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Assistent professor : Guillermo Ferreira Cabezas Firm .........................

Assistent professor : Bernardo Lagos Alvarez Firm .........................

Assistent professor : German Ibacache Pulgar Firm .........................

Memorant name : Rodrigo Alonso Sanhueza Parkes Firm .........................

Phone : (9)71965477

e-mail : rsanhueza@udec.cl

Concepción, 2018



I dedicate my work and my life to God, because thanks to Him I have
achieved everything I have, it has given me health, intelligence, strength and the
necessary faith to achieve the goals I have set for myself.

To my family for being the reason to advance and fight against any adversity,
being a fundamental part of my daily life, to those who are and to those who have
left. Especially my beloved wife Natalia Riquelme and my children Dafne and
Alexander, my great loves.

A Duchess who accompanied me for more than a decade showing me his
great loyalty and love, being my loyal companion

iii



Acknowledgements

Thanks to my beloved family for supporting me unconditionally and for giving me
the energy necessary to achieve my goal; to my wife for giving me the necessary
time to study and perfect myself in what I love and for being a fundamental pillar
in my life, being the best woman that God could put in my way to go hand in hand
and grow old together.

My daughter Daphne, my little princess, for her unconditional love and al-
though many times I could not understand that her father could not play or share
with her, she was always there, with a smile, with a hug or a kiss, supporting and
motivating me.

To my son Alexander for being the last angel that came to my home and
give me his love with smiles and opening my arms to receive a hug.

To my parents and my brothers for always being there, trusting and con-
cerned about my well-being, always encouraging me to continue.

I also thank Dr. Jorge Figueroa for guiding me and supporting me in this
work which I could not finish without his advice and the Magister teachers who
gave me classes and gave me minutes of their time to clear up the doubts, they
are: Mauricio Castro, Nora Serdiukova, Guillermo Ferreira and Bernardo Lagos.
To the teacher Luisa Rivas who many times I lend her support and do not hesitate
to clarify some doubts despite not being my teacher in the magister.

To my colleague Maria Jose, who always supported me and helped me to
better understand some contents of different subjects.

To the authorities of my school, who gave me the time I needed to advance
in my studies.

iv



University of Concepción
Faculty of Physical Sciences and Mathematics
Department of Statistics

ACKNOWLEDGEMENTS

But first of all, I thank God for all that he has given me, because he gave me
the best that I have had, my family and because he has always been and will be in
my life.

Degree of Magister in Statistics v Rodrigo Alonso Sanhueza Parkes



Abstract

In the year 1980 Poondi Kumaraswamy proposed the Kuamaraswamy distribu-
tion, which is very similar to the beta distribution (it is also restricted to the interval
(0,1)), but it has a great advantage over it, which is to have a distribution function
accumulated in a closed form which is more beneficial for intensive calculation
activities such as simulation modeling and estimation of models by methods based
on simulation. The problem of this distribution and its extensions proposed in the
following years is that they have not been able to adjust the data that sometimes
are concentrated in each of the extremes or both ends independently.

This work has the purpose of showing the proposal of a new distribution,
which has been called trapezoidal kumaraswamy distribution which has been orig-
inated by mixing the Kumaraswamy distribution and the Beta distribution, making
the tails of the density function more flexible in one of the extremes or in both of
them independently with which a greater adjustment of the data is achieved.

We can appreciate the properties of this new model and the estimation of
parameters. Finally, a simulation study and an application of real data is presented,
with the intention of showing the best adjustment obtained.
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Abstract

Kumaraswamy Models have been a very studied tool in the analysis and modeling
of limited-range continuous variables. This mainly because of the great flexibil-
ity of its density function, which can cover a wide range of different shapes and
their cumulative distribution in closed form. As is discussed in this paper, many
variants of the Kumaraswamy distribution have been studied but these do not have
the possibility of lifting the tails of this distribution. However, in many situations,
the data are bounded and tail-area events occur at either end or at both ends in-
dependently. To model this scenario, in this work we propose the “Trapezoidal
Kumaraswamy Model”.

This paper is centered on the development of the “Trapezoidal Kumaraswamy
Model”, which have two intuitive additional parameters respect to “Kumaraswamy
Model” and is a generalization of this. We study its density function and we derive
some fundamental properties such as the moments, moment generating function
and characteristic function. Finally, the “Trapezoidal Kumaraswamy Model” is
rewritten conveniently as a mixture model and we show that its parameters can be
estimated by means of the EM algorithm. We report results of an application to a
real data set. Model fitting comparisons with several alternative models indicates
that the model proposed presents the best fit and so it can be quite useful in real
applications.

keywords Maximum likelihood - Kumaraswamy distribution - Mixture Model
- EM algorithm
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1.1 Introduction
A good alternative for modeling continuous data restricted to a bounded inter-
val, is the double bounded distribution Kumaraswamy (1980) (renamed as ku-
maraswamy distribution Jones (2009)). This given by the variety of density shapes
that can be accommodated. The probability density function (pdf) of a random
variable Y following a Kumaraswamy distribution of parameters α, β > 0 is given
by

fK(y | α, β) = αβyα−1(1− yα)β−1, y ∈ (0, 1) (1.1)

where α, β > 0. Here,

E(Y ) = m1 and Var(Y ) = m2 −m2
1, (1.2)

where mk is the k-th moment of the kumaraswamy distribution given by

mk =
βΓ(1 + k

α
)Γ(β)

Γ(1 + k
α

+ β)
= βB

(
1 +

k

α
, β

)
(1.3)

with B, the beta function.
The Kumaraswamy distribution is very flexible. However, do not consider

tail-area events nor greater flexibility in the variance specification. In order to add
flexibility into the model, other distributions derived from the Kumaraswamy dis-
tribution have been proposed. The Kumaraswamy Weibull distribution (Cordeiro
et al, 2010) and the Kumaraswamy-G distribution (Cordeiro and de castro, 2011)
includes two additional positive parameters (they studied some of their mathemat-
ical properties by presenting special submodels), the Kumaraswamy generalized
gamma distribution (de Pascoa et al, 2011) which is able to model bathtub-shaped
hazard rate functions (the importance of this distribution is in its capacity to model
functions of monotonous failure frequency and not monotone, which are fairly
common in life-time data analysis and reliability), the Kumaraswamy Gumbel
distribution (Cordeiro et al, 2010) which is probably the most widely applied sta-
tistical distribution for problems in engineering, the Kumaraswamy-log-logistic
distribution (de Santana et al, 2012). the Kumaraswamy-geometric distribution
(Akinsete et al, 2014 and the kumaraswamy fréchet distribution (Mead and Abd-
Eltawab, 2014), among other distributions of the same family.

However, the Kumaraswamy distribution, as their extensions, are unable to
fit data in which some sample points are concentrated at either, one end or both

Degree of Magister in Statistics 3 Rodrigo Alonso Sanhueza Parkes
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ends independently. In this work, we propose a new bounded distribution with is
able to model this behavior.

The article is organized as follows. In Section 2, the trapezoidal Kumaraswamy
distribution is proposed and their basic properties are discussed. In Section 3, the
estimation of parameters is develop through a convenient reparametrization of the
Trapezoidal Kumaraswamy distribution given in Section 2. In Section 4 we per-
form a simulation study, both the Trapezoidal Kumaraswamy distribution and the
Kumaraswamy distribution, comparing the results obtained in both. In Section 5
an application of the proposed model is presented using the Australian Institute of
Sport data set. The results are compared with the classical Kumaraswamy distri-
bution. Finally, discussions and observations appear in Section 6 of the proposed
model and the specific numerical results.

Degree of Magister in Statistics 4 Rodrigo Alonso Sanhueza Parkes
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1.2 Trapezoidal Kumaraswamy Distribution
In practice, the Kumaraswamy distribution has been a useful tool for modelling
bounded data. However, is common in many cases, to have data concentrated
at either, one end or both ends independently, and hence, it misses an extension
which allows to model this situation and that it conserve the great flexibility of
the Kumaraswamy distribution. Hence, to this issues we propose the Trapezoidal
Kumaraswamy distribution with the following pdf

fTK(y | a, b, α, β) = a+ (b− a)y +

(
1− a+ b

2

)
fK(y | α, β). (1.4)

with 0 < y < 1, 0 ≤ a, b ≤ 2, 0 ≤ a + b ≤ 2 and fK(y | α, β) is the
Kumaraswamy density function of parameters α and β given in (1.1).

The parameters a and b can be intuitively interpreted as the lift at the left
and right tails of the pdf respectively (see figure 1.1 and 1.2). The notation Y ∼
TK(a, b, α, β) will be used through the paper.

As a particular case, we have that when a = b = 0, the standard Ku-
maraswamy distribution is recovered (1.1) and as particular case, the Rectangular
Kumaraswamy distribution is proposed when a = b = θ.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

2.0
2.5

3.0

y

pdf

Figure 1.1: Examples of Trapezoidal Kumaraswamy pdf with α = 10, β = 15 and
different values of the parameters (a, b): (a, b) = (0.5, 0) (solid line), (a, b) =
(1, 0) (dashed line) and (a, b) = (1.5, 0) (dotted line).
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Figure 1.2: Examples of Trapezoidal Kumaraswamy pdf with α = 10, β = 15
and different values of the parameters (a, b): (a, b) = (0, 1) (solid line), (a, b) =
(0.6, 0.6) (dashed line) and (a, b) = (0.8, 0.4) (dotted line).

We now present some properties of the Trapezoidal Kumaraswamy distri-
bution.
Let Y ∼ TK(a, b, α, β), then the k-th moment of Y is given by

mk = E(Y k) =
a

k + 1
+
b− a
k + 2

+

(
1− a+ b

2

)
m∗k, (1.5)

where m∗k is the k-th moment of the kumaraswamy distribution of paramenters
α, β. Then (2.1) can be casted as

mk =
a

k + 1
+
b− a
k + 2

+

(
1− a+ b

2

)
βΓ (1 + k/α) Γ (β)

Γ (1 + β + k/α)

=
a

k + 1
+
b− a
k + 2

+

(
1− a+ b

2

)
βB (1 + k/α, β) . (1.6)

With the above expression it is easy to deduce that

E(Y ) =
a+ 2b

6
+

(
1− a+ b

2

)
βB

(
α + 1

α
, β

)
,

Var(Y ) =
3a+ 9b− (a+ 2b)2

36
+(

1− a+ b

2

)
β

(
B

(
α + 2

α
, β

)
− a+ 2b

3
B

(
α + 1

α
, β

)
−
(

1− a+ b

2

)
βB2

(
α + 1

α
, β

))
.
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The moment generating function of the random variable Y is given by

MY (t) = E
[
etY
]

= 1 +
∞∑
k=1

mk
tk

k!
, t ∈ R,

and its characteristic function is given by

ϕY (t) = E
[
eitY
]

= 1 +
∞∑
k=1

mk
(it)k

k!
, t ∈ R.

Degree of Magister in Statistics 7 Rodrigo Alonso Sanhueza Parkes
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1.3 Estimation of parameters in Trapezoidal Kumaraswamy
model

In this section we discuss how to estimate, efficiently, the parameters of the Trape-
zoidal Kumaraswamy distribution. Therefore, we first write the likelihood func-
tion for a sample of n observations as

L(a, b, α, β) =
n∏
i=1

(
a+ (b− a)yi +

(
1− a+ b

2

)
fK(yi | α, β)

)
. (1.7)

Then, one atrategy to build estimators for its parameters is to maximize the
log-likelihood given by

l(a, b, α, β) =
n∑
i=1

ln

(
a+ (b− a)yi +

(
1− a+ b

2

)
fK(yi | α, β)

)
. (1.8)

The maximum likelihood estimators of a, b, α and β are obtained from the
differentiation of (1.8) with respect to the mentioned parameters and equating to
zero, but in this case, the obtained equations do not have closed-form. Hence, they
need to be obtained by numerically maximizing the log-likelihood function using
a nonlinear optimization algorithm, such as the Newton algorithm or the quasi-
Newton algorithm; for details, see (Nocedal andWright (1999)

An efficiently strategy to obtain the parameters estimations is solving this
problem as a missing data problem, specifing the likelihood function given in (1.7)
conveniently, as described below.

First, we can observe that the equation given by (1.4) can be rewrite as a
mixture of beta distributions and a Kumaraswamy distribution, i.e.,

fTK(y | a, b, α, β) =
a

2
(2− 2y) +

b

2
2y +

(
1− a+ b

2

)
fK(y | α, β), (1.9)

where, f1(y) = fB(y | 1, 2) = 2 − 2y, f2(y) = fB(y | 2, 1) = 2y are particular
cases of the beta density function fB(y | α∗, β∗) and f3(y) = fK(y | α, β) cor-
respond to Kumaraswamy density function described in (1.1). Besides w1 = a

2
,

w2 = b
2

and w3 =
(
1− a+b

2

)
are the weights such that w1 + w2 + w3 = 1 and

0 ≤ w1, w2, w3 ≤ 1. Then, this problem can be solved as a finite mixture of dis-
tributions by using the expectation-maximization (EM) algorithm; for details, see
McLachlan and Peel (2004). The EM algorithm is a general method for finding

Degree of Magister in Statistics 8 Rodrigo Alonso Sanhueza Parkes
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maximum likelihood estimates when there are missing values or latent variables,
the idea behind the EM algorithm applied to mixture models is to assume that
the mixture is generated by missing observations of a discrete random variable Z,
where zi ∈ {1, 2, 3} indicates which mixture component generated the observa-
tion yi. The likelihood of the complete data (Y, Z) for a sample of n observations
is given by

pY,Z(y, z | Θ) =
n∏
i=1

pY,Z(yi, zi | Θ) =
n∏
i=1

(a
2

(2− 2yi)
)1zi=1

(
b

2
(2yi)

)1zi=2

×
((

1− a+ b

2

)
fK(yi | α, β)

)1zi=3

,

where Θ = (a, b, α, β) is the parameter vector and 1 is the indicator function,
i.e. 1zi=j = 1 if zi = j (with j ∈ {1, 2, 3}) holds, and 1zi=j = 0 otherwise.
Then, in the EM algorithm is necessary to specify an auxiliary function Q, the
conditional expectation of the complete data (Y, Z) given the observed data Y ,
and a parameterization Θ(p−1), i.e.,

Q
(
Θ,Θ(p−1)

)
= EZ|Y,Θ(p−1)(log pY,Z(y, z | Θ))

=
n∑
i=1

EZ|Y,Θ(p−1)(log pY,Z(yi, zi | Θ))

=
n∑
i=1

3∑
j=1

r
(p−1)
ij (log pY,Z(yi, zi | Θ))

=
n∑
i=1

3∑
j=1

r
(p−1)
ij (log(wjfj(yi | Θ))),

where w1 = a
2
, w2 = b

2
, w3 =

(
1− a+b

2

)
and f1(yi | Θ) = 2 − 2yi, f2(yi | Θ) =

2yi, f3(yi | Θ) = fK(yi | α, β)as in (2.2), and

r
(p−1)
ij = P (Zi = j | Yi = yi,Θ

(p−1)) =
w

(p−1)
j fj(yi | Θ(p−1))∑3

l=1w
(p−1)
l fl(yi | Θ(p−1))

. (1.10)

For the E-Step, we need to find the expected value of 1zi=j for j = 1, 2, 3
given yi and the current parameterization Θ(p−1), given by

Degree of Magister in Statistics 9 Rodrigo Alonso Sanhueza Parkes



University of Concepción
Faculty of Physical Sciences and Mathematics
Department of Statistics

CHAPTER 1. TRAPEZOIDAL KUMARASWAMY DISTRIBUTION

E
[
1zi=j | yi,Θ(p−1)

]
= r

(p−1)
ij .

In the M-Step we find Θ(p) which maximizes Q(Θ,Θ(p−1)). Calculating the
derivates of Q with respect at w1, w2, w3 under the restriction w1 + w2 + w3 = 1,
is possible obtain the estimators

w
(p)
j =

∑n
i=1 r

(p−1)
ij∑n

i=1

∑3
j=1 r

(p−1)
ij

=
n

(p−1)
j

n
.

On the other hand, the derivates with respect at α and β lead to the usual
maximum likelihood estimators of the Kumaraswamy distribution, which solve
the equations

(β − 1)

∑n
i=1 r

(p−1)
i3 yαi log(yi)

1− yαi
− n

(p−1)
3

α
−

n∑
i=1

r
(p−1)
i3 log(yi) = 0

and

n
(p−1)
3

β
+

n∑
i=1

r
(p−1)
i3 log(1− yαi ) = 0

They can be obtained using the quasi-Newton algorithm. Once updated the
parameters, repeat both, the E and M steps, iteratively.

Degree of Magister in Statistics 10 Rodrigo Alonso Sanhueza Parkes
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1.4 Simulation Study
We develop a simulation study to compare the performance of the Trapezoidal
Kumaraswamy distribution (TKD) in comparison with the Kumaraswamy distri-
bution for samples generated from each of them. In order to capture the particular
tail behavior of each one, we use a sample size of 1000 and generate 100 sample
sets in order to calculate the mean Log-Likelihood and the Akaike Information
Criterion (AIC).

First, we simulate from the TKD with parameters given by Θ = (0.2, 0.5, 7, 10).
From table 1.1 we can observe that the TKD achieves a better fit than the Ku-
maraswamy distribution. In table 1.2, we can appreciate that the Kumaraswamy
distribution tries to fit the model by increasing the variance, i.e., finding small
values for α and β to overcome the inability of this distribution to raise the tails.

Table 1.1: Comparison between the Mean Log-likelihood and Mean AIC of the
Trapezoidal Kumaraswamy and Kumaraswamy distributions for 100 samples of
size 1000 drawn from a Trapezoidal Kumaraswamy distribution with parameters
(0.2, 0.5, 7, 10)

Mean Log-Likelihood Mean AIC
Trapezoidal Kumaraswamy 363.26 -718.53

Kumaraswamy 237.38 -470.75

Table 1.2: Comparison between the mean of the estimated parameters of the
Trapezoidal Kumaraswamy and Kumaraswamy distributions for 100 samples of
size 1000 drawn from a Trapezoidal Kumaraswamy distribution with parameters
(0.2, 0.5, 7, 10)

Mean Estimated Parameters
a b α β

True 0.2 0.5 7 10
Trapezoidal Kumaraswamy 0.20 0.49 7.03 10.28

Kumaraswamy - - 2.72 1.94

In figure 1.3, we can see the histogram for simulated data from TKD and
the adjusted densities for TKD amd Kumaraswamy distribution are represented.

Degree of Magister in Statistics 11 Rodrigo Alonso Sanhueza Parkes
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The interpretation of the estimation in parameters a, b is straightforward and cor-
respond exactly to the lifting of the tails of pdf in left and right hand respectively.
In this figure we can appreciate that the Kumaraswamy distribution is not able of
capture this lifting.

y

pdf

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Figure 1.3: Histogram for simulate data set from TKD and adjusted densities
for two different models: In solid line, the Trapezoidal Kumaraswamy model; In
dashed line the Kumaraswamy model.

Table 1.3 present the relative bias (RelBias) and the root-mean-squared error
(
√

MSE) for each parameter estimator over the 100 simulated samples under the
TKD. They are defined as

RelBias(θ) =
1

100

100∑
i=1

(
θ̂(i) − θ
θ

)
and MSE(θ) =

1

100

100∑
i=1

(θ̂(i) − θ)2,

where θ represents any particular parameter, and θ̂(i) is the estimation of θ for the
i-th sample. The Table 1.3 show that the estimation of each parameter in each data
set is good when the TKD is adjusted.

Table 1.3: Relbias and root-squared error of each parameter under 100 samples of
size 1000 drawn from a Trapezoidal Kumaraswamy distribution with parameters
(0.2, 0.5, 7, 10)

a b α β
Relbias 0.00088 -0.00287 0.00038 0.00276√
MSE 0.00554 0.04537 0.08497 0.87242
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Second, we take a sample from the Kumaraswamy distribution with param-
eters given by ΘB = (7, 10). In table 1.4 we can observe that the TKD achieve
an equally good fit than the Kumaraswamy distribution. In table 1.5 we can ap-
preciate that the TKD give similar estimates for the parameters, compared to Ku-
maraswamy distribution.

Table 1.4: Log-Likelihood and AIC

Mean Log-Likelihood Mean AIC
Trapezoidal Kumaraswamy 843.52 -1679.03

Kumaraswamy 843.29 -1682.58

Table 1.5: Comparison between the mean of the estimated parameters of the
Trapezoidal Kumaraswamy and Kumaraswamy distributions for 100 samples of
size 1000 drawn from a Kumaraswamy distribution with parameters (7, 10)

Mean Estimated Parameters
a b α β

True 0 0 7 10
Trapezoidal Kumaraswamy 2.85e-04 1.12e-03 7.07 10.29

Kumaraswamy - - 7.05 10.22

Unsurprisingly, when the sample is generated from the Kumaraswamy dis-
tribution, we see non significant differences on the mean log-likelihood and mean
AIC achieved by the two adjusted distributions (Kumaraswamy and TKD). When
the sample is drawn from the TKD with a difference between the its two tails,
a = 0.2 and b = 0.5, the best fit in terms of the mean log-likelihood and mena
AIC is achieved by the Trapezoidal beta model. This can be explained by the fact
that the data generated from the tails of the distribution can not be capture only by
using a Kumaraswamy distribution.
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1.5 Real data application
To illustrate the Trapezoidal Kumaraswamy distribution in practice, we apply the
proposed model to a real dataset and we compare the goodnes of fit of this flexible
distribution with the godness of fit of the Kumaraswamy distribution. We anal-
yse the Australian Institute of Sport (AIS) dataset available in the library sn in
R (http://azzalini.stat.unipd.it/ SN/index.html). We consider only the data of the
102 male athletes in the AIS dataset. We are interested in the body fat percentage
(Bfat) of each athlete. Normal ranges for Bfat in adult men are 5% − 25%
approximately, see Jeukendrup and Gleeson (2010). Therefore, we consider the
following transformation Y = (Bfat−5)/(25−5). We can see, in figure 1.4, that
the data distribution have a lifted left tail. Then, it is justified to fit the Trapezoidal
Kumaraswamy distribution to model this data.

The model under consideration is defined by:

yi | a, b, α, β
ind∼ TK(a, b, α, β) , i = 1, . . . , 102.

We can see in table 1.6 that the TKD achieves the best fit compared to the
Kumaraswamy distribution. In table 1.7 we present the estimated parameters.
It is clear that the distribution in this example is lifted at the left (â = 0.5981
and b̂ = 0.00), this fact is attempted to be compensated in the Kumaraswamy
distribution by increasing the variance (decreasing α̂ and β̂).

Table 1.6: Log-Likelihood and AIC

Trapezoidal Kumaraswamy Kumaraswamy
Log-Likelihood 70.7724 63.6881

AIC -133.5447 -123.3762

Table 1.7: Estimations

â b̂ α̂ β̂
Trapezoidal Kumaraswamy 0.5981 0.0000 2.0417 32.8129

Kumaraswamy - - 1.3055 5.6495

In figure 1.4, we can see the adjusted densities for the two different models,
being the TKD the model that beter captures the distribution of the data.

Degree of Magister in Statistics 14 Rodrigo Alonso Sanhueza Parkes



University of Concepción
Faculty of Physical Sciences and Mathematics
Department of Statistics

CHAPTER 1. TRAPEZOIDAL KUMARASWAMY DISTRIBUTION

y

pdf

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Figure 1.4: Adjusted densities for two different models: In solid line, the Trape-
zoidal Kumaraswamy model; In dashed line the Kumaraswamy model.
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1.6 Concluding remarks
Kumaraswamy distribution and other distributions derived from this has been very
used in the practice, but so far it has not been proposed a distribution that allows
to raise the tails of the probability density function (pdf) in the case of having data
accumulated in one or both ends. In this work, a new distribution called ”Trape-
zoidal Kumaraswamy distribution” (TKD) has been proposed and that comes to
solve the problem of adjusting data with some concentration in the extremes. The
TKD is a mixture model generated by two specific beta distributions and the Ku-
maraswamy distribution, being the Kumaraswamy distribution a particular case
of the TKD. The TKD present two additional parameter respect to Kumaraswamy
distribution and these have the advantage of being very intuitive, because they
represent the lifting of the pdf in the queues. The estimation procedure for their
parameters is straightforward and is presented a clear methodology of estimation
in this paper achieving good results both the simulation studies and the real data
application.
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Chapter 2

Apendice

Below you can see in more detail the steps that were applied to reach the results
shown in this work

The moment generator function (Equation 1.5)

mk = E(Y k) =

∫ 1

0

ykf(y)dy

=

∫ 1

0

yk(a+ (b− a)y +

(
1− a

2
− b

2

)
fk(y|α, β)dy

= a

∫ 1

0

ykdy + (b− a)

∫ 1

0

yk+1dy +

(
1− a

2
− b

2

)∫ 1

0

fk(y|α, β)dy

=
a

k + 1
+
b− a
k + 2

+

(
1− a

2
− b

2

)
m∗k

With which, we conclude that:

mk = E(Y k) =
a

k + 1
+
b− a
k + 2

+

(
1− a+ b

2

)
m∗k, (2.1)

The equation on page 4, regarding the variance
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Var(y) = E(y2)− (E(y))2

=
a

3
+
b− a

4
+

(
1− a+ b

2

)
mk −

(
a+ 2b

6
+

(
1− a

2
− b

2

)
mk

)2

=
a+ 3b

12
+

(
1− a+ b

2

)
mk −

(a+ 2b)2

36
− a+ 2b

3

(
1− a+ b

2

)
mk

−
(

1− a+ b

2

)2

m2
k

=
3a+ 9b− (a+ 2b)2

36

+

(
1− a+ b

2

)
βB

(
1 +

k

α
, β

)(
1− a+ 2b

3
−
(

1− a+ b

2

)
βB

(
1 +

k

α
, β

))
In both cases, B is the beta function

Equation 1.9 on page 7

fTK(y|a, b, α, β) = a+ (b− a)y +

(
1− a

2
− b

2

)
fk(y|α, β)

= a− ay + by +

(
1− a

2
− b

2

)
fk(y|α, β)

=
2a(1− y)

2
+ by +

(
1− a

2
− b

2

)
fk(y|α, β)

And simplifying, we have to:

fTK(y | a, b, α, β) =
a

2
(2− 2y) +

b

2
2y +

(
1− a+ b

2

)
fK(y | α, β), (2.2)

Then, we will remember the density function of the beta distribution, which
is:

fB(y | α, β) =
Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1 , 0 < y < 1,
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And for the particular cases in which the parameters α and β take the values
1 and 2, and vice versa, we would have the following

fB(y | 1, 2) =
Γ(3)

Γ(1)Γ(2)
y0(1− y) = 2(1− y) , 0 < y < 1,

fB(y | 2, 1) =
Γ(3)

Γ(2)Γ(1)
y(1− y)0 = 2y , 0 < y < 1,

That is to say, fβ(y|1, 2) = 2− 2y fβ(y|2, 1) = 2y
And replacing the beta functions, we have to

fTK(y|a, b, α, β) = a+ (b− a)y +
(
1− a

2
− b

2

)
fk(y|α, β)

it can be rewritten in the following way, with which we can see that the above
can be written as a mixture of distributions (mix of two beta distributions and a
kumaraswamy distribution)

fTK(y|a, b, α, β) =
a

2
fβ(y|1, 2) +

b

2
fβ(y|2, 1) +

(
1− a+ b

2

)
fk(y|α, β)
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