b
±p±0,1(x)

]
.

The same holds for all n ∈ N.

�
For the near field, we substitute (2.3.15) in (2.3.6) to obtain

u(x, z) =

∞∑

n=0

n+1∑

k=0

δnp±n,k(x)
(z
δ

)k
=

∞∑

n=0

n+1∑

k=0

δn−kp±n,k(x)zk, (x, z) ∈ C±δ . (2.3.17)

The identification of the far field (2.3.14) with the near field (2.3.17) on the overlapping

zones leads to

∞∑

n=0

∞∑

k=0

δn
zk

k!

∂ku±n
∂zk

(x, 0) =
∞∑

n=0

n+1∑

k=0

δn−kp±n,k(x)zk =
∞∑

k=0

∞∑

n=k−1,
n≥0

δn−kp±n,k(x)zk

=
∞∑

k=0

∞∑

j=−1,
j+k≥0

δjp±j+k,k(x)zk, (x, z) ∈ C±δ ,
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where, for each k, we made the change of variable j = n − k. Then, exchanging the order of

summation and identifying the terms with the same power of δ, we conclude that

∞∑

n=0

∞∑

k=0

δnzk
1

k!

∂ku±n
∂zk

(x, 0) =
∞∑

n=−1

∞∑

k=0
n+k≥0

δnzkp±n+k,k(x),

so that, for n = 0, 1, 2, ...

p±n,k(x) =





0 k = n+ 1,

1
k!

∂ku±n−k(x,0)

∂zk
0 ≤ k ≤ n.

(2.3.18)

2.3.4 Truncated asymptotic expansion

Outside the grating, u is approximated by

u(x, z) ≈ u±0 (x, z) + δu±1 (x, z), |z| ≥ δ

2
,

and, inside the grating, by

u(x, z) ≈ U0

(
x,
z

δ

)
+ δU1

(
x,
z

δ

)
, |z| ≤ δ

2
.

In what follows, we details the steps that will lead to approximate differential equations

for u±0 (x, z) + δu±1 (x, z), |z| ≥ δ
2 in Ω±, complemented with expression for the jump and the

average of u0 and u1 on Γ (i.e., at z = 0).

Given v± defined in Ω± we use the following notation for the jump and average:

[v] := v+(x, 0)− v−(x, 0)

〈v〉 := v+(x,0)− v−(x,0)
2 .

Finally, we denote the coefficients on the grating layer as Bg := B
∣∣
Ωδ

and bg := b
∣∣
Ωδ

. We

recall that Bg and bg do not depend on z.

Equations for the first term of the asymptotic expansions

For n = 0, (2.3.13) reduces to

∂

∂ξ

(
B(x, δξ)

∂U0(x, ξ)

∂ξ

)
= 0, (x, ξ) ∈ (0, L)× (−2, 2) (2.3.19)

and (2.3.15) leads to

U0(x, ξ) = p±0,0(x) + p±0,1(x)ξ, x ∈ (0, L), 1/2 ≤ |ξ| ≤ 2. (2.3.20)



2.3. Asymptotic Model 52

Then, from (2.3.18) we have the matching conditions

p±0,0(x) = u±0 (x, 0) and p±0,1(x) = 0. (2.3.21)

Considering that, for |ξ| ≤ 1/2, B(x, δξ) = Bg(x) does not depend on ξ, from the equation

∂

∂ξ

(
Bg(x)

∂U0(x, ξ)

∂ξ

)
= 0

we deduce that there exist functions q0(x) and r0(x) such that

U0(x, ξ) = q0(x) + r0(x)ξ, x ∈ (0, L), |ξ| ≤ 1/2. (2.3.22)

Since U0 is continuous on ξ = −1/2 and ξ = 1/2, we have

U0

(
x, 1

2

+
)

= U0

(
x, 1

2

−) ⇒ p+
0,0(x) + 1

2p
+
0,1(x) = q0(x) + 1

2r0(x),

U0

(
x, −1

2

+
)

= U0

(
x, −1

2

−) ⇒ p−0,0(x)− 1
2p
−
0,1(x) = q0(x)− 1

2r0(x)

(2.3.23)

and since B ∂U0
∂ξ is also continuous on ξ = ±1/2, from (2.3.20)

B+ ∂U0
∂ξ

(
x, 1

2

+
)

= Bg(x)∂U0
∂ξ

(
x, 1

2

−) ⇒ B+p+
0,1(x) = Bg(x)r0(x),

Bg(x)∂U0
∂ξ

(
x, −1

2

+
)

= B− ∂U0
∂ξ

(
x, −1

2

−) ⇒ Bg(x)r0(x) = B−p−0,1(x).

(2.3.24)

Then, from (2.3.24) we obtain

B+p+
0,1(x) = Bg(x)r0(x) = B−p−0,1(x).

Hence, since p±0,1 = 0 (cf. (2.3.21)), we have that b0(x) = 0. Then, from (2.3.23) we have that

p−0,0(x) = p+
0,0(x).

Therefore, (2.3.20), (2.3.21) and (2.3.22) imply

u+
0 (x, 0) = u−0 (x, 0) = U0(x, ξ), |ξ| ≤ 2. (2.3.25)

Note that, in particular, U0 does not depend on ξ. This implies that u0 is continuous across

Γ, so that

[u0](x) = u+
0 (x, 0)− u−0 (x, 0) = 0, (2.3.26)

and for the average we have

〈u0〉(x) =
u+

0 (x, 0) + u−0 (x, 0)

2
= U0(x). (2.3.27)
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Equations for the second term of the asymptotic expansions

For n = 1, (2.3.13) reduces to

∂

∂ξ

(
B(x, δξ)

∂U1(x, ξ)

∂ξ

)
= 0, (x, ξ) ∈ [0, L]× (−2, 2) (2.3.28)

and (2.3.15) leads to

U1(x, ξ) = p±1,0(x) + p±1,1(x)ξ, x ∈ (0, L), 1/2 ≤ |ξ| ≤ 2, (2.3.29)

which is similar to (2.3.19)-(2.3.20). Then, from (2.3.18) we have the matching conditions

u±1 (x, 0) = p±1,0(x),
∂u±0
∂z

(x, 0) = p±1,1(x). (2.3.30)

Therefore, proceeding as in the previous step, we obtain that there exist functions q1(x) and

r1(x) such that

U1(x, ξ) = q1(x) + r1(x)ξ, x ∈ (0, L), |ξ| < 1/2, (2.3.31)

p+
1,0(x) + 1

2p
+
1,1(x) = q1(x) + 1

2r1(x),

p−1,0(x)− 1
2p
−
1,1(x) = q1(x)− 1

2r1(x),

(2.3.32)

and

B+p+
1,1(x) = Bg(x)r1(x) = B−p−1,1(x). (2.3.33)

Then, from (2.3.30) and (2.3.32) we have

u±1 (x, 0) = q1(x)± 1

2
r1(x)∓ 1

2

∂u±0
∂z

(x, 0).

We are now in position to obtain the jump of ∂u0
∂z across Γ. From (2.3.30) and (2.3.33),

[
B
∂u0

∂z

]
(x) = B+∂u

+
0

∂z
(x, 0)−B−∂u

−
0

∂z
(x, 0)

= B+p+
1,1(x)−B−p−1,1(x)

= Bg(x)r1(x)−Bg(x)r1(x)

= 0. (2.3.34)

For the average we have

〈
B
∂u0

∂z

〉
(x) =

1

2

(
B+∂u

+
0

∂z
(x, 0) +B−

∂u−0
∂z

(x, 0)

)

=
1

2

(
B+p+

1,1(x) +B−p−1,1(x)
)

=
1

2
(Bg(x)r1(x) +Bg(x)r1(x))

= Bg(x)r1(x). (2.3.35)
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To obtain the jump of u1 across Γ, we use (2.3.30) and subtract both expressions in(2.3.32).

Then, using (2.3.33) and (2.3.35) we obtain

[u1](x) = u+
1 (x, 0)− u−1 (x, 0)

= p+
1,0(x)− p−1,0(x)

=
1

2
p−1,1(x) +

1

2
p+

1,0(x) + r1(x)

=

[
1

Bg(x)
− 1

2B−
− 1

2B+

]
Bg(x)r1(x)

=

[
1

Bg(x)
− 1

2B−
− 1

2B+

]〈
B
∂u0

∂z

〉
(x). (2.3.36)

Similar steps for the average lead to

〈u1〉(x) =
u+

1 (x, 0) + u−1 (x, 0)

2

=
p+

1,0(x) + p−1,0(x)

2

= q1(x) +
1

4
p−1,1(x)− 1

4
p+

1,1(x)

= U1(x, ξ)− r1(x)ξ +
Bg(x)

4B−
r1(x)− Bg(x)

4B+
r1(x)

= U1(x, ξ)−
[

ξ

Bg(x)
+

1

4B−
− 1

4B+

]〈
B
∂u0

∂z

〉
(x), |ξ| ≤ 1

2
. (2.3.37)

This implies that

U1(x, ξ) = 〈u1〉(x) +

[
ξ

Bg(x)
+

1

4B−
− 1

4B+

]〈
B
∂u0

∂z

〉
(x), |ξ| ≤ 1

2
. (2.3.38)

Equations for the third term of the asymptotic expansions

For n = 2, from (2.3.13) and the fact that U0 does not depend on ξ, we write

∂

∂ξ

(
B(x, δξ)

∂U2(x, ξ)

∂ξ

)
= −

(
∂

∂x

(
B(x, δξ)

∂U0(x)

∂x

)
+ k2

0b(x, δξ)U0(x)

)
, (x, ξ) ∈ (0, L)×(−2, 2) ,

(2.3.39)

and, from (2.3.15),

U2(x, ξ) = p±2,0(x) + p±2,1(x)ξ + p±2,2(x)ξ2, x ∈ [0, L], |ξ| ≥ 1/2. (2.3.40)

From (2.3.18) we have the matching conditions

u±2 (x, 0) = p±2,0(x),
∂u±1
∂z

(x, 0) = p±2,1(x),
1

2

∂2u±0
∂z2

(x, 0) = p±2,2(x). (2.3.41)

Considering that, for |ξ| ≤ 1/2, B(x, δξ) = Bg(x) and b(x, δξ) = bg(x) are functions that do

not depend on ξ, we have

∂

∂ξ

(
Bg(x)

∂U2(x, ξ)

∂ξ

)
= −

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
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and, hence, we derive that there exist functions q2(x) and r2(x) such that

U2(x, ξ) = q2(x)+
r2(x)

Bg(x)
ξ− 1

2Bg(x)

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)Bg(x)U0(x)

)
ξ2, x ∈ (0, L), |ξ| ≤ 1/2

(2.3.42)

Since U2 is continuous on ξ = ±1/2, we have that

U2

(
x,

1

2

+
)

= U2

(
x,

1

2

−)
.

Then, using (2.3.40) and (2.3.42) on ξ = 1/2, we write

p+
2,0(x) +

1

2
p+

2,1(x) +
1

4
p+

2,2(x) = − 1

8Bg(x)

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)

+
1

2Bg(x)
r2(x) + q2(x). (2.3.43)

Analogously,

U2

(
x,
−1

2

+
)

= U2

(
x,
−1

2

−)
,

and

p−2,0(x)− 1

2
p−2,1(x) +

1

4
p−2,2(x) = − 1

8Bg(x)

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)

− 1

2Bg(x)
r2(x) + q2(x). (2.3.44)

From (2.3.43) and (2.3.44)

q2(x) =
1

2
p+

2,0(x) +
1

2
p−2,0(x) +

1

4
p+

2,1(x)− 1

4
p−2,1(x) +

1

8
p+

2,2(x) +
1

8
p−2,2(x)

+
1

8Bg(x)

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
(2.3.45)

and

r2(x) = Bg(x)

[
p+

2,0(x)− p−2,0(x) +
1

2
p+

2,1(x) +
1

2
p−2,1(x) +

1

4
p+

2,2(x)− 1

4
p−2,2(x)

]
(2.3.46)

Remark 2.3.1 Under the Assumption 2.2.1 and 2.2.2, q2(x) and r2(x) are infinitely smooth

functions.

Also, since B ∂U2
∂ξ is continuous on ξ = ±1/2, we have

B+∂U2

∂ξ

(
x,

1

2

+
)

= Bg(x)
∂U2

∂ξ

(
x,

1

2

−)
,

so that differentiating (2.3.40) and (2.3.42) with respect to ξ, we write

B+p+
2,1(x) +B+p+

2,2(x) = −1

2

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
+ r2(x). (2.3.47)
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Analogously,

Bg(x)
∂U2

∂ξ

(
x,
−1

2

+
)

= B−
∂U2

∂ξ

(
x,
−1

2

−)

and

1

2

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
+ r2(x) = B−p−2,1(x)−B−p−2,2(x). (2.3.48)

To obtain the jump of B ∂u1
∂z across Γ, we use (2.3.41) and subtract (2.3.48) from (2.3.47) to

write
[
B
∂u1

∂z

]
(x) = B+∂u

+
1

∂z
(x, 0)−B−∂u

−
1

∂z
(x, 0)

= B+p+
2,1(x)−B−p−2,1(x)

= −1

2

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
−B+p+

2,2(x)

− 1

2

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
−B−p−2,2(x)

= −
(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
−B+p+

2,2(x)−B−p−2,2.

From (2.3.39), by considering that for 1/2 ≤ |ξ| ≤ 2 B(x, δξ) = B± and b(x, δξ) = b±, we

have

∂

∂ξ

(
B±

∂U2(x, ξ)

∂ξ

)
= −

(
∂

∂x

(
B±

∂U0(x)

∂x

)
+ k2

0b
±U0(x)

)
.

Hence, we derive that, there exist functions q±2 (x) and r±2 (x) such that

U2(x, ξ) = q±2 (x) +
r±2 (x)

B±
ξ − 1

2B±

(
∂

∂x

(
B±

∂U0(x)

∂x

)
+ k2

0b
±U0(x)

)
ξ2, |ξ| ≥ 1

2
. (2.3.49)

Identifying (2.3.40) with (2.3.49), we conclude that

p±2,2(x) = − 1

2B±

(
∂

∂x

(
B±

∂U0(x)

∂x

)
+ k2

0b
±(x, ξ)U0(x)

)
.

Then,

[
B
∂u1

∂z

]
(x) = −

(
∂

∂x

([
Bg(x)− B−

2
− B+

2

]
∂

∂x

)
+ k2

0

[
bg(x)− b−

2
− b+

2

])
〈u0〉(x). (2.3.50)
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As our asymptotic model to approximate u outside the grating is

u(x, z) ≈ u±0 (x, z) + δu±1 (x, z), |z| ≥ δ

2
,

and inside the grating is

u(x, z) ≈ U0

(
x,
z

δ

)
+ δU1

(
x,
z

δ

)
, |z| ≤ δ

2
,

we can determine u0 and u1 by solving the problems





∇ •
(
B±(x, z)∇u±0 (x, z)

)
+ k2

0b
±(x, z)u±0 (x, z) = 0 in Ω±,

[u0] (x) = 0 on Γ,
[
B ∂u0

∂z

]
(x) = 0 on Γ,

u±0 (L, z) = eiαLu±0 (0, z) z ∈ (−Lm, Ld) ,
∂u±0
∂x

(L, z) = eiαL
∂u±0
∂x

(0, z) z ∈ (−Lm, Ld) ,

B−
∂u−0
∂z

(x, z) = T−u−0 (x, z) on Γ−,

B+∂u
+
0

∂z
(x, z)−B+∂uinc

∂z
(x, z) = T+(u+

0 (x, z)− uinc(x, z)), on Γ+.

(2.3.51)





∇ •
(
B±(x, z)∇u±1 (x, z)

)
+ k2

0b
±(x, z)u±1 (x, z) = 0 in Ω±,

[u1] (x) =
[

1
Bg − 1

2B− − 1
2B+

] 〈
B ∂u0

∂z

〉
(x) on Γ,

[
B ∂u1

∂z

]
(x) = −

(
∂
∂x

([
Bg(x)− B−

2 − B+

2

]
∂
∂x

)
+ k2

0

[
bg(x)− b−

2 − b+

2

])
〈u0〉(x) on Γ,

u±1 (L, z) = eiαLu±1 (0, z) z ∈ (−Lm, Ld) ,
∂u±1
∂x

(L, z) = eiαL
∂u±1
∂x

(0, z) z ∈ (−Lm, Ld) ,

B±
∂u±1
∂z

(x, z) = T±u±1 (x, z) on Γ±.

(2.3.52)

Subsequently, we can determine U0 and U1 by using the relations

U0(x, ξ) = u0(x, 0),

U1(x, ξ) = 〈u1〉(x) +

[
ξ

Bg(x)
+

1

4B−
− 1

4B+

]〈
B
∂u0

∂z

〉
(x).
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2.4 Error estimates

In practice we compute only the far field, so we are interested in estimating the error between

the exact solution u and its far field approximation

uδ,1(x, z) =

{
u+

0 (x, z) + δu+
1 (x, z), z ≥ δ/2,

u−0 (x, z) + δu−1 (x, z), z ≤ −δ/2.

With this end, we will use the O(δ2) approximation

uδ,2(x, z) =

{
u+

0 (x, z) + δu+
1 (x, z) + δ2u+

2 (x, z), z ≥ δ/2,
u−0 (x, z) + δu−1 (x, z) + δ2u−2 (x, z), z ≤ −δ/2 (2.4.1)

and the corresponding one for the near field:

Uδ,2(x, z) := U δ0 (x, z) + δU δ1 (x, z) + δ2U δ2 (x, z) (2.4.2)

in the neighborhood of the interface Γ. This can be done as in [14] with the help of a smooth

cut-off function χ ∈ C∞(R+) such that

χ(z) =

{
1 for |z| ≤ 1,

0 for |z| ≥ 2

Denoting χδ(z) := χ
(
z
δ

)
, we introduce

ũδ(x, z) = (1− χδ(z))uδ,2(x, z) + χδ(z)Uδ,2(x, z) (2.4.3)

as a global approximate solution. We shall estimate the error u − ũδ as a function of δ. From

the stability estimate,

‖u− ũδ‖H1(Ω) ≤ C sup
v∈H1

α(Ω)
‖v‖1,Ω=1

|a(u− ũδ, v)|. (2.4.4)

So, we need to find a bound for a(u− ũδ, v).

Lemma 2.4.1 For v ∈ H1
α(Ω), we can separate a(u− ũδ, v) as

a(u− ũδ, v) = εmδ (v)− εcδ(v),

where

εmδ (v) :=

∫

Ω
B(∇χδ · ∇v)(uδ,2 − Uδ,2)dx−

∫

Ω
B(∇(uδ,2 − Uδ,2) · ∇χδ)vdx (2.4.5)

is called the matching error and

εcδ(v) := −a(Uδ,2, χδv) (2.4.6)

is called the consistency error.
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Proof. Let v, w ∈ H1
α(Ω). From the definition (2.2.13) of the sesquilinear form a(·, ·) :

a(χδv, w) =

∫

Ω

(
B(∇χδ • ∇w)v +B(∇v • ∇w)χδ − k2

0bχδvw
)
dx,

and

a(v, χδw) =

∫

Ω

(
B(∇v • ∇χδ)w +B(∇v • ∇w)χδ − k2

0bvχδw
)
dx.

Then, we observe that

a(χδv, w) = a(v, χδw) +

∫

Ω
B(∇χδ • ∇w)v dx−

∫

Ω
B(∇v • ∇χδ)w dx. (2.4.7)

Taking into account (2.2.13) and (2.4.7), we obtain

a(u− ũδ, v) = a(u, v)− a(ũδ, v)

= a(u, v)− a((1− χδ)uδ,2 + χδUδ,2, v)

= L(v)− a(uδ,2, v) + a(χδuδ,2, v)− a(χδUδ,2, v)

= L(v)− a(uδ,2, v) + a(uδ,2, χδv)

+

∫

Ω
B(∇χδ • ∇v)uδ,2 dx−

∫

Ω
B(∇uδ,2 • ∇χδ)v dx

− a(Uδ,2, χδv)−
∫

Ω
B(∇χδ • ∇v)Uδ,2 dx+

∫

Ω
B(∇Uδ,2 • ∇χδ)v dx

= L(v)− a(uδ,2, (1− χδ)v)

+

∫

Ω
B(∇χδ • ∇v)(uδ,2 − Uδ,2) dx−

∫

Ω
B(∇(uδ,2 − Uδ,2) • ∇χδ)v dx− a(Uδ,2, χδv).

(2.4.8)

Since, from the equations in (2.3.7),

a(uδ,2, (1− χδ)v) =

∫

Ω

(
B∇uδ,2 • ∇(1− χδ)v − k2

0buδ,2(1− χδ)v
)
dx

−
∫

Γ+

T+uδ,2(1− χδ)v ds−
∫

Γ−
T−uδ,2(1− χδ)v ds

=

∫

Γ+

(
B+∂uinc

∂z
− T+uinc

)
v ds

= L(v),

the first two terms on the right hand side in (2.4.8) cancel each other. As a consequence, (2.4.8)

reduces to

a(u− ũδ, v) =

∫

Ω
B(∇χδ • ∇v)(uδ,2 − Uδ,2) dx−

∫

Ω
B(∇(uδ,2 − Uδ,2) • ∇χδ)v dx− a(Uδ,2, χδv)

= εmδ (v)− εcδ(v).

�
The following estimates are similar to those used in [14]. For the sake of completeness, we

include the corresponding proofs.
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Lemma 2.4.2 Let Oδ := {(x, z) ∈ Ω : |z| ≤ 2δ} be the support of χδ. Then, for all v ∈ H1
α(Ω)

‖v‖L2(Oδ)
≤ C

√
δ‖v‖H1(Ω),

‖v‖L1(Oδ)
≤ Cδ‖v‖H1(Ω),

‖∇v‖L1(Oδ) ≤ C
√
δ‖v‖H1(Ω).

Proof. We use a density argument. Then, for v smooth enough we write

v(x, z) = v(x, 0) +

∫ z

0

∂v

∂z
(x, t) dt ∀ (x, z) ∈ Oδ.

Then,

∫

Oδ

|v(x, z)|2 dx dz ≤ 2

∫

Oδ

|v(x, 0)|2dx dz + 2

∫

Oδ

∣∣∣∣∣

∫ z

0

∣∣∣∣
∂v

∂z
(x, t)

∣∣∣∣
2

dt

∣∣∣∣∣ dx dz ∀(x, z) ∈ Oδ.

(2.4.9)

For the first term we have

∫

Oδ

|v(x, 0)|2 dx dz = 4δ

∫ L

0
|v(x, 0)|2 dx = 4δ‖v‖2L2(Γ) ≤ Cδ‖v‖2H1(Ω)

and for the second integral

∫

Oδ

∣∣∣∣∣

∫ z

0

∣∣∣∣
∂v

∂z
(x, t)

∣∣∣∣
2

dt

∣∣∣∣∣ dx dz ≤ 4δ

∫ L

0

[∫ 2δ

−2δ

∣∣∣∣
∂v

∂z
(x, t)

∣∣∣∣
2

dt

]
dx ≤ Cδ‖∇v‖2L2(Oδ)

≤ Cδ‖v‖2H1(Ω).

Substituting in (2.4.9) we obtain

‖v‖L2(Oδ)
≤ C
√
δ‖v‖H1(Ω).

For the second estimate, from Cauchy-Schwarz inequality and the above estimate we have

‖v‖L1(Oδ) =

∫

Oδ

|v| dx ≤
(∫

Oδ

1 dx

)1/2(∫

Oδ

v2 dx

)1/2

≤ C
√
δ‖v‖L2(Oδ) ≤ Cδ‖v‖H1(Ω).

For the last estimate,

‖∇v‖L1(Oδ)
=

∫

Oδ

|∇v| dx ≤
(∫

Oδ

1 dx

)1/2(∫

Oδ

|∇v|2dx
)1/2

≤ C
√
δ‖v‖H1(Ω).

�
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For the matching error we have the following estimate.

Lemma 2.4.3

εmδ (v) ≤ Cδ2‖v‖H1(Ω) ∀ v ∈ H1
α(Ω). (2.4.10)

Proof. Let v ∈ H1
α(Ω). Let us recall (2.4.5):

εmδ (v) =

∫

Ω
B(∇χδ • ∇v)(uδ,2 − Uδ,2) dx−

∫

Ω
B(∇(uδ,2 − Uδ,2) • ∇χδ)v dx.

Let Cδ := C+
δ ∪ C−δ be the support of ∇χδ. The far field terms un and the near field terms

U δn have been assumed to be C∞(Cδ) (cf. Assumptions 2.2.2 and 2.3.1). Then, from Hölder

inequality,

|εmδ (v)| ≤
∣∣∣∣
∫

Ω
B(∇χδ • ∇v)(uδ,2 − Uδ,2) dx

∣∣∣∣+

∣∣∣∣
∫

Ω
B(∇(uδ,2 − Uδ,2) • ∇χδ)v dx

∣∣∣∣

≤ ‖B‖L∞(Ω) ‖∇χδ‖L∞(R) ‖∇v‖L1(Cδ) ‖uδ,2 − Uδ,2‖L∞(Cδ)

+ ‖B‖L∞(Ω)

∥∥∥∥
∂

∂z
(uδ,2 − Uδ,2)

∥∥∥∥
L∞(Cδ)

∥∥∥∥
∂χδ
∂z

∥∥∥∥
L∞(R)

‖v‖L1(Cδ) (2.4.11)

1. For the cut-off function, since ∇χδ = 1
δ∇χ, we have

‖∇χδ‖L∞(R) =
1

δ
‖∇χ‖L∞(R) ≤

C

δ
(2.4.12)

2. To estimate ‖uδ,2 − Uδ,2‖L∞(Cδ)
, first, for the far field approximation u±δ,2, we use the Taylor

formula with integral remainder for each u±n , n = 0, 1, 2, .... Then, from (2.4.1) we have

u±δ,2(x, z) =

2∑

n=0

δnu±n (x, z) =

2∑

n=0

δn

[
2−n∑

i=0

zi

i!

∂iu±n
∂zi

(x, 0) +

∫ z

0

∂3−nu±n
∂z3−n (x, t)

(z − t)2−n

(2− n)!
dt

]
.

(2.4.13)

For the near field, from (2.3.15) and the matching conditions (2.3.18) in the overlapping

zones we have

U δn(x, z) =
n∑

i=0

zi

δii!

∂iu±n−i
∂zi

(x, 0).

From (2.4.2), and the above expression, we have

Uδ,2(x, z) =
2∑

n=0

δnU δn(x, z) =
2∑

n=0

δn

[
n∑

i=0

zi

δii!

∂iu±n−i
∂zi

(x, 0)

]
=

2∑

n=0

n∑

i=0

δn−i
zi

i!

∂iu±n−i
∂zi

(x, 0)

=

2∑

i=0

2∑

n=i

δn−i
zi

i!

∂iu±n−i
∂zi

(x, 0) =

2∑

i=0

2−i∑

j=0

δj
zi

i!

∂iu±j
∂zi

(x, 0) =

2∑

j=0

2−j∑

i=0

δj
zi

i!

∂iu±j
∂zi

(x, 0).

(2.4.14)
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Then, taking the difference between (2.4.13) and (2.4.14), we obtain

uδ,2 − Uδ,2 =

2∑

n=0

δn
∫ z

0

∂3−nu±n
∂z3−n (x, t)

(z − t)2−n

(2− n)!
dt. (2.4.15)

Now, since the far field terms and their derivatives are bounded in C±δ (cf. Assump-

tion 2.2.2), we can estimate the integral as follows:

∣∣∣∣
∫ z

0

∂3−nu±n
∂z3−n (x, t)

(z − t)2−n

(2− n)!
dt

∣∣∣∣ ≤ Cδ3−n ∀ (x, z) ∈ C±δ . (2.4.16)

Then,

‖uδ,2 − Uδ,2‖L∞(Cδ) ≤ Cδ3. (2.4.17)

3. For
∥∥ ∂
∂z (uδ,2 − Uδ,2)

∥∥
L∞(Cδ)

, differentiating (2.4.15) with respect to z,

∂uδ,2
∂z

(x, z)− ∂Uδ,2
∂z

(x, z) =
1∑

n=0

δn
∫ z

0

∂3−nu±n
∂z3−n (x, t)

(z − t)1−n

(1− n)!
dt.

Since the far fields and their derivatives are bounded in C±δ , we estimate the integral as

follows: ∣∣∣∣
∫ z

0

∂3−nu±n (x, t)

∂z3−n
(z − t)1−n

(1− n)!
dt

∣∣∣∣ ≤ Cδ2−n ∀(x, z) ∈ Cδ. (2.4.18)

Therefore, ∥∥∥∥
∂(uδ,2 − Uδ,2)

∂z

∥∥∥∥
L∞(Cδ)

≤ Cδ2. (2.4.19)

Finally, using (2.4.12), (2.4.17), (2.4.19) and Lemma 2.4.2 to estimate each term in (2.4.11),

we obtain

|εmδ (v)| ≤ C
(
δ5/2 + δ2

)
‖v‖H1(Ω) ≤ Cδ2‖v‖H1(Ω).

�
For the consistency error, we have

εcδ(v) = −a(Uδ,2, χδv)

= −
∫

Ω

[
B∇Uδ,2 • ∇(χδv)− k2

0bUδ,2χδv

]
dx

=

∫

Ω

[
∇ • (B∇Uδ,2) + k2

0bUδ,2

]
χδv dx.

Let us recall (2.4.2):

Uδ,2(x, z) := U δ0 (x, z) + δU δ1 (x, z) + δ2U δ2 (x, z) . (2.4.20)



2.4. Error estimates 63

Then, using (2.3.11) with ξ = z
δ and the first equation from (2.3.13), we obtain

∇ • (B(x, z)∇Uδ,2(x, z))− k2
0b(x, z)Uδ,2(x, z)

=
1

δ2

∂

∂ξ

(
B(x, δξ)

∂U0

∂ξ
(x, ξ)

)
+

1

δ

∂

∂ξ

(
B(x, δξ)

∂U1

∂ξ
(x, ξ)

)
+

∂

∂ξ

(
B(x, δξ)

∂U2

∂ξ
(x, ξ)

)

+
∂

∂x

(
B(x, δξ)

∂U0

∂x
(x, ξ)

)
+ k2

0b(x, δξ)U0(x, ξ)

+δ

(
∂

∂x

(
B(x, δξ)

∂U1

∂x
(x, ξ)

)
+ k2

0b(x, δξ)U1(x, ξ)

)

+δ2

(
∂

∂x

(
B(x, δξ)

∂U2

∂x
(x, ξ)

)
+ k2

0b(x, δξ)U2(x, ξ)

)

= δ

(
∂

∂x

(
B(x, δξ)

∂U1

∂x
(x, ξ)

)
+ k2

0b(x, δξ)U1(x, ξ)

)

+δ2

(
∂

∂x

(
B(x, δξ)

∂U2

∂x
(x, ξ)

)
+ k2

0b(x, δξ)U2(x, ξ)

)

= δ

(
∂

∂x

(
B(x, z)

∂U δ1
∂x

(x, z)

)
+ k2

0b(x, z)U
δ
1 (x, z)

)

+δ2

(
∂

∂x

(
B(x, z)

∂U δ2
∂x

(x, z)

)
+ k2

0b(x, z)U
δ
2 (x, z)

)
.

Therefore, we can write

εcδ(v) = δεc,1δ (v) + δ2εc,2δ (v), (2.4.21)

where

εc,1δ (v) :=

∫

Ω

(
∂

∂x

(
B
∂U δ1
∂x

)
+ k2

0bU
δ
1

)
χδv dx, (2.4.22)

εc,2δ (v) :=

∫

Ω

(
∂

∂x

(
B
∂U δ2
∂x

)
+ k2

0bU
δ
2

)
χδv dx. (2.4.23)

In order to bound these terms we will make use the following results.

Lemma 2.4.4 U δ1 and U δ2 are functions infinitely derivable with respect to x in Oδ and the

x-derivatives are uniformly bounded independently of δ.

Proof. From (2.3.38), we write

U δ1 (x, z) = 〈u1〉(x) +

[
1

4B−
− 1

4B+

]〈
B
∂u0

∂z

〉
(x) +

z

δBg(x)

〈
B
∂u0

∂z

〉
(x), |z| ≤ δ

2
.

Note that B and b are infinitely smooth with respect to x and their x-derivatives are bounded

in Oδ (cf. (2.2.1)). Moreover, u+
0 and u+

1 are assumed to be infinitely smooth with respect x

and with bounded x-derivatives in O+
δ (respectively u−0 and u−1 in O−δ ) up to Γ thanks to

Assumption 2.3.1. This implies that U δ1 is bounded for |z| ≤ δ
2 independently of δ and has

bounded derivatives with respect to x in that domain.
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Moreover, from Assumption (2.3.2) we have that U δ1 and their x-derivatives are bounded for
δ
2 ≤ |z| ≤ 2δ.

To estimate U δ2 , we begin with (2.3.42)

U δ2 (x, z) = q2(x)+
r2(x)

Bg(x)

z

δ
− 1

2Bg(x)

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)Bg(x)U0(x)

)
z2

δ2
|z| ≤ δ

2
.

Therefore, the claimed property holds for U δ2 as a consequence of Remark 2.4.1, (2.3.25) and

the smoothess of u±0 assumed in Assumption 2.3.1.

�
Now we are in a position to estimate (2.4.22) and (2.4.23).

Lemma 2.4.5

|εc,1δ (v)| ≤ Cδ‖v‖H1(Ω), (2.4.24)

|εc,2δ (v)| ≤ Cδ‖v‖H1(Ω). (2.4.25)

Proof. For the first term, we have

εc,1δ (v) =

∫

Oδ

∂

∂x

(
B(x, z)

∂U δ1 (x, z)

∂x

)
χδ(z)v(x, z) dxdz+

∫

Oδ

k2
0b(x, z)U

δ
1 (x, z)χδ(z)v(x, z) dx dz.

Then,

∣∣∣εc,1δ (v)
∣∣∣ ≤

∣∣∣∣
∫

Oδ

∂

∂x

(
B(x, z)

∂U δ1
∂x

(x, z)

)
χδ(z)v(x, z) dxdz

∣∣∣∣+

∣∣∣∣
∫

Oδ

k2
0b(x, z)U

δ
1 (x, z)χδ(z)v(x, z) dx dz

∣∣∣∣

≤ C ‖v‖L1(Oδ)
‖χδ‖L∞(R) ≤ Cδ1/2 ‖v‖L2(Oδ)

≤ Cδ ‖v‖H1(Ω) ,

where we have used the boundedness of the x-derivatives of b and B, and Lemmas 2.4.2 and

2.4.4

On the other hand, for εc,2δ (v), from (2.4.23) we have

εc,2δ (v) =

∫

Oδ

∂

∂x

(
B(x, z)

∂U δ2 (x, z)

∂x

)
χδ(z)v(x, z) dxdz+

∫

Oδ

k2
0b(x, z)U

δ
2 (x, z)χδ(z)v(x, z) dx dz.

Then, the estimate in (2.4.25) can be obtained analogously. �

Remark 2.4.1 For the s-polarization, Bg(x) = B− = B+ = 1. Then, the proof of Lemma 2.4.5

is valid in this case without assuming εgr smooth.
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Proposition 2.4.1 Given γ > 0 there exist constants C > 0 and δγ > 0 such that

‖u− uδ,1‖H1(Ωγ) ≤ Cδ2 ∀ δ < δγ (2.4.26)

where Ω̂γ := {(x, z) ∈ Ω, |z| > γ}.

Proof. From the stability estimate (2.2.15), (2.4.21), Lemmas 2.4.1, 2.4.3 and 2.4.5, we write

‖u− ũδ‖H1(Ω) ≤ C sup
v∈H1

α(Ω)
v 6=θ

|a(u− ũδ, v)|
‖v‖H1(Ω)

= C sup
v∈H1

α(Ω)
v 6=θ

|εmδ (v)− εcδ(v)|
‖v‖H1(Ω)

≤ C sup
v∈H1

α(Ω)
v 6=θ

{|εmδ (v)|+ |εcδ(v)|}
‖v‖H1(Ω)

≤ Cδ2.

Now, given γ > 0, ∃ δγ < γ
2 such that ũδ = uδ,2 in Ω̂γ for all δ < δγ . Then, using that

u±n ∈ H1
α(Ω±δ ) (cf. Assumption 2.2.2), we have

‖u− uδ,1‖H1(Ω̂γ)
≤ ‖u− ũδ‖H1(Ω̂γ)

+ ‖ũδ − uδ,1‖H1(Ω̂γ)
≤ Cδ2 ∀ δ < δγ , (2.4.27)

since

‖ũδ − uδ,1‖H1(Ω̂γ)
≤ δ2‖u+

2 ‖H1(Ω+) + δ2‖u−2 ‖H1(Ω−) ≤ Cδ2.

�

2.5 An alternative asymptotic model

In order to avoid solving separately (2.3.51) and (2.3.52), it is possible to obtain an alternative

asymptotic model for u±0 + δu±1 . With this purpose let us recall that for all x ∈ (0, L)





[u0](x) = 0,
[
B ∂u0

∂z

]
(x) = 0,

[u1] (x) =
[

1
Bg(x) − 1

2B− − 1
2B+

] 〈
B ∂u0

∂z

〉
(x),

[
B ∂u1

∂z

]
(x) = −

(
∂
∂x

([
Bg(x)− B−

2 − B+

2

]
∂
∂x

)
+ k2

0

[
bg(x)− b−

2 − b+

2

])
〈u0〉(x).

(2.5.1)
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Then, substituting u0 by uδ,1 − δu1 we have

[uδ,1](x) = [u0] + δ [u1]

= δ

[
1

Bg(x)
− 1

2B−
− 1

2B+

]〈
B
∂u0

∂z

〉
(x)

= δ

[
1

Bg(x)
− 1

2B−
− 1

2B+

](〈
B
∂uδ,1
∂z

〉
− δ

〈
B
∂u1

∂z

〉)

= δ

[
1

Bg(x)
− 1

2B−
− 1

2B+

]〈
B
∂uδ,1
∂z

〉
− δ2

[
1

Bg(x)
− 1

2B−
− 1

2B+

]〈
B
∂u1

∂z

〉

and
[
B
∂uδ,1
∂z

]
(x) =

[
B
∂u0

∂z

]
+ δ

[
B
∂u1

∂z

]

= −δ
(
∂

∂x

([
Bg(x)− B−

2
− B+

2

]
∂

∂x

)
+ k2

0

[
bg(x)− b−

2
− b+

2

])
〈u0〉

= −δ
(
∂

∂x

([
Bg(x)− B−

2
− B+

2

]
∂

∂x

)
+ k2

0

[
bg(x)− b−

2
− b+

2

])
(〈uδ,1〉 − δ 〈u1〉)

= −δ
(
∂

∂x

([
Bg(x)− B−

2
− B+

2

]
∂

∂x

)
+ k2

0

[
bg(x)− b−

2
− b+

2

])
〈uδ,1〉

+ δ2

(
∂

∂x

([
Bg(x)− B−

2
− B+

2

]
∂

∂x

)
+ k2

0

[
bg(x)− b−

2
− b+

2

])
〈u1〉 .

Since u±0 and u±1 satisfy (2.3.7), so does u±0 + δu±1 . To obtain a well posed problem we must

complement these equations with appropriate jump conditions on Γ. With this end, we use the

two above equations, neglecting the δ2 terms. Therefore, we are lead to the following alternative

problem, whose solution we denote by û±δ,1:





∇ •

(
B±∇û±δ,1(x, z)

)
+ k2

0b
±û±δ,1(x, z) = 0 in Ω±,

[ûδ,1] (x) = δ
[

1
Bg(x) − 1

2B− − 1
2B+

] 〈
B
∂ûδ,1
∂z

〉
(x) on Γ,

[
B
∂ûδ,1
∂z

]
(x) = −δ

(
∂
∂x

([
Bg(x)− B−

2 − B+

2

]
∂
∂x

)
+ k2

0

[
bg(x)− b−

2 − b+

2

])
〈ûδ,1〉 (x) on Γ,

û±δ,1(L, z) = eiαLû±δ,1(0, z) z ∈ (−Lm, Ld) ,
∂û±δ,1
∂x (L, z) = eiαL

∂û±δ,1
∂x (L, z) z ∈ (−Lm, Ld) ,

B−
∂û−δ,1
∂z (x, z) = T−û−δ,1(x, z) on Γ−,

B+ ∂û+
δ,1

∂z (x, z)−B+ ∂uinc
∂z (x, z) = T+(û+

δ,1(x, z)− uinc(x, z)) on Γ+.

(2.5.2)
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Variational Formulation

Our next step is to implement a FEM for this asymptotic model. Then, we need to write a

variational formulation of Eqs. (2.5.2).

We define the Hilbert space:

V :=
{
v ∈ L2(Ω− ∪ Ω+) | v|Ω− ∈ H1

α(Ω−), v|Ω+ ∈ H1
α(Ω+), 〈v〉 ∈ H1

α(Γ)
}

endowed with the norm

‖v‖2V := ‖v‖2H1(Ω−) + ‖v‖2H1(Ω+) + ‖〈v〉‖2H1(Γ) .

Multiplying both sides of the first equation from (2.5.2) by v, with v ∈ V , and integrating

by parts, we obtain

∫

Ω+

(
B+∇û+

δ,1 · ∇v+ − k2
0b

+û+
δ,1v

+
)
dx+

∫

∂Ω+

B+
∂û+

δ,1

∂z
v+ ds

+

∫

Ω−

(
B−∇û−δ,1 · ∇v− − k2

0b
−û−δ,1v

−
)
dx−

∫

∂Ω−
B−

∂û−δ,1
∂z

v− ds = 0. (2.5.3)

Because of the quasi-periodic character of v, the integrals on ∂Ω± reduce to Γ and Γ±. For

the former we have

∫

Γ
B+

∂û+
δ,1

∂z
v+ ds−

∫

Γ
B−

∂û−δ,1
∂z

v− ds =

∫

Γ

[
B
∂ûδ,1
∂z

v

]
ds =

∫

Γ

[
B
∂ûδ,1
∂z

]
〈v〉 ds+

∫

Γ

〈
B
∂ûδ,1
∂z

〉
[v] ds

For the second term on the right hand side above, using the second equation from (2.5.2) we

have 〈
B
∂ûδ,1
∂z

〉
(x) =

1

δ

[
1

Bg(x)
− 1

2B−
− 1

2B+

]−1

[ûδ,1] (x), (2.5.4)

provided
[

1
Bg(x) − 1

2B− − 1
2B+

]
6= 0. Then, using the third equation from (2.5.2) and integrating

by parts,

∫

Γ
B+

∂û+
δ,1

∂z
v+ ds−

∫

Γ
B−

∂û−δ,1
∂z

v− ds

= −δ
∫

Γ

∂

∂x

([
Bg(x)− B−

2
− B+

2

]
∂ 〈ûδ,1〉
∂x

)
〈v〉 ds− δk2

0

∫

Γ

[
bg(x)− b−

2
− b+

2

]
〈ûδ,1〉 〈v〉 ds

+
1

δ

∫

Γ

[
1

Bg(x)
− 1

2B−
− 1

2B+

]−1

[ûδ,1][v]ds,

= δ

∫

Γ

[
Bg(x)− B−

2
− B+

2

]
∂ 〈ûδ,1〉
∂x

∂ 〈v〉
∂x

ds− δk2
0

∫

Γ

[
bg(x)− b−

2
− b+

2

]
〈ûδ,1〉 〈v〉 ds

+
1

δ

∫

Γ

[
1

Bg(x)
− 1

2B−
− 1

2B+

]−1

[ûδ,1][v]ds.
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For the integrals on Γ+ and Γ−, we proceed as we did to derive (2.2.14) and we arrive at

similar terms. Therefore, all together, we are lead to the following weak form of problem (2.5.2):

Find ûδ,1 := (û+
δ,1, û

−
δ,1) ∈ V such that

a(ûδ,1, v) = f(v) ∀ v ∈ V. (2.5.5)

where the sesquilinear form a(·, ·) and the linear functional f(·) are defined by

a(w, v) :=

∫

Ω−

(
B−∇w− · ∇v− − k2

0b
−w−v−

)
dx+

∫

Ω+

(
B+∇w+ · ∇v+ − k2

0b
+w+v+

)
dx

+δ

∫

Γ

[
Bg(x)− B−

2
− B+

2

]
∂ 〈w〉
∂x

∂ 〈v〉
∂x

ds− δk2
0

∫

Γ

[
bg(x)− b−

2
− b+

2

]
〈w〉 〈v〉 ds

+
1

δ

∫

Γ

[
1

Bg(x)
− 1

2B−
− 1

2B+

]−1

[w][v]ds−
∫

Γ±
T±(w±)v± ds,

f(v) := −
∫

Γ+

(
T+(uinc)−B+∂uinc

∂z

)
v+ ds.

Therefore, substituting B and b in terms of the physical parameters we obtain for the p-

polarization what follows:

ap(w, v) :=

∫

Ω±

(
1

ε±r
∇w± · ∇v± − k2

0w
±v±

)
dx+ δ

∫

Γ

[
1

εδr
− 1

2ε−r
− 1

2ε+
r

]
∂ 〈w〉
∂x

∂ 〈v〉
∂x

ds

+
1

δ

∫

Γ

[
εδr −

ε−r
2
− ε+

r

2

]−1

[w][v]ds−
∫

Γ±
T±(w±)v± ds.

This is the asymptotic model whose finite element discretization has been implemented. Let

us recall that this holds true only if
[
εδr − ε−r

2 − ε+r
2

]
6= 0 (the case

[
εδr − ε−r

2 − ε+r
2

]
= 0 can be

treated similarly to what follows).

Equation (2.5.4) makes sense provided
[

1
Bg(x) − 1

2B− − 1
2B+

]
does not vanish. However, for

the s-polarization, Bg(x) = B+ = B− = 1 and this term always vanishes. In such a case, the

second equation from (2.5.2) implies that [ûδ,1] (x) = 0 and this condition must be imposed to

trial and test functions. Therefore, the space V has to be changed in this case by

Ṽ :=
{
v ∈ H1

α(Ω) : v|Γ ∈ H1
α(Γ)

}
.

Therefore, substituting B and b in terms of the physical parameters, we obtain for the s-

polarization what follows: Find ûδ,1 := (û+
δ,1, û

−
δ,1) ∈ Ṽ such that

as(ûδ,1, v) = f(v) ∀ v ∈ Ṽ .

where

as(w, v) =

∫

Ω±

(
∇w± · ∇v± − k2

0ε
±
r w
±v±

)
dx−δk2

0

∫

Γ

[
εδr −

ε−r
2
− ε+

r

2

]
wv ds−

∫

Γ±
T±(w±)v± ds.



2.6. Numerical examples 69

2.6 Numerical examples

In this section, we report the results of some numerical test that demonstrate numerically the

convergence properties of the asymptotic model. We have solved (2.5.5) using standard Lagrange

FEM with third-degree polynomials. For the Dirichlet to Neumann operators T+ and T− we

have used a truncated Fourier expansion approach similar to that in [54].

In the examples that follow we focus on the convergence of the asymptotic model at the fixed

wavelength λ0 = 450 nm. For all examples, we have fixed L = 400 nm, Ld + δ/2 = 131.25 nm,

and Lm + δ/2 = 56.25 nm. We also have fixed θ = 0 deg, since most solar cells are illuminated

normally to maximize photonic absorption. The physical parameters have been taken as in [54],

where further details can be found. As in that reference, we have chosen values of δ between

0.3906 nm and 12.5 nm. Then, the maximum value of δ is 6.67% of the total height Lm +Ld + δ

of the solar-cell structure, and the minimum is 0.22% of the total height.

The domain Ω+ ∪Ω− has been discretized on a triangular mesh with Ne triangles and mesh

size h. For each polarization state q = s or q = p, let û q,hδ,1 denote the approximate values of uq,

delivered by our asymptotic model for a specific choice of h and δ. Then, we have used it to

compute a physical quantity of interest: the so called absorptance Aq,hδ (see for instance [54]).

2.6.1 Example 1: Planar Backreflector

The first test, even though is not interesting from the simulation point of view, allows us

to validate our method and its implementation. We have chosen a planar backreflector and the

material occupying Ωδ with uniform relative permittivity εgr(x, z) ≡ −0.5488 + 0.1663i. For this

problem, the solution uq(x, z), q ∈ {s, p}, of (2.2.6) can be exactly determined everywhere using

a textbook approach [9].

We have computed, for each polarization the relative errors

euq =

(∫

Ω̂γ

|uq − û q,hδ,1 |2 dx dz
)1/2

(∫

Ω̂γ

|uq|2 dx dz
)1/2

and eAq =
|Aq −Aq,hδ |
|Aq| , q ∈ {s, p} . (2.6.1)

We recall that the domain Ω̂γ := {(x, z) ∈ Ω, |z| > γ}. We have chosen γ large enough so

that Ω̂γ and Ωδ do not intersect for any considered value of δ. In particular we have chosen

γ = 12.5 nm and δ ≤ γ.

To evaluate the performance of the asymptotic model with respect to the parameter δ we

display in following Tables values of the relative error euq and eAq (q ∈ {s, p}) while varying

δ and h. In Tables 2.1 and 2.2 for q = s polarization, and in Tables 2.3 and 2.4 for q = p

polarization.

We report in Figure 2.5 error curves for euq and eAq versus δ when h = 4.42 nm. These plots

show that the errors decrease with the order O(δ2).

Next, in order to validate our FEM solver, in Figure 2.6 we display eup versus h for δ =

6.103125e− 03 nm. Standard FEM theory [10] predicts that the rate of convergence of eup must
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Table 2.1: Relative error eus versus δ (nm) and h (nm) for Example 1 (Sec. 2.6.1). The number

Ne of triangular elements is shown in parentheses for each of the five values of h in the table

(table produced by author).

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584) 4.42 (14336) 2.21 (57344)

12.5 5.2675e-02 5.2683e-02 5.5093e-02 5.5093e-02 5.5093e-02

6.25 1.3077e-02 1.3081e-02 1.3081e-02 1.3381e-02 1.3381e-02

3.125 3.2539e-03 3.2564e-03 3.2563e-03 3.2563e-03 3.2935e-03

1.5625 8.1168e-04 8.1214e-04 8.1207e-04 8.1206e-04 8.1205e-04

7.812e-01 2.0886e-04 2.0258e-04 2.0249e-04 2.0248e-04 2.0248e-04

3.906e-01 7.7185e-05 5.0841e-05 5.0657e-05 5.0650e-05 5.0649e-05

1.953e-01 6.1086e-05 1.3245e-05 1.2667e-05 1.2658e-05 1.2658e-05

9.765e-02 6.0182e-05 4.9215e-06 3.1794e-06 3.1644e-06 3.1638e-06

4.8825e-02 6.0172e-05 3.8188e-06 8.3173e-07 7.9152e-07 7.9086e-07

2.44125e-02 6.0176e-05 3.7321e-06 3.1203e-07 1.9875e-07 1.9769e-07

1.220625e-02 6.0174e-05 3.7244e-06 2.4233e-07 5.2073e-08 4.9411e-08

6.103125e-03 6.0172e-05 3.7232e-06 2.3649e-07 1.9636e-08 1.2366e-08

be of order h4. In Figure 2.6 we observe exactly this trend, except for the smallest value of h

where it seems that the asymptotic-model error dominates the FEM error and that is why the

h4 dependence can not be observed for the smaller values of h.
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Table 2.2: Relative error eup versus δ (nm) and h (nm) for Example 1 (Sec. 2.6.1). The number

Ne of triangular elements is shown in parentheses for each of the five values of h in the table

(table produced by author).

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584) 4.42 (14336) 2.21 (57344)

12.5 5.1791e-02 5.1836e-02 5.2522e-02 5.2522e-02 5.2522e-02

6.25 1.2810e-02 1.2841e-02 1.2843e-02 1.2942e-02 1.2942e-02

3.125 3.1718e-03 3.1969e-03 3.1985e-03 3.1987e-03 3.2122e-03

1.5625 7.7631e-04 7.9684e-04 7.9821e-04 7.9831e-04 7.9831e-04

7.812e-01 1.8684e-04 1.9812e-04 1.9933e-04 1.9941e-04 1.9894e-04

3.906e-01 6.7356e-05 4.8715e-05 4.9759e-05 4.9831e-05 4.9835e-05

1.953e-01 6.2115e-05 1.1830e-05 1.2386e-05 1.2452e-05 1.2456e-05

9.765e-02 6.4032e-05 4.1812e-06 3.0515e-06 3.1095e-06 3.1136e-06

4.8825e-02 6.4630e-05 3.7441e-06 7.4467e-07 7.7431e-07 7.7816e-07

2.44125e-02 6.4756e-05 3.8511e-06 2.6137e-07 1.9096e-07 1.9435e-07

1.220625e-02 6.4770e-05 3.8900e-06 2.3039e-07 4.6759e-08 4.8414e-08

6.103125e-03 6.4765e-05 3.9000e-06 2.3641e-07 1.6470e-08 1.1968e-08

2.6.2 Example 2: Periodic Backreflector with Rectangular Corrugations

Next, we have considered that the backreflector has rectangular corrugations of height δ and

width L1 = 200 nm, as shown in Figure 2.2. In the unit cell Ω, the physical parameters are as

given in (2.2.1) with εgr as in (2.2).

Since for such a backreflector no analytical solution is known, we have used as a reference

solution denoted by ŭ(x, z) the FEM solution of the full model (2.2.12) with a very small

discretization parameter (h = 2.21nm). We denote by Ă the corresponding absorptance. Using

this reference solution, we computed the relative errors

euq =

(∫

Ω̂γ

|ŭq − û q,hδ,1 |2 dx dz
)1/2

(∫

Ω̂γ

|ŭq|2 dx dz
)1/2

and eAq =
|Ăq −Aq,hδ |
|Ăq|

, q ∈ {s, p} , (2.6.2)

as functions of δ and h. Since the solution depends on δ, we computed the reference solution

for each value of δ. Let us remark that this FEM reference solution has been validated in [59]

by comparing it with an RCWA solution. In fact, we have observed that the FEM and RCWA

solutions agree within 3% in absorptances and within 5% in the fields in L2(Ω).
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Table 2.3: Relative error eAs versus δ (nm) and h (nm) for Example 1 (Sec. 2.6.1). The number

Ne of triangular elements is shown in parentheses for each of the five values of h in the table

(table produced by author).

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584) 4.42 (14336) 2.21 (57344)

12.5 2.7768e-02 2.7778e-02 2.7781e-02 2.7780e-02 2.7780e-02

6.25 6.0088e-03 6.0007e-03 6.0006e-03 6.0008e-03 6.0008e-03

3.125 1.3919e-03 1.3754e-03 1.3745e-03 1.3745e-03 1.3745e-03

1.5625 3.4925e-04 3.2862e-04 3.2737e-04 3.2731e-04 3.2731e-04

7.812e-01 1.0393e-04 8.1280e-05 7.9835e-05 7.9749e-05 7.9745e-05

3.906e-01 4.4983e-05 2.1316e-05 1.9776e-05 1.9679e-05 1.9674e-05

1.953e-01 3.0754e-05 6.5822e-06 4.9945e-06 4.8920e-06 4.8858e-06

9.765e-02 2.7365e-05 2.9409e-06 1.3295e-06 1.2243e-06 1.2177e-06

4.8825e-02 2.6591e-05 2.0410e-06 4.1765e-07 3.1104e-07 3.0431e-07

2.44125e-02 2.6433e-05 1.8198e-06 1.9053e-07 8.3232e-08 7.6419e-08

1.220625e-02 2.6411e-05 1.7662e-06 1.3400e-07 2.6361e-08 1.9506e-08

6.103125e-03 2.6414e-05 1.7537e-06 1.1998e-07 1.2163e-08 5.2873e-09

We report in tables 2.5-2.8 the errors eus , eup , eAs and eAp , respectively. Figure (2.7) show

error curves for euq and eAq versus δ when h = 2.21 nm. These plots show that the errors

decreases with the order O(δ2) for s-polarization and for up. Ap although it does not converge

with same order, their approximation by least squares decreases with the order O(δ2).

According to [59], the solution ŭq(x, z) of the full model contains strong singularities near

metallic corners, due to the type of partial differential equation involved. Hence, in principle,

any numerical approximation of the actual solution will not be very accurate, unless the mesh

is sufficiently fine in the proximities of corners. In practice, this implies dealing with meshes

prohibitively fine in terms of computer cost. This is a classical problem in grating theory [43, 42],

specially for p polarization. This issue affects the numerical solution of the full model [59] as well

as those obtained by other approach as, for instance, the RCWA method [61] and could affect

the asymptotic model as well. This is the reason why no convergence in h can be observed from

Tables 2.5-2.8.

Let us remark that, unlike in Tables 2.1-2.4, Tables 2.5-2.8 do not include the errors for δ

smaller than 0.3906 nm. The reason for this is that , for very thin gratings, the finite element

solution used as a reference solution is not computely reliable due to the strong singularities of

the equations.
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Table 2.4: Relative error eAp versus δ (nm) and h (nm) for Example 1 (Sec. 2.6.1). The number

Ne of triangular elements is shown in parentheses for each of the five values of h in the table

(table produced by author).

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584) 4.42 (14336) 2.21 (57344)

12.5 2.7864e-02 2.7783e-02 2.7780e-02 2.7780e-02 2.7780e-02

6.25 6.0736e-03 6.0036e-03 6.0009e-03 6.0008e-03 6.0008e-03

3.125 1.4443e-03 1.3774e-03 1.3747e-03 1.3745e-03 1.3745e-03

1.5625 3.9597e-04 3.3023e-04 3.2745e-04 3.2732e-04 3.2731e-04

7.812e-01 1.4791e-04 8.2696e-05 7.9894e-05 7.9753e-05 7.9746e-05

3.906e-01 8.7362e-05 2.2639e-05 1.9825e-05 1.9682e-05 1.9674e-05

1.953e-01 7.2329e-05 7.8553e-06 5.0386e-06 4.8939e-06 4.8858e-06

9.765e-02 6.9092e-05 4.1902e-06 1.3713e-06 1.2259e-06 1.2177e-06

4.8825e-02 6.8245e-05 3.2830e-06 4.5826e-07 3.1257e-07 3.0430e-07

2.44125e-02 6.8031e-05 3.0568e-06 2.3060e-07 8.4687e-08 7.6407e-08

1.220625e-02 6.7978e-05 3.0006e-06 1.7379e-07 2.7767e-08 1.9467e-08

6.103125e-03 6.7965e-05 2.9867e-06 1.5965e-07 1.3563e-08 5.2284e-09

Table 2.5: Relative error eus versus δ (nm) and h (nm) for Example 2 (Section 2.6.2). The

number Ne of triangular elements is shown in parentheses for each of the three values of h in

the table (table produced by author).

h (Ne)

δ (nm) 35.36 (156) 17.68 (728) 8.84 (2912) 4.42 (11872) 2.21 (47700)

12.5 5.0015e-02 5.0132e-02 5.0150e-02 5.0154e-02 5.0155e-02

6.25 1.1725e-02 1.1773e-02 1.1777e-02 1.1778e-02 1.1778e-02

3.125 2.9028e-03 2.9255e-03 2.9267e-03 2.9264e-03 2.9260e-03

1.5625 7.5078e-04 7.3129e-04 7.3253e-04 7.3132e-04 7.3082e-04

0.7812 3.1194e-04 1.8294e-04 1.8660e-04 1.8300e-04 1.8209e-04
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Figure 2.5: Calculated values of the relative errors euq (identified by blue ◦) and eAq (red � )

versus δ when h = 2.21 nm for the planar metallic backreflector of Section 2.6.1 (figure produced

by author).
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Figure 2.6: Calculated values (identified by blue ◦) of the relative error eup versus h when

δ=6.103125e-03 nm for the planar metallic backreflector of Section 2.6.1 (figure produced by

author).
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Figure 2.7: Calculated values of the relative errors euq (identified by blue ◦) and eAq (blue �)
versus δ when h = 2.21 nm for the metallic backreflector with rectangular corrugations described

in Section 2.6.2. Solid red lines indicate the δ2 dependence and for p-polarization solid black

lines indicate the approximation by least squares of eAp (figure produced by author).

Table 2.6: Relative error eup versus δ (nm) and h (nm) for Example 2 (Section 2.6.2). The

number Ne of triangular elements is shown in parentheses for each of the three values of h in

the table (table produced by author).

h (Ne)

δ (nm) 35.36 (156) 17.68 (728) 8.84 (2912) 4.42 (11872) 2.21 (47700)

12.5 2.6377e-01 2.6844e-01 2.7309e-01 2.8105e-01 2.8127e-01

6.25 5.0687e-02 5.9285e-02 5.9506e-02 6.4150e-02 6.7309e-02

3.125 1.3726e-02 1.2640e-02 1.5345e-02 1.5583e-02 1.7639e-02

1.5625 5.0947e-03 2.3495e-03 4.1133e-03 4.9820e-03 4.8903e-03

0.7812 1.5716e-03 1.1411e-03 1.0170e-03 1.2237e-03 1.3451e-03
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Table 2.7: Relative error eAs versus δ (nm) and h (nm) for Example 2 (Section 2.6.2). The

number Ne of triangular elements is shown in parentheses for each of the three values of h in

the table (table produced by author).

h (Ne)

δ (nm) 35.36 (156) 17.68 (728) 8.84 (2912) 4.42 (11872) 2.21 (47700)

12.5 2.2048e-02 2.2084e-02 2.2096e-02 2.2101e-02 2.2104e-02

6.25 4.6136e-03 4.5989e-03 4.6014e-03 4.6035e-03 4.6049e-03

3.125 1.1239e-03 1.0996e-03 1.1004e-03 1.1018e-03 1.1030e-03

1.5625 2.9861e-04 2.7210e-04 2.7244e-04 2.7382e-04 2.7483e-04

0.7812 9.5166e-05 6.8065e-05 6.8416e-05 6.9570e-05 7.0589e-05

0.3906 4.4502e-05 1.7271e-05 1.7561e-05 1.8730e-05 1.9751e-05

Table 2.8: Relative error eAp versus δ (nm) and h (nm) for Example 2 (Section 2.6.2). The

number Ne of triangular elements is shown in parentheses for each of the three values of h in

the table (table produced by author).

h (Ne)

δ (nm) 35.36 (156) 17.68 (728) 8.84 (2912) 4.42 (11872) 2.21 (47700)

12.5 2.6417e-01 2.7442e-01 3.0231e-01 3.0775e-01 3.0719e-01

6.25 1.0706e-01 1.4971e-01 1.5063e-01 1.9374e-01 1.9605e-01

3.125 5.8384e-02 4.8156e-02 6.0548e-02 6.2893e-02 8.4730e-02

1.5625 2.0028e-02 6.0942e-03 6.7603e-03 9.4668e-03 9.7845e-03

0.7812 3.3521e-03 4.9666e-03 2.1809e-04 1.1034e-03 8.2440e-04

0.3906 3.9400e-03 7.7228e-04 7.8284e-04 3.8380e-04 4.3362e-04



Chapter 3

A perfectly matched layer for

finite-element calculations of

diffraction by metallic surface-relief

gratings

3.1 Introduction

Thin film photovoltaic devices comprising a periodically corrugated metallic backreflector

have become a subject of interest over the last three decades [1, 2, 65, 28, 47, 22, 64, 19]. The

purpose of this periodic surface-relief grating is to excite surface plasmonic polariton waves and

thereby enhance the electromagnetic field in the structure. Recently, solar devices based on

one dimensional surface-relief gratings have been proposed and studied numerically: amorphous

silicon thin film tandem solar cell [22], rugate filters [20, 21], periodic multilayered isotropic

dielectric material on top of the metallic backreflector [19], among others. Moreover, numeri-

cal optimization of optical and geometric parameters has been performed in order to maximize

quantities of interest such as light absorption, solar-spectrum-integrated power-flux density and

spectrally averaged electron-hole pair density [57, 60]. Computing these quantities requires solv-

ing Maxwell’s equations in the frequency domain for each wavelength in the spectral regime.

In addition, during an optimization process, the equations must be solved for a range of pa-

rameters, which might be computationally expensive. That is why efficient numerical methods

for frequency-domain Maxwell’s equations must be developed. Well known numerical techniques

are the exact modal method [24], the commonly used method of moments [33, 25], the rigor-

ous coupled-wave approach (RCWA) [12, 39], the finite element method (FEM) [48], and the

finite-difference time-domain (FDTD) method [31]

In this chapter we focus on FEM applied to one dimensional grating problems, since it is

suitable for simulating complicated structures such us devices comprising different materials and

surface-relief shapes [57, 60]. Roughly speaking, after decoupling the two polarization states,

TE (transverse electric) and TM (transverse magnetic), the problem reduces to solving two

77
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Helmholtz equations on the xz-plane. Because of the periodicity of the grating and the quasi-

periodicity of the solution, the unbounded domain is truncated in the x-direction using quasi-

periodic boundary conditions on the vertical walls. In the z-direction, the truncation of the

domain must be done in such a way that outward propagating waves are chosen. This can

be achieved, for example, through suitable approximations of the Dirichlet-to-Neumann (DtN)

operators. For instance, the technique implemented in [57] and [60] considers a Fourier-FEM

approach that involves a finite element approximation inside the device and a representation of

the DtN operators based on a Fourier series expansion of the fields in the unbounded regions

above and below the structure. Its main drawback is the potentially high computational cost

due to the fact that the equations need to be solved as many times as the number of terms in

the truncated Fourier series. Notice that this is even more significant in three dimensions since,

in such a case, the number of Fourier terms increases quadratically. We refer to [59, Section 3C],

for further details.

In this chapter we propose a different approach that uses a perfectly matched layer (PML)

placed above and below the structure. A PML is an artificial layer that absorbs the outward

propagating waves. In this case, the equations will be solved in a slightly bigger domain but only

once, which leads to a significant reduction of the computational cost. A PML approach with

an integrable absorption function has been studied in a variety of papers (see [35] or [4] and

the references therein). In particular, in [13], the authors apply such a PML strategy to grating

problems. The numerical results reported in this reference show robustness with respect to the

thickness of the PML as long as a thickness of at least 50% of the grating period is used. On the

other hand, in the context of time-harmonic acoustic scattering problems, a PML based on an

absorbing function with unbounded integral has been introduced in [5]. This PML is also robust

and able to absorb plane waves without any spurious reflection (see [6, 7] for further analysis and

results). Moreover, since the integral of the absorbing function is infinite, the outgoing waves

are rapidly absorbed, allowing us to use a PML with thickness significantly smaller than that

of [13]. Furthermore, we show in this chapter that the PML introduced in [5] can be adapted to

absorb also evanescent modes.

Based on the idea in [5], we propose and numerically study a PML with a non-integrable

absorbing function applied to a structure comprising a periodic multilayered isotropic dielectric

material on top of a metallic backreflector. The same technique can be easily applied to other

structures as mentioned above ([22, 19, 20, 21, 57, 60]). The rest of this chapter is organized

as follows. First, the model problem is specified in Section 3.2. Then, the PML technique is

introduced in Section 3.3 with the corresponding FEM discretization introduced in Section 3.4.

In Section 3.5 we consider some tests, which allow us to assess the proposed PML.
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3.2 Model setting

The problem of electromagnetic wave diffraction is based on solving Maxwell’s equations in

the three-dimensional Euclidean space occupied by a diffraction grating:

∇×E = iωµ0H,

∇×H = −iωε0εrE,
(3.2.1)

where E and H are the electric and magnetic total fields respectively. Here, an exp(−iωt) de-

pendence on time t is implicit, with ω denoting the angular frequency. The free-space wavenum-

ber, the free-space wavelength, and the intrinsic impedance of the free space are denoted by

k0 := ω
√
ε0µ0, λ0 := 2π/k0, and η0 :=

√
µ0/ε0, respectively, with µ0 > 0 being the per-

meability and ε0 > 0 the permittivity of free space. The relative electric permittivity εr is a

complex-valued piecewise constant function specified below. In this chapter vectors are written

in boldface, Cartesian unit vectors are identified as ûx, ûy and ûz and the position vector reads

r = xûx + yûy + zûz.

The solar-cell structure is assumed to occupy the region

Φ := {r ∈ R3 : 0 < z < Lt := Ld + Lg + Lm}

with the notation shown in Figure 3.1. Within this region, the relative permittivity εr is a

periodic function of x ∈ (−∞,∞) with period L and also varies with z ∈ Φ but not with

y ∈ (−∞,∞); consequently,

εr(x, z) = εr(x±mL, z), m ∈ Z. (3.2.2)

The half-spaces {r ∈ R3 : z < 0} and {r ∈ R3 : z > Lt} are occupied by air; hence, the

relative permittivity εr(x, z) ≡ 1 in both half-spaces. The region 0 < z < Ld is occupied by a

periodic multilayered isotropic dielectric (PMLID) material comprising M layers, as shown in

Figure 3.1. The relative permittivity is constant on each of this layers. The region Ld + Lg <

z < Lt is occupied by a spatially homogeneous metal with relative permittivity εm and thickness

Lm. Finally, the region Ld < z < Ld + Lg contains a periodically corrugated metal/dielectric

interface of period L along the x axis. The relative permittivity in this zone is εm in the metal

and that of the first layer of the dielectric material in the rest, as Figure 3.1 also shows.

Since the domain is infinite in the y-direction, and the solution does not depend on this

variable, we can consider a two-dimensional cross-section parallel to the xz-plane. In such a

case, the Maxwell system can be simplified by considering the two fundamental polarizations:

• Transverse Electric mode (TE) or s-polarization state. The electric field E is

parallel to the y axis: E = (0, Ey, 0), where Ey is independent of y, and the magnetic field

is given by H = (Hx, 0, Hz); so, from (3.2.1), Ey satisfies the Helmholtz problem

∆Ey + k2
0εrEy = 0. (3.2.3)
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Figure 3.1: Schematic of of the structure considering a cross-section parallel to the xz-plane. M

layers of an Ld- thick PMLID material on top of an L-periodic surface-relief grating of height

Lg. A metallic backreflector of thickness Lm is below the grating. An incoming light is incident

to the structure with angle θ (figure produced by author).

• Transverse Magnetic mode (TM) or p-polarization state. The magnetic field H is

parallel to the y axis: H = (0, Hy, 0), where Hy is independent of y, and the electric field

is given by E = (Ex, 0, Ez); so, from (3.2.1), Hy satisfies

∇ ·
(

1

εr
∇
(
− η0Hy

))
− k2

0η0Hy = 0. (3.2.4)

The boundary z = 0 of the structure is illuminated by an obliquely incident plane wave

whose electric field phasor is given by

Einc(r) = [asûy + ap(−ûx cos θ + ûz sin θ)]× exp{ik0[x sin θ + z cos θ]}, z ≤ 0, (3.2.5)

and the corresponding magnetic field phasor by

H inc =
1

iωµ0
∇×Einc, z ≤ 0. (3.2.6)

Here, θ is the angle of incidence with respect to the z-axis, as is the amplitude of the s-polarized

component, and ap the amplitude of the p-polarized component, all of them are data of the

problem.

Equations (3.2.3) and (3.2.4) can be written in a common form as the following Helmholtz

equation:

∇ ·
(
B∇u

)
+ k2

0bu = 0 in R2, (3.2.7)

where u = Ey, B = 1 and b = εr for the s-polarization state and u = −η0Hy, B =
1

εr
and b = 1

for the p-polarization state, all of these being functions of x and z but not of y.

The data of each of these two problems are computed from the corresponding components

of the incident plane wave (3.2.5):

uinc(x, z) =

{
as exp{ik0[x sin θ + z cos θ]}, for the s-polarization,

ap exp{ik0[x sin θ + z cos θ]}, for the p-polarization.
(3.2.8)
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The periodic character of the coefficients (cf.(3.2.2)) and the fact that the incident wave is

quasi-periodic in the sense that

uinc(x+ L, z) = exp(iαL)uinc(x, z) for z ≤ 0

with α := k0 sin θ, implies that, if u is a solution of the problem, then v(x, z) = exp(−iαL)u(x+

L, z) is a solution too. Therefore, it is enough to search for quasi-periodic solutions, in the same

sense as above, namely,

u(L, z) = exp(iαL)u(0, z),

∂u

∂x
(L, z) = exp(iαL)

∂u

∂x
(0, z),



 z ∈ R. (3.2.9)

In addition, for computational purposes, the strip (0, L) × R is also truncated to Ω :=

(0, L)× (0, Lt) and the effect of the radiation conditions at infinity must be properly taken into

account.

With this end we proceed as in [34] and write for the total field

u(x, z) =
∑

|αn|≤k0

an exp{i[αnx+ βnz]}

︸ ︷︷ ︸
incoming wave

+
∑

|αn|≤k0

bn exp{i[αnx− βnz]}

︸ ︷︷ ︸
outgoing wave

+
∑

|αn|>k0

bn exp{i[αnx− βnz]}

︸ ︷︷ ︸
surface wave

, for z < 0,

and

u(x, z) =
∑

|αn|≤k0

cn exp{i[αnx+ βn(z − Lt)]}

︸ ︷︷ ︸
outgoing wave

+
∑

|αn|>k0

cn exp{i[αnx+ βn(z − Lt)]}

︸ ︷︷ ︸
surface wave

, for z > Lt,

where

αn = k0 sin θ + 2πn/L,

and

βn =

{
+
√
k2

0 − α2
n, k2

0 ≥ α2
n

+i
√
α2
n − k2

0, k2
0 < α2

n

,

and an, bn, cn ∈ C are arbitrary coefficients.

The radiation condition consists of assuming that the incoming wave is the incident one for

z < 0, which leads us to write

u(x, z) =





uinc(x, z) +
∑

n∈Z
bn exp{i[αnx− βnz]}, z ≤ 0,

∑

n∈Z
cn exp{i[αnx+ βn(z − Lt)]}, z > Lt.

(3.2.10)

As claimed in [13], existence of a unique solution to the equations (3.2.7-3.2.10) holds for all

but a sequence of frequencies ωj , j ∈ N with |ωj | →
j
∞ (see [34] for further results). In what

follows we assume that ω 6= ωj , j ∈ N, so this problem is well posed.
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3.3 A PML approach

We will use a PML approach to reduce the problem to a bounded domain by truncating in

the z-direction. To do this, we will have to consider also appropriate transmission condition on

z = 0 and z = Lt.

As stated above, the radiation conditions at infinity will be modeled by means of a perfectly

matched layer technique similar to that from [5]. It is based on placing layers of anisotropic

damping material above and below the domain of interest Ω, which absorb the scattered field

transmitted to the exterior of the domain. We introduce two PML domains: ΩA
− := (0, L) ×

(−δ1, 0) and ΩA
+ := (0, L)× (Lt, Lt + δ2), δ1, δ2 > 0 (see Figure 3.2). We denote the whole PML

domain by ΩA := ΩA
− ∪ ΩA

+. Let Γ− and Γ+ denote the interfaces between the physical domain

and the layers, and ΓA− and ΓA+ the outer boundaries. We set uA to be the scattered wave in the

PML domain ΩA. Note that the PML layers directly contact the structure with no air layers.

ΩA
−

ΩA
+

ΓA
−

Γ−

Γ+

ΓA
+

δ1

δ2

Figure 3.2: Domain with PML layers in ΩA
+ and ΩA

− of thicknesses δ1 and δ2, resp. Γ+ and Γ−
denote the interfaces between the physical domain and the PML regions (figure produced by

author). ΓA+ and ΓA− correspond to the outer top and bottom boundaries (figure produced by

author).

We consider a PML method, where the unknown uA in the absorbing layers satisfies the

equation
∂2uA

∂x2
+

1

γ

∂

∂z

(
1

γ

∂uA

∂z

)
+ k2

0u
A = 0 in ΩA,

where γ is an appropriate function to be specified. Notice that coefficients of air domains,

b = B = 1, have been chosen in the equation above. In order to attenuate both, outgoing and

evanescent waves, it is known that it must be chosen γ = σ1 + iσ2, with σ1 and σ2 real functions

of z with large integrals in both parts of the PML domain (see, for instance [4]).

On the other hand, it is shown in [5] that it is preferable to choose as σ2 an unbounded

function with infinite integral. We propose the following choice:

γ(z) :=

{
1, z ∈ (0, Lt),

(1 + i)σ(z), z ∈ (−δ1, 0) ∪ (Lt, Lt + δ2),
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where the variable absorption coefficient σ(z) is a real function with vertical asymptotes at

z = −δ1 and z = Lt + δ2, so that it turns out a non-integrable function, namely,

∫ 0

−δ1
σ(s)ds = +∞ and

∫ Lt+δ2

Lt

σ(s)ds = +∞.

In particular, based on the numerical experimentation reported in [5], we choose the un-

bounded smooth positive function σ : (−δ1, 0) ∪ (Lt, Lt + δ2)→ R defined by

σ(z) :=





1

βk0(z + δ1)
, z ∈ (−δ1, 0),

1

βk0(Lt + δ2 − z)
, z ∈ (Lt, Lt + δ2),

(3.3.1)

where the parameter β will be determined experimentally in order to minimize the error intro-

duced by this PML technique.

According to the results from [5] the use of this PML should lead to exact results, up to

discretization errors. This agrees with the results from [13], where an integrable σ is used and

it is shown that the PML error is inversely proportional to some exponential expressions which

depends on the real and imaginary parts of the integral of σ, multiplied by a quantity which

bounds the exponential decay of the evanescent modes (see the expressions of M1 and M2 in

[13, Lemma 2.2]).

Altogether, u and uA will be the solution of the following equations:





∇ · (B∇u) + k2
0bu = 0 in Ω,

∂2uA

∂x2
+

1

γ

∂

∂z

(
1

γ

∂uA

∂z

)
+ k2

0u
A = 0 in ΩA,

u(L, z) = eiαLu(0, z), z ∈ (0, Lt),

uA(L, z) = eiαLuA(0, z), z ∈ (−δ1, 0) ∪ (Lt, Lt + δ2),

∂u

∂x
(L, z) = eiαL

∂u

∂x
(0, z), z ∈ (0, Lt),

∂uA

∂x
(L, z) = eiαL

∂uA

∂x
(0, z), z ∈ (−δ1, 0) ∪ (Lt, Lt + δ2),

u = uA + uinc on Γ−,

u = uA on Γ+,

B
∂u

∂z
= 1

γ

∂uA

∂z
+
∂uinc

∂z
on Γ−,

B
∂u

∂z
=

1

γ

∂uA

∂z
on Γ+,

uA = 0 on ΓA−,

uA = 0 on ΓA+,

(3.3.2)



3.3. A PML approach 84

Recall that uA is the wave in the PML arising from the wave scattered at Γ−. Instead, u is

the total wave in Ω. The incident wave uinc is supposed to get to Γ− without any interaction

with the PML . This is the reason why the source wave appears in the equation u = uA + uinc

on Γ− which corresponds to equating the total fields in the PML and the physical domain. The

same reason explains why the error ∂uinc
∂z appears in the ninth equation above, instead of the

incorrect term 1
γ
∂uinc
∂z , which could be naively expected.

The boundary conditions uA = 0 on ΓA± are imposed to assure that, after discretization,

we obtain a system of equations with finite entries of the corresponding matrix. This fact is

discussed in more detail in the following section.

In order to write a weak formulation of this problem, we introduce the following function

spaces:

V :=
{
v ∈ H1(Ω) : v(L, z) = eiαLv(0, z), z ∈ (0, Lt)

}
,

H1
γ(ΩA) :=

{
vA ∈ H1

loc(ΩA) :

∫

ΩA
γ

∣∣∣∣
∂vA

∂x

∣∣∣∣
2

dx dz <∞,
∫

ΩA

1

γ

∣∣∣∣
∂uA

∂z

∣∣∣∣
2

dx dz <∞

and

∫

ΩA
γ
∣∣vA
∣∣2 dx dz <∞

}
,

V A :=
{
vA ∈ H1

γ(ΩA) : vA = 0 on ΓA− ∪ ΓA+ and vA(L, z) = eiαLvA(0, z),

z ∈ (−δ1, 0) ∪ (Lt, Lt + δ2)} .

We consider test functions (v, vA) ∈ V × V A such that v = vA on Γ− ∪ Γ+. Multiplying

the first equation by v and the second one by γvA, integrating by parts, using the remaining

equations and the fact that γ does not depend on x, we are lead to the following problem: Find

(u, uA) ∈ V × V A such that u = uA + uinc on Γ−, u = uA on Γ+ and

∫

Ω

(
B∇u · ∇v − k2

0buv
)
dx dz+

∫

ΩA

(
γ
∂uA

∂x

∂vA

∂x
+

1

γ

∂uA

∂z

∂vA

∂z
− γk2

0u
AvA

)
dx dz =

∫

Γ−

∂uinc

∂z
v ds

(3.3.3)

∀ (v, vA) ∈ V × V A : v = vA on Γ− ∪ Γ+.

To the best of the author’s knowledge, it has not been proved that problem (3.3.2) or its

weak form (3.3.3) has a unique solution. Such an analysis has been made in [7] for an annular

PML in polar coordinates in the case of acoustic waves. The adaptation of the theory in their

reference to the cartesian framework of our problem is a subject of future research.
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3.4 Finite element discretization

Let {Th}h>0 be a regular family of triangulations of Ω∪ΩA, where each triangle lies in either

Ω or ΩA, so that the triangles match on the common interfaces Γ− and Γ+. As usual, h denotes

the mesh-size (diameter of the larger triangle in Th). Given k ≥ 1 let

Vh := {vh ∈ V : vh|T ∈ Pk(T ) ∀T ∈ Th : T ⊂ Ω},
V A
h := {vAh ∈ V A : vAh |T ∈ Pk(T ) ∀T ∈ Th : T ⊂ ΩA},

where Pk(T ) is the set of polynomials of degree not greater than k over the element T .

We introduce the discrete problem associated to equation (3.3.3): Find (uh, u
A
h ) ∈ Vh × V A

h

such that uh = uAh + I(uinc) on Γ−, uh = uAh on Γ+ and

∫

Ω

(
B∇uh · ∇vh − k2

0buhvh
)
dxdz+

∫

ΩA

(
γ
∂uAh
∂x

∂vAh
∂x

+
1

γ

∂uAh
∂z

∂vAh
∂z
− γk2

0u
A
h v

A
h

)
dxdz =

∫

Γ−

∂uinc

∂z
vh ds

(3.4.1)

∀ (vh, v
A
h ) ∈ Vh×V A

h : vh = vAh on Γ− ∪Γ+, where I(·) is the Lagrange interpolation operator in

V A
h .

In order to obtain the matrix form of problem (3.4.1), we consider as usual the nodal basis

{ψj}Nhj=1 of the finite element spaces Vh and V A
h . Let us remark that some of the element matrices

involve the non integrable function γ. Thus, it is not clear in principle that the integrals leading

to these element matrices must be finite. However, they are finite as we show in what follows.

The integrals that involve unbounded functions are those posed on triangles intersecting

either ΓA− or ΓA+. We focus on the former, but the same analysis holds for the latter. We must

distinguish two cases: elements with an edge on ΓA− and elements with only one vertex on

ΓA−. Moreover, according to equation (3.4.1), we have to consider two type of integrals with

unbounded functions:
∫

T
γk2

0ψiψjdx dz and

∫

T
γ
∂ψi
∂x

∂ψj
∂x

dx dz, (3.4.2)

since the third type

∫

T

1

γ

∂ψi
∂z

∂ψj
∂z

dx dz does not involve unbounded functions.

z = −δ1ΓA
−

T

Figure 3.3: Element T with an edge on ΓA− (figure produced by author).

First, consider a triangle T with an edge on ΓA− as Figure 3.3 shows. Since uA = 0 on ΓA−,

we do not have to consider the basis functions associated to nodes on ΓA−. For each of the other

basis function ψi in T , ψi
∣∣
ΓA−

= 0 and hence
∂ψi
∂x

∣∣
ΓA−

= 0. Then
∂ψi
∂x

is a polynomial of degree
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k − 1 which vanishes on the line z = −δ1. Therefore, we may write
∂ψi
∂x

(x, z) = (z + δ1)qi(x, z),

qi ∈ Pk−2(T ) and, hence, ψi(x, z) = (z + δ1)Qi(x, z), where Qi(x, z) is a primitive in x of qi.

Then, by using the explicit form (3.3.1) of γ(z), it follows that
∫

T
γ(z)k2

0ψi(x, z)ψj(x, z) dx dz =
(1 + i)k0

β

∫

T
(z + δ1)Qi(x, z)Qj(x, z) dx dz,

which involves only polynomial functions. On the other hand, for the second integral in (3.4.2),

we have
∫

T
γ(z)

∂ψi
∂x

(x, z)
∂ψj
∂x

(x, z) dx dz =
1 + i

βk0

∫

T
(z + δ1)qi(x, z)qj(x, z) dx dz,

which also involves only polynomial functions. Therefore, in this case, both integrals in (3.4.2)

can be safely computed with standard quadrature rules.

Secondly, we consider an element T with only one vertex on ΓA−. We will show that for any

continuous function g(x, z) the integral

∫

T
|γ(z)g(x, z)| dx dz is finite, so that both integrals in

(3.4.2) will be finite.

We use polar coordinates (r, φ) centered at the vertex of T on ΓA−. We cover the element T

by a circular section T̃ as shown in Figure 3.4 with 0 < φ1 < φ2 < π. Then,
∫

T
|γ(z)g(x, z)| dx dz ≤

∫

T̃

∣∣∣∣
1 + i

βk0(z + δ1)
g(x, z)

∣∣∣∣ dx dz

=
√

2

∫ φ2

φ1

∫ R

0

|g(−r cosφ,−δ1 + r sinφ)|
βk0r sinφ

r dr dφ

which is finite because sinφ ≥ min{sinφ1, sinφ2} > 0 and g is bounded. Therefore, we conclude

that all the integrals that have to be computed in the proposed method are finite in spite of the

unbounded character of the function γ.

(x, z)

−r cosφ

r sinφ
φ

z = −δ1

T

T̃

φ
=
φ 1

φ
=
φ
2

ΓA
−

Figure 3.4: Element T with only one vertex on ΓA−. A circular section T̃ is represented by a polar

coordinate system (r, φ) (figure produced by author).

Remark 3.4.1 The Dirichlet conditions u = 0 on ΓA± used in the numerical method are essen-

tial for the exact integrals above to be finite. In practice one could impose Neumann or Robin

conditions. However, in such a case it would be necessary to use quadrature rules based on inte-

rior points and the effect of the approximate integrals would be similar to that of using a bounded

σ.
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3.5 Numerical tests

In this section, we report the results obtained by applying the proposed PML technique.

We present some numerical examples that allow us to assess the performance of the method.

In addition, optimal values of the PML parameters β and δ = δ1 = δ2 will be experimentally

determined. Besides the field u, another quantity of physical relevance is the absorptance defined

as follows. Let P :=
1

2µ0
Re
(
E ×H

)
denote the time-averaged Poynting vector. It represents

the time-averaged energy flux density per unit area. The absorptance is then defined as

A :=

∫

∂Ω
P · ν ds

∫

Γ−

P inc · ν ds
(3.5.1)

where P inc is the time-averaged Poynting vector associated to the incident field and ν is the

outward unit normal to ∂Ω. In other words, in an “ideal” solar device, all the energy would be

kept inside the structure and thus the absorptance would be equal to one. In order to calculate

A, we again decouple the fields in both polarization states. For the s-polarization, we have

E ×H = (EyHz, 0,−EyHx). Then, considering the quasi-periodic boundary conditions of Ey,

Hx and Hz, by expressing Hx in terms of u := Ey we obtain

∫

∂Ω
P · ν ds =

1

ωµ2
0

Re

{
−
∫

Γ−

iu
∂u

∂z
ds+

∫

Γ+

iu
∂u

dz
ds

}
.

Notice that the integrals on the vertical boundaries x = 0 and x = L cancel out because of

the quasi-periodicity of u.

So, for the s-polarization, the above expression of the absorptance becomes

As =

Re

{
−
∫

Γ−

ius
∂us
∂z

ds+

∫

Γ+

ius
∂us
dz

ds

}

Re

{∫

Γ−

iuinc
∂uinc

dz
ds

} . (3.5.2)

Proceeding analogously for the p-polarization, the absorptance in this case reads

Ap =

Re

{
−
∫

Γ−

i

εr

∂up
∂z

up ds+

∫

Γ+

i

εr

∂up
∂z

up ds

}

Re

{∫

Γ+

i
∂uinc

∂z
uinc ds

} , (3.5.3)

where the coefficient εr on Γ− or Γ+ is that of the physical domain.
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The domain Ω was discretized into Ne triangles and we have used cubic finite elements

(k = 3). For q = s or q = p, let uq,h denote the approximate values of uq, delivered by our PML

finite element method for a specific choice of h. The respective approximations of absorptances

Aq,h are computed from (3.5.2) and (3.5.3) by using the finite element solution uq,h instead of uq.

Note that the computation of Aq,h uses first-order derivatives of the finite element solution. This

is the reason why the order of convergence for these quantities will be lower than for the numerical

solution uq,h, as will be shown below. To avoid this, we have also computed an alternative

approximation Âq,h of the absorptances by using the approach described in [59], which is based

on Fourier expansions of the solution truncated to (2Mt + 1) terms in the unbounded domains

(0, L) × (−∞, 0) and (0, L) × (Lt,∞) and only requires to compute the Fourier coefficients

of the finite element solution uh on Γ− and Γ+ (see [59, Section 2] for further details). This

approach avoids differentiating the finite element solution and, hence, it should preserve the

optimal order of convergence. We point out that this Fourier-based approach is used only to

calculate absorptances and not to compute the solution uh as in the Fourier-FEM method.

In all our tests we have taken L = 400 nm. The relative permittivities εr of each material

depend on the wavelength λ0. We have used the physical data from [27] to determine the per-

mittivities for each wavelength. In most of the tests that we report in what follows, we have

taken λ0 = 450 nm and θ = 30◦. We will explicitly specify when this is not the case.

3.5.1 Test 1: Fitting parameters β and δ

In order to determine the parameters β and δ to be used in the PML method, we have

applied it to a very simple three-layer quasi-periodic waveguide consisting of a PML-air-PML

structure as shown in Figure 3.5. In this figure, Ld = 950 nm and the relative permittivity was

taken to be εr = 1.

ΩA
−

ΩA
+

ΓA
−

Γ−

Γ+

ΓA
+

δ

δ

z = 0

ûx

ûz

Ld

L

Figure 3.5: Domain Test 1. PML-air-PML structure (figure produced by author).
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To numerically solve this problem, we have used successive uniform refinements of the mesh

shown in Figure 3.6. As it can be seen from this figure, we have not used more refined meshes

for the PML than for the rest of the domain.

Figure 3.6: Uniform first mesh discretizing the domain in Figure 3.5 (figure produced by author).

First, we consider a planar incident wave as given in (3.2.8). We solved the problem with

different values of the parameters β and δ (0.1 ≤ β ≤ 5 and 50 nm ≤ δ ≤ 350 nm) for different

values of the mesh size h and computed the corresponding errors:

eu :=

(∫

Ω
|u− uh|2

)1/2

. (3.5.4)

In results not shown here, we observed that there is almost no advantage in using δ >150 nm.

In fact, for instance, for values of β close to the optimal ones, the errors with δ = 150 nm and

δ = 350 nm differ in less than 1% for all the meshes except the coarsest one. Consequently, we

chose δ = 150 nm. Let us remark that the thickness of the PML remains constant for different

mesh sizes h. One could be tempted to use a PML with a fixed number of element layers, so that

its thickness becomes smaller as h goes to zero. We assessed this approach but the results showed

that this is not a good strategy because in such case the error does not reduce appropriately

with h.

With the value of δ fixed at 150 nm we sought an optimal value of the parameter β by solving

the problem with different mesh sizes h. In Figure 3.7 we display the error eu for δ = 150 nm

and β varying between 0 and 5, for four successively refined meshes. The error curves in this

figure show that, for β varying between 0.2 and 0.4, the results do not significantly change.
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Figure 3.7: Test 1. Errors eu for planar incident waves, 0 < β < 5, δ = 150 nm, θ = 30◦,
λ0 = 450 nm and four successively refined meshes. Ne: number of elements of the mesh (figure

produced by author).

In order to confirm that the optimal value of β is also independent of the wavelength λ0

and the angles of incidence θ, we repeated the experiment with different values of wavelengths

(λ0 = 600 nm, λ0 = 750 nm and λ0 = 900 nm) with θ = 30◦ and in all tests the optimal value

of β did not change significantly. Also we repeated the experiment with θ = 60◦ and we arrive

at the same conclusions.

We report in Figure 3.8 error curves eu versus the mesh size h. For this test we have used the

values δ = 150 nm and β = 0.3 determined above. These plots show that the error eu decreases

for our PML model with the order O(h4) that the theory predicts for the cubic finite elements

that have been used.
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Figure 3.8: Test 1. Computed errors eu versus the mesh size h: (a) for differents wavelengths and

θ = 30◦ and (b) for differents angles of incidence and λ0 = 450 nm (figure produced by author).
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Secondly, we took an incident wave such that the solution is an evanescent mode,

u(x, z) = exp

{
i

(
2πn

L
+ k0 sin θ

)
x

}
exp



−

√(
2πn

L
+ k0 sin θ

)2

− k2
0 z



 .

In this case, we have used a domain Ω with a smaller height Ld and n = 1. The reason

for this is that, in the previous domain or for n > 1, u(x, z) practically vanishes at z = Ld,

so that the effect of the PML was practically negligible. To avoid this, we have chosen for this

test Ld = 150 nm and n = 1. First we have determined optimal values of β and δ. As in the

previous case, we found again that it can be safely taken δ = 150 nm. The dependence of the

error eu with respect to β can be appreciated in Figure (3.9) for different meshes. We conclude

that values between 0.2 and 0.9 are optimal in this case. The reported results corresponds to

θ = 30◦. However, similar conclusions follows for other angles of incidence.
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Figure 3.9: Test 1. Errors eu for evanescent modes, 0 < β < 5, δ = 150 nm, θ = 30◦, λ0 = 450 nm

and four successively refined meshes. Ne: number of elements of the mesh (figure produced by

author).

It is well known that to dissipate evanescent modes, function γ must have a large real part.

This is the reason why we have chosen γ as in (3.3). Note that this can be also written as follows.

γ(z) :=

{
1, z ∈ (0, Lt),

√
2ei

π
4 σ(z), z ∈ (−δ1, 0) ∪ (Lt, Lt + δ2),
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We have also analyzed if the choice of the complex phase π
4 above is relevant in the determi-

nation of β and δ. We repeated the experiment with different phases between 0 and π
3 and we

obtained essentially the same results, which allows us to conclude that the choice of the non-zero

complex phase is not relevant. We report in Figure 3.10 error curves eu versus the mesh size h

for the two considered phases (π/3 and π/4). For this test we have used the values δ = 150 nm

and β = 0.3 determined above. It can be see from Figure 3.10 that it is almost impossible to

distinguish one from the other. We also show in Figure 3.10 the results for a phase π/2, for

which γ is purely imaginary. In such a case no convergence can be seen. Let us remark that this

agrees with the fact that for attenuating evanescent waves, the real part of γ should have a large

integral.
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Figure 3.10: Test 1. Computed errors eu versus the mesh size h for differents complex phases of

γ (figure produced by author).

3.5.2 Test 2: Planar backreflector

We have chosen for this test a problem where the solution uq, q ∈ {s, p} of equation (3.4.1)

can be exactly determined everywhere using a textbook approach [9, Section 1.6]: a metal with

a planar metallic backreflector (see Figure 3.11). The periodic multilayered isotropic dielectric

material was taken to comprise 9 layers of fixed thickness d = 100 nm each one. The thickness

of the metal was Lm = 50 nm. These are representative values for structures suggested in the

literature [19, 20, 21]. Let us remark that the used meshes follow the geometry of the multilayered

structure.
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Figure 3.11: Test 2. The PMLID material of total thickness Ld, comprises 9 layers on top of a

planar metallic backreflector of thickness Lm. The PML regions ΩA
+ and ΩA

− have a thickness δ

(figure produced by author).

For each polarization state, we have computed the errors

euq :=

(∫

Ω
|uq − uq,h|2

)1/2

and eAq := |Aq −Aq,h|, q ∈ {s, p}. (3.5.5)

Before solving the problem we checked that the optimal values of β and δ determined in

the previous test are also valid in this case. To do this, we repeated most of the experiments

reported in the previous test and arrived essentially at the same conclusions. For instance, we

show in Figure 3.12 the dependence of the errors euq in this case with respect to the parameter

β. It can be clearly seen that the optimal values for β are obtained in all cases in the range

[0.2, 0.4].

We report in Figure 3.13 error curves for euq and eAq versus the mesh size h for both

polarization states. For this test we have used the values δ = 150 nm and β = 0.3 determined

above. These plots show that the error euq in both polarizations decreases for our PML model

with the order O(h4) that the theory predicts for the cubic finite elements that have been used.

The convergence rate for the absorptance error eAq for both polarizations is only O(h3) due

to the approximation of the derivatives, as explained above (see (3.5.2) and (3.5.3)). We have

also computed the absorptances Âq,h with the above mentioned Fourier-based approach. Let us

mention that, in this case, Mt = 0 is enough. It can be seen from Figure 3.13 that the order of

convergence of the errors e
Âq

:= |Aq − Âq,h| are again O(h4) for the s-polarization and close to

O(h4) for the p-polarization.
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Figure 3.12: Test 2. Errors eus (a) and eup (b), for planar incident waves, 0 < β < 5, δ = 150 nm,

λ0 = 450 nm and four successively refined meshes. Ne: number of elements of the mesh from

Figure 3.6 (figure produced by author).
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Figure 3.13: Test 2. Computed errors euq , eAq and e
Âq

versus the mesh size h: (a) s-polarization

and (b) p-polarization (figure produced by author).
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3.5.3 Test 3: Periodic backreflector with rectangular corrugations

In the following section, we report the same results as in the previous test for a corrugated

surface relief, instead of a planar metallic blackreflector. Like the previous test, the PMLID

material was taken to comprise 9 layers of fixed thickness d = 100 nm each one. The height of

the grating and the thickness of the metal were taken Lg = 25 nm and Lm = 50 nm respectively.

The geometry of the corrugation is shown in Figure 3.14. Since an exact solution u cannot be

found for the chosen backreflector, we have compared the obtained results with those of the

solution of the same problem computed with the Fourier-FEM proposed in [59]. Let us remark

that the two methods differ only in the way that the radiation conditions at infinity are modeled.

While in our case this is done by means of a PML technique, the method in [59] uses a Fourier

series approach, which makes the latter significantly more expensive.

50 nm
25 nm

400 nm

100 nm200 nm

Figure 3.14: Test 3. Geometry of the corrugation (figure produced by author).

We compute the quantities

êuq :=

(∫

Ω
|uFq,h − uq,h|2

)1/2

, êAq := |AFq,h −Aq,h| and ê
Âq

:= |AFq,h − Âq,h|,

where the superscript F is used for the quantities computed with the Fourier-FEM approach.

In this in this case, we have used Mt = 20 in the Fourier expansion to compute Âq,h. Let

us emphasize that êuq , êAq and ê
Âq

are not errors but measures of the differences between

the values obtained with the proposed PML approach and the more expensive Fourier-FEM

approach proposed in [59].

First we checked that the optimal parameters β and δ determined in Test 1 are also optimal

in this case. The experiments with different δ lead to the same conclusion as in the previous test.

Indeed, in this case, no significant difference was observed between the results with δ = 100 nm

and larger δ. Anyway, we have chosen δ = 150 nm and we have computed the error êuq , q ∈ {s, p}
for different values of β. We have limited the search to β varying between 0 and 1.
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Figure 3.15: Test 3. Differences êus (a) and êup (b) for planar incident waves, 0 < β < 1,

δ = 150 nm, λ0 = 450 nm and four successively refined meshes, where the number of elements

of the meshes are: N1
e=1504, N2

e=5888, N3
e=23552 and N4

e=92208 (figure produced by author).

Figure 3.15 shows the differences êuq , q ∈ {s, p}, for four successively refined meshes. In this

case, the curves show that β = 0.3 is again the optimal parameter for both polarizations.

Finally we have computed the differences êuq and êAq , q ∈ {s, p}. In Table 3.1 we display the

values obtained with β = 0.3, δ = 150 nm and different values of h. The corresponding curves

are shown in Figure 3.16.

Table 3.1: Test 3. Differences êuq and absorptance differences êAq for both polarizations (q = s

and q = p) and successively refined meshes (table produced by author).

Ne h êus êup êAs êAp

1504 35.36 4.9429e-05 7.3583e-05 8.1448e-04 7.4995e-04

5888 17.68 4.8772e-07 7.9608e-07 1.2206e-04 1.0070e-04

23552 8.84 1.7417e-08 5.3844e-08 1.6382e-05 1.1669e-05

92208 4.42 6.8775e-10 3.7560e-09 2.1333e-06 1.3595e-06
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Figure 3.16: Test 3. Computed differences êu, êA and ê
Â

versus the mesh size h: (a) s-polarization

and (b) p-polarization (figure produced by author).

The reported results show that the rate of convergence of the differences êuq are O(h4)

for the p-polarization and a bit better, O(h5), for the s-polarization. As a consequence, the

use of the proposed PML approach will lead essentially to the same results as the method

from [59], but with a less expensive computational cost. In addition, as in the previous test,

the absorptance differences êAq were O(h3). However, for realistic meshes, these differences are

negligible compared to the errors of the finite element method. All the above mentioned justify

the use of the proposed PML approach in order to save computer cost. Figure 3.16 also shows

the differences ê
Â

of the absorptances computed by means of Fourier expansions. It can be seen

from this figure that these differences are clearly superconvergent. In fact, for the third mesh

(Ne = 23552 in Table 3.1) the errors are already around 10−10, so that the finer fourth mesh

cannot reduce them further.



Conclusiones y trabajo futuro

En este caṕıtulo se presenta un resumen de los principales aportes de esta tesis y una de-

scripción del trabajo futuro a desarrollar.

Conclusiones

1. En el Caṕıtulo 1, hemos diseñado un modelo asintótico de O(δ3) que puede implementarse

mediante elementos finitos, para calcular la difracción y la absorción electromagnética en

estructuras planas de varias capas que tienen una rejilla de difracción delgada. Los resulta-

dos numéricos demuestran que se obtiene tercer orden de convergencia para la polarización

s con respecto al ancho δ de la rejilla delgada, y al menos, segundo orden de convergencia

para la polarización p.

La principal ventaja del modelo asintótico es que los parámetros que definen a la rejilla

delgada están presentes en los parámetros de la interfaz y en las condiciones de transmisión

a través de la interfaz plana, pero no en la geometŕıa. Esto reduce considerablemente el

costo computacional de optimizar los parámetros de la rejilla (por ejemplo, altura y ciclo

de trabajo), ya que no hay necesidad de cambiar el dominio (y por lo tanto la malla) en

cada paso de optimización.

2. En el Caṕıtulo 2 describimos un modelo asintótico de O(δ2) para la misma estructura del

modelo anterior.

La principal ventaja de este modelo asintótico es que, bajo suposiciones de suavidad

adecuadas, demostramos convergencia de segundo orden de la solución de este modelo

asintótico.

Los resultados obtenidos en los caṕıtulos 1 y 2 muestran que los modelos asintóticos se

pueden usar de manera confiable combinados con elementos finitos para investigar la dis-

persión por rejillas delgadas, y eliminan la necesidad de representar la capa de rejilla

mediante una malla muy fina.

3. En el Caṕıtulo 3 introducimos una técnica de PML para el cálculo por elementos finitos

de la difracción por rejillas delgadas. Esta técnica se utiliza para simular una estructura

que comprende un material dieléctrico isotrópico y un reflector posterior metálico. Hemos

mostrado numéricamente que los resultados son robustos con respecto al grosor de la

98
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PML, al ángulo de incidencia y a la longitud de onda y determinamos un valor óptimo del

parámetro absorbente (β = 0.3) válido para todos los tests. Además, dado que la PML

propuesta se basa en una función absorbente no integrable, se pueden considerar valores

pequeños de δ lo que reduce considerablemente el costo computacional en comparación con

el enfoque Fourier-FEM. Además, mostramos que las entradas de la matriz de elementos

finitos son finitas aunque involucren una función no integrable.

Trabajo futuro

1. Demostrar convergencia para el primer modelo asintótico.

2. Para el segundo modelo asintótico, extender el enfoque a aproximaciones de O(δ3) y relajar

las hipótesis que permiten demostrar las estimaciones del error.

3. Combinar PML con alguno de los modelos asintóticos.

4. Extender el análisis a tres dimensiones.



Conclusions and Future work

Conclusions

1. In Chapter 1 we have devised an asymptotic model ofO(δ3) for implementation in the finite

element method to calculate electromagnetic diffraction and absorption in planar multi-

layered structures having a shallow surface-relief grating. Numerical results demonstrate

that we obtain, for s-polarization, third order convergence with respect to the thickness δ

of the grating layer, and at least second-order for p-polarization.

The main advantage of the asymptotic model is that the parameters defining the shallow

surface-relief grating are present in the interface parameters and transmission conditions

across a planar interface but not in the geometry. This considerably reduces the computa-

tional cost of optimizing the grating parameters (e.g., height and duty cycle), since there

is no need to change the domain (and, hence, the mesh) at every optimization step.

2. In Chapter 2 an alternative describe a different asymptotic model of O(δ2) for the same

structure as for the previous model.

The main advantage of the new asymptotic model is that, under appropriate smoothness

assumptions, we prove the second order convergence of the solution of this asymptotic

model.

Results obtained in Chapters 1 and 2 show that the asymptotic models can be reliably used

with FEM to investigate scattering by shallow gratings, and then eliminate the necessity

of representing the grating layer by a fine mesh.

3. In Chapter 3 we have introduced a novel PML technique for finite element calculations

of diffraction by metallic surface-relief gratings and tested it by simulating a structure

comprising an isotropic dielectric material and a metallic back-reflector. We have numer-

ically shown that the results are robust with respect to the thickness of the PML, the

angle of incidence and the wavelength, and determined an optimal value of the absorbing

parameter (β = 0.3) valid in all the tests. Moreover, since the proposed PML is based on a

non-integrable absorbing function, small values of δ can be considered which considerably

reduce the computational cost compared with the Fourier-FEM approach. In addition, we

show that the entries of the finite element matrix are finite even though they involve a

non-integrable function.
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Future work

1. To prove convergence for the first asymptotic model.

2. For the second asymptotic model, to extend the approach to approximations of O(δ3) and

to relax the hypotheses that allow us to prove the error estimates.

3. To combine PML and some of the asymptotic models.

4. To extend the present analysis to three dimensions.
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