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Chapter 1

Introduction

The study of existence, multiplicity and non-existence of positive solutions to semi-linear and
quasi-linear elliptic equations is relevant to many applications ranging from thermal iginition
of gases [14], quantum field theory and statistical mehcanics [7], gravitational equilibrium of
stars [19] etc.

This work aims to study the existence, multiplicity and no-existence of positive radial
solutions(other than the 0 solution) to the problem

div(A(|∇u|)∇u) + λk(|x|)f(u) = 0, x ∈ Ω. (1.0.1)

in symmetric exterior domains Ω ⊂ Rn (complements of balls centered at the origin) for
n ≥ 2. The non negative functions A, k and f satisfy certain properties that we will specify
later and λ > 0 is a parameter.

The class of functions A which we consider will include A(|p|) = |p|m−2,m > 1 associated
to the m-laplacian operator div (|∇u|m−2∇u) (non linear if m 6= 2 and coincides with the
Laplacian for m = 2) applicable to diffusion problems. The class will also include slight
perturbations of

A(|p|) =
(
1 + |p|2

)−1/2
.

which correspond to some perturbations of the mean curvature operator

div

 ∇u√
1 + |∇u|2

 .

Different behaviours of the non-linearity f at 0 and ∞ will also be considered in relation to
the behaviour of A. The weight k could also turn out to be singular.

From an extensive study of such equations, it is well-known that the existence, non-existence
or multiplicity of solutions depend significantly on several factors: the non-linearity f , for
example, whether it is sub-linear or superlinear at infinity in the case of the Laplacian; the
magnitude of the parameter λ; the domain, namely, whether it is bounded or unbounded,
simply connected or not etc. There is a vast literature on these problems and these prob-
lems have been studied using different methods-variational, topological, using comparison
principles etc.

We will broadly separate the problems that we study into two kinds depending on the
boundary condition.
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Problems in an exterior domain with classical boundary conditions

Our first objective is to study the equation

div(A(|∇u|)∇u) + λk(|x|)f(u) = 0, |x| > d (1.0.2)

under some classical Dirichlet or Neumann type boundary conditions corresponding to
one of the following conditions:

u = 0 on |x| = d and u→ 0 when |x| → ∞ ,
∂u/∂r = 0 on |x| = d and u→ 0 when |x| → ∞ ,
u = 0 on |x| = d and ∂u/∂r → 0 when |x| → ∞.

 (1.0.3)

We will prove existence and non-existence of positive radial solutions in these problems
depending on the range of behavior of the functions A, f , k and the range of values of
the parameter λ > 0.

We provide a brief discussion of earlier results related to this problem. The study of the
existence and regularity of solutions to semi-linear and quasi-linear elliptic equations
has a long history. If the domain is bounded, connected and the non-linearities have a
suitable behaviour, for example, sub-critical then there is usually existence and unique-
ness of regular solutions. Non-existence results show up for super-critical non-linearities
or in certain domains. Ni and Serrin [27, 28] established nonexistence of singular radial
solutions of quasi-linear equations of the form (1.0.1) in Rn for f which are superlinear
at infinity. In the last few decades, several authors have also studied such problems in
annular domains (see , for example, [26, 1, 5, 2, 24, 8, 13, 23, 25, 31, 34, 35]):

4u+ λk(|x|)f(u) = 0 R1 < |x| < R2, (1.0.4)

with one of the following boundary conditions:

u = 0 on |x| = R1 and |x| = R2

∂u/∂r = 0 on |x| = R1 and u = 0 on |x| = R2

u = 0 on |x| = R1 and ∂u/∂r = 0 on |x| = R2 .

 (1.0.5)

In particular, when f is non-negative, Bandle, Coffman and Marcus [1], Coffman and
Marcus [8] and Lin [24] have established the existence of positive radial solutions of

(1.0.4)−(1.0.5) for super-linear nonlinearities f , that is, lim
x→0

f(x)
x

= 0 and lim
x→∞

f(x)
x

=∞.

For this the shooting method along with Sturm comparison results were used.

On the other hand, H. Wang [31] established, using fixed point methods, the existence
of positive radial solutions of (1.0.4)− (1.0.5) for sub-linear nonlinearities f for which

lim
x→0

f(x)
x

=∞ and lim
x→∞

f(x)
x

= 0.

Some of the results on radial solutions obtained for the case of semi-linear elliptic
equations for the Laplacian(m = 2) are also valid in the case of the m-Laplacian
m > 1. In this direction we also mention previous works on the p-Laplacian equation
in one dimension on (0, 1) by Wang [32], Kong and Wang [21] and Sánchez [29]. In
this more general case, superlinearity or sublinearity of f refers to the behavior of the
quotient f(x)

xm−1 at zero and infinity.
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Subsequently, the same author Wang [33] studied, also using fixed point methods, the
existence of positive radial solutions for the quasilinear equation

div(A(|∇u|)∇u) + λk(|x|)f(u) = 0, R1 < |x| < R2, (1.0.6)

on an annular domain with boundary conditions of the type (1.0.5) for more gen-
eral classes of A, which include the m-Laplacian. The results obtained by Wang in
the quasilinear problem in an annular domain encapsulates various of the previously
mentioned results in an annular domain. So, we state Wang’s hypothesis and results.

(H1) ϕ(t) := A(|t|)t is an odd increasing homeomorphism from R onto R and there
exists two increasing homeomorphisms ψ1 and ψ2 from (0,∞) onto (0,∞) such
that

ψ1(σ)ϕ(t) ≤ ϕ(σt) ≤ ψ2(σ)ϕ(t) for all σ, t > 0.

(H2) k : [R1, R2]→ [0,∞) is continuous and k(t) 6≡ 0 on any subinterval of [R1, R2].

(H3) f : [0,∞)→ [0,∞) is continuous.

(H4) f(u) > 0 for u > 0.

Now, superlinearity or sublinearity of f refers to the behavior of the quotient
f(x)

ϕ(x)
at

zero and infinity. Fixing the notation

f0 := lim
u→0

f(u)

ϕ(u)
and f∞ := lim

u→∞

f(u)

ϕ(u)

we state his main results.The boundary condition is one of the conditions in (1.0.5).

Theorem 1.0.1. Assume that (H1)-(H2)-(H3) hold.

1. If f0 = 0 and f∞ = ∞, then for all λ > 0 the problem (1.0.6)-(1.0.5) has a
positive radial solution.

2. If f0 = ∞ and f∞ = 0, then for all λ > 0 the problem (1.0.6)-(1.0.5) has a
positive radial solution.

Theorem 1.0.2. Assume that (H1)-(H2)-(H3)-(H4) hold.

1. If f0 = 0 or f∞ = 0, then there exists a λ0 > 0 such that for all λ > λ0 the
problem (1.0.6)-(1.0.5) has a positive radial solution.

2. If f0 =∞ or f∞ =∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0 the
problem (1.0.6)-(1.0.5) has a positive radial solution.

3. If f0 = f∞ = 0, then there exists a λ0 > 0 such that for all λ > λ0 the problem
(1.0.6)-(1.0.5) has two positive radial solutions.

4. If f0 = f∞ = ∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0 the
problem (1.0.6)-(1.0.5) has two positive radial solutions.

5. If f0 < ∞ and f∞ < ∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0

the problem (1.0.6)-(1.0.5) has no positive radial solution.

6. If f0 > 0 and f∞ > 0, then there exists a λ0 > 0 such that for all λ > λ0 the
problem (1.0.6)-(1.0.5) has no positive radial solution.
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In the case of an exterior domain, semilinear problems involving the Laplacian have
been studied using different methods by several authors: see for example Stańczy [30],
do Ó et al. [11], Dhanya et al. [10], Hai and Shivaji [18], Chhetri et. al [3, 4].

Taking as reference the theorems by Wang [33] stated above, in the present work we are
able to obtain similar results for positive radial solutions of the quasi-linear problem
(1.0.2)-(1.0.3) in an exterior domain using the fixed point method while adapting the
techniques used by Wang. We refer the reader to the introduction of Chapter 3 for
precise statements of the main results obtained in the thesis on this problem. The
results of this chapter appear in an article which is accepted for publication [16].

Problems in an exterior domain with nonlinear boundary conditions
Another of our objectives is to study the existence of positive radial solutions for a
class of non-linear equations in an exterior domain Rn under non-linear boundary
conditions 

−div(A(|∇u|)∇u) = λk(|x|)f(u), |x| > r0

∂u

∂η
+ c(u)u = 0 |x| = r0

u→ 0 when |x| → ∞

(1.0.7)

where k : [r0,∞)→ (0,∞) is a continuous function such that lim
r→∞

k(r) = 0, ∂
∂η

denotes

the normal derivative, and c : [0,∞)→ (0,∞) is a continuous function.

Previously, the corresponding problem for the Laplacian
−∆u = λk(|x|)f(u), |x| > r0

∂u

∂η
+ c(u)u = 0, |x| = r0

u→ 0 when |x| → ∞

has been addressed by Butler, Ko, Lee and Shivaji [6] and the study of steady state
solutions in bounded domains by Gordon, Ko and Shivaji [17] in a thermal explosion
problem. They considered a reaction term f : [0,∞)→ R of class C1 which is sublinear

at ∞ (i.e., lim
s→∞

f(s)
s

= 0) and prove existence, uniqueness and multiplicity of solutions

for the cases (i) f(0) > 0, (ii)f(0) = 0 and (iii) f(0) < 0. The results in these three cases
were obtained using the method of sub and super solutions. The uniqueness results
use additional hypothesis on c(strictly increasing) and f (for non-increasing f(s)/s or
under stronger conditions). They also show existence of three positive solutions for
certain other behaviour of f . Subsequently, Dhanya, Morris and Shivaji [10] studied
the existence of positive radial solutions for a similar problem while assuming that
f ∈ C1([0,∞),R) is nondecreasing, superlinear at ∞ (that is, lims→∞

f(s)
s

= ∞) and
f(0) < 0 (semipositone) and k : [R0,∞) → (0,∞) is continuous satisfying k(r) ≤

1

rn+µ
;µ > 0 for r >> 1. They were able to establish the existence of a positive radial

solution for small values of the parameter λ using variational methods.

In Chapter 4, we set ourselves two objectives: firstly, to complement and enrich the
results obtained by Butler, Ko, Lee and Shivaji [6] for various possible behaviours of
f at ∞, that is, not only consider f which are sublinear at ∞. Secondly, prove these
results for a class of quasi-linear problems. Many of the results are proved using the
fixed-point approach and this requires a careful choice of the operator to which to apply
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the Krasnosel’skii fixed point theorem. The choice of this operator and establishing
it’s fundamental properties is our main focus. Once this is done it is immediate to
obtain results for the problem with the non-linear boundary condition under similar
hypothesis and following the same arguments as in Chapter 3. These results resemble,
in spirit, the results obtained for the classical boundary conditions. We also prove a
theorem using the sub- and super- solution techniques used in Butler, Ko, Lee and
Shivaji [6] but do not explore this in more depth as we are able to prove this result
only for the class of positively homogeneous operators, like the p-Laplacian. We do
not discuss the semi-positone case, that is, we consider only f(0) ≥ 0. We refer to the
introduction of Chapter 4 for precise statements of the main results obtained in the
thesis on quasi-linear problems in the presence of non-linear boundary conditions.

The main kind of results we have obtained for quasi-linear problems in exterior domains
(involving the classical or non-linear boundary conditions) are sketched below without listing
the complete set of hypothesis on A, f , k or c.

Existence for the complete range of parameter:

• If f0 = 0 and f∞ =∞, then for all λ > 0 the problem has a positive radial solution.

• If f0 =∞ and f∞ = 0, then for all λ > 0 the problem has a positive radial solution.

Existence for a limited range of parameter:

• If f0 = ∞ or f∞ = ∞, then for any R > 0 there exists λR > 0 such that for all
0 < λ ≤ λR the problem has at least one positive radial solution u with 0 < ‖u‖ < R
or R < ‖u‖ respectively.

• If f0 = 0 or f∞ = 0, then for any L > 0 there exists λL > 0 such that for all λ ≥ λL
the problem has at least one positive radial solution u with 0 < ‖u‖ < L or L < ‖u‖
respectively.

Multiplicity of solutions for a limited range of parameter:

• If f0 =∞ and f∞ =∞, then for any R > 0 there exists λR such that for all 0 < λ ≤ λR,
the problem has at least two positive radial solutions u1, u2 with 0 < ‖u1‖ < R < ‖u2‖.

• If f0 = 0 and f∞ = 0, then for any L > 0 there exists λL > 0 such that for all λ ≥ λL,
the problem has at least two positive radial solutions u1, u2 with 0 < ‖u1‖ < L < ‖u2‖.

Non-existence of solutions for a range of parameters:

• If f0 < ∞ and f∞ < ∞, then there exists a positive number λ such that the problem
has no positive radial solutions for all λ < λ.

• If f0 > 0 and f∞ > 0, then there exists a positive number λ such that the problem has
no positive radial solutions for all λ > λ.
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Chapter 2

Preliminaries

The Krasnosel’skii fixed-point theorem, as well as its various generalizations, have been
successfully applied in the resolution of various boundary value problems in PDE. This
theorem will be our main tool. We will see some of it’s versions and a sketch their proofs.
Along with that, we will also need some elementary comparison results. For more details
on the notions which are discussed in Sections 2.1-2.4 we refer to Zeidler [36], Kesavan [20],
Guo and Lakshmikantham [15] or Deimling [9].

We start first with a set of definitions that are necessary.

2.1 Basic definitions

2.1.1 Ordered cone and partial ordering

Definition 2.1.1. Let X be a Banach space. A subset, K ⊂ X, is called a cone if it
satisfies the following conditions:

K1 K is closed and nonempty.

K2 If α, β ∈ R, α, β ≥ 0, x, y ∈ K then αx+ βy ∈ K.

K3 If x ∈ K and −x ∈ K then x = 0.

Examples of cones

• In R, the set of positive real numbers R+.

• The set K = {(x, y, z) ∈ R3 :
√
x2 + y2 ≤ z} in the euclidean space R3.

• The set consisting of all non-negative n-tuples in Rn: Rn+ = {x ∈ Rn : xi ≥ 0 for all i}.

• The set consisting of all real-valued continuous nonnegative functions defined on the
interval J: C+

R (J) = {x ∈ CR(J) : x(t) ≥ 0 on J}.

Partial Ordering: Given an ordered cone K ⊂ X in a Banach space, we can define a
relation of order in the following way:

x ≤ y iff y − x ∈ K .

We also say
x � y iff x ≤ y is false .
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2.1.2 Fixed points of completely continuous operators in conical
shells

Definition 2.1.2. Let X, Y Banach spaces, Ω ⊂ X and an application F : Ω → Y . We
will say that F is completely continuous or compact if it is continuous and compact
(namely, sends bounded subsets of Ω into relatively compact sets).

Definition 2.1.3. Given a Banach space with an ordered cone K, a cone operator or a
positive operator is a completely continuous operator T : K → K.

Definition 2.1.4. A point x ∈ K is a fixed point of a cone operator T if T (x) = x.

2.1.3 Compression and expansion of a conical shell

Let K be an ordered cone. Let 0 < R < R be given. The following set

K(R,R) = {x ∈ K : R ≤ ‖x‖ ≤ R}

will be referred to as a conical shell whose inner and outer boundaries are, respectively,
KR = {x ∈ K : ‖x‖ = R} and KR = {x ∈ K : ‖x‖ = R}.

Definition 2.1.5. If the conditions

Tx � x ∀x ∈ KR (2.1.1)

and Tx � x ∀x ∈ KR (2.1.2)

hold, then we say that the conical shell is under compression and if the conditions

Tx � x ∀x ∈ KR (2.1.3)

and Tx � x ∀x ∈ KR (2.1.4)

hold, then we say that the conical shell is under expansion.

Example 2.1.6. An illustration of this in dimension 2 is depicted in the following figures,
where X = R2 and the cone K is the wedge-shaped region AOB.

Figure 2.1: Cone compression in R2
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Figure 2.2: Cone expansion in R2

2.2 Some fixed point theorems

Now, we state a few fixed point theorems which will be used in the thesis. First we state
the classical Schauder fixed point theorem for whose proof we refer directly to Kesavan [20]

Theorem 2.2.1 (Schauder Fixed Point Theorem). Let X be a real Banach space and K a
closed, bounded and convex subset of X. Suppose the operator T : K → K is completely
continuous. Then, T has a fixed point x in K.

Now we state a couple of versions of Krasnosel’skii fixed point theorems whose proofs will
be presented in Section 2.4.

Theorem 2.2.2 (Krasnosel’skii, 1962). Let X be a real Banach space with ordered cone K.
Suppose the operator T : K → K is completely continuous and the conical shell K(R,R) is
either under compression or under expansion in the sense of Definition 2.1.5. Then, T has
a fixed point x in K(R,R).

An earlier results states the following.

Theorem 2.2.3 (Krasnosel’skii,1960). Let X be a Banach space and K ⊂ X be a cone in
X. Let the operator T : K → K be completely continuous. For 0 < a < b,

1. (Compressive form) T has a fixed point in the conical shell K(a, b) if

‖Tx‖ ≥ ‖x‖ ∀x ∈ Ka (2.2.1)

and ‖Tx‖ ≤ ‖x‖ ∀x ∈ Kb. (2.2.2)

2. (Expansive form) T has a fixed point in the conical shell K(a, b) if

‖Tx‖ ≤ ‖x‖ ∀x ∈ Ka (2.2.3)

and ‖Tx‖ ≥ ‖x‖ ∀x ∈ Kb. (2.2.4)

In order to present a proof of the Krasnosel’skii theorems, we need to introduce the
important concept of the fixed point index.

13



2.3 The Leray-Schauder fixed-point Index

We refer the reader to Zeidler [36] and Kesavan [20] for the notions discussed in this section.

A wide variety of mathematical models in science lead to equations of the type Ax = y.
In particular, many kinds of differential equations, integral equations, integro-differential
equations, etc. can be formulated in this way, usually on spaces of infinite dimension. The
topological degree and the fixed point index are important in obtaining existence theorems
for solutions of such equations. We will see, based on the concept of Leray-Schauder’s degree
for compact perturbations of the identity, that it is possible to define in a natural way the
fixed point index of compact maps, which we then use to prove the Krasnosel’skii theorems
mentioned above.

2.3.1 Leray-Schauder degree

Let X a real Banach space, Ω ⊂ X open and bounded, F ∈ K(Ω, X) (class of all compact
maps) and y 6∈ (I −F )(∂Ω). On these admissible triplets (I −F,Ω, y), Leray and Schauder,
define a Z− valued function D which extends the notion of the Brouwer degree, and satisfies
the following:

(D1) D(I,Ω, y) = 1 for y ∈ Ω;

(D2) D(I − F,Ω, y) = D(I − F,Ω1, y) + D(I − F,Ω2, y) whenever Ω1 and Ω2 are disjoint
open subsets of Ω such that y 6∈ (I − F )(Ω− (Ω1 ∪ Ω2));

(D3) D(I − H(t, ·),Ω, y(t)) is independent of t ∈ [0, 1] whenever H : [0, 1] × Ω → X is
compact, y : [0, 1]→ X is continuous and y(t) 6∈ (I −H(t, ·))(∂Ω) on [0, 1].

If Ω ⊂ X is an open bounded set, F : Ω → X is compact, and y 6∈ (I − F )(∂Ω), the
Leray-Schauder degree D(I − F,Ω, y) of I − F in Ω over y is constructed from the Brouwer
degree by approximating the compact mapping F over Ω by mappings Fε with range in a
finite-dimensional subspace Xε (containing y) of X, and showing that the Brouwer degrees
degB((I − Fε)|Xε ,Ω ∩ Xε, y) stabilize for sufficiently small positive ε to a common value
defining D(I − F,Ω, y). This topological degree ‘algebraically counts” the number of zeros
of I −F − y in Ω. Furthermore, for F of class C1 and I −F ′(x0) invertible and for each zero
of x0 of I − F − y in Ω, Leray and Schauder show that

D(I − F,Ω, y) =
∑

x0∈(I−F )−1(y)

(−1)σj(x0)

where σj(x0) is the sum of the algebraic multiplicities of the eigenvalues of F ′(x0) contained
in (1,∞).

This Leray-Schauder degree has the following important properties:

(D4) D(I − F,Ω, y) 6= 0 implies (I − F )−1(y) 6= ∅.

(D5) (Excision property) D(I − F,Ω, y) = D(I − F,Ω1, y) for every open subset Ω1 of Ω
such that y 6∈ (I − F )(Ω− Ω1)
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2.3.2 Fixed point index

Using the definition of Leray-Schauder degree, we can define the fixed point index, as given
below, in relation to the fixed points of a compact map.

F (x) = x, x ∈ Ω,

one defines the fixed-point index for F ∈ K(Ω, X) (class of all compact maps) by

i(F,Ω) := D(I − F,Ω, 0) .

The fixed-point index is a measure of the number of fixed points of F on Ω.

The following properties are satisfied.

(A1) (Normalization) If F (x) = x0 for all x ∈ Ω, and some fixed x0 ∈ Ω, then i(F,Ω) = 1.

(A2) (Kronecker existence principle) If i(F,Ω) 6= 0, then there exists an x ∈ Ω such that
F (x) = x.

(A3) (Additivity) We have

i(F,Ω) =
n∑
j=1

i(F,Ωj)

whenever F ∈ K(Ω, X) and F ∈ K(Ωj, X) for all j, where {Ωj} is a regular partition
of Ω, i.e., the Ωj are parwise disjoint and Ω =

⋃n
j=1 Ωj and F has no fixed points on

∂Ωj or ∂Ω.

(A4) (Homotopy invariance) i(F,Ω) = i(G,Ω) whenever F and G are homotopically equiv-
alent, that is, there exists a map H with the following properties:

1. H : Ω× [0, 1]→ X is compact;

2. H(x, t) 6= x for all (x, t) ∈ ∂Ω× [0, 1];

3. H(x, 0) = F (x) and H(x, 1) = G(x) on Ω.

The map H is called a compact homotopy.

Note: If we are interested in the fixed points of a compact map T : K → K on a closed
convex cone K then this can be achieved by extending T : X → K to a compact map (which
exists by a result of Dugundji [12]) and by studying the fixed points of the extended map on
X using the fixed point index, by the permanence property i(T,Ω) = i(T,K ∩ Ω).

For a proof of the Krasnosel’skii theorem (1960), we will also need the following lemma
from Guo and Lakshmikantham [15] (cf. Lemma 2.3.2). Let K be a cone in a real Banach
space X. Let Ω be a bounded open set of X.

Lemma 2.3.1. Let A : K ∩ Ω → K be completely continuous and B : K ∩ ∂Ω → K be
completely continuous. Suppose that

1. infx∈K∩∂Ω ‖Bx‖ > 0 and

2. x− Ax 6= tBx, ∀x ∈ K ∩ ∂Ω, t ≥ 0 .

Then, we have i(A,K ∩ Ω) = 0.
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2.3.3 General strategy of fixed point theorems.

It is worthwhile to keep in mind the following general strategy while trying to prove existence
of fixed points for a certain map F on a domain Ω.

1. Relate a given map F by a homotopy to a simpler map G, for which i(G,Ω) is known
and i(G,Ω) 6= 0.

2. Apply (A4) to get i(F,Ω) = i(G,Ω) 6= 0, and then (A2) to conclude that the map F
has a fixed point on Ω.

2.4 Proof of Theorem 2.2.3

We now present a proof of the Krasnosel’skii theorem (1960) using the Leray-Schauder fixed
point index.

Proof: If T has a fixed point on the boundary of the conical shell then we are done. So,
without loss of generality, we assume that Tx 6= x for any x ∈ K with ‖x‖ = a or ‖x‖ = b.

We set
U = {x ∈ K : ‖x‖ < a}, V = {x ∈ K : ‖x‖ < b} .

By (A3) we have
i(T, V − U) = i(T, V )− i(T, U) . (2.4.1)

Assuming that (2.2.1) and (2.2.2) hold (that is, in the compressive case), we show below
that

i(T, U) = 0, i(T, V ) = 1. (2.4.2)

Step 1: First we show that i(T, U) = 0. In fact, we apply Lemma 2.3.1 with A = B = T and
Ω = B(0, a). By (2.2.1) we have that ‖Tx‖ ≥ a > 0 and thus infx∈K∩∂U ‖Tx‖ > 0, fulfilling
the hypothesis (1) of the Lemma 2.3.1. We note that the hypothesis (2) is equivalent to
Tx 6= µx, ∀µ ≤ 1 and x ∈ ∂U . This holds, since we have assumed that Tx 6= x for any x
with ‖x‖ = a and also, if Tx = µx, µ < 1 for any x with ‖x‖ = a, then ‖Tx‖ = µ‖x‖ < ‖x‖
which contradicts the hypothesis (2.2.1) of the theorem. Therefore, by Lemma 2.3.1, we
conclude that i(T, U) = 0.

Step 2: We show i(T, V ) = 1 by showing that T is homotopic to 0. Consider the
homotopy H(x, t) = tTx. If H(x, t) = x for some (x, t) ∈ ∂V × [0, 1], then t 6= 0 and x ∈ K,

so that ‖Tx‖ =
‖x‖
t
≥ ‖x‖, which is not possible by (2.2.2) and also since Tx 6= x for

x ∈ ∂V . So, we conclude that i(T, V ) = i(0, V ) = 1. So, we have i(T, V − U) = 1− 0 6= 0.
In the expansive case, assuming that (2.2.3) and (2.2.4) holds we obtain

i(T, U − V ) = i(T, U)− i(T, V ) = −1 .

Note: The proof of Theorem 2.2.2 is even simpler since we do not need Lemma 2.3.1 for
it’s proof. It is enough to make the following modifications to the step 1 above, whereas,
step 2 remains the same. To show i(T, U) = 0 we argue by contradiction. Suppose instead
that i(T, U) 6= 0 and choose an α with ‖Tx‖ ≤ α on U and an x0 ∈ K with ‖x0‖ > R + α
and define

H(x, t) = Tx+ tx0 .
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Now observe that H(x, t) 6= x for any (x, t) ∈ ∂U × [0, 1], for otherwise, we shall have
Tx + tx0 = x, which implies (x − Tx) ∈ K, that is, Tx ≤ x for some x ∈ U . But, (2.1.1)
says that this cannot happen. Thus H is a valid homotopy and i(H(·, 1), U) = i(T, U) 6= 0.
Then there exists an x ∈ U with Tx+ x0 = x which contradicts the choice ‖x0‖ > α +R.

2.5 Comparison principles for monotone operators

In this section we provide some basic comparison principles in the context of monotone
operators in one-dimension involving Dirichlet, Neumann or Robin boundary conditions.
These will be useful in Chapters 3 and 4 for the setting up of the problems as a fixed point
problem for suitably defined cone operators.

Let ϕ : R→ R be an odd, strictly increasing homeomorphism from R onto R.

Lemma 2.5.1. Let [a, b] ⊆ [0, 1]; f, g be continuous functions on [a, b] with f ≥ g on
[a, b] and p, q be strictly positive continuous functions on (a, b). Let w be a C1 variational
supersolution on [a, b] of

−(q(t)ϕ(p(t)w′(t)))′ ≥ f , a < t < b (2.5.1)

and z be a C1 variational subsolution on [a, b] of

−(q(t)ϕ(p(t)z′(t)))′ ≤ g a < t < b (2.5.2)

with
w(a) ≥ z(a) and w(b) ≥ z(b) . (2.5.3)

Then w ≥ z in [a, b].

Proof: In order to prove that w ≥ z in [a, b], it’s enough to show that µ({w < z}) = 0,
that is, (w − z)− = 0 almost everywhere. Multiplying (2.5.1) by (w − z)− (note that this
vanishes outside the set {w < z} and at a and b due to the boundary inequalities (2.5.3))
and integrating on [a, b] ∩ {w < z} we obtain:

∫
[a,b]∩{w<z}

f(s)(w − z)−(s)ds ≤ −
∫

[a,b]∩{w<z}

(q(s)ϕ(p(s)w′(s)))′(w − z)−(s)ds

=

∫
[a,b]∩{w<z}

q(s)ϕ(p(s)w′(s))(w − z)′−(s)ds

= −
∫

[a,b]∩{w<z}

q(s)ϕ(p(s)w′(s))(w′ − z′)(s)ds

where the last equality is due to the fact that (w − z)− = −(w − z) on {w < z}. Note that
in the penultimate equality, the integration by parts on [a, b] ∩ {w < z} can be done after
decomposing the set as a countable union of disjoint intervals and the boundary terms drop
out since on the end-points of each of these intervals (w − z)− = 0. In conclusion, we get∫

[a,b]∩{w<z}

q(s)ϕ(p(s)w′(s))(w′ − z′)(s)ds ≤ −
∫

[a,b]∩{w<z}

f(s)(w − z)−(s)ds . (2.5.4)
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Analogously from (2.5.2) we have:

−
∫

[a,b]∩{w<z}

q(s)ϕ(p(s)z′(s))(w′ − z′)(s)ds ≤
∫

[a,b]∩{w<z}

g(s)(w − z)−(s)ds . (2.5.5)

Adding the expressions (2.5.4) and (2.5.5)

0 ≥
∫

[a,b]∩{w<z}
q(s)[ϕ(p(s)w′(s))− ϕ(p(s)z′(s))](w′ − z′)(s)ds

=

∫
[a,b]∩{w<z}

q(s)

p(s)
[ϕ(p(s)w′(s))− ϕ(p(s)z′(s))](pw′ − pz′)(s)ds .

Since, ϕ is monotone increasing, we have 0 ≤ (ϕ(x) − ϕ(y))(x − y) ∀x, y, which implies
that the integrand in the last expression is non-negative and so,∫

[a,b]∩{w<z}

q(s)

p(s)
[ϕ(p(s)w′(s))− ϕ(p(s)z′(s))](pw′ − pz′)(s)ds = 0 .

From this again, since the integrand above is non-negative, ϕ is strictly increasing and p, q
are non-vanishing, we conclude that

w′(t) = z′(t) a.e. in [a, b] ∩ {w < z} .

Therefore, w−z is constant on each connected component of in [a, b]∩{w < z} and therefore
equal to 0 there, since (w−z)− = 0 at the end points of each of these connected components.
Therefore, we have (w − z)− = 0 in [a, b] and consequently, w ≥ z in [a, b].

In the third chapter, while dealing with a Neumann type condition on the finite boundary
or at infinity we will need the following two lemma.

Lemma 2.5.2. Suppose that u is a C1 variational supersolution of

−(q(t)ϕ(p(t)u′(t)))′ ≥ 0 0 < t < 1
u′(0) = 0, u(1) = 0 .

}
(2.5.6)

Let us suppose that u is continuous and t∗ ∈ [0, 1] is such that u(t∗) = ‖u‖. Then u = ‖u‖
in [0, t∗]. Suppose that z is a solution of:

−(q(t)ϕ(p(t)z′(t)))′ = 0 t∗ < t < 1
z(t∗) = ‖u‖ , z(1) = 0 .

}
(2.5.7)

Then u ≥ z in [t∗, 1].

Proof: The assertion in [t∗, 1] follows by applying Lemma 2.5.1 to u and z in this interval.
For the proof of the assertion in [0, t∗], the arguments are similar as in that of Lemma 2.5.1.
It suffices to multiply (2.5.6) by ‖u‖ − u and integrate on [0, t∗] ∩ {u < ‖u‖} to obtain:∫

[0,t∗]∩{u<‖u‖}
q(s)ϕ(p(s)u′(s))u′(s)ds ≤ 0 . (2.5.8)
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On the other hand,

q(s)ϕ(p(s)u′(s))u′(s) =
q(s)

p(s)
ϕ(p(s)u′(s))p(s)u′(s) ≥ 0 , (2.5.9)

since ϕ is monotone increasing and ϕ(0) = 0. From (2.5.8) and (2.5.9) we have

q(s)ϕ(p(s)u′(s))u′(s)ds = 0 on [0, t∗] ∩ {u < ‖u‖} .

From this again, since ϕ is strictly increasing and q and p are strictly positive, we conclude
that u′(t) = 0 a.e. in [0, t∗] ∩ {u < ‖u‖}. Since u(t∗) = ‖u‖ we conclude that u = ‖u‖ in
[0, t∗].

Analogously we have the following lemma.

Lemma 2.5.3. Suppose that u is a C1 variational supersolution of

−(q(t)ϕ(p(t)u′(t)))′ ≥ 0 0 < t < 1
u(0) = 0, u′(1) = 0 .

}
(2.5.10)

Let us suppose that u is continuous and t∗ ∈ [0, 1] is such that u(t∗) = ‖u‖. Then u = ‖u‖
in [t∗, 1]. Suppose that w is a solution of:

−(q(t)ϕ(p(t)w′(t)))′ = 0 0 < t < t∗

w(0) = 0, w(t∗) = ‖u‖

}
(2.5.11)

where w is continuous. Then u ≥ w in [0, t∗].

Finally, in connection with the problem involving non-linear boundary condition we prove
the following lemma.

Lemma 2.5.4. Let f, g be continuous functions on [a, b] with f ≥ g on [a, b]. If w and z
are C1 and satisfy the following inequalities in the variational sense

−(q(t)ϕ(p(t)w′(t)))′ ≥ f 0 < t < 1
w′(0) = cw(0), w(1) = 0

}
(2.5.12)

and

−(q(t)ϕ(p(t)z′(t)))′ ≤ g 0 < t < 1
z′(0) = cz(0), z(1) = 0

}
, (2.5.13)

respectively, where c is a positive constant. Then w ≥ z in [0, 1].

Proof: The arguments are similar as in Lemma 2.5.1. Multiplying (2.5.12) by (w−z)− and
integrating on [0, 1] we obtain:∫
A

f(s)(w − z)−(s)ds ≤ −
∫
A

q(s)ϕ(p(s)w′(s))(w′ − z′)(s)ds+ q(0)ϕ(p(0)w′(0))(w − z)−(0)

where A = [0, 1] ∩ {w < z}. Equivalently,∫
A

q(s)ϕ(p(s)w′(s))(w′ − z′)(s)ds− q(0)ϕ(p(0)w′(0))(w − z)−(0) ≤ −
∫
A

f(s)(w − z)−(s)ds
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Analogously, starting from (2.5.13) we obtain:

−
∫
A

q(s)ϕ(p(s)z′(s))(w′ − z′)(s)ds+ q(0)ϕ(p(0)z′(0))(w − z)−(0) ≤
∫
A

g(s)(w − z)−(s)ds

Adding the previous two inequalities we have∫
A
q(s)[ϕ(p(s)w′(s))− ϕ(p(s)z′(s))](w′ − z′)(s)ds+ q(0)[ϕ(p(0)z′(0))− ϕ(p(0)w′(0))](w − z)−(0)

≤
∫
A
(g(s)− f(s))(w − z)−(s)ds ≤ 0

Then the proof can be completed as in Lemma 2.5.1 while observing that

q(0)[ϕ(p(0)z′(0))− ϕ(p(0)w′(0))](w − z)−(0) ≥ 0 .

Indeed, if w(0) ≥ z(0) then (w − z)−(0) = 0. In the remaining case, w(0) ≤ z(0), we have
(w − z)−(0) = z(0)− w(0) and we use the relations w′(0) = cw(0) and z′(0) = cz(0) to get

q(0)[ϕ(p(0) c z(0))− ϕ(p(0)cw(0))](z − w)(0) ≥ 0

after rewriting the left hand side expression as

q(0)

p(0)c
[ϕ(p(0)cz(0))− ϕ(p(0)cw(0))](p(0)cz(0)− p(0)cw(0))

and using the monotony of ϕ. Then, proceeding as in the previous lemma we conclude that
w ≥ z in [0, 1].
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Chapter 3

Positive radial solutions of a
quasilinear problem in an exterior
domain with vanishing boundary
conditions

3.1 Introduction

In this chapter we study the existence and non-existence results of positive radial solutions,
given λ > 0 and d > 0, for the quasilinear equation:

div(A(|∇u|)∇u) + λk(|x|)f(u) = 0, |x| > d, x ∈ RN , N ≥ 2 (3.1.1)

in conjunction with one of the following boundary condition on the exterior of the ball B(0, d)

u = 0 on |x| = d and u→ 0 when |x| → ∞ (3.1.2)

∂u/∂r = 0 on |x| = d and u→ 0 when |x| → ∞ (3.1.3)

u = 0 on |x| = d and ∂u/∂r → 0 when |x| → ∞ . (3.1.4)

To begin with, we set
ϕ(t) = A(|t|)t .

Looking for a radially symmetric solution u (x) ≡ v (|x|) to the problem is equivalent to
solving the ordinary differential equation:

−(rN−1ϕ(v′(r)))′ = λrN−1k(r)f(v(r)) in (d,∞) .

By the change of variables t = 1− d

r
and setting w(t) = v

(
d

1− t

)
, this equation leads to

−(q (t)ϕ(p (t)w′ (t)))′ = λk̃(t)f(w(t)), 0 < t < 1, (3.1.5)

where

q(t) :=

(
d

1− t

)N−1

p(t) :=
(1− t)2

d
, k̃(t) :=

dN

(1− t)N+1
k

(
d

1− t

)
. (3.1.6)
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The boundary conditions in (3.1.2)-(3.1.4) correspond, respectively, to

w (0) = w (1) = 0 (3.1.7)

w′ (0) = w (1) = 0 (3.1.8)

w (0) = w′ (1) = 0. (3.1.9)

Note that q has a singularity at t = 1 while k̃ is also possibly singular at t = 1. We mention
that, in comparison, the study of such problems over annular domains [33] do not give rise
to such singularities. This is very important as it affects the choice of the cone in which we
can obtain a fixed point and the strategy required for showing the cone preserving property.
It is also worth keeping in mind that q is increasing, limt→1− q(t) = +∞, p is decreasing and
limt→1− p(t) = 0. Observe also that k̃(t) : [0, 1) → [C1d

N ,∞) is continuous and k̃(t) 6= 0 on
any subinterval of [0, 1). The precise hypotheses on the non-linearities f and ϕ and on the
weight k will be given at the beginning of the next section.

We shall now state our main theorems. The behaviour of the non-linearity f in comparison
with ϕ at 0 and at ∞ will be important for the analysis and for this we set:

f0 := lim
x→0

f(x)

ϕ(x)
and f∞ := lim

x→∞

f(x)

ϕ(x)
.

We shall assume that the conditions from (H1) to (H6), stated in the next section, hold in
the case of the problems (3.1.1)-(3.1.2)/ (3.1.1)-(3.1.3) and assume, additionally, that the
condition (H7) holds in the case of the problem (3.1.1)-(3.1.4).

Theorem 3.1.1.

1. If f0 = ∞ and f∞ = ∞, then for any R > 0 there exists λR such that for all
0 < λ ≤ λR, the problem (3.1.1)-(3.1.2)/ (3.1.1)-(3.1.3)/ (3.1.1)-(3.1.4) has at least
two positive solutions u1 and u2 with 0 < ‖u1‖ < R < ‖u2‖.
If f0 = ∞ or f∞ = ∞, then for any R > 0 there exists λR > 0 such that for all
0 < λ ≤ λR the problem (3.1.1)-(3.1.2)/ (3.1.1)-(3.1.3)/ (3.1.1)-(3.1.4) has at least
one positive solution u with 0 < ‖u‖ < R or R < ‖u‖ respectively.

2. If f0 = 0 and f∞ = 0, then for any L > 0 there exists λL > 0 such that for all λ ≥ λL,
the problem (3.1.1)-(3.1.2)/ (3.1.1)-(3.1.3)/ (3.1.1)-(3.1.4) has at least two positive
solutions u1 and u2 with 0 < ‖u1‖ < L < ‖u2‖.
If f0 = 0 or f∞ = 0, then for any L > 0 there exists λL > 0 such that for all λ ≥ λL
the problem (3.1.1)-(3.1.2)/ (3.1.1)-(3.1.3)/ (3.1.1)-(3.1.4) has at least one positive
solution u with 0 < ‖u‖ < L or L < ‖u‖ respectively.

Theorem 3.1.2.

1. If f0 = 0 and f∞ =∞, then for all λ > 0 the problem (3.1.1)-(3.1.2)/ (3.1.1)-(3.1.3)/
(3.1.1)-(3.1.4) has a positive solution.

2. If f0 =∞ and f∞ = 0, then for all λ > 0 the problem (3.1.1)-(3.1.2)/ (3.1.1)-(3.1.3)/
(3.1.1)-(3.1.4) has a positive solution.
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Theorem 3.1.3.

1. If f0 > 0 and f∞ > 0, then there exists a positive number λ such that the problem
(3.1.1)-(3.1.2)/ (3.1.1)-(3.1.3)/ (3.1.1)-(3.1.4) has no positive solutions for all λ > λ.

2. If f0 < ∞ and f∞ < ∞, then there exists a positive number λ such that the problem
(3.1.1)-(3.1.2)/ (3.1.1)-(3.1.3)/ (3.1.1)-(3.1.4) has no positive solutions for all λ < λ.

The organization of the chapter is as follows. In Section 3.2, we provide the operator setting
for solving the problem using fixed point methods. In Section 3, we give the proofs of the
main results after establishing some preliminary results.

3.2 Setting up of the fixed point problem

In this section we establish the basic abstract framework for solving the problem.

3.2.1 The hypotheses on the non-linearities

We shall make the following assumptions on the non-linearities and the weight k:

(H1) ϕ : R → R is an odd, strictly increasing homeomorphism from R onto R and is
pseudo-homogeneous in the following sense. There exists two increasing and surjective
homeomorphisms ψ1, ψ2 : (0,∞)→ (0,∞) such that:

ψ1(a)ϕ(b) ≤ ϕ(ab) ≤ ψ2(a)ϕ(b) for all a > 0 , b ∈ R .

Note: Necessarily, ϕ(0) = 0 and ψ1(s)→ 0 as s→ 0. The hypothesis (H1) is satisfied
whenever ϕ is homogeneous or positively homogeneous like in the case of Laplacian
for which ϕ(t) = t and ψ1(a) = ψ2(a) = a and, in the case of the p-Laplacian operator
for which ϕ(t) = |t|p−2t and ψ1(a) = ψ2(a) = ap−1. In Example 3.2.1 we provide other
classes of operators not covered by these operators.

(H2) For any constant C we have

∫ 1

0

1

p(s)
ϕ−1

(
C

q(s)

)
ds <∞.

(H3) For any constant C we have

∫ 1

0

1

p(s)
ψ−1
i

(
C

q(s)

)
ds <∞ , i = 1, 2.

Note: The hypothesis (H2)-(H3) are necessary for the operators defined in (3.2.3),
(3.2.6) and (3.2.9) to be valid and for the finiteness of the constants defined in (3.2.2),
(3.2.5) and (3.2.8). These conditions introduce restrictions on the dimension. In the
case of Laplacian these conditions are satisfied for N > 2 and in the case of the p-
Laplacian operator it is satisfied for N > p. We now provide an example of another
class of operators which are not homogeneous for which the hypotheses (H1)-(H3) hold.

Example 3.2.1. For 1 < α < N−1, the odd extension of the function ϕα(t) =
tα√

1 + t2

defined for t ≥ 0 satisfies the hypotheses (H1)-(H3). Indeed, for the choice

ψ1(t) =

{
tα, 0 ≤ t < 1
tα−1, t ≥ 1

and ψ2(t) =

{
tα−1, 0 ≤ t < 1
tα, t ≥ 1
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it can be checked that these hypotheses are verified (see the Appendix for the verifica-
tion). Note that the case α = 1 is not included which would correspond to the mean
curvature equation but α can be arbitrarily close to 1.

We now give some of the basic hypotheses on the non-linearity f and on the weight k.

(H4) f : [0,∞)→ [0,∞) is continuous and f(s) > 0 for s > 0.

Note: Since ϕ(0) = 0, if f(0) = 0, the constant function u = 0 is always a non-negative
radial solution to the problem (3.1.5) together with any of the boundary conditions
(3.1.7), (3.1.8) or (3.1.9).

(H5) k : [d,∞)→ [0,∞) is continuous and k(t) 6= 0 on any subinterval of [d,∞).

(H6) 0 <

∫ 1

0

k̃(t)dt <∞.

Note: Recalling the expression for k̃ from (3.1.6), the condition (H6) requires that
k vanishes at infinity at a certain rate to neutralize the singularity introduced by the

factor
1

(1− t)N+1
. Such a condition is common while studying semilinear problems in

exterior domains (see for example Dhanya et al [10]). Examples of k for which (H6)
holds are k(r) = Cr−N−µ with µ > 0.

(H7) q(1− δ)ψ2(p(1− δ)) is bounded on 0 ≤ δ < 1.

Note: The last condition is needed for meeting the boundary condition at infinity
in (3.1.4) and in the proof of the comparison principles in the next section where
integration by parts in intervals of the form [t, 1] is needed.

3.2.2 The function space setting

The setting for obtaining the results will be the Banach space C[0, 1] equipped with the
supremum norm ‖u‖ = sup

t∈[0,1]

|u(t)|. We shall denote this space by X . Let 0 < δ < 1
2
.

For solving the boundary value problem (3.1.5) along with the boundary condition (3.1.7)
we will consider the cone in X defined by

K := {u ∈ X : u(t) ≥ 0, u(t) ≥ ρδ‖u‖, ∀t ∈ [δ, 1− δ]} (3.2.1)

where 0 < ρδ < 1 (guaranteed by hypothesis (H3)) which is fixed below

ρδ :=
1∫ 1

0

1

p(s)
ψ−1

1

(
1

q(s)

)
ds

min

{∫ δ

0

1

p(s)
ψ−1

2

(
1

q(s)

)
ds,

∫ 1

1−δ

1

p(s)
ψ−1

2

(
1

q(s)

)
ds

}
.

(3.2.2)
Given λ > 0, the solutions to the problem (3.1.5) along with the boundary condition (3.1.7)
will be obtained as fixed points of an operator Sλ on K whose definition requires establishing
the following assertion.
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Assertion 3.2.2. Given u in X and non-negative, let us denote by g(t) := λk̃(t)f(u(t)).
Then, there exists σ ∈ (0, 1) such that Z1(σ) = Z2(σ) where

Z1(t) =

∫ t

0

1

p(s)
ϕ−1

(
1

q(s)

∫ t

s

g(η)dη

)
ds, 0 ≤ t ≤ 1

and

Z2(t) =

∫ 1

t

1

p(s)
ϕ−1

(
1

q(s)

∫ s

t

g(η)dη

)
ds, 0 ≤ t ≤ 1 .

Proof: The functions Z1 and Z2 are finite valued and continuous guaranteed by the hy-
pothesis (H2).
If u = 0, we may choose any σ ∈ (0, 1). Otherwise, Z1(1) > 0, Z2(0) > 0 and since
Z2(1) = 0 = Z1(0) = 0 we have H(0) < 0, H(1) > 0 where H is the continuous function
H(t) = Z1(t) − Z2(t). Furthermore, since g is non-negative, the assumptions on ϕ imply
that Z1 is increasing and Z2 is decreasing. These, imply that H is increasing and so, by the
Intermediate Value Theorem, we have that there exists σ ∈ (0, 1) such that H(σ) = 0.

Remark 3.2.3. Notice that σ depends on u and it may be non-unique.

We now define the nonlinear operator Sλ from K to X as follows. Given u ∈ K and for σ
(which depends on u) as in the previous assertion we define Sλu similarly as in Wang [33]
as follows:

Sλu(t) :=



∫ t

0

1

p(s)
ϕ−1

(
λ

q(s)

∫ σ

s

k̃(η)f(u(η))dη

)
ds, 0 ≤ t ≤ σ

∫ 1

t

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

σ

k̃(η)f(u(η))dη

)
ds σ ≤ t ≤ 1 .

(3.2.3)

Remark 3.2.4. Through Assertion 3.2.6 we will see that this operator is well defined, that
is, it depends only on u and is independent of the choice of σ coming from Assertion 3.2.2.

For solving the boundary value problem (3.1.5) along with the boundary condition (3.1.8)
we will consider the cone in X defined by

C := {u ∈ X : u(t) ≥ 0, u(t) ≥ %δ‖u‖, ∀t ∈ [0, 1− δ]} where (3.2.4)

%δ :=
1∫ 1

0

1

p(s)
ψ−1

1

(
1

q(s)

)
ds

∫ 1

1−δ

1

p(s)
ψ−1

2

(
1

q(s)

)
ds . (3.2.5)

Given λ > 0, the solutions to the problem will be obtained as fixed points of the operator
Tλ (which we define below) on the cone C

Tλu(t) :=

∫ 1

t

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

0

k̃(η)f(u(η))dη

)
ds, 0 ≤ t ≤ 1 . (3.2.6)

For solving the boundary value problem (3.1.5) along with the boundary condition (3.1.9)
we will consider the cone in X defined by

P := {u ∈ X : u(t) ≥ 0, u(t) ≥ κδ‖u‖, ∀t ∈ [δ, 1]} (3.2.7)
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where the value of κδ is fixed below (note that 0 < κδ < 1)

κδ :=
1∫ 1

0

1

p(s)
ψ−1

1

(
1

q(s)

)
ds

∫ δ

0

1

p(s)
ψ−1

2

(
1

q(s)

)
ds . (3.2.8)

Given λ > 0, the solutions to the problem will be obtained as fixed points of the operator
Vλ (which we define below) on the cone P

Vλu(t) :=

∫ t

0

1

p(s)
ϕ−1

(
λ

q(s)

∫ 1

s

k̃(η)f(u(η))dη

)
ds, 0 ≤ t ≤ 1 . (3.2.9)

Remark 3.2.5. For every non-negative function u in X , we observe that, by definition, the
function Sλu(·) is non-negative and differentiable separately on [0, σ) and (σ, 1]. Moreover,
from the choice of σ in Assertion 3.2.2, the function Sλu(·) is continuous at σ. It can be seen
that the derivative of Sλu(·) at σ is also continuous by using the fact that ϕ is odd. Thus,
for each non-negative continuous function u, the function v(·) := Sλu(·) is a C1 function on
[0, 1] and it can be checked that v satisfies the equation

−(q(t)ϕ(p(t)v′(t)))′ = λk̃(t)f(u(t)) , 0 < t < 1 (3.2.10)

along with the boundary condition (3.1.7). This follows from the pointwise relation

v′(t) =
1

p(t)
ϕ−1

(
λ

q(t)

∫ σ

t

k̃(η)f(u(η))dη

)
which can be seen to hold on [0, 1] whereas the boundary condition (3.1.7) clearly holds.

The definition of the operators Tλ and Vλ are much simpler compared to that of Sλ and is
valid for all u ∈ C[0, 1]. It is seen, similarly, as above that the function Tλu(·) is differentiable
on [0, 1] satisfies the equation (3.2.10) along with the boundary condition (3.1.8). In the
same way, for each u ∈ C[0, 1] the function Vλu(·) is a C1 function on [0, 1] and satisfies
the equation (3.2.10) along with the boundary condition (3.1.9) (the hypothesis (H7) plays a
role here). Although the operators defined here resemble that in Wang [33], the singulairty
of the weights p and q for the problem in an exterior domain require new ways of handling
the operators.

Assertion 3.2.6. Sλu is independent of the choice of σ which appears in Assertion 3.2.2.

Proof: Suppose that σ1, σ2 with σ1 < σ2 are such that

H(σ1) = H(σ2) = 0 .

Then, we observe that g(η) ≡ 0 in [σ1, σ2] where g(t) := λk̃(t)f(u(t)). Indeed, since σ1 < σ2,
and Z1 is increasing and Z2 is decreasing

H(σ1)−H(σ2) = Z1(σ1)−Z1(σ2)− (Z2(σ1)−Z2(σ2)) = Z1(σ1)−Z1(σ2) + (Z2(σ2)−Z2(σ1))

is the sum of two non-positive quantities and is equal to zero, we have in particular that

Z1(σ1) = Z1(σ2) and Z2(σ2) = Z2(σ1) . (3.2.11)
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This implies that g(η) ≡ 0 in [σ1, σ2]) by the way that Z1 and Z2 are defined and due to the
non-negativity of the integrands. This observation is enough to reach our conclusions. Let

us denote by Sσ1λ u and Sσ2λ u the two choices of the image of u under the operation defined in
(3.2.3). We shall show that these two choices define the same function. Indeed, if 0 ≤ t ≤ σ1,
we see that

Sσ1λ u(t) =

∫ t

0

1

p(s)
ϕ−1

(
1

q(s)

∫ σ1

s

g(η)dη

)
ds+

∫ t

0

1

p(s)
ϕ−1

(
1

q(s)

∫ σ2

σ1

g(η)dη

)
ds

=

∫ t

0

1

p(s)
ϕ−1

(
1

q(s)

∫ σ2

s

g(η)dη

)
ds = Sσ2λ u(t) .

The case σ2 ≤ t ≤ 1 is similar. Finally, if σ1 ≤ t ≤ σ2, we have

Sσ1λ u(t) =

∫ 1

t

1

p(s)
ϕ−1

(
1

q(s)

∫ s

σ1

g(η)dη

)
ds

=

∫ 1

σ2

1

p(s)
ϕ−1

(
1

q(s)

∫ s

σ2

g(η)dη

)
ds = Z2(σ2) .

Similarly,

Sσ2λ u(t) =

∫ t

0

1

p(s)
ϕ−1

(
1

q(s)

∫ σ2

s

g(η)dη

)
ds

=

∫ σ1

0

1

p(s)
ϕ−1

(
1

q(s)

∫ σ1

s

g(η)dη

)
ds = Z1(σ1) .

The conclusion Sσ1λ u(t) = Sσ2λ u(t) follows from (3.2.11) and the fact that Z1(σ1) = Z2(σ1)
.

3.2.3 Some properties of the operators

We provide now the main properties of the operators Sλ, Tλ and Vλ.

Completely continuity

We first show that the operator Sλ is completely continuous. The arguments to show that
the operators Tλ : C → X and Vλ : P → X are completely continuous form particular cases
due to the definition of these operators.

Lemma 3.2.7. The operator Sλ : K → X is completely continuous.

Proof: We need to prove that Sλ is continuous and maps bounded sets to relatively compact
sets.
Given M > 0, let θ = max0<s≤M f(s) > 0. We shall show that Sλ(B(0,M)∩K) is relatively
compact in X, as a consequence of the Arzela-Ascoli theorem, by establishing the following:

boundedness: For any u ∈ B(0,M) ∩K, let σ be as in the definition of Sλu and consider,
first, t ∈ [0, σ]. We have

Sλu(t) =

∫ t

0

1

p(s)
ϕ−1

(
λ

q(s)

∫ σ

s

k̃(η)f(u(η))dη

)
ds
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≤
∫ t

0

1

p(s)
ϕ−1

(
λθ

q(s)

∫ 1

0

k̃(η)dη

)
ds (since ϕ−1 is increasing by (H1)),

≤
∫ 1

0

1

p(s)
ϕ−1

(
λθ

q(s)

∫ 1

0

k̃(η)dη

)
ds .

Similarly, the above estimate holds for all t ∈ [σ, 1] by starting from the second expression
for Sλu in (3.2.3). This, implies that Sλ(B(0,M) ∩ K) is bounded.

equicontinuity: We now will prove that Sλ(B(0,M ∩ K)) = {Sλu : ‖u‖ ≤ M, u ∈ K} is
an equicontinuous family in X . Given, ε > 0, using the finiteness hypothesis on the integral
(H2), choose δ > 0 such that∫ t1

t2

1

p(s)
ϕ−1

(
λθ

q(s)

∫ 1

0

k̃(η)dη

)
ds < ε . (3.2.12)

Then, for t1, t2 ∈ [0, σ] and |t1 − t2| < δ, we have

|Sλu(t1)− Sλu(t2)| =
∫ t1

t2

1

p(s)
ϕ−1

(
λ

q(s)

∫ σ

s

k̃(η)f(u(η))dη

)
ds

≤
∫ t1

t2

1

p(s)
ϕ−1

(
λθ

q(s)

∫ 1

0

k̃(η)dη

)
ds (by (H1))

< ε (by (3.2.12)) .

Similarly for t1, t2 ∈ [σ, 1] and |t1 − t2| < δ.

In the case that 0 < t1 < σ < t2 < 1 we have:

|Sλu(t2)− Sλu(t1)| = |Sλu(t2)− Sλu(σ) + Sλu(σ)− Sλu(t1)|
≤ |Sλu(t2)− Sλu(σ)|+ |Sλu(σ)− Sλu(t1)| < 2ε (by above two steps) .

Therefore, by Ascoli-Arzelá theorem, Sλ is a compact operator.

Sλ is continuous: Let wn, w ∈ K be such that wn → w in C[0, 1]. We would like to
prove that Sλwn → Sλw. The sequence wn is bounded in C[0, 1] and since Sλ is a compact
operator we know that {Sλwn}∞n=1 is an equicontinuous family. Then, for a subsequence for
which we still use the same indices, Sλwn converges to some u ∈ X. Since u and Sλw are
continuous functions it is enough to show that u = Sλw on a dense set for which it suffices
to prove the following pointwise convergence

Sλwn(t)
n→∞−→ Sλw(t) for all t ∈ [0, 1] \ {σ} . (3.2.13)

For each of the wn let σn ∈ [0, 1] be as in the definition of Sλwn similar as in (3.2.3) guaranteed
by Assertion 3.2.2. Then, for a subsequence, we have σn → σ.

We now prove (3.2.13). Consider t ∈ [0, 1] and let us consider the case 0 ≤ t < σ. In the
present case, since σn → σ and t < σ it follows that t < σn for all n large enough. Then, by
definition

Sλwn(t) =

∫ t

0

1

p(s)

(
ϕ−1

(
1

q(s)

∫ σn

s

wn(η)dη

))
ds . (3.2.14)

We note that∣∣∣∣∫ σn

s

wn(η)dη −
∫ σ

s

w(η)dη

∣∣∣∣ =

∣∣∣∣∫ σ

s

wn(η)dη −
∫ σ

σn

wn(η)dη −
∫ σ

s

w(η)dη

∣∣∣∣
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≤
∫ σ

s

|wn(η)− w(η)|dη +

∣∣∣∣∫ σ

σn

wn(η)dη

∣∣∣∣ n→∞−→ 0

since wn converges to w uniformly, σn → σ and wn is uniformly bounded. The continu-
ity of ϕ−1 implies the pointwise convergence of the integrands in (3.2.14). Then applying
dominated convergence theorem to (3.2.14) we conclude that

Sλwn(t) =

∫ t

0

1

p(s)

(
ϕ−1

(
1

q(s)

∫ σn

s
wn(η)dη

))
ds→

∫ t

0

1

p(s)

(
ϕ−1

(
1

q(s)

∫ σ

s
w(η)dη

))
ds = Sλw(t)

proving (3.2.13) for t < σ. The case σ < t ≤ 1 can be argued similarly.

Cone invariance

Proposition 3.2.8. Let K defined by (3.2.1). Then the operator Sλ defined by (3.2.3)
preserves the cone K, that is, if v ∈ K then Sλv ∈ K.

Proof: Let v ∈ K and so we have λk̃(t)f(v(t)) ≥ 0. Then, Sλv = u satisfies

−(q(t)ϕ(p(t)u′(t)))′ = λk̃(t)f(v(t)) ≥ 0 0 < t < 1
u(0) = 0, u(1) = 0

}
(3.2.15)

and let t∗ ∈ [0, 1] be such that u(t∗) = ‖u‖. Now, we consider an auxiliary function w which
satisfies:

−(q(t)ϕ(p(t)w′(t)))′ = 0 0 < t < t∗

w(0) = 0 , w(t∗) = ‖u‖ .

}
(3.2.16)

On the one hand, it follows that w(t) =

∫ t

0

1

p(s)
ϕ−1

(
C

q(s)

)
ds with C constant. So,

w(t∗) = ‖u‖ =

∫ t∗

0

1

p(s)
ϕ−1

(
C

q(s)

)
ds

≤
∫ 1

0

1

p(s)
ψ−1

1

(
1

q(s)

)
ds ϕ−1(C) (from Lemma 3.3.1)

leading to the inequality,

ϕ−1(C) ≥ ‖u‖∫ 1

0

1

p(s)
ψ−1

1

(
1

q(s)

)
ds

. (3.2.17)

On the other hand, by applying Lemma 2.5.1 to u and w in [0, t∗], we have that

u(t) ≥ w(t) =

∫ t

0

1

p(s)
ϕ−1

(
C

q(s)

)
ds ∀ t ∈ [0, t∗]

≥
∫ t

0

1

p(s)
ψ−1

2

(
1

q(s)

)
ds ϕ−1(C)

≥ ‖u‖∫ 1

0

1

p(s)
ψ−1

1

(
1

q(s)

)
ds

∫ t

0

1

p(s)
ψ−1

2

(
1

q(s)

)
ds using (3.2.17) .
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The estimate in [t∗, 1] is obtained similarly using the auxiliary function z which solves

−(q(t)ϕ(p(t)z′(t)))′ = 0 t∗ < t < 1
z(t∗) = ‖u‖ , z(1) = 0 .

}
(3.2.18)

By applying Lemma 2.5.1 to u and z in [t∗, 1], we have

u(t) ≥ z(t) =

∫ 1

t

1

p(s)
ϕ−1

(
C

q(s)

)
ds ∀t ∈ [t∗, 1]

≥
∫ 1

t

1

p(s)
ψ−1

2

(
1

q(s)

)
ds ϕ−1(C)

≥ ‖u‖∫ 1

0

1

p(s)
ψ−1

1

(
1

q(s)

)
ds

∫ 1

t

1

p(s)
ψ−1

2

(
1

q(s)

)
ds using (3.2.17) .

Thus, for δ ≤ t ≤ 1− δ, we have

u(t) ≥ ‖u‖∫ 1

0

1

p(s)
ψ−1

1

(
1

q(s)

)
ds

min

{∫ δ

0

1

p(s)
ψ−1

2

(
1

q(s)

)
ds,

∫ 1

1−δ

1

p(s)
ψ−1

2

(
1

q(s)

)
ds

}
= ‖u‖ρδ .

(3.2.19)

This completes the proof.

We now show that Tλ preserves the cone C and Vλ preserves the cone P .

Proposition 3.2.9. Let C defined by (3.2.4). Then the operator Tλ defined by (3.2.6) pre-
serves the cone C, that is, if v ∈ C then Tλv ∈ C.

Proof: Let v ∈ C and so we have λk̃(t)f(v(t)) ≥ 0. Then, Tλv = U satisfies

−(q(t)ϕ(p(t)U ′(t)))′ = λk̃(t)f(v(t)) ≥ 0 0 < t < 1
U ′(0) = 0, U(1) = 0

}
(3.2.20)

and let t∗ ∈ [0, 1] be such that U(t∗) = ‖U‖. Then, by Lemma 2.5.2, we obtain U(t) = ‖U‖
for all t ∈ [0, t∗].
The following estimate in [t∗, 1]

U(t) ≥ ‖U‖∫ 1

0

1

p(s)
ψ−1

1

(
1

q(s)

)
ds

∫ 1

1−δ

1

p(s)
ψ−1

2

(
1

q(s)

)
ds = ‖U‖%δ (3.2.21)

is obtained like in the second part of the previous proposition using the auxiliary function z
which is solution of (3.2.18).

Proposition 3.2.10. Let P defined by (3.2.7). Then the operator Vλ defined by (3.2.9)
preserves the cone P, that is, if v ∈ P then Vλv ∈ P.

Proof: By similar arguments as in the previous propositions and using Lemma 2.5.3 we
obtain the result.

Remark 3.2.11. We see that the proof of the cone preserving property requires a different
approach from that used in Wang [33] and is based on comparison principles (Lemmas 2.5.1,
2.5.2 and 2.5.3).
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3.3 Proofs of the Main Results

Before we prove the main results we provide some preliminary results which will be used
frequently in the proofs.

Lemma 3.3.1. Assuming that (H1) holds for all a ∈ (0,∞), b ∈ R we have that

ψ−1
2 (a)b ≤ ϕ−1(aϕ(b)) ≤ ψ−1

1 (a)b .

Proof: This is an elementary consequence of (H1). For the proof see Lemma 2.6 [33].

Lemma 3.3.2. There exists C1 > 0 such that∫ 1

0

1

p(s)
ψ−1

1

(
C1

q(s)

∫ 1

0

k̃(η)dη

)
ds < 1 . (3.3.1)

Proof: By the fact that ψ1(s) → 0 as s → 0 and is homeomorphic on (0,∞) we have
ψ−1

1 (s) → 0 as s → 0. Now, the finiteness of the integral given by (H6) allows us to apply
the Dominated Convergence theorem to conclude that the integral in (3.3.1) tends to 0 as
C1 tends to 0. In particular, C1 can be chosen so that (3.3.1) holds.

For 0 < δ < 1
2

fixed and λ > 0, M > 0, we define the following quantity:

yM,λ(δ) := min

{∫ 1
2

δ

1

p(s)
ψ−1

2

(
λM

q(s)

∫ 1
2

s
k̃(η)dη

)
ds,

∫ 1−δ

1
2

1

p(s)
ψ−1

2

(
λM

q(s)

∫ s

1
2

k̃(η)dη

)
ds

}
.

(3.3.2)

Note that by the definition of yM,λ(δ) its dependence on λ and M is only through λM .

Lemma 3.3.3. Let cδ > 0 be any constant (which, for our applications, shall be taken to be
ρδ, %δ or κδ depending on the cone). There exists A > 0 such that whenever λM ≥ A we
have

yM,λ(δ) cδ > 1 . (3.3.3)

Proof: Since, ψ−1
2 is monotone increasing and ψ2 : (0,∞) → (0,∞) is homeomorphic, we

have ψ−1
2 (s) → ∞ as s → ∞. So, if we let a = λM → ∞, then yM,λ(δ) → ∞ by the

Monotone Convergence Theorem. So, we can find A > 0 such that for all λ and M with
λM ≥ A the inequality (3.3.3) holds.

Remark 3.3.4. In particular, given λ > 0 we can choose Mλ =
A

λ
so that for all M ≥ Mλ

we have
yM,λ(δ) cδ > 1 . (3.3.4)

Also given, M > 0 we can choose λM =
A

M
such that for all λ ≥ λM we have

yM,λ(δ) cδ > 1 . (3.3.5)
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The following lemma will be useful in establishing that contraction holds under certain
hypotheses.

Lemma 3.3.5. Consider C > 0, u ∈ C[0, 1] be non-negative and assume that f(u(t)) ≤
Cϕ(u(t)) for all t ∈ [0, 1]. Then, for any λ > 0, and A denoting any of the operators Sλ, Tλ
or Vλ we have

‖Au‖ ≤
∫ 1

0

1

p(s)
ψ−1

1

(
λC

q(s)

∫ 1

0

k̃(η)dη

)
ds ‖u‖ . (3.3.6)

Proof: We prove the statement for A = Sλ. The proof for the choices A = Tλ or A = Vλ
is similar. Let u ∈ C[0, 1] be non-negative. We then obtain, using (3.2.3), that

‖Sλu‖ ≤
∫ 1

0

1

p(s)
ϕ−1

(
λ

q(s)

∫ 1

0

k̃(η)f(u(η))dη

)
ds .

Therefore,

‖Sλu‖ ≤
∫ 1

0

1

p(s)
ϕ−1

(
λC

q(s)

∫ 1

0

k̃(η)ϕ(u(η))dη

)
ds

≤
∫ 1

0

1

p(s)
ϕ−1

(
λC

q(s)
ϕ(‖u‖)

∫ 1

0

k̃(η)dη

)
ds

≤
∫ 1

0

1

p(s)
ψ−1

1

(
λC

q(s)

∫ 1

0

k̃(η)dη

)
ds ‖u‖ (by Lemma 3.3.1) .

This completes the estimate.

The following will be useful in showing that expansion holds under certain hypotheses.

Lemma 3.3.6. Let D denote one of the cones K, C or P and let cδ be the corresponding
constant ρδ, %δ or κδ, respectively, depending on whether we consider the operator A equal to
Sλ, Tλ or Vλ, respectively. Consider M > 0 and u ∈ D and assume that f(u(t)) ≥Mϕ(u(t))
for all t ∈ [δ, 1 − δ] with 0 < δ < 1

2
as in the definition of D. Then, for any λ > 0 and

yM,λ(δ) as defined in (3.3.2) we have

‖Au‖ ≥ cδ‖u‖ yM,λ(δ) . (3.3.7)

Proof: We prove the statement for A = Sλ. Let u ∈ K. Given u ∈ K let σ be as in
Assertion 3.2.2. If σ ≤ 1

2
then, we have

‖Sλu‖ ≥ Sλu(σ) =

∫ 1

σ

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

σ

k̃(η)f(u(η))dη

)
ds

≥
∫ 1−δ

1
2

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

1
2

k̃(η)f(u(η))dη

)
ds

≥
∫ 1−δ

1
2

1

p(s)
ϕ−1

(
λM

q(s)

∫ s

1
2

k̃(η)ϕ(u(η))dη

)
ds

≥
∫ 1−δ

1
2

1

p(s)
ϕ−1

(
λM

q(s)

∫ s

1
2

k̃(η)dη ϕ(ρδ‖u‖)

)
ds (since u ∈ K)
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≥
∫ 1−δ

1
2

1

p(s)
ψ−1

2

(
λM

q(s)

∫ s

1
2

k̃(η)dη

)
ρδ‖u‖ds (by Lemma 3.3.1)

= ρδ‖u‖ yM,λ(δ) .

Similarly, if σ ≥ 1
2

then, we have

‖Sλu‖ ≥ Sλu(σ) =

∫ σ

0

1

p(s)
ϕ−1

(
λ

q(s)

∫ σ

s

k̃(η)f(u(η))dη

)
ds

≥
∫ 1

2

δ

1

p(s)
ϕ−1

(
λ

q(s)

∫ 1
2

s

k̃(η)f(u(η))dη

)
ds

≥
∫ 1

2

δ

1

p(s)
ϕ−1

(
λM

q(s)

∫ 1
2

s

k̃(η)ϕ(u(η))dη

)
ds

≥
∫ 1

2

δ

1

p(s)
ϕ−1

(
λM

q(s)

∫ 1
2

s

k̃(η)dη ϕ(ρδ‖u‖)

)
ds (by u ∈ K)

≥
∫ 1

2

δ

1

p(s)
ψ−1

2

(
λM

q(s)

∫ 1
2

s

k̃(η)dη

)
ρδ‖u‖ds (by Lemma 3.3.1)

= ρδ‖u‖ yM,λ(δ) .

When A = Tλ or A = Vλ the argument is more simple. Indeed, if A = Tλ, we have

‖Tλu‖ ≥ Tλu(1/2) =

∫ 1

1
2

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

0

k̃(η)f(u(η))dη

)
ds

≥
∫ 1−δ

1
2

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

1
2

k̃(η)f(u(η))dη

)
ds

≥
∫ 1−δ

1
2

1

p(s)
ϕ−1

(
λM

q(s)

∫ s

1
2

k̃(η)ϕ(u(η))dη

)
ds

≥
∫ 1−δ

1
2

1

p(s)
ϕ−1

(
λM

q(s)

∫ s

1
2

k̃(η)dη ϕ(%δ‖u‖)

)
ds (since u ∈ C)

≥
∫ 1−δ

1
2

1

p(s)
ψ−1

2

(
λM

q(s)

∫ s

1
2

k̃(η)dη

)
%δ‖u‖ds (by Lemma 3.3.1)

= %δ‖u‖ yM,λ(δ) .

Again if A = Vλ then, we have,

‖Vλu‖ ≥ Vλu(1/2) =

∫ 1
2

0

1

p(s)
ϕ−1

(
λ

q(s)

∫ 1

s

k̃(η)f(u(η))dη

)
ds

≥
∫ 1

2

δ

1

p(s)
ϕ−1

(
λ

q(s)

∫ 1
2

s

k̃(η)f(u(η))dη

)
ds

≥
∫ 1

2

δ

1

p(s)
ϕ−1

(
λM

q(s)

∫ 1
2

s

k̃(η)ϕ(u(η))dη

)
ds
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≥
∫ 1

2

δ

1

p(s)
ϕ−1

(
λM

q(s)

∫ 1
2

s

k̃(η)dη ϕ(κδ‖u‖)

)
ds (by u ∈ P)

≥
∫ 1

2

δ

1

p(s)
ψ−1

2

(
λM

q(s)

∫ 1
2

s

k̃(η)dη

)
κδ‖u‖ds (by Lemma 3.3.1)

= κδ‖u‖ yM,λ(δ) .

This completes the proof of the lemma.

3.3.1 Proof of Theorem 3.1.1

We shall provide the proof only in the case of the boundary condition (3.1.2) which leads
to the choice of the operator Sλ defined on the cone K. The proofs in the other cases go
through identically by working with the operator Tλ on the cone C or Vλ on the cone P
with the corresponding version of the Lemmas 3.3.3, 3.3.5 and 3.3.6 at the beginning of this
section.

First, we prove part 1 of Theorem 3.1.1.

Step 1: Consider any R > 0. Let R be a point where f reaches its maximum in the
interval [0, R]. So, for u ∈ ∂ΩR where ΩR = {u ∈ K : ‖u‖ < R} we have

‖Sλu‖ ≤
∫ 1

0

1

p(s)
ϕ−1

(
λ

q(s)

∫ 1

0

k̃(η)f(u(η))dη

)
ds

≤
∫ 1

0

1

p(s)
ϕ−1

(
λ

q(s)
f(R)

∫ 1

0

k̃(η)dη

)
ds

=

∫ 1

0

1

p(s)
ϕ−1

(
λ

q(s)

f(R)

ϕ(R)
ϕ(R)

∫ 1

0

k̃(η)dη

)
ds

≤
∫ 1

0

1

p(s)
ψ−1

1

(
λ

q(s)

f(R)

ϕ(R)

∫ 1

0

k̃(η)dη

)
ds R (by Lemma 3.3.1)

≤
∫ 1

0

1

p(s)
ψ−1

1

(
λ

q(s)

f(R)

ϕ(R)

∫ 1

0

k̃(η)dη

)
ds R

=

∫ 1

0

1

p(s)
ψ−1

1

(
λ

q(s)

f(R)

ϕ(R)

∫ 1

0

k̃(η)dη

)
ds ‖u‖ ( since ‖u‖ = R) .

If we now choose λR such that λR
f(R)

ϕ(R)
≤ C1 with C1 as in Lemma 3.3.2, then we have

∫ 1

0

1

p(s)
ψ−1

1

(
λ

q(s)

f(R)

ϕ(R)

∫ 1

0

k̃(η)dη

)
ds < 1 for all 0 < λ ≤ λR

which gives
‖Sλu‖ < ‖u‖ for u ∈ ∂ΩR and for all 0 < λ ≤ λR . (3.3.8)

At this point, if f(0) > 0 then we can immediately obtain a non-trivial positive radial
solution by applying, for example, the Schauder fixed point theorem in ΩR. However, if
f(0) = 0, it is not possible to distinguish the solution in ΩR from the zero solution. So,
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the next step allows us to apply Krasnosel’skii theorem in a conical shell and thus obtain a
non-trivial positive radial solution.

Step 2: Now, let us fix 0 < λ ≤ λR from the previous step and Mλ be chosen using
Lemma 3.3.3 so that (3.3.4) holds. Now since we assume f0 = ∞, given Mλ > 0 as above,
there exists 0 < rMλ

< R such that f(x) ≥ Mλϕ(x) if x ≤ rMλ
. Thus, for u ∈ ∂ΩrMλ

,
where ΩrMλ

= {u ∈ K : ‖u‖ < rMλ
} we have u(t) ≤ rMλ

on [0, 1] and this gives that
f(u(t)) ≥Mλϕ(u(t)) on [0, 1]. So, by Lemma 3.3.6 and (3.3.4),

‖Sλu‖ > ‖u‖ for u ∈ ∂ΩrMλ
. (3.3.9)

As an immediate conclusion, applying Theorem 2.2.3 using (3.3.9) and (3.3.8) above, it
follows that there exists at least one fixed point u1 in K∩(ΩR\ΩrMλ

) (with rMλ
< ‖u1‖ < R).

Step 3: Now, for 0 < λ < λR and Mλ > 0 as in the previous step, since f∞ = ∞ we
can find a RMλ

> R such that f(x) ≥ Mλϕ(x) for all x ≥ RMλ
. Setting Nλ = RMλ

/ρδ,
we observe that for u ∈ ∂ΩNλ where ΩNλ = {u ∈ K : ‖u‖ < Nλ}, we have u(t) ≥ RMλ

on
[δ, 1 − δ] and this implies that f(u(t)) ≥ Mλϕ(u(t)) on [δ, 1 − δ]. So, by Lemma 3.3.6 and
(3.3.4), we conclude that

‖Sλu‖ > ‖u‖ for u ∈ ∂ΩNλ . (3.3.10)

Then, since we have Nλ ≥ RMλ
> R, applying again Theorem 2.2.3 using (3.3.10) and (3.3.8)

above, it holds that there exists at least one fixed point u2 in K ∩ (ΩNλ \ ΩR) and, in fact,
R < ‖u2‖ < Nλ.

The conclusions of Step 2 and Step 3 together prove the first part of part 1 of Theorem 3.1.1.

Step 4: We observe that if f0 = ∞, the arguments in Steps 1 and 2 show that for any
R > 0 there exists λR > 0 such that for all 0 < λ ≤ λR the problem (3.1.5)-(3.1.7) has at
least one positive radial solution u with 0 < ‖u‖ < R.

Step 5: If f∞ = ∞, the arguments in Steps 1 and 3 show that for any R > 0 there exists
λR > 0 such that for all 0 < λ ≤ λR the problem (3.1.5)-(3.1.7) has at least one positive
radial solution u with R < ‖u‖.

So, the proof of part 1 of Theorem 3.1.1 is complete. Now, we prove part 2 of Theorem 3.1.1.

Step 1: Fix L > 0 and let

m(L) := min
ρδL≤s≤L

f(s)

ϕ(s)
. (3.3.11)

We note that m(L) > 0 for L > 0 and then for M = m(L) choose λM as in Lemma 3.3.3 so
that for all λ ≥ λm(L) we have

ym(L),λ ρδ > 1 . (3.3.12)

Let us denote λm(L) by λL. Therefore, for any fixed λ ≥ λL, using Lemma 3.3.6 and (3.3.12),
we conclude that

‖Sλu‖ > ‖u‖ for u ∈ ∂ΩL . (3.3.13)

To be precise, for u ∈ K with ‖u‖ = L we have u(t) ≥ ρδL for all t ∈ [δ, 1 − δ] and this
means that f(u(t)) ≥ m(L)ϕ(u(t)) for all t ∈ [δ, 1− δ] and so Lemma 3.3.6 can be applied.

Step 2: For L and λ as in the previous step. By Lemma 3.3.2, there exists ελ > 0 (for
example take ελ = C1

λ
) such that∫ 1

0

1

p(s)
ψ−1

1

(
λ ελ
q(s)

∫ 1

0

k̃(τ)dτ

)
ds < 1 .
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Using the condition f0 = 0, we can find a l with 0 < l < L such that f(x) ≤ ελϕ(x) for all
0 ≤ x ≤ l. Then for u ∈ ∂Ωl, where Ωl = {u ∈ K : ‖u‖ < l} we have f(u(s)) ≤ ελϕ(u(s))
for all s ∈ [0, 1]. So, using Lemma 3.3.5, we have

‖Sλu‖ ≤
∫ 1

0

1

p(s)
ψ−1

1

(
λ ελ
q(s)

∫ 1

0

k̃(τ)dτ

)
ds ‖u‖ .

Therefore, we have
‖Sλu‖ < ‖u‖ for u ∈ ∂Ωl . (3.3.14)

Then applying Theorem 2.2.3, using (3.3.13) and (3.3.14), Sλ has at least one fixed point u1

in ΩL \ Ωl and, in fact, l < ‖u1‖ < L.

Step 3: We introduce the non-decreasing function f ∗

f ∗(t) := max
0≤s≤t

{f(s)} .

Note by f ∗∞ = limx→∞
f∗(x)
ϕ(x)

. It can be seen that f ∗∞ = f∞ (view [33], Lemma 2.8) and since
f∞ = 0 it follows that f ∗∞ = 0. Then, for the same ελ > 0 fixed as above, we find a Lλ > L
such that f ∗(x) ≤ ελϕ(x) for all x ≥ Lλ.Then, for u ∈ ∂ΩLλ , with ΩLλ = {u ∈ K : ‖u‖ < Lλ}
we have f ∗(Sλ) ≤ ελϕ(Lλ). Then,

‖Sλu‖ ≤
∫ 1

0

1

p(s)
ϕ−1

(
λ

q(s)

∫ 1

0

k̃(τ)f ∗(u(τ))dτ

)
ds

≤
∫ 1

0

1

p(s)
ϕ−1

(
λ

q(s)

∫ 1

0

k̃(τ)f ∗(Lλ)dτ

)
ds (since f ∗ is increasing)

≤
∫ 1

0

1

p(s)
ϕ−1

(
λ ελ
q(s)

ϕ(Lλ)

∫ 1

0

k̃(τ)dτ

)
ds

≤
∫ 1

0

1

p(s)
ψ−1

1

(
λ ελ
q(s)

∫ 1

0

k̃(τ)dτ

)
ds Lλ (by Lemma 3.3.1)

≤
∫ 1

0

1

p(s)
ψ−1

1

(
λ ελ
q(s)

∫ 1

0

k̃(τ)dτ

)
ds ‖u‖ ( since ‖u‖ = Lλ) .

Since, ελ has been fixed such that

∫ 1

0

1

p(s)
ψ−1

1

(
λ ελ
q(s)

∫ 1

0

k̃(τ)dτ

)
ds < 1 , we have

‖Sλu‖ < ‖u‖ for u ∈ ∂ΩLλ . (3.3.15)

Then appliying Theorem 2.2.3 using (3.3.13) and (3.3.15), Sλ has at least one fixed point u2

in ΩLλ \ ΩL and, in fact, L < ‖u2‖ < Lλ. Thus, we have proved the first part of part 2 of
Theorem 3.1.1.

Step 4: We observe that if f0 = 0, the arguments in Steps 1 and 2 show that for any
L > 0 there exists λL > 0 such that for all λ ≥ λL the problem (3.1.5)-(3.1.7) has at least
one positive radial solution u with 0 < ‖u‖ < L.

Step 5: If f∞ = 0, the arguments in Steps 1 and 3 show that for any L > 0 there exists
λL > 0 such that for all λ ≥ λL the problem (3.1.5)-(3.1.7) has at least one positive radial
solution u with L < ‖u‖.
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3.3.2 Proof of Theorem 3.1.2

We shall provide the proof only in the case of the boundary condition (3.1.2) which leads
to the choice of the operator Sλ defined on the cone K. The proofs in the other cases go
through identically by working with the operator Tλ on the cone C or Vλ on the cone P
with the corresponding version of the Lemmas 3.3.3, 3.3.5 and 3.3.6 at the beginning of this
section.

We prove part 1 of the theorem (part 2 of the theorem can be obtained by similar arguments).

Step 1: Let λ > 0 be arbitrary. Then, by Lemma 3.3.2, there exists ελ > 0 (for example
take ελ = C1

λ
) such that ∫ 1

0

1

p(s)
ψ−1

1

(
λ ελ
q(s)

∫ 1

0

k̃(τ)dτ

)
ds < 1 .

Using the condition f0 = 0, we can find a lλ with 0 < lλ such that f(x) ≤ ελϕ(x) for all
0 ≤ x ≤ lλ. Then for u ∈ ∂Ωlλ , where Ωlλ = {u ∈ K : ‖u‖ < lλ} we have f(u(s)) ≤ ελϕ(u(s))
for all s ∈ [0, 1]. So, using Lemma 3.3.5, we have

‖Sλu‖ ≤
∫ 1

0

1

p(s)
ψ−1

1

(
λ ελ
q(s)

∫ 1

0

k̃(τ)dτ

)
ds ‖u‖ .

Therefore, we have
‖Sλu‖ < |u‖ for u ∈ ∂Ωlλ . (3.3.16)

Step 2: Now we argue as in Step 3 of Theorem 3.1.1. For λ > 0 (arbitrary) as in the
previous step, let Mλ be chosen as in Lemma 3.3.3 so that (3.3.4) holds.

Since by hypothesis f∞ = ∞ we can find a RMλ
> 0 such that f(x) ≥ Mλϕ(x) for all

x ≥ RMλ
. Setting Nλ = RMλ

/ρδ, we observe that for u ∈ ∂ΩNλ where ΩNλ = {u ∈ K :
‖u‖ < Nλ}, we have u(t) ≥ RMλ

on [δ, 1− δ] and this implies that f(u(t)) ≥ Mλϕ(u(t)) on
[δ, 1− δ]. So, by Lemma 3.3.6 and (3.3.4), we conclude that

‖Sλu‖ > ‖u‖ for u ∈ ∂ΩNλ . (3.3.17)

Then, applying again Theorem 2.2.3 using (3.3.17) and (3.3.16) above, we obtain the exis-
tence of one fixed point u1 in K∩ (ΩNλ \Ωlλ) and in fact, lλ < ‖u1‖ < Nλ. This proves part
1 of the theorem.

3.3.3 Proof of Theorem 3.1.3

We shall provide the proof only in the case of the boundary condition (3.1.2) which leads
to the choice of the operator Sλ defined on the cone K. The proofs in the other cases go
through identically by working with the operator Tλ on the cone C or Vλ on the cone P
with the corresponding version of the Lemmas 3.3.3, 3.3.5 and 3.3.6 at the beginning of this
section.

First, we prove part 1 of Theorem 3.1.3. Whenever f0 > 0 and f∞ > 0, we have

inf
s>0

f(s)

ϕ(s)
> 0
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and so there exists M > 0 such that

f(s) ≥Mϕ(s) for all s > 0 . (3.3.18)

We now suppose that there exists a sequence {λn}∞n=1, with λn > n for all n, such that for
each n the problem has a positive solution un ∈ K. The property (3.3.18) allows us to use
Lemma 3.3.6 and, since Sλnun = un, we have

‖un‖ = ‖Sλnun‖ ≥ ρδ‖un‖ yM,λn(δ) for all n .

This leads to a contradiction since yM,λn(δ)→∞ as n→∞. This proves part 1.

Now, we prove part 2. Whenever f0 <∞ and f∞ <∞, we have

sup
s>0

f(s)

ϕ(s)
<∞

and so there exists C > 0 such that

f(s) ≤ Cϕ(s) for all s > 0 . (3.3.19)

Suppose that there exists a sequence {λn}∞n=1, with λn ∈ (0, 1/n) such that for each n
problem has a positive solution un ∈ K. The property (3.3.19) allows us to use Lemma 3.3.5
and since, since Sλnun = un, we have

‖un‖ = ‖Sλnun‖ ≤
∫ 1

0

1

p(s)
ψ−1

1

(
λnC

q(s)

∫ 1

0

k̃(τ)dτ

)
ds ‖un‖ .

This leads to a contradiction since

∫ 1

0

1

p(s)
ψ−1

1

(
λnC

q(s)

∫ 1

0

k̃(τ)dτ

)
ds→ 0 as λn → 0. Thus,

part 2 of the theorem is proved and the proof is complete.
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Chapter 4

Positive radial solutions of a
quasilinear problem in an exterior
domain with non-linear boundary
conditions

4.1 Introduction

In this chapter we study the existence and non-existence results of positive radial solutions,
given λ > 0 and r0 > 0, for the quasilinear equation:

div(A(|∇u|)∇u) + λk(|x|)f(u) = 0, |x| > r0, x ∈ RN , N ≥ 2 (4.1.1)

in conjunction with the following boundary conditions on the exterior of a ball

∂u

∂η
+ c(u)u = 0 on |x| = r0 and u→ 0 when |x| → ∞ . (4.1.2)

Like in the previous chapter, by setting ϕ(t) = A(|t|)t, looking for a radially symmetric
solution u (x) ≡ v (|x|) leads to the following differential equation for w(t) = v (r) = v

(
r0

1−t

)
−(q (t)ϕ(p (t)w′ (t)))′ = λk̃(t)f(w(t)), 0 < t < 1, (4.1.3)

where q(t) :=

(
r0

1− t

)N−1

, p(t) :=
(1− t)2

r0

and k̃(t) :=
rN0

(1− t)N+1
k

(
r0

1− t

)
.

The boundary conditions in (4.1.2) become

− 1

r0

w′ (0) + c(w(0))w(0) = 0 and w (1) = 0 . (4.1.4)

Without loss of generality, we will assume that r0 = 1.

The above discussion motivates us to study positive radial solutions in C[0, 1] to the following
boundary value problem −(q (t)ϕ(p (t)u′ (t)))′ = λk̃(t)f(u(t)), 0 < t < 1,

−u′ (0) + c(u(0))u(0) = 0
u (1) = 0 .

(4.1.5)
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The precise hypotheses on the non-linearities ϕ, f , c and the weight k, which are all essentially
the same as in the previous chapter except a few of them, will be given at the beginning
of the next section. As in the previous chapter, the behaviour of the non-linearity f in
comparison with ϕ at 0 and at ∞ will be important for the analysis and for this we set:

f0 := lim
x→0

f(x)

ϕ(x)
and f∞ := lim

x→∞

f(x)

ϕ(x)
.

We now state our main theorems. The first three theorems are modelled on Theorems 3.1.1,

3.1.2 and 3.1.3 of the previous chapter and will be proved using a fixed point argument. For
this, we assume that the conditions from (H1) to (H7), stated in the next section, hold. The
main new difficulties in obtaining these theorems lie in the proper choice of an operator and
obtaining crucial estimates. These will be developed in Subsection 4.2.2.

Theorem 4.1.1.

1. If f0 =∞ and f∞ =∞, then for any R > 0 there exists λR such that for all 0 < λ ≤
λR, the problem has at least two positive solutions u1 and u2 with 0 < ‖u1‖ < R < ‖u2‖.
If f0 = ∞ or f∞ = ∞, then for any R > 0 there exists λR > 0 such that for all
0 < λ ≤ λR the problem has at least one positive solution u with 0 < ‖u‖ < R or
R < ‖u‖ respectively.

2. If f0 = 0 and f∞ = 0, then for any L > 0 there exists λL > 0 such that for all λ ≥ λL,
the problem has at least two positive solutions u1 and u2 with 0 < ‖u1‖ < L < ‖u2‖.
If f0 = 0 or f∞ = 0, then for any L > 0 there exists λL > 0 such that for all λ ≥ λL the
problem has at least one positive solution u with 0 < ‖u‖ < L or L < ‖u‖ respectively.

Theorem 4.1.2.

1. If f0 = 0 and f∞ =∞, then for all λ > 0 the problem has a positive solution.

2. If f0 =∞ and f∞ = 0, then for all λ > 0 the problem has a positive solution.

Theorem 4.1.3.

1. If f0 > 0 and f∞ > 0, then there exists a positive number λ such that the problem has
no positive solutions for all λ > λ.

2. If f0 < ∞ and f∞ < ∞, then there exists a positive number λ such that the problem
has no positive solutions for all λ < λ.

We also prove the second part of Theorem 4.1.2 while assuming f(0) > 0 (which, of course,
implies f0 = ∞) and f is sublinear at ∞ using the method of sub- and super- solutions
similarly as in Buttler, Ko, Lee and Shivaji [6]. However, we can do this only for ϕ which
are positively homogeneous like in the case of p-Laplacian(we replace hypotheses (H1) and
(H2) by (H8)). So, we do not explore fully the scope of this method in this thesis.

Theorem 4.1.4. Assume that the conditions f(0) > 0 and f∞ = 0 hold. Then, the boundary
value problem (4.1.5) has at least one positive solution for all λ > 0.
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The following sections are organized as follows: in Section 4.2 we provide some preliminaries
which include: some definitions to use, a brief discussion of the hypothesis, a few useful
lemmas and a discussion of the operator setting for obtaining the majority of the main
results. In Subsection 4.2.2 we provide the preliminaries used for the fixed point method
and in Subsection 4.2.3, we provide those for the sub-super solutions method. We deal with
the main results in Section 4.3.

4.2 Setting up the problem

In this section we establish the basic notations and the abstract framework for solving the
problem.

4.2.1 The hypotheses on the non-linearities

Let ϕ(t) = A(|t|)t. We list a set of assumptions on the non-linearities ϕ, f , c and the weight
k that are used in the proof of theorems:

(H1) ϕ : R → R is an odd, strictly increasing homeomorphism from R onto R and is
pseudo-homogeneous in the following sense. There exists two increasing and surjectives
homeomorphisms ψ1, ψ2 : (0,∞)→ (0,∞) such that:

ψ1(a)ϕ(b) ≤ ϕ(ab) ≤ ψ2(a)ϕ(b) for all a > 0, b ∈ R.

As a consequence, for all a ∈ (0,∞), b ∈ R, we have that

ψ−1
2 (a)b ≤ ϕ−1(aϕ(b)) ≤ ψ−1

1 (a)b . (4.2.1)

(H2) For any constant C we have

∫ 1

0

1

p(s)
ψ−1
i

(
C

q(s)

)
ds <∞ , i = 1, 2.

(H3) For any constant C we have

∫ 1

0

1

p(s)
ϕ−1

(
C

q(s)

)
ds <∞.

We now give some of the basic hypotheses on the non-linearity f and on the weight k.

(H4) f : [0,∞)→ [0,∞) is continuous and f(s) > 0 for all s > 0.

(H5) c : [0,∞)→ (0,∞) is a continuous function.

(H6) k : [r0,∞)→ [0,∞) is continuous and k(t) 6= 0 on any subinterval of [r0,∞).

(H7) 0 <

∫ 1

0

k̃(t)dt <∞.

(H8) ϕ : R → R is an odd, strictly increasing homeomorphism from R onto R and is
positively homogeneous of degree α ≥ 1 in the following sense.

ϕ(ab) = aαϕ(b) for all a > 0, b ∈ R .
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4.2.2 Construction of the fixed point operator

We aim to prove Theorems 4.1.1, 4.1.2 and 4.1.3 in Section 4.3 through a fixed point argu-
ment. The construction of the operator whose fixed points will provide the solution to the
problem (4.1.5) is not so explicit as in the previous chapter due to the non-linear boundary
condition and requires a few steps.

We start by studying the existence of a non-negative solution to the following boundary
value problem for a given non-negative continuous function u on [0, 1] which itself is obtained
by a fixed point argument. −(q (t)ϕ(p (t)w′ (t)))′ = λk̃(t)f(u(t)), 0 < t < 1,

−w′ (0) + c(u(0))w(0) = 0
w (1) = 0.

(4.2.2)

We have the following proposition.

Proposition 4.2.1. Given a continuous function u ≥ 0 on [0, 1] the boundary value problem −(q (t)ϕ(p (t)w′ (t)))′ = λk̃(t)f(u(t)), 0 < t < 1,
−w′ (0) + c(u(0))w+(0) = 0
w (1) = 0.

(4.2.3)

has a unique solution wu obtained as a fixed point of the operator Ru : C[0, 1] → C[0, 1]
defined by

Ru(v)(t) :=

∫ 1

t

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

0
k̃(η)f(u(η))dη − q(0)

q(s)
ϕ(p(0)c(u(0))v+(0))

)
ds for all t ∈ [0, 1] .

Furthermore, wu ≥ 0 and, if u 6= 0 then wu(0) > 0.

Proof: Existence: It is easy to see the one-one correspondence between the fixed points of
the operator and the solutions of (4.2.3). By arguments like in Section 3.2.3 it can be checked
that Ru is a completely continuous operator on C[0, 1]. Note that, due to the positivity of
q(0)

q(s)
ϕ(p(0)c(u(0))v+(0)) and the monotonicity of ϕ, for all t ∈ (0, 1), we have

|Ru(v)(t)| ≤
∫ 1

t

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

0

k̃(η)f(u(η))dη

)
ds

≤
∫ 1

0

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

0

k̃(η)f(u(η))dη

)
ds := C .

For C taken as above, it is clear, therefore that Ru : BC → BC where BC is the closed unit
ball of radius C in C[0, 1]. Therefore, by Schauder’s fixed point theorem there exists a fixed
point wu ∈ BC .

Uniqueness: The uniqueness follows by a direct application of Lemma 2.5.4.

Positivity: If wu is a fixed point of Ru, then it satisfies (4.2.3) pointwise in (0, 1).
Therefore, (q (t)ϕ(p (t)w′ (t))) is non-increasing on [0, 1]. From the fact that q(·)−1 is non-
increasing and the monotonicity of ϕ, we obtain that p(·)w′(·) is non-increasing on [0, 1].
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Now, we would like to show that wu ≥ 0 in [0, 1]. We claim first that w(0) ≥ 0. Otherwise,
we would have w(0) < 0 and so w+(0) = 0 which implies, by the boundary condition that
w′(0) = 0. By the monotonicity of p(·)w′(·) obtained in the previous paragraph, it follows
that w′(·) ≤ 0 on [0, 1]. So, w is non-increasing on [0, 1] while by hypothesis w(1) = 0. So,
clearly it cannot be true that w(0) < 0.

So, we are able to conclude that w(0) ≥ 0. Therefore, by the boundary condition, either
w′(0) > 0 or w′(0) = 0. On the one hand, if w′(0) = 0 arguing as in the last paragraph,
w′(t) ≤ 0 for all t ∈ (0, 1) and from w(1) = 0 we obtain that w ≥ 0 in (0, 1). On the other
hand, if w′(0) > 0, then w is increasing in a neighbourhood of 0 and so w is strictly positive
in a neighbourhood of 0 with a strictly positive local maximum at some point t0 there. At t0,
since 0 < t0 < 1, we would have w′(t0) = 0. So, once again w′(t) ≤ 0 for all t0 ≤ t ≤ 1 and,
together with w(1) = 0, this implies that w(t) ≥ 0 for all t ∈ [t0, 1] and therefore, w(t) ≥ 0
for all t ∈ [0, 1].

Now, if u 6= 0 we claim that w(0) > 0. Otherwise, similarly as in the previous argument we
will obtain w ≡ 0 on [0, 1] which’s impossible if u 6= 0.

Choice of the fixed point operator S

In the light of Proposition 4.2.1, we define the following operator

Su := wu (4.2.4)

where wu is the unique solution of (4.2.3) given u in C[0, 1] and u ≥ 0. Then, Su = wu is
obtained implicitly from the equation

wu(t) =

∫ 1

t

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

0

k̃(η)f(u(η))dη − q(0)

q(s)
ϕ(p(0)c(u(0))wu(0))

)
ds ∀t ∈ [0, 1] .

(4.2.5)

Remark 4.2.2. As a consequence, for u ≥ 0, we have the following inequalities which follows
from the fact that ϕ is monotone increasing

Su(t) ≤
∫ 1

t

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

0

k̃(η)f(u(η))dη

)
ds for all t ∈ [0, 1] , (4.2.6)

|Su(t1)− Su(t2)| ≤
∫ t2

t1

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

0

k̃(η)f(u(η))dη

)
ds for all t1, t2 ∈ [0, 1] . (4.2.7)

Now, it is clear that if u is a fixed point of S then u is a non-negative solution of (4.1.5).
Conversely, if u is a non-negative solution of (4.1.5), then u itself is a solution of (4.2.3) and
so by the uniqueness proved in Proposition 4.2.1 we conclude that wu = u and so u is a fixed
point of S. Therefore, we shall look for solutions to (4.1.5) as fixed points of the operator S
defined in (4.2.4).

The function space setting

The function space setting is nearly the same as in Subsection 3.2.2 but showing some of the
properties of S requires different arguments.
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We consider the Banach space C[0, 1] equipped with the supremum norm ‖u‖ = sup
t∈[0,1]

|u(t)|

and the subspace X = {u ∈ C[0, 1] : u(1) = 0} and consider 0 < δ < 1
2
. For solving the

boundary value problem (4.1.5) we will consider the cone in X defined by

K := {u ∈ X : u(t) ≥ 0, u(t) ≥ ρδ‖u‖, ∀t ∈ [δ, 1− δ]} (4.2.8)

where the value of ρδ is fixed below (note that 0 < ρδ < 1)

ρδ :=
1∫ 1

0

1

p(s)
ψ−1

1

(
1

q(s)

)
ds

min

{∫ δ

0

1

p(s)
ψ−1

2

(
1

q(s)

)
ds,

∫ 1

1−δ

1

p(s)
ψ−1

2

(
1

q(s)

)
ds

}
.

(4.2.9)
Given λ > 0, the solutions to the problem (4.1.5) will be obtained as fixed points of the
operator S, defined in (4.2.4), on the cone K.

Complete continuity

The complete continuity of the operator S : K → X requires one to prove that S is continuous
and also that it maps bounded sets to relatively compact sets. For the latter, it is enough
to apply Arzela-Ascoli theorem. Indeed, the boundedness and the equicontinuity of Su for
u bounded in X can be obtained starting from (4.2.6) and (4.2.7), respectively, by arguing
similarly as in Lemma 3.2.7.

The continuity of Su requires showing that the solution wu of (4.2.2) depends continuously
on u. Let un, u ∈ K be such that un → u in C[0, 1]. We would like to prove that wun → wu.
As a consequence of Remark 4.2.2 applied to the bounded sequence un, we can conclude that
the family wun is equicontinuous and without loss of generality converges to a function w in
X. We need to show that wu = w.
By Proposition 4.2.1 wun are non-negative and satisfy the fixed point equations

wun(t) =

∫ 1

t

1

p(s)

(
ϕ−1

(
λ

q(s)

∫ s

0
k̃(η)f(un(η))dη −

q(0)

q(s)
ϕ(p(0)c(un(0))wun(0))

))
ds ∀t ∈ [0, 1]

By passing to the limit in the above, while using the uniform convergence of wun to w and
un to u, we obtain

w(t) =

∫ 1

t

1

p(s)

(
ϕ−1

(
λ

q(s)

∫ s

0

k̃(η)f(u(η))dη − q(0)

q(s)
ϕ(p(0)c(u(0))w(0))

))
ds

by an application of the dominated convergence theorem. This means that, for this u ∈ K,
the function w being the limit of non-negative functions is a non-negative solution of (4.2.3).
By the uniqueness of the solution proved in Proposition 4.2.1, it follows that w = wu.

Cone invariance

Proposition 4.2.3. Let K defined by (4.2.8). Then the operator S defined by (4.2.4) pre-
serves the cone K, that is, if v ∈ K then Sv ∈ K.
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Proof: It is enough to consider v ∈ K \ {0}. The arguments of the proof are exactly the
same as in Proposition 3.2.8 after observing that for such v, by the conclusions of Proposition
4.2.1, Sv = u satisfies

−(q(t)ϕ(p(t)u′(t)))′ = λk̃(t)f(v(t)) ≥ 0 in 0 < t < 1
u(0) > 0, u(1) = 0

}
. (4.2.10)

Some useful estimates

Lemma 4.2.4. Consider C > 0, u ∈ C[0, 1] be non-negative and let us suppose that
f(u(t)) ≤ Cϕ(u(t)) for all t ∈ [0, 1]. Then, for any λ > 0, and the operator S we have

‖Su‖ ≤
∫ 1

0

1

p(s)
ψ−1

1

(
λC

q(s)

∫ 1

0

k̃(η)dη

)
ds ‖u‖ . (4.2.11)

Proof: It is easy to prove this starting from the inequality (4.2.6).

The following lemma helps us to make a comparison between two operators, on the one
hand, the operator Sλ of the previous chapter in connection with Dirichlet condition and,
on the other hand, the operator S.

Lemma 4.2.5. For u ≥ 0, suppose that w is a C1 variational supersolution of

−(q(t)ϕ(p(t)w′(t)))′ = λk̃(t)f(u(t)) 0 < t < 1
−w′(0) + c(u(0))w(0) = 0

w(1) = 0 .

 (4.2.12)

Suppose that z is a solution of:

−(q(t)ϕ(p(t)z′(t)))′ = λk̃(t)f(u(t)) 0 < t < 1
z(0) = z(1) = 0

}
(4.2.13)

Then w ≥ z in [0, 1].

Proof: By Proposition 4.2.1, we know that w ≥ 0. So, we observe that w(0) ≥ z(0)
and w(1) ≥ z(1). So, we are in condition to apply Lemma 2.5.1 to obtain the desired
conclusion.

Lemma 4.2.6. Let the cone K and let the constant ρδ, and we consider the operator S.
Consider M > 0 and u ∈ K and assume that f(u(t)) ≥ Mϕ(u(t)) for all t ∈ [δ, 1 − δ] with
0 < δ < 1

2
as in the definition of K. Then, for any λ > 0 and yM,λ(δ) as defined in (3.3.2)

we have
‖Su‖ ≥ ρδ‖u‖ yM,λ(δ) . (4.2.14)

Proof: Let Sλ the operator associated to the problem with Dirichlet condition defined given
by (3.2.3). In Lemma 3.3.6, we have proved that ‖Sλ(u)‖ ≥ ρδ‖u‖yM,λ(δ). Now, we have by
Lemma 4.2.5 that ∀u ∈ K, S(u) ≥ Sλ(u). Thus, ‖Su‖ ≥ ‖Sλ(u)‖ ≥ ρδ‖u‖yM,λ(δ).
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4.2.3 Preliminary results for applying the method of sub- and
super- solutions

We will need the following notions for the proof of Theorem 4.1.4 given in Section 4.3.2 and
has as it’s model a result from [6] involving the Laplacian operator.

Definition 4.2.7. By a subsolution of (4.1.5), we mean a function ψ ∈ C1[0, 1] that satisfies −(q (t)ϕ(p (t)ψ′ (t)))′ ≤ λk̃(t)f(ψ(t)), 0 < t < 1,
−ψ′ (0) + c(ψ(0))ψ(0) ≤ 0
ψ (1) ≤ 0 .

(4.2.15)

and by a supersolution of (4.1.5), we mean a function Z ∈ C1[0, 1] that satisfies −(q (t)ϕ(p (t)Z ′ (t)))′ ≥ λk̃(t)f(Z(t)), 0 < t < 1,
−Z ′ (0) + c(Z(0))Z(0) ≥ 0
Z (1) ≥ 0 .

(4.2.16)

We have the following result.

Proposition 4.2.8. If ψ is a subsolution of (4.1.5) and Z is a supersolution of (4.1.5) such
that ψ ≤ Z then (4.1.5) has a solution u such that ψ ≤ u ≤ Z.

Proof: We consider the auxiliary problem −(q (t)ϕ(p (t)u′ (t)))′ = λk̃(t)f(γ(t, u(t))), 0 < t < 1,
−u′ (0) + c(u(0)) = 0
u (1) = 0 .

(4.2.17)

where γ : (0, 1)× R→ R is defined by

γ(t, a) :=


Z(t) if a > Z(t)
a if ψ(t) ≤ a ≤ Z(t)
ψ(t) if a < ψ(t)

(4.2.18)

and

c(a) :=


c(Z(0))Z(0) if a > Z(0)
c(a)a if ψ(0) ≤ a ≤ Z(0)
c(ψ(0))ψ(0) if a < ψ(0) .

(4.2.19)

Also, we define T : X → X by

T (u)(t) :=

∫ 1

t

1

p(s)
ϕ−1

(
λ

q(s)

∫ s

0

k̃(η)f(γ(η, u(η)))dη − q(0)

q(s)
ϕ(p(0)c(u(0)))

)
ds (4.2.20)

This operator is easily seen to be completely continuous and bounded in X (let’s then assume
supX ‖Tu‖∞ < C). Now, fix C such that C ≤ C. So, by the Schauder fixed point theorem
(Theorem 2.2.1), T : C → C has a fixed point theorem and thus, (4.2.17) has a solution u.

To obtain that it is indeed a solution to (4.1.5) it is enough to show that ψ ≤ u ≤ Z.

Proving ψ ≤ u: Let us suppose that there exists t0 ∈ [0, 1) such that u(t0) < ψ(t0). Then,
since ψ(1) ≤ u(1) = 0, one of the following two situations must hold. Either,
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(i) there exists (a, b) ⊂ (0, 1) such that ψ(t) > u(t), ψ(a) = u(a) and ψ(b) = u(b) or

(ii) there exists b ∈ (0, 1) such that ψ(t) > u(t) in [0, b) and ψ(b) = u(b).

If (i) holds, then define w(t) := ψ(t)−u(t) which implies w > 0 in (a, b) and w(a) = w(b) = 0.
Then, there exists t̃ ∈ (a, b) such that w′(t̃) = ψ′(t̃) − u′(t̃) = 0 and t ∈ (t̃, b) such that
w′(t) < 0. From w′(t) = ψ′(t)− u′(t) < 0 we deduce that,

p(t)ψ′(t) < p(t)u′(t) =⇒ ϕ(p(t)ψ′(t)) < ϕ(p(t)u′(t)) =⇒ q(t)ϕ(p(t)ψ′(t)) < q(t)ϕ(p(t)u′(t)) .

Therefore,

0 < q(t)ϕ(p(t)u′(t))− q(t)ϕ(p(t)ψ′(t))

=

∫ t

t̃

[q(t)ϕ(p(t)u′(t))− q(t)ϕ(p(t)ψ′(t))]
′
ds

=

∫ t

t̃

[(q(t)ϕ(p(t)u′(t)))′ − (q(t)ϕ(p(t)ψ′(t)))′] ds

≤
∫ t

t̃

[
−λk̃(s)f(γ(s, u(s)) + λk̃(s)f(ψ(s)))

]
ds

=

∫ t

t̃

[
−λk̃(s)f(ψ(s)) + λk̃(s)f(ψ(s))

]
ds = 0 (since u < ψ) .

This leads to a contradiction.

Now, if (ii) holds then define w(t) := ψ(t)− u(t) which implies w > 0 in [0, b) and w(b) = 0.
Then, we have,

w′(0) = ψ′(0)− u′(0) ≥ c(ψ(0))ψ(0)− c(u(0)) = c(ψ(0))ψ(0)− c(ψ(0))ψ(0) = 0

where for the penultimate equality we use the fact that ψ(0) > u(0) and the definition of c.
So we have w′(0) ≥ 0 and w(b) = 0 which implies that there exists t̃ ∈ [0, b) such that

w′(t̃) = 0 and w′(t) < 0 for t ∈ (t̃, b). Then, by repeating the arguments of case (i) in (t̃, t)
we obtain, once again, a contradiction.

Proving u ≤ Z: We use arguments similar to those used in proving ψ ≤ u.
In fact, if we suppose that there exists t0 ∈ [0, 1) such that u(t0) > Z(t0), then, since
Z(1) ≥ u(1) = 0, one of the following two situations must hold. Either,

(i) there exists (a, b) ⊂ (0, 1) such that u(t) > Z(t), u(a) = Z(a) and u(b) = Z(b) or

(ii) there exists b ∈ (0, 1) such that u(t) > Z(t) in [0, b) and u(b) = Z(b).

We now let w(t) := u(t)− Z(t).
If (i) holds, then w > 0 in (a, b) and w(a) = w(b) = 0. Then, there exists t̃ ∈ (a, b) such

that w′(t̃) = u′(t̃)−Z ′(t̃) = 0 and t ∈ (t̃, b) such that w′(t) < 0. From w′(t) = u′(t)−Z ′(t) < 0
we obtain q(t)ϕ(p(t)u′(t)) < q(t)ϕ(p(t)Z ′(t)) from which

0 < [q(t)ϕ(p(t)Z ′(t))− q(t)ϕ(p(t)u′(t))]

=

∫ t

t̃

[q(t)ϕ(p(t)Z ′(t))− q(t)ϕ(p(t)u′(t))]
′
ds
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≤
∫ t

t̃

[
−λk̃(s)f(Z(s)) + λk̃(s)f(γ(s, u(s)))

]
ds

=

∫ t

t̃

[
−λk̃(s)f(Z(s)) + λk̃(s)f(Z(s))

]
ds = 0 (since u > Z) .

This leads to a contradiction.

Now, if (ii) holds, then w > 0 in [0, b) and w(b) = 0. Then, we have,

w′(0) = u′(0)− Z ′(0) ≥ c(u(0))− c(Z(0))Z(0) = c(Z(0))Z(0)− c(Z(0))Z(0) = 0

where for the penultimate equality we use the fact that u(0) > Z(0) and the definition of c.
So we have w′(0) ≥ 0 which implies that there exists t̃ ∈ [0, b) such that w′(t̃) = 0 and

w′(t) < 0 for t ∈ (t̃, b). Then, arguing as before we obtain a contradiction.

4.3 Proofs of the Main Results

4.3.1 Proofs of Theorems 4.1.1, 4.1.2, 4.1.3

The proofs of Theorems 4.1.1, 4.1.2 and 4.1.3 can be obtained by arguing exactly in the same
way as in the proofs of Theorems 3.1.1, 3.1.2 and 3.1.3 while using the estimates (4.2.11)
and (4.2.14) in place of (3.3.6) and (3.3.7), respectively, for applying the fixed point theorem
of Krasnosel’skii.

4.3.2 Proof of Theorem 4.1.4

The proof of Theorem 4.1.4 is based on the method of sub- and super- solutions as in [6]. The
existence result follows immediately from Proposition 4.2.8 established in Subsection 4.2.3
once we are able to provide a sub- and super- solution to (4.1.5) satisfying the hypotheses
of Proposition 4.2.8.

First, since we assume that f(0) > 0 and (H6) hold, we note that ψ1 ≡ 0 is a triv-

ial subsolution of (4.1.5) because we have −(q(t)ϕ(p(t)ψ′1(t)))′ < λk̃(t)f(ψ1(t)) and
−ψ′1(0) + c(ψ1(0))ψ1(0) = 0 along with ψ1(0) = 0.

Now, we will construct a positive supersolution Z2. First, let f̃(x) := max[0,x] f(t). We

note that since f∞ = lims→∞
f̃(s)

ϕ(s)
= 0, given C > 0, there exists Mλ � 1 such that

f̃(Mλ‖e‖∞)

ϕ(Mλ‖e‖∞)
≤ C. We will choose a suitable C later. Let e the unique positive solution of

 −(q (t)ϕ(p (t) e′ (t)))′ = k̃(t), 0 < t < 1,
e′ (0) = 0
e (1) = 0 .

(4.3.1)

which exists by direct calculations. Then, by the α-homogeneity of ϕ, we have

1

C
f̃(Mλ‖e‖∞) ≤ ϕ(Mλ‖e‖∞) = Mα

λϕ(‖e‖∞) .
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Thus,

Mα
λ ≥

f̃(Mλ‖e‖∞)

C ϕ(‖e‖∞)
.

If we set Z2 = Mλe then by the α-homogeneity of ϕ, we have

−(q (t)ϕ(p (t)Z ′2 (t)))′ = −(q (t)ϕ(p (t)Mλe
′ (t)))′

= −(q (t)ϕ(p (t) e′ (t)))′Mα
λ

= k̃(t)Mα
λ

≥ k̃(t)
f̃(Mλ‖e‖∞)

C ϕ(‖e‖∞)

≥ k̃(t)
f̃(Mλe)

C ϕ(‖e‖∞)

≥ k̃(t)
f(Mλe)

C ϕ(‖e‖∞)

= λk̃(t)f(Z2)

while choosing C =
1

λϕ(‖e‖∞)
. Also,

−Z ′2(0) + c(Z2(0))Z2(0) = −Mλe
′(0) + c(Mλe(0))Mλe(0) = c(Mλe(0))Mλe(0) ≥ 0

and Z2(1) = Mλe(1) = 0. Hence, Z2 = Mλe is a supersolution of (4.1.5).
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Appendix

Calculations to show that, for 1 < α < N − 1, the odd extension of the function

ϕα(t) :=
tα√

1 + t2
defined for t ≥ 0 satisfies the hypotheses (H1), (H2) and (H3) in

Chapter 3.

Let ϕ(t) :=
tα√

1 + t2
; our desire is to find two increasing homeomorphisms

ψ1, ψ2 : (0,+∞)→ (0,+∞) such as in the (H1) assumption.

The inequality given on the assumption (H1) is equivalent to:

ψ1(t) ≤ ϕ(ts)

ϕ(s)
≤ ψ2(t); t, s > 0

Hence, we start by analyzing the quotient:

ϕ(ts)

ϕ(s)
=

tαsα√
1 + t2s2

·
√

1 + s2

sα
=

√
t2α(1 + s2)

1 + t2s2
; t, s > 0

Let gt(s) :=
t2α(1 + s2)

1 + t2s2
where g′t(s) =

2st2α(1− t2)

(1 + t2s2)2

We note that if t < 1, g′t(s) > 0 then gt(s) is increasing; and when t ≥ 1, g′t(s) < 0 then
gt(s) is decreasing.

Furthermore, lim
s→0

gt(s) = t2α and lim
s→∞

gt(s) = t2(α−1). This leads us to define ψ1 and ψ2 by

ψ1(t) =

{
tα, 0 ≤ t < 1
tα−1, t ≥ 1

and ψ2(t) =

{
tα−1, 0 ≤ t < 1
tα, t ≥ 1

We realize in order to fulfill the (H1) hypothesis it is necessary that α > 1

In addition, we need the (H2) and (H3) hypotheses to be fulfilled, then

For H2: We analize I :=

∫ 1

0

1

p(s)
ψ−1

1

(
C

q(s)

)
ds

The quotient
C

q(s)
< 1 when:

C(1− s)N−1

RN−1
1

< 1⇔ s > β with β < 1 such that β := 1− R1

N−1
√
C
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Therefore, the integral is descomposed as:

I =

∫ β

0

R1

(1− s)2

(
C(1− s)N−1

RN−1
1

) 1
α−1

ds+

∫ 1

β

R1

(1− s)2

(
C(1− s)N−1

RN−1
1

) 1
α

ds

= A

∫ β

0

(1− s)
N−1
α−1
−2ds+B

∫ 1

β

(1− s)
N−1
α
−2ds ; A,B constants

The first integral is always finite and the second one is also provided
N − 1

α
− 2 > −1, i.e.

α < N − 1 .

Similarly, for the integral J :=

∫ 1

0

1

p(s)
ψ−1

2

(
C

q(s)

)
ds is descomposed as below, where

there exists γ < 1 and thus:

J = D

∫ γ

0

(1− s)
N−1
α
−2ds+ E

∫ 1

γ

(1− s)
N−1
α−1
−2ds; D,E constants

and J is finite if
N − 1

α− 1
− 2 > −1, i.e. α < N .

For H3: Let K :=

∫ 1

0

1

p(s)
ϕ−1

(
C

q(s)

)
ds.

Now, it is not clear an expression explicit for ϕ−1 but the following shows a type of
behavior:

ϕ(t) =
C

q(s)
⇔ tα√

1 + t2
=
C(1− s)N−1

RN−1
1

⇔ t√
1 + t2

= C1(1− s)
N−1
α

.
This tells us that ϕ−1

(
C
q(s)

)
has a behavior as (1− s)N−1

α .

Thus, as before there exists b < 1 such that K is descomposed as:

K = F

∫ b

0

(1− s)
N−1
α
−2ds+G

∫ 1

b

(1− s)
N−1
α−1
−2ds; F,G constants

where K is finite if α < N

Hence, for all the above 1 < α < N − 1 is the range.
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