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Abstract

The holographic principle originates from the observation that black hole en-

tropy is proportional to the horizon area and not, as expected, to the volume. This

principle has found a concrete manifestation in the Anti-de Sitter/Conformal Field

Theory (AdSD/CFTD-1) correspondence. In lower dimensions, there is also a deep

link between CFT2 and the Korteweg-de Vries (KdV) hierarchy of integrable systems.

Therefore, it is natural to think that there is a connection between the asymptotic

structure of gravity in 3D and 2D integrable systems. Indeed, this is precisely what

the “geometrization of integrable systems” performs. In a nutshell, this method

consists on identifying the Lagrange multipliers of a set of boundary conditions for

gravity with the polynomials that span a hierarchy of integrable systems at the

boundary. In this thesis we extend the discussion to include thermal stability and

phase transitions. We also construct a hierarchy of integrable systems in 2D whose

Poisson structure corresponds to the Bondi-Metzner-Sachs algebra in three dimen-

sions (BMS3). Then, we extend the geometrization of integrable systems method

to describe our new hierarchy in terms of the Riemannian geometry of three dimen-

sional locally flat spacetimes. Remarkably, we make use of this sort of flat holography

to understand the entropy of the cosmological spacetime in 3D as the microscopic

counting of states of a dual field theory with consistent but non-standard modular

and scaling properties.

xi



Introduction

The puzzle of black holes

Black holes are undoubtedly some of the most intriguing objects in the universe, its extreme

properties have attracted the attention of the expert community and all the general public. In

September 2015, Ligo detected the gravitational waves produced by the collision of two black

holes [1]. This discovery, was the first time that gravitational waves were detected, but also it

definitively corroborated the existence of these astrophysical objects. As if that were not enough,

in April of this year, the Event Horizon Telescope (EHT) collaboration managed to get a real

picture of the event horizon of a supermassive black hole at the center of the galaxy M87 [2].

It is precisely this surface, the event horizon, the property of black holes that most puzzles our

intuition, since in simple words, its the surface beyond which gravity is so strong that nothing

that crosses it, even the light, can come out again.

In the early seventies, Bekenstein, Hawking and his collaborators demonstrated that black

holes behave like thermodynamic objects [3, 4, 5]. Consequently, challenging its own classical

definition, the event horizon radiate at a certain finite temperature and has an entropy associated

with it, which is proportional to the area of the horizon

S =
kBc

3

~
A

4G
, (1)
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where kB, ~, c and G are the Boltzmann constant, the Planck constant, the speed of light

and the Newton constant, respectively1. This is a very surprising result for several reasons

and without any doubt, the one that most disquiet physicists is the following: Since the black

hole is a thermodynamic object, its entropy should also be understood in terms of a suitable

microscopic counting of states [6]. However, despite a large number of efforts by the community,

the underlying nature of these microstates remains elusive.

Holography

A significant result that shed some light about the origin of the black hole entropy, was proposed

by Strominger and Vafa [7]. By a microscopic counting they derived the Bekenstein-Hawking

area law (1) for a class of 5D extreme black holes in string theory. However, the tools that

the authors use in that derivation, are very constrained by supersymmetry and string theory,

so they can not be applied to more realistic black hole solutions in 4D, like the Schwarzschild

solution, which is not extreme and devoid of supersymmetry.

Around the early nineties [8], ’t Hooft pushed forward the radical suggestion that gravity in

4D must effectively become three dimensional at the Planck scale. Independently [9], Susskind

relied on string theory to reach a similar conclusion, explaining the law of the quarter of the area

(1) as a manifestation of the “holographic principle”. One of the strongest realizations of the

holographic principle is the celebrated AdS/CFT correspondence [10, 11, 12], which conjectures a

one-to-one duality between gravity on AdS in D spacetime dimensions and a (D−1)-dimensional

Conformal Field Theory (CFT) at the boundary. The first example in this regard was in the

context of string theory, where asymptotically AdS5 × S5 geometries were shown to be dual to

a supersymmetric SU(N) Yang-Mills theory in 4D. Nowadays, this idea has been applied to

many ways and for many different contexts. The full impact of gauge/gravity dualities is beyond

1Hereafter, we will work in units where kB , ~ and c are set to 1.
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the purpose of this introduction. However, as we will see below, the duality does offer several

useful insights into black hole thermodynamics.

More than a decade before Maldacena’s proposal, Brown and Henneaux shown that the

asymptotic symmetries of General Relativity in three dimensions with negative cosmological

constant correspond to the conformal algebra in two dimensions with a classical central charge

given by c = 3`/2G, where ` is the AdS radius and G the Newton constant [13]. This result

naturally suggested that a quantum theory of gravity in three dimensions could be described by

a two-dimensional conformal field theory (CFT2). Based on this result, Strominger [14] showed

that the semi-classical entropy of the Bañados-Teitelboim-Zanelli (BTZ) black hole [15, 16] can

be recovered by a microscopic counting of states by means of the Cardy formula [17],

S = 2π

√
cL
6
EL + 2π

√
cR
6
ER , (2)

where the left and right central charges are equal and correspond to the classical Brown-

Henneaux central charge, and the left and right energies are given in terms of the global charges

of the BTZ metric. This simple example (devoid of supersymmetry and string theory) gave rise

to an active field of research regarding the thermodynamic properties of lower dimensional black

holes and how they could be holographically related to a dual field theory that describes the

much sought after quantum gravity.

Geometrization of integrable systems

According to the seminal result of Strominger, the leading role of the asymptotic symmetry

(embodied by the presence of the central charge) seemed unquestionable in this context. Even

beyond that, the study of the non-trivial exact symmetries at the asymptotic region or boundary

has gained great relevance lately, since it constitutes one of the vertices of the so-called “infrared

triangle” (along with soft theorems and the memory effect), which is an equivalence relation that
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governs the infrared dynamics of physical theories with massless particles [18]. For our interest,

this surprising relationship could shed some light on resolving the black hole information paradox

[19, 20].

At this point, the relationship between boundary conditions and two-dimensional conformal

symmetry is well understood, and hundreds of papers have been written where this has been

realized. However, there is also a deep relationship between CFT2 and the Korteweg-de Vries

(KdV) hierarchy of integrable systems [21, 22]. Therefore, it is natural to think that there is also

a connection between boundary conditions for gravity in 3D and 2D integrable systems. Indeed,

this is precisely what was demonstrated in [23], where it has been shown that General Relativity

on AdS3 can be endowed with a suitable set of boundary conditions, so that the Einstein

equations on the reduced phase space precisely reduce to the ones of the KdV hierarchy in two

spacetime dimensions. In turn, the dynamics of the KdV hierarchy can then be understood in

terms of the geometry of spacelike surfaces that evolve within a three-dimensional spacetime of

negative constant curvature. The authors also show how this new set of boundary conditions

leads to a generalized description of the thermodynamic properties of the BTZ black hole.

Remarkably, they also manage to reconstruct the entropy by means of the microscopic counting

of quantum states of a two-dimensional dual theory with anisotropic scaling properties. Recently,

the relationship between the conserved charges of the KdV equation and the stress tensor of a

CFT2 has also been explored in the context of “Generalized Gibbs ensembles” [24, 25, 26, 27].

The Bondi-Metzner-Sachs algebra

As aforementioned, the importance of AdS/CFT correspondence is invaluable, notwithstand-

ing, there are important cases where it does not apply, as is the case of black holes such as

Schwarzschild or Kerr solutions, which correspond to astrophysical objects in vacuum. In this

case, as shown in the seminal work of Bondi, van der Burg, Metzner and Sachs in the early
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sixties [28, 29, 30], the algebra of asymptotically flat spacetimes at null infinity turns out to

be an infinite-dimensional extension of the Poincaré algebra, the so-called Bondi-Metzner-Sachs

(BMS) algebra.

Regarding three-dimensional gravity, let us begin considering a Galilean conformal algebra

which can be understood as the nonrelativistic limit of the algebra of the conformal group (see,

e.g. [31, 32, 33]). In two spacetime dimensions, the Galilean conformal algebra (GCA2) is

then obtained from a suitable Inönü-Wigner contraction of two copies of the Virasoro algebra,

where the parameter of the contraction is the speed of light (c → ∞). Remarkably, GCA2 is

isomorphic to the Bondi-Metzner-Sachs algebra in three spacetime dimensions (BMS3), which

spans the diffeomorphisms that preserve the asymptotic form of the metric for General Relativity

[34, 35, 36], possibly endowed with parity-odd terms [37]. The Poisson bracket algebra is given

by

i {Jm,Jn} = (m− n)Jm+n +
cJ
12
m3δm+n,0 ,

i {Jm,Pn} = (m− n)Pm+n +
cP
12
m3δm+n,0 , (3)

i {Pm,Pn} = 0 .

with m and n arbitrary integers. The central extensions cP and cJ are related to the Newton

constant and to the coupling of the parity-odd terms, respectively. The BMS3 algebra (3) is

then described by the semi-direct sum of a Virasoro algebra, spanned by Jm, with the Abelian

ideal generated by Pm. Note that the Poincaré algebra in three dimensions is manifestly seen

as the subalgebra of (3) spanned by the subset of generators with m, n = −1,0,1 (after suitable

trivial shifts of J0 and P0).

The BMS3 algebra also naturally arises in diverse contexts of physical interest. For instance,

it describes the worldsheet symmetries of the bosonic sector in the tensionless limit of closed

string theory [38, 39, 40, 41, 42, 43, 44, 45], and it is then expected to be relevant for the
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description of interacting higher spin fields [46, 47, 48, 49, 50] (for a review, see e.g. [51]). In

two spacetime dimensions, the BMS3 algebra also describes the symmetries of a “flat analog”

of Liouville theory [52, 53], while on Minkowski spacetime in 3D, in the absence of central

extensions, the algebra (3) manifests itself through nonlocal symmetries of a free massless Klein-

Gordon field [54]. The algebra (3) also plays a key role in nonrelativistic holography [32, 36, 55].

Furthermore, by virtue of a Sugawara-like construction, their generators have been recently seen

to emerge as composite operators of the affine currents that describe the asymptotic symmetries

of the “soft hairy” boundary conditions in [56, 57, 58]. Similar results also hold for the analysis

of the near horizon symmetries of non-extremal black holes, so that (twisted) warped conformal

algebras also lead to BMS3 [59, 60, 61]. The minimal supersymmetric extension of the BMS3

algebra has been shown to generate the asymptotic symmetries of N = 1 supergravity in 3D

[62, 63], for a suitable set of boundary conditions [37, 64], and it is then isomorphic to the minimal

supersymmetric extension of GCA2 [65, 66] (see also [67]). Supersymmetric extensions of BMS3

with N > 1 have also been discussed along diverse lines in [41, 42, 68, 69, 66, 70, 71, 72].

Interestingly, nonlinear extensions of the BMS3 algebra are known to exist when higher spin

bosonic or fermionic generators are included, see [73, 74, 75, 76, 77, 78]. Further generalizations

of the BMS3 algebra can also be found from suitable expansions of the Virasoro algebra [79, 80,

81, 82, 83].

Flat holography and open questions

The BMS3 algebra also plays an important role in the problem of understanding the Bekenstein-

Hawking entropy (1) through a microscopic counting of states. This goal was achieved by a flat

version of the Cardy formula [84, 85],

S = 2π

√
cP
2P
J . (4)
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Here, the BMS3 algebra, represented by the central charge cP , takes the role played by the

conformal symmetry in (2) and P, J correspond to the energy and momentum of the system

in the grand canonical ensemble, respectively. This formula successfully reproduces the entropy

of the so-called Flat Space Cosmology (FSC) [84, 85], which is the flat analog of the BTZ black

hole, i.e., is an asymptotically locally flat spacetime that is solution to General Relativity in 3D

without cosmological constant and possesses a non-trivial temperature and entropy associated

to its cosmological horizon. Therefore, in order to (4) matches with the semi-classical entropy

of the comology, one has to replace its global charges and the classical central extension cP =

3/G, found in the BMS3 algebra of the asymptotic symmetries of Einstein gravity without

cosmological constant [35]. Recently, in [86, 87], this “flat Cardy formula” formula has been

proposed in order to determining the entropy of black holes in any dimension, assuming that

dimensional reduction is possible and imposing certain boundary conditions at the horizon.

In this way, flat holography opens a range of possibilities to extend the promising results

of AdS3/CFT2 (see e.g., [88, 89, 90, 91, 92, 93, 94, 95, 96]). In particular, in the absence of

cosmological constant, it is then natural to wonder whether General Relativity in three spacetime

dimensions might also be linked with some sort of integrable systems, or possibly a complete

hierarchy of them. Could this link lead to a general description of the thermodynamics of the

FSC? If so, could its entropy continue to be understood through the flat Cardy formula (4)?

These and further related questions turn out to be one of the main subjects to be addressed

throughout this thesis.

Plan of the thesis

The thesis is organized as follows. In Chapter 1 we will review in detail the results found in [23],

about how the KdV hierarchy entered in the asymptotic structure of General Relativity in AdS3,

and how it reflects the thermodynamics of the BTZ black hole and its corresponding holographic

7



description. At the end of the chapter, we also include some original results [97] that show that

KdV-type boundary conditions lead to a generalized version of the Smarr formula and how they

could affect the thermodynamic stability of the different phases present in the theory. In Chapter

2 we construct a new hierarchy of integrable systems whose Poisson structure corresponds to

the BMS3 algebra, and then discuss its description in terms of the Riemannian geometry of

locally flat spacetimes in three dimensions. We also discuss how the thermodynamics of the

FSC behaves within this generalized description of the asymptotic structure. All the material

covered in this chapter corresponds to original results, some of them already published in [98].

Chapter 3 is devoted to the development of a new formalism from which we can obtain through

a simple set-up, the standard and flat Cardy-like formulas and their corresponding anisotropic

generalizations in a unified way. In particular, we will show that the flat anisotropic version of

the Cardy formula reproduces the entropy of the FSC endowed with boundary conditions defined

trough the family of integrable systems described in the previous chapter. Finally, we conclude

with a discussion of the main results of this thesis and its possible extensions. Appendices A,

B, C and D are devoted to some technical remarks.
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Chapter 1

Boundary conditions for AdS3

gravity, geometrization of integrable

systems and its connection with

black hole thermodynamics

As we mentioned in the introduction, several efforts have been made to generalize the gauge/gravity

proposal for non AdS asymptotics (see e.g. [36, 84, 99, 100]). In this scenario, a lot of attention

has been focus on on 2D dual theories with anisotropic scaling properties [101, 102, 103, 104],

which are found in the context of non-relativistic condense matter physics [105]. Most of the

work on this subject has been done along the lines of non-relativistic holography [106, 107, 108,

109, 110] and more specifically, Lifshitz holography, where the gravitational counterparts are

given by asymptotically Lifshitz geometries (see e.g. [111] and references therein). However,

this class of spacetimes are not free of controversies. In fact, the Lifshitz spacetime itself suffers

from divergent tidal forces at its origin. Additionally, asymptotically Lifshitz black holes are not

9



vacuum solutions to General Relativity, and therefore it is mandatory to include extra matter

fields or extend the theory beyond Einstein’s gravity.

Following [23], we will adopt an unconventional approach to this holographic realization for

field theories possessing anisotropic scaling properties, where the spacetime anisotropy at the

boundary emerges from a very special choice of boundary conditions for General Relativity on

AdS3, instead of Lifshitz asymptotics. This new set of boundary conditions is labeled by a

nonnegative integer n, and is related with the Korteweg-de Vries (KdV) hierarchy of integrable

systems1.

The present Chapter is organized as follows. In Section 1.1 we provide a review of boundary

conditions for General Relativity on AdS3 in both metric and Chern-Simons formulations. In

Section 1.2 we show that any of the infinite number of the charges of the KdV hierarchy allow

to define a new family of boundary conditions for the theory through a particular choice of the

Lagrange multipliers at infinity. Section 1.3 is devoted to the analysis of how KdV-type boundary

conditions change the thermodynamics of the BTZ black hole, and we will briefly comment on

how to reproduce its entropy through a suitable generalization of the Cardy formula. In Section

1.4 it is shown that an anisotropic Smarr formula emerges from the radially conserved charge

associated with the anisotropic scale invariance of the reduced Einstein-Hilbert action endowed

with KdV-type boundary conditions. Finally, the local and global thermal stability of the BTZ

black hole with KdV-type boundary conditions is also analyzed in Section 1.5.

1.1 Chern-Simons formulation of General Relativity on AdS3

General Relativity with negative cosmological constant in three dimensional spacetimes can be

formulated as the difference of two Chern-Simons actions for gauge fields A±, evaluated on two

1See [112] for an introduction to the KdV hierarchy and for integrable systems in general.
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independent copies of the sl(2,R) algebra [113, 114],

IEH = ICS [A+]− ICS [A−] , (1.1)

where the Chern-Simons action for a generic gauge field A reads

ICS [A] =
k

4π

∫
tr

[
A ∧ dA+

2

3
A ∧A ∧A

]
. (1.2)

The action (1.1) corresponds precisely to General Relativity on AdS3 only if both Chern-Simons

levels are given by k = `/4G, where ` is the AdS radius and G the Newton constant.

In order to describe boundary conditions, it is convenient to do the analysis using auxiliary

fields a±, which are defined by a precise gauge transformation on A± [115],

A± = b−1
±
(
a± + d

)
b± , (1.3)

with b± = e±log(r/`)L±0 . So that, the radial component of a± vanishes, while the remain ones

only depend on time and the angular coordinate. Proceeding as in [116, 117], the remaining

components of the boundary condition2 are given by

a±φ = L± −
1

4
L±L∓ , a±t = ±µ±L± − ∂φµ±L0 ±

1

2

(
∂2
φµ± −

1

2
µ±L±

)
L∓ , (1.4)

where L±(t, φ) stand for the dynamical fields, and µ±(t, φ) correspond to the values of the

Lagrange multipliers at infinity.

In this formulation, the asymptotic form of the Einstein field equations,

f± = da± + a± ∧ a± = 0 , (1.5)

2From now on, we will adopt the nomenclature of [118], where we will distinguish between “boundary condi-
tions” and “asymptotic conditions”. For the former we mean the conditions that are held fixed at the boundary,
while for the latter we refer to the fall-off of the dynamical fields at infinity, which is an open set.
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reduce to,

∂tL± = ±D±µ± , D± := (∂φL±) + 2L±∂φ − 2∂3
φ . (1.6)

The gauge fields (1.4), must preserve their form under gauge transformations,

δa± = dλ± + [a±, λ±] , (1.7)

where, λ± correspond to the sl(2,R)-valued parameters of the transformation. The preservation

of component a±φ implies; gauge parameters of the form

λ±[ε±] = ε±L± ∓ ∂φε±L0 +
1

2

(
∂2
φε± −

1

2
ε±L±

)
L∓ , (1.8)

where ε± are arbitrary functions of t and φ, and the following transformation law for the dy-

namical fields

δL± = D±ε± . (1.9)

Then, the preservation of the component a±t implies the following condition for the variation of

the Lagrange multipliers at the boundary

δµ± = ±∂tε± + ε±∂φµ± − µ±∂φε± . (1.10)

Accordant to the canonical approach [119], the variation of the generators of the symmetries

spanned by (1.8), are readily found as

δQ±[ε±] =
k

2π

∫
dφ tr

[
λ±δa±φ

]
=

k

8π

∫
dφ ε±δL± , (1.11)

therefore, according to (1.1), the variation of the canonical generator associated with the gravi-
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tational configuration is given by

δQ[ε+, ε−] = δQ+[ε+]− δQ−[ε−] =
k

8π

∫
dφ (ε+δL+ − ε−δL−) . (1.12)

As a cross-check, it is simple to verify that the variation of the canonical generators is conserved

(δQ̇ = 0) provided that the consistency conditions for the symmetry parameters in (1.10) are

satisfied.

It is worth highlighting that the boundary conditions are fully specified once a precise form

of the Lagrange multipliers at infinity is provided. In the standard approach of Brown and

Henneaux [13], the Lagrange multipliers are set as µ± = 1/`, and according to (1.6), the dy-

namical fields are chiral. Going one step further, one can generalize this analysis by choosing

arbitrary functions of the coordinates, µ± = µ±(t, φ), which, in order to have a well-defined

action principle, are held fixed at the boundary (δµ± = 0) [116, 117]. However, even beyond

that, if one allows that the Lagrange multipliers may depend on the dynamical fields and their

spatial derivatives, one can still guaranted the integrability of the boundary term in the action.

In simpler case, where the Lagrange multipliers do not functionally depend on the dynamic

fields, we can directly integrate (1.11) as

Q±[ε±] =
k

8π

∫
dφ ε±L± , (1.13)

Therefore, since the canonical generators must fulfill δλQ[γ] = {Q[γ], Q[λ]}, their algebra can

be directly computed through (1.9). Expanding in Fourier modes,

L±(φ) =
1

2π

∑
m

L±meimφ , (1.14)
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the algebra of the asymptotic symmetries reduces to two copies of the Virasoro algebra

i{L±m , L±n } = (m− n)L±m+n +
c±
12
m3δm+n ,0 ,

i{L±m , L∓n } = 0 , (1.15)

where both the central charges are equal and given by

c± = 6k =
3`

2G
. (1.16)

For an arbitrary choice of µ±(t, φ), the integrability of (1.11) requires that the allowed

parameters ε± must correspond to the variation of some functional, since ε± = δQ±/δL±.

Nevertheless, it must be emphasized that a explicit form of the conserved charges Q is not so

simple to find, because it amounts to know the general solution of the consistency condition for

the parameters in (1.10). Indeed, in the most general case, although the consistency condition

is linear in the parameters, the generic solution manifestly depends on the dynamical fields and

their spatial derivatives that fulfill a nonlinear field equation. Thus, for a generic choice of the

Lagrange multipliers, solving (1.10) is actually an extremely difficult task.

1.1.1 Metric formulation

In the metric formulation, the leading terms of the fall-off of the metric can be computed

according to

gµν =
`2

2
tr
[(
A+
µ −A−µ

) (
A+
ν −A−ν

)]
. (1.17)
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Thus, using (1.3) and (1.4), we obtain the following non-vanishing components

gtt =
`2

4

(
µ2

+L+ + µ2
−L−

)
− µ+µ−

(
`4L+L−

16r2
+ r2

)
+
`2

2

(
`2L+µ

′′
−

4r2
− µ′′+

)
µ+ +

`2

2

(
`2L−µ′′+

4r2
− µ′′−

)
µ−

−`
2

4

(
µ′+ − µ′− +

`2

r2
µ′′+µ

′′
−

)
,

grr =
`2

r2
,

gtr = − `2

2r2

(
µ′+ − µ′−

)
, (1.18)

gφφ =

(
`2L+

4r
+ r

)(
`2L−

4r
+ r

)
,

gtφ =
`2

2
(µ+L+ − µ−L−) +

(
r2 +

`4L+L−
4r2

)
(µ+ − µ−)

−`
2

2

(
µ′′+ − µ′′−

)
+

`4

8r2

(
L+µ

′′
− − L−µ′′+

)
.

This metric corresponds to the most general solution (up to trivial diffeomorphisms) to the Ein-

stein field equations with Λ = −1/`2 [120], endowed with the asymptotic conditions associated

to (1.4). It is worth to remembering that in a generic case, in (1.18) the Lagrange multipliers

could be given by functions of the dynamical fields L± and their spatial derivatives.

If the parameters of the gauge transformations (1.7), are given by

λ± = ξµa±µ , (1.19)

it can be shown that

δ(λ±)a
±
µ = Lξa

±
µ + ξνf±µν , (1.20)

where Lξ correspond to the Lie-derivative with respect to the vector field ξ. This means that

on-shell (f± = 0) infinitesimal gauge invariance under transformations with parameter λ±, are

equivalent to isomorphisms spanned by the Killing vector ξµ∂µ.
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According to the equivalence above, we can use (1.12) to compute the angular momentum

and the variation of the mass of the gravitational systems described by the gauge fields (1.4).

The former charge is associated with spatial translations at the boundary, i.e., ξ = ∂φ, which

acoording to (1.19) and (1.8), corresponds to ε± = 1. Thus, the angular momentum is given by

Q [∂φ] =
k

8π

∫
dφ (L+ − L−) . (1.21)

For time translations, ξ = ∂t, the equivalence corresponds to ε± = ±µ(n)
± . Hence, the variation

of the mass is given by

δQ [∂t] =
k

8π

∫
dφ (µ+δL+ + µ−δL−) . (1.22)

1.2 KdV-type boundary conditions

As previously emphasized, the boundary conditions are completely fixed only once the Lagrange

multipliers µ± have been specified. In general they could also depend on the coordinates.

Nevertheless, demanding a well defined action principle, constraint us to choose the Lagrange

multipliers as functions of the dynamical fields and their spatial derivatives. We can achieve

the latter by choosing the Lagrange multipliers as the variation with respect to L± of some

functionals of them.

Here, we will focus on the family of KdV-type boundary conditions3, introduced in [23],

which are labeled by a non negative integer n. In this context, the Lagrange multipliers are

chosen to be given by the n-th Gelfand-Dikii polynomial evaluated on L± and can be obtained

3Other examples of this relationship between 2D integrable systems and gravity in 2+1, have been also made
for the cases of “flat” and “soft hairy” boundary conditions in Chapter 2 and [121], respectively.
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by the functional derivative of the n-th Hamiltonian of the KdV hierarchy4,

µ
(n)
± =

1

`

δH
(n)
±

δL±
, (1.23)

where the following recursion relation is satisfied5

∂φµ
(n+1)
± =

n+ 1

2n+ 1
D±µ(n)

± . (1.24)

Thus, for the case n = 0, one recovers the Brown-Henneaux boundary conditions (µ
(0)
± = 1/`).

In the case n = 1, the Lagrange multipliers are given by µ
(1)
± = L±/`, and then, the field

equations reduce to two copies of the KdV equation, while for the remaining cases (n > 1) the

field equations are given by the corresponding n-th member of the KdV hierarchy.

Concerning to the symmetries associated with these family of boundary conditions, it can

be shown that, remarkably, the consistency condition (1.10) reduces to the corresponding n-

th member of the KdV equation for the ε±. Thus, since the KdV hierarchy corresponds to

an integrable system, we know its general solution assuming that gauge parameters are local

functions of L± and their spatial derivatives. It is given by a linear combination of the Gelfand-

Dikii polynomials,

ε± =

∞∑
n=0

η
(n)
± µ

(n)
± . (1.25)

Consequently, for an arbitrary symmetry spanned by (1.25), we can integrate the canonical

generators (1.11) as

Q±[ε±] =
k

8π

∞∑
n=0

η
(n)
± H

(n)
± . (1.26)

Therefore, the algebra of the canonical generators is then found to be an abelian one and devoid

4A list of the first Gelfand-Dikii polynomials and the corresponding Hamiltonians of the KdV hierarchy is
shown in Appendix A.

5For later convenience, we have chosen the factor such that the polynomials become normalized according to
`µ

(n)
± = Ln± + · · · , where the ellipsis refers to terms that depend on derivatives of L±.
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of central charges, which goes by hand with the well-known fact that the conserved charges of

an integrable system, as it is the case of KdV, are in involution.

Notice that, by virtue of (1.23), the energy of the gravitational system (1.22), in the case of

KdV-type boundary conditions (1.23), integrates as

Q [∂t] =
k

8π

(
H

(n)
+ +H

(n)
−

)
. (1.27)

it is worth emphasizing that, although these boundary conditions describe asymptotically lo-

cally AdS3 spacetimes, the associated dual field theory at the boundary6 possesses an anisotropic

scaling of Lifshitz type,

t→ λzt , φ→ λφ , (1.28)

provided that L± → λ−2L±, where the dynamical exponent z is related to the KdV label n by

z = 2n + 1. This feature, gives rise to a different alternative in order to study holography for

non-relativistic field theories possessing anisotropic scaling invariance, where the gravitational

counterpart now corresponds to General Relativity on AdS3.

1.3 The BTZ black hole with KdV-type boundary conditions

For each allowed choice of n (or equivalently z), the spectrum of solutions is quite different.

Nonetheless, the BTZ black hole fits within every choice of boundary conditions of the KdV-type.

Indeed, this class of configurations are described by the following state-dependent functions,

LBTZ± =
1

`2
(r+ ± r−)2 . (1.29)

6As shown in [122], by performing the Hamiltonian reduction of KdV-type boundary conditions, the equations
(1.6) actually corresponds to the conservation law of the energy-momentum tensor of the corresponding theory
at the boundary. For the particular case n = 0, the field equations and the conservation law coincides.
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These dynamical fields are constant, and since the Lagrange multipliers (1.23) depend func-

tionally of them, all the spatial derivatives of µ± in (1.18) vanish. Consequently, the boundary

condition (1.18) writen in the Schwarzschild gauge aquire the following form

ds2 = −`
2

4
(µ+ + µ−)2F (r)2 dt2 +

dr2

F(r)2
+ r2

(
dφ+N φ (r) dt

)2
, (1.30)

where

F(r)2 =
r2

`2
− 1

2
(L+ + L−) +

`2

16

(L+ − L−)2

r2
,

N φ(r) =
1

2
(µ+ − µ−) +

`

2
(µ+ + µ−)

`

4

(L+ − L−)

r2
. (1.31)

Note that this class of configurations provides an exact solution of the field equation in (1.6) for

all possible values of n.

1.3.1 Thermodynamics

In the standard formulation of black hole thermodynamics, the temperature and the chemical

potential for the angular momentum do not enter explicitly in the metric. They appear when

we demand regularity at the horizon in the Euclidean section of the black hole metric, which

implies to identify the periods of the Euclidean time and the angle. This means that the periods

of the coordinates are fixed but vary from one solution to another [116]. For (1.30), if we fix

the µ±, then the periods of the identification will depend on the solution. If we demand fixed

periods (tE ∼ tE + 1, φ ∼ φ+ 2π), we must keep the Lagrange multipliers unfixed in the metric.

Following this prescription, the Lagrange multipliers naturally relate to the chemical potentials

of the black hole (temperature and angular velocity).

In the generic case where L± are constants (which includes (1.29)), according to the normal-

ization choice in (1.24), it is possible to show that the Lagrange multipliers generically acquire
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a remarkably simple form, namely, µ
(n)
± = Ln±N±. Here, we include the factors N± in order

to keep track of the explicit presence of the chemical potentials in the metric, and therefore,

fixing the periods of the Euclidean coordinates. Note that µ
(0)
± = N±, and the standard Brown-

Henneaux analysis is recovered by setting N± = 1/`. It is worth to noting that if we define

N± = N/`±Nφ, then the Brown-Henneaux choice corresponds naturally to the canonical gauge

fixing of the Lapse and Shift functions at infinity, i.e., N = 1 and Nφ = 0. In what follows, we

will use the dynamical exponent z, instead of the KdV-label n; thus, by z = 2n + 1, we can

rewrite the KdV-type Lagrange multipliers as7,

µ
(z)
± = L

z−1
2
± N±[z] . (1.32)

On the other hand, demanding regularity on the Euclidean continuation of (1.30), the La-

grange multipliers fix as

µ
(z)
± =

2π√
L±

. (1.33)

Therefore, according to (1.32), for a generic choice of z, the chemical potentials are given by

N±[z] = 2πL−
z
2
± , (1.34)

thus, in the standar case (z = 1), for the BTZ black hole (1.29), the chemical potentials reduce

to the well known left and right inverse temperatures

N±[1] =
2π`

r+ ± r−
, (1.35)

which correspond to the Hawking temperature and angular velocity of the BTZ black hole trough

7In the context of AdS/CFT correspondence, the relationship between the chemical potentials and conserved
charges is known as “multi-trace deformations” of the dual theory [123], see also [124].
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N± = N/`±Nφ,

T =
1

N
=
r2

+ − r2
−

2π`2r+
, Ω = −N

φ

N
=

r−
`r+

. (1.36)

Note that, from (1.34) we can deduce the following expression for the chemical potentials.

N±[z] = (2π)1−z N±[1]z . (1.37)

For this latter expression we will return in Chapter 3.

According to the canonical approach, the energies of the left and right movers also take a

simple form for a generic choice of n, namely E
(n)
± = k

8πH
(n)
± = k

4
1

n+1L
n+1
± N±. Thus, in terms

of the dynamical exponent we can rewrite them as

E
(z)
± =

k

2

1

z + 1
L
z+1
2
± N± . (1.38)

Therfore, we can directly replace this expression in (1.27), to obtain the mass of the black hole

for an arbitrary choice of the KdV-type boundary conditions

M [z] =
1

8G

`−(z+1)

z + 1

[
(r+ + r−)z+1 + (r+ − r−)z+1

]
. (1.39)

Thus, in the standard case, z = 1, we obtain the well-known mass of the BTZ black hole with

Brown-Henneaux boundary conditions,

M =
1

8G

r2
+ + r2

−
`2

. (1.40)

Replacing (1.29) on (1.21), we obtain the angular momentum of the BTZ black hole

J =
1

8G

2r+r−
`

. (1.41)
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It is worth mentioning that the angular momentum is independent of z, because the generic

formula for Q[∂φ] does not depend on the Lagrange multipliers.

As a matter of fact, the entropy of the BTZ black hole satisfy the Bekenstein-Hawking area

law, independently of the choice of boundary conditions

S =
A

4G
=
πr+

2G
, (1.42)

which, through (1.29) and (1.38), can can be expressed in terms of the left and right energies

E±,

S = kπ

[(
2

k
(z + 1)E+[z]

) 1
z+1

+

(
2

k
(z + 1)E−[z]

) 1
z+1

]
. (1.43)

Remarkably, in [23] the authors showed that using a generalization of the S-modular transfor-

mation of the torus, it is possible to find an anisotropic version of the Cardy formula8, given

by

S = 2π (z + 1)

[(
|E0

+[z−1]|
z

)z
E+[z]

] 1
z+1

+ 2π (z + 1)

[(
|E0
−[z−1]|
z

)z
E−[z]

] 1
z+1

. (1.44)

This formula reproduces exactly the entropy of the BTZ black hole with arbitrary boundary

conditions of KdV-type (1.43). In Chapter 3, we will discuss in more detail how to derive

this formula through the saddle-point approximation aforementioned and how to identify the

variables in order to recover the mentioned semi-classical entropy.

8As explained in [23], for odd values of n = (z − 1)/2, Euclidean BTZ with KdV-type boundary conditions
is diffeomorphic to thermal AdS3, but with reversed orientation, and in consequence, there is a opposite sign
between Euclidean and Lorentzian energies of the ground state. As it will be shown in Section 1.5, this leads to
a local thermodynamic instability of the system for odd values of n. So, it is mandatory to adopt E0

±
[
z−1

]
→

−
∣∣E0
±
[
z−1

]∣∣, in the Lorentzian ground state energies of the anisotropic Cardy formula.
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1.4 The anisotropic Smarr formula

It was shown that the reduced Einstein-Hilbert action coupled to a scalar field on AdS3 is

invariant under a set of scale transformations which leads to a radial conservation law by means

of the Noether theorem [125]. When this conserved quantity is evaluated on a black hole solution

of the theory, one obtains a Smarr relation [126]. This method has been successfully applied

to several cases in the literature [127, 128, 129, 130, 131, 132, 133] for different theories. By

following this procedure, we will show that a new anisotropic version of Smarr formula for

the BTZ black hole naturally emerges as a consequence of the scale invariance of the reduced

Einstein-Hilbert action, as long as we consider KdV-type boundary conditions.

By considering stationary and circularly symmetric spacetimes described by the following

line element

ds2 = −N (r)2F (r)2 dt2 +
dr2

F (r)2 + r2
(
dφ+N φ (r) dt

)2
, (1.45)

the reduced action principle of General Relativity in the canonical form, is given by

I = −2π (t2 − t1)

∫
dr
(
NH+N φHφ

)
+B , (1.46)

where N , N φ stand for their corresponding Lagrange multipliers associated to the surface de-

formation generators,

H = − r

8πG`2
+ 32πGr(πrφ)2 +

(
F2
)′

16πG
, (1.47)

Hφ = −2(r2πrφ)′ , (1.48)

where prime denotes derivative with respect to r. The only nonvanishing component of the

momenta πij is explicitly given by

πrφ = −
(
N φ
)′
r

32πGN
, (1.49)
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The boundary term B must be added in order to have a well-defined variational principle.

Straighforwadly, we can see that the above action turns out to be invariant under the following

set of scale transformations

r̄ = ξr , N̄ = ξ−2N , N̄ φ = ξ−2N φ , F̄2 = ξ2F2 , (1.50)

where ξ is a positive constant. By applying the Noether theorem, we obtain a radially conserved

charge associated with the aforementioned symmetries,

C(r) =
1

4G

[
−NF2 +

rN
(
F2
)′

2
−
r3
(
N φ
)′N φ

N

]
, (1.51)

which means that C ′ = 0 on-shell. We will find a Smarr formula by exploiting the fact that this

radial conserved charge must satisfy C(r+) = C(∞), where left and right hand sides denotes

evaluations on the event horizon of the black hole and the asymptotic region, respectively.

At the horizon, F2(r+) = 0, and in order to the Euclidean configuration being smooth

around this point, the metric functions must to fulfill the regularity conditions [134],

N (r+)F2(r+)′ = 4π , N φ(r+) = 0 . (1.52)

In consequence, the value of the radial charge at the event horizon corresponds exactly to the

entropy of the BTZ black hole

C(r+) =
πr+

2G
= S . (1.53)

In order to obtain the radial charge in the asymptotic region, we use the explicit form of

the BTZ metric functions in (1.45), namely, the ones introduced in (1.30). Then we replace the

Lagrange multipliers at infinity according to the ones fixed by KdV-type boundary conditions
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(1.32),

C(∞) =
`

8G

(
N+L

z+1
2

+ +N−L
z+1
2
−

)
, (1.54)

which in terms of the left and right energies (1.38), reads

C(∞) = (z + 1)N+E+ + (z + 1)N−E− . (1.55)

Therefore, equalizing both expressions we finally obtain an anisotropic version of the Smarr

formula,

S = (z + 1)N+E+ + (z + 1)N−E− . (1.56)

Identifying the Lagrange multipliers as the inverse of left and right temperatures T± = N−1
± ,

and then turning off the angular momentum, the above expression reduces to9

E =
1

(z + 1)
TS , (1.57)

which fits with the Smarr formula for Lifshitz black holes in 3D (see e.g. [135, 136]).

It is worth to point out that despite of the BTZ black hole corresponds to an asymptotically

AdS3 spacetime, the anisotropic nature of (1.56), also present in asymptotically Lifshitz black

holes [137], in this case is induced by the scaling properties of KdV-type boundary conditions.

This common anisotropic feature leads to an interesting consequence. Since (1.56) was derived

from a stationary metric (BTZ with L+ 6= L−), the contribution due to the rotation naturally

appears, even though the fact that there is no a rotating Lifshitz black hole in three dimensions.

It is also worth mentioning that in the limit z → 0, (1.56) fits with the corresponding

Smarr relation of soft hairy horizons in three spacetimes dimension [58], where the infinite-

dimensional symmetries at the horizon span soft hair excitations in the sense of Hawking, Perry

9The left and right temperatures are related with the Hawking temperature through T =
2T+T−

(T++T−)
, so in the

absence of rotation T+ = T− = T .

25



and Strominger [138, 139, 140].

1.4.1 Relationship with the anisotropic Cardy formula

As was mentioned at the end of Section 1.3, one can derive the anisotropic Cardy formula (1.44)

by making use of the saddle-point approximation on the asymptotic growth of the number of

states, provided of an anisotropic S-duality relation between high and low temperatures regime

of the partition function (see Chapter 3),

β′± =
(2π)1+ 1

z

β
1
z
±

, z′ =
1

z
. (1.58)

This procedure throws a critical point β∗ = {β+, β−} in terms of E0
± and E±. If we solve that

relation for the ground state energies, we found that

∣∣E0
±[z−1]

∣∣ = zE±[z]

(
β±
2π

)1+ 1
z

, (1.59)

and then we replace the above in (1.44), we found that identifying β± → N±, the entropy exactly

matches with the anisotropic Smarr formula (1.56). Here we show explicitly that the relationship

between Cardy and Smarr formulas is given by the critical point (1.59), which remarkably, is

nothing else than the anisotropic version of the Stefan-Boltzmann law [23],

E± [z] =
1

z
|E0
±
[
z−1
]
| (2π)1+ 1

z T
1+ 1

z
± . (1.60)

Interestingly enough, from equation (1.44), it is clear that the entropy written as a function

of left and right energies scales as (z + 1)−1, hence it is reassuring to prove that the anisotropic

Smarr formula (1.56) can be recovered by simply applying the Euler theorem for homogeneous

functions.

The following section is devoted to the local and global thermal stability of the BTZ black
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hole endowed with KdV-type boundary conditions.

1.5 Thermodynamic stability and phase transitions

In concordance with the spirit of the previous sections, we will analyze the thermodynamic

stability of the BTZ black hole in the KdV-type ensemble from a holographic perspective.

That is, we will first study the behavior of the presumed dual field theory, described by two

independent left and right movers, whose energies and entropy are given by the anisotropic

Stefan-Boltzmann law and the anisotropic Smarr formula, respectively. Then we will compute

the thermodynamic quantities associated with the gravitational system endowed with KdV-type

boundary conditions and show that both descriptions match.

We analyze the thermodynamic stability at fixed chemical potentials. Local stability con-

dition can be determined by demanding a negative defined Hessian matrix of the free energy

of the system. Nonetheless, in the current ensemble it can equivalently be performed by the

analysis of the left and right specific heats with fixed chemical potential. From the anisotropic

Stefan-Boltzmann law (1.60) one finds that left and right specific heats are given by

C± [z] =
∂E±
∂T±

=
z + 1

z2
|E0
±
[
z−1
]
|(2π)1+ 1

z T
1
z
± . (1.61)

We see that, for all possible values of z, the specific heats are continuous monotonically increasing

functions of T±, and always positive10, which means that the system is at least locally stable.

Since the specific heats are finite and positive regardless of the value of z, the BTZ black hole

with generic KdV-type boundary conditions can always reach local thermal equilibrium with

the heat bath at any temperature, as it is expected for a black hole solution in a Chern-Simons

10Strictly speaking, specific heats C± are always positive provided that T± > 0. In terms of the temperature and
angular velocity of the black hole, the above is equivalent to the non-extremality condition; 0 < T , −1 < Ω < 1 .
Since in the present paper we are not dealing with the extremal case, we will consider that this condition is always
fulfilled.
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theory [141, 142, 143, 144, 145, 146]. It is important to remark that, as mentioned at footnote

8, if we had not warned on the correct sign of the ground state energies for odd n, the sign of

the specific heats would have depended on z, and in consequence, for odd values of n the black

hole would be thermodynamically unstable.

Once local stability is assured, it makes sense to ask about the global stability of the system.

Following the seminal paper of Hawking and Page [147], we use the free energies at fixed values

of the chemical potentials in order to realize which of the phases present in the spectrum is

thermodynamically preferred.

In the semiclassical approximation, the on-shell Euclidean action is proportional to the free

energy of the system. Taking into account the contributions of the left and right movers, the

action acquires the following form

I = N+E+ +N−E− − S . (1.62)

Assuming a non-degenerate ground state with zero entropy and whose left and right energies are

equal and negative defined, E± → −
∣∣E0 [z]

∣∣, we see that the value of the action of the ground

state is given by

I0 = −|E0 [z] |
(

1

T+
+

1

T−

)
. (1.63)

On the other hand, considering in (1.62) a system whose entropy is given by the formula (1.56),

we obtain that

I = −z (N+E+ +N−E−) , (1.64)

hence, using the formulae for the energies in (1.60), the action then reads

I = −|E0
[
z−1
]
| (2π)

z+1
z

(
T

1
z

+ + T
1
z
−

)
. (1.65)

Therefore, it is straightforward to see that, regardless of the value of z, the partition function Z =
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eI+I0 , will be dominated by (1.63) at low temperatures, and by (1.65) at the high temperatures

regime. Consistently, it can also be shown that the same ground state action can be found by

making use of the anisotropic S-modular transformation (1.58) on (1.65).

In what follows, we will focus on the simplest case where the whole system is in equilibrium

at a fixed temperature T± = T . Then, the free energy of the system, F = I/β, at high and low

temperatures will respectively given by

F = −2|E0
[
z−1
]
| (2π)1+ 1

z T 1+ 1
z , F0 = −2|E0 [z] | . (1.66)

Finally, comparing them, we can obtain the self-dual temperature, at where both free energies

coincide,

Ts [z] =
1

2π

∣∣∣∣ E0 [z]

E0 [z−1]

∣∣∣∣
z
z+1

, (1.67)

which manifestly depend on the dynamical exponent. At this point, a highly non trivial detail

is worth to be mentioned. The fact that the self-dual temperature Ts depends on the specific

choice of z, is because the S-modular transformation involves an inversion of the dynamical

exponent between the high and low temperature regimes, namely, z → z−1. This is a defining

property of the partition function of the theories that we are dealing with. If one does not take

this detail into account, the self-dual temperature would be the same for all values of z.

From the gravitational hand, according to the formulas written in the Section 1.3.1 and the

Smarr relation (1.57), the free energy, F = E − TS, of the static BTZ black hole and thermal

AdS3 spacetime with KdV-type boundary conditions are given by

FBTZ = − `

4G

z

z + 1
(2πT )

z+1
z , FAdS = − `

4G

1

z + 1
, (1.68)
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and then, the self-dual temperature for which the two phases are equally likely is

Ts [z] =
1

2π

(
1

z

) z
z+1

. (1.69)

Therefore, it is reassuring to verify that if one identifies the ground state energy of the field

theory with the one of the AdS3 spacetime with KdV-type boundary conditions in (1.67), it

exactly matches with the above gravitational self-dual temperature.

As it is shown in (1.69), for an arbitrary temperature below the self-dual temperature (T <

Ts), the thermal AdS3 phase has less free energy than the BTZ, and therefore the former

one is the most probable configuration, while if T > Ts, the black hole phase dominates the

partition function and hence is the preferred one. Note that for higher values of z, the self-dual

temperature becomes lower. The latter point entails to a remarkable result. In the case of

Brown-Henneaux boundary conditions (z = 1), one can deduce that in order for the black hole

reach the equilibrium with a thermal bath at the self-dual point Ts, the event horizon must be

of the size of the AdS3 radius, i.e., r+ = `. Nonetheless, for a generic choice of z, the horizon

size has to be

rs+ [z] = `

(
1

z

) 1
z+1

. (1.70)

This means that the size of the black hole at the self-dual temperature decreases for higher

values of z. In the same way, at Ts, the energy of the BTZ, EBTZ = E+ + E−, endowed with

generic KdV-type boundary conditions, acquires the following form

Es [z] =
`

4G

1

z (z + 1)
, (1.71)

and when compared to the AdS3 spacetime energy,

∆E = EBTZ − EAdS =
`

4G

1

z
, (1.72)
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we can observe that at the self-dual temperature there is an endothermic process, where the

system absorbs energy from the surround thermal bath at a lower rate for higher values of z.

From these last points we can conclude that the global stability of the system is certainly

sensitive to which KdV-type boundary condition is chosen, since the free energy of the possible

phases of the system are explicitly z-dependent. Moreover, the temperature at which both phases

have equal free energy, the size of the black hole horizon and the internal energy of the system at

that temperature, decrease for higher values of z, giving rise to a qualitatively different behavior

of the thermodynamic stability of the system, compared to the standard analysis defined by

z = 1.
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Chapter 2

Integrable systems with BMS3

Poisson structure and the dynamics

of locally flat spacetimes

One of the main purposes of this chapter is exploring whether the BMS3 algebra could be further

linked with some sort of integrable systems. There are some hints that can be borrowed from

CFTs in two dimensions that suggest to look towards this direction. Indeed, it is known that

CFTs in 2D admit an infinite set of conserved charges that commute between themselves, which

can be constructed out from suitable nonlinear combinations of the generators of the Virasoro

algebra and their derivatives (see e.g. [21, 22]). Remarkably, these composite operators turn

out to be precisely the conserved charges of the KdV equation, which also correspond to the

Hamiltonians of the KdV hierarchy. Therefore, since the BMS3 algebra can be seen as a limiting

case of the conformal algebra in 2D, it is natural to wonder about the possibility of performing

a similar construction in that limit. Specifically, one would like to know about the existence of

an infinite number of commuting conserved charges that could be suitably recovered from the
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BMS3 generators, as well as its possible relation with some integrable system, or even to an

entire hierarchy of them. Here we show that this is certainly the case.

Furthermore, and noteworthy, the dynamics of this class of integrable systems can be equiv-

alently understood in terms of Riemannian geometry. Indeed, following similar strategy as the

one in [23] (and reviewed in Chapter 1), here we show that General Relativity without cosmo-

logical constant in 3D can be endowed with a suitable set of boundary conditions, so that in

the reduced phase space, the Einstein equations precisely agree with the ones of the hierarchy

aforementioned. In other words, the dynamics of our class of integrable system can be fully

geometrized, since it can be seen to emerge from the evolution of spacelike surfaces embedded in

locally flat spacetimes. As a remarkable consequence, in the geometric picture, the symmetries

of the integrable systems correspond to diffeomorphisms that maintain the asymptotic form of

the spacetime metric, so that they manifestly become Noetherian. Hence, the infinite set of con-

served charges can be readily obtained from the surface integrals associated to the asymptotic

symmetries in the canonical approach.

In the next section we explicitly construct dynamical (Hamiltonian) systems whose Poisson

structure corresponds to the BMS3 algebra. In order to analyze their symmetries and conserved

charges, in Section 2.2 we show how the Drinfeld-Sokolov formulation can be adapted to our

case, through the use of suitable flat connections for isl(2,R). Section 2.3 is devoted to a thor-

ough construction and the analysis of an entire bi-Hamiltonian hierarchy of integrable systems

with BMS3 Poisson structure, labeled by a nonnegative integer n. We start with a very simple

dynamical system (n = 0) from which the bi-Hamiltonian structure can be naturally unveiled.

The case of n = 1 is described in Section 2.3.2, where the Abelian infinite-dimensional symme-

tries and conserved charges are explicitly identified in terms of a suitable generalization of the

Gelfand-Dikii polynomials (see also appendices A and B). The hierarchy of integrable systems

with BMS3 Poisson structure is then explicitly discussed in Section 2.3.3, where it is shown

that the so-called “perturbed KdV equations” are included as a particular case. Section 2.3.4 is
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devoted to the construction of a wide interesting class of analytic solutions for a generic value

of the label of the hierarchy n. In Section 2.4, we show how the dynamics of the hierarchy of

integrable systems can be fully geometrized in terms of locally flat three-dimensional spacetimes.

The deep link with General Relativity in 3D is explicitly addressed. We conclude in Section 2.5

with the analysis of the thermodynamics of the Flat Space Cosmology endowed with BMS-type

boundary conditions.

2.1 Dynamical systems with BMS3 Poisson structure

In order to construct dynamical systems whose Poisson structure is described by the BMS3

algebra, let us consider two independent dynamical fields, J = J (t, φ) and P = P(t, φ), being

defined on a cylinder whose coordinates range as 0 ≤ φ < 2π, and −∞ < t < ∞. The Poisson

structure we look for can then be defined in terms of the following operator

D(2) ≡

 D(J ) D(P)

D(P) 0

 , (2.1)

where D(J ) and D(P) stand for Schwarzian derivatives, given by

D(J ) = 2J ∂φ + ∂φJ − cJ ∂3
φ ,

D(P) = 2P∂φ + ∂φP − cP∂3
φ , (2.2)

with arbitrary constants cJ and cP .

The operator D(2) in eq. (2.1) then allows to write the Poisson brackets of two arbitrary
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functionals of the dynamical fields, F = F [J ,P] and G = G[J ,P], according to

{F,G} ≡
∫
dφ

(
δF
δJ

δF
δP

) D(J ) D(P)

D(P) 0


 δG

δJ

δG
δP

 . (2.3)

Therefore, the brackets of the dynamical fields read

{J (φ) ,J
(
φ̄
)
} = D(J )δ

(
φ− φ̄

)
,

{J (φ) ,P
(
φ̄
)
} = D(P)δ

(
φ− φ̄

)
, (2.4)

{P (φ) ,P
(
φ̄
)
} = 0 ,

so that expanding in Fourier modes as X = 1
2π

∑
nXne

−inφ, the algebra of the Poisson brackets

in (2.4) precisely reduces to the BMS3 algebra in eq. (3).

The field equations for the class of dynamical systems we were searching for can then be

readily defined as follows  J̇
Ṗ

 = D(2)

 µJ

µP

 , (2.5)

where dot denotes the derivative in time, while µJ and µP stand for arbitrary functions of the

dynamical fields and their derivatives along φ. When these functions are defined in terms of the

variation of a functional H = H[J ,P], so that

µJ =
δH

δJ
, µP =

δH

δP
, (2.6)

the dynamical system is Hamiltonian; and hence, by virtue of (2.3), the field equations can be

written as  J̇
Ṗ

 = D(2)

 µJ

µP

 =

 {J , H}
{P, H}

 . (2.7)
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Note that unwrapping the angular coordinate to range as −∞ < φ < ∞, allows to extend this

class of dynamical systems to R2, provided that the fall-off of the dynamical fields J , P is

sufficiently fast in order to get rid of boundary terms. Hereafter, for the sake of simplicity, we

will assume that the dynamical systems are defined on a cylinder, with a single exception for an

interesting particular solution that is described in section 2.3.4.

2.2 Zero-curvature formulation

In order to study the properties of the dynamical systems with BMS3 Poisson structure that

evolve according to eq. (2.5), including their symmetries and the corresponding conserved

charges, it turns out to be useful to reformulate them in terms of a flat connection for a suitable

Lie algebra (see e.g. [112, 148]). In the standard approach of Drinfeld and Sokolov [149], the Lie

algebra is assumed to be semisimple. Here we slightly extend this approach in a sense explained

right below.

For our purposes, the relevant Lie algebra to be considered corresponds to isl(2,R), which

is isomorphic to the Poincaré algebra in 3D. Their commutation relations can then be written

as

[Ja, Jb] = εabcJ
c , [Ja, Pb] = εabcP

c , [Pa, Pb] = 0 , (2.8)

where Ja stand for the generators of sl(2,R) ' so(2, 1). It is worth emphasizing that the

algebra (2.8) is not semisimple; but nonetheless, it admits an invariant bilinear metric whose

nonvanishing components read

〈Ja, Jb〉 = cJ ηab , 〈Ja, Pb〉 = cPηab , (2.9)

where cJ and cP are arbitrary constants. Note that the invariant bilinear metric is nondegenerate
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provided that cP 6= 0, which will be assumed afterwards.1

Hence, by virtue of (2.9), the analysis of the class of dynamical systems defined in the

previous section can still be performed à la Drinfeld-Sokolov, provided that the field equations

are able to be reproduced in terms of a flat connection for isl(2,R).

We then propose that the spacelike component of the isl(2,R)-valued gauge field a = aµdx
µ

is given by

aφ = J1 +
1

cP

[(
J − cJ

cP
P
)
P0 + PJ0

]
, (2.10)

with J = J (t, φ) and P = P(t, φ), while the timelike component reads

at = Λ (µJ , µP) , (2.11)

where

Λ (µJ , µP) =µPP1 + µJ J1 − µP′P2 − µJ ′J2

+

(
1

cP
PµJ − µJ ′′

)
J0 +

[
1

cP

(
J − cJ

cP
P
)
µJ +

1

cP
PµP − µP′′

]
P0 . (2.12)

Here µJ and µP can be assumed to be given by some arbitrary functions of J , P, and their

derivatives along φ (being denoted by a prime here and afterwards). Therefore, requiring the

field strength for the gauge field defined in (2.10) and (2.11) to vanish, i.e.,

f = da+ a2 = 0 , (2.13)

implies that the field equations for the dynamical system with BMS3 Poisson structure in (2.5)

hold. It is worth mentioning that (at, aφ) can then be interpreted as the components of an

1We choose the orientation according to ε012 = 1, while the Minkowski metric ηab is assumed to be non-
diagonal, whose non-vanishing components are given by η01 = η10 = η22 = 1.
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isl(2,R)-valued Lax pair.

2.2.1 Symmetries and conserved charges

One of the advantages of formulating the field equations in terms of a flat connection, is that the

symmetries of the dynamical system in (2.5) turn out to correspond to gauge transformations,

δλa = dλ+ [a, λ], that preserve the form of the gauge field defined through (2.10) and (2.11).

Hence, requiring the form of the spacelike component of the connection aφ in (2.10) to be

preserved under gauge transformations, restricts the Lie-algebra-valued parameter to be of the

form

λ = Λ (εJ , εP) , (2.14)

where Λ is precisely given by eq. (2.12), but now depends on two arbitrary functions εJ =

εJ (t, φ) and εP = εP(t, φ), while the dynamical fields have to transform according to

 δJ

δP

 = D(2)

 εJ

εP

 . (2.15)

Analogously, preserving the timelike component of the gauge field at in (2.11), implies that the

transformation law of the functions µJ and µP is given by

δµJ = ε̇J + εJ µJ
′ − µJ εJ ′ , (2.16)

δµP = ε̇P + εJ µP
′ + εPµJ

′ − µJ εP′ − µPεJ ′ . (2.17)

However, µJ and µP generically depend on the dynamical fields and their spatial derivatives,

which means that eqs. (2.16), (2.17) actually become a consistency condition to be fulfilled by

the functions εJ and εP that parametrize the symmetries of the dynamical system.

In the case of Hamiltonian systems, µJ and µP are determined by the corresponding func-

38



tional variations of the Hamiltonian as in (2.6), and consequently, the consistency condition for

the functions εJ and εP , that arises from (2.16), (2.17), can be compactly written as

 ε̇J (t, φ)

ε̇P (t, φ)

 = −

 δ
δJ (t,φ)

δ
δP(t,φ)

∫ dϕ

D(2)

 µJ

µP



T  εJ

εP

 . (2.18)

In sum, the functions that parametrize the symmetries of the Hamiltonian system with

BMS3 Poisson structure must fulfill the consistency condition in (2.18), which for an arbitrary

choice of Hamiltonian, implies that εJ and εP generically acquire an explicit dependence on the

dynamical fields and their spatial derivatives.

The variation of the canonical generators associated to the symmetries spanned by εJ , εP

can then be readily found by virtue of eqs. (2.9), (2.10) and (2.14), which reduces to the following

simple expression

δQ [εJ , εP ] =

∫
dφ 〈λδaφ〉 =

∫
dφ (εJ δJ + εPδP) . (2.19)

As a cross-check, it is simple to verify that the variation of the canonical generators is conserved

(δQ̇ = 0) provided that the consistency condition for the symmetry parameters in (2.18) is

satisfied.

It is also worth emphasizing that the integrability conditions of (2.19) require that the

allowed parameters εJ , εP must correspond to the variation of a functional, since εJ = δQ
δJ and

εP = δQ
δP .

Nevertheless, it must be highlighted that finding the explicit form of the conserved charges

Q is not so simple, because it amounts to know the general solution of the consistency condition

for the parameters in (2.18). Indeed, although the consistency condition is linear in the param-

eters εJ , εP , the generic solution manifestly depends on the dynamical fields and their spatial
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derivatives that fulfill a nonlinear field equation. Thus, for a generic choice of the Hamiltonian,

solving eq. (2.18) is actually an extremely difficult task.

However, for a generic Hamiltonian that is independent of the coordinates, the conserved

charges associated to translations along space and time can be directly constructed. In fact, for

a flat connection, diffeomorphisms spanned by ξ = ξµ∂µ are equivalent to gauge transformations

generated by λ = ξµaµ, since Lξa = dλ+ [a, λ]. Therefore, for ξ = ∂φ, the linear momentum on

the cylinder readily integrates as

Q[∂φ] = Q[1, 0] =

∫
dφJ . (2.20)

Analogously, the variation of the energy is obtained for ξ = ∂t, so that

δQ[∂t] = δQ[µJ , µP ] =

∫
dφ (µJ δJ + µPδP) , (2.21)

which by virtue of (2.6), integrates as expected, i.e.,

Q[∂t] = H . (2.22)

Note that, generically, there might be additional nontrivial solutions of eq. (2.18) that would

lead to further conserved charges.

As a closing remark of this section, it must be emphasized that in order to construct an

integrable system with the BMS3 Poisson structure, one should at least specify the precise form

of the Hamiltonian, so that the general solution of the consistency condition for the parameters

in (2.18) could be obtained. Explicit examples of integrable systems of this sort that actually

belong to an infinite hierarchy of them are discussed in the next section.
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2.3 Hierarchy of integrable systems with BMS3 Poisson struc-

ture

In this section we introduce a bi-Hamiltonian hierarchy of integrable systems with BMS3 Poisson

structure in a constructive way. We start from an extremely simple case, which nonetheless, pos-

sesses the key ingredients in order to propose a precise nontrivial integrable system of this type,

that can be extended to an entire hierarchy labeled by a nonnegative integer n. The contact with

some known results in the literature for certain particular cases is also addressed. Furthermore,

a wide class of analytic solutions are explicitly constructed for an arbitrary representative of the

hierarchy, including a couple of simple and interesting particular examples.

2.3.1 Warming up with a simple dynamical system (n = 0)

Let us begin with one of the simplest possible examples of a dynamical system with BMS3

Poisson structure. The field equations can be obtained from (2.7) with µJ = µ
(0)
J and µP = µ

(0)
P

constants, given by  µ
(0)
J

µ
(0)
P

 =

 1

a

 , (2.23)

so that, according to (2.6), the Hamiltonian is given by H = H(0), with

H(0) =

∫
dφ (J + aP) . (2.24)

The field equations then explicitly read

J̇ = J ′ + aP ′ ,

Ṗ = P ′ , (2.25)
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which are trivially integrable. Indeed, the general solution of (2.25) on the cylinder is de-

scribed by left movers and it can be expressed in terms of periodic functionsM =M(t+φ) and

N = N (t+ φ), so that it reads

P = M ,

J = N + atM′ . (2.26)

Besides, since the field equations are very simple in this case, the consistency condition for the

parameters of their symmetries in (2.18) becomes independent of the dynamical fields and their

spatial derivatives, which explicitly reduces to

ε̇J = εJ
′ ,

ε̇P = εP
′ + aεJ

′ . (2.27)

Note that (2.27) coincides with the field equations in (2.25) for εJ = P and εP = J , and hence,

if one assumes that the parameters εJ , εP depend only on the coordinates t, φ, and not on the

dynamical fields, the general solution of the consistency conditions for the parameters is also

given by chiral (left mover) functions as in (2.26). Therefore, the variation of the canonical

generators in (2.19) readily integrates as

Q [εJ , εP ] =

∫
dφ (εJJ + εPP) . (2.28)

The algebra of the conserved charges (2.28) can then be directly obtained from their correspond-

ing Poisson brackets. As a shortcut, by virtue of

{Q [ε1] , Q [ε2]} = δε2Q [ε1] , (2.29)
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the algebra can also be read from the transformation law of the fields in (2.15), and it is then

found to be given precisely by the BMS3 algebra in (2.4), which once expanded in modes reads

as in eq. (3).

It is worth highlighting that this simple dynamical system actually turns out to be bi-

Hamiltonian. This is so because the field equations can be expressed in terms of two different

Poisson structures, so that (2.25) can be written as

 J̇
Ṗ

 = D(2)

 µ
(0)
J

µ
(0)
P

 = D(1)

 µ
(1)
J

µ
(1)
P

 , (2.30)

where D(2) is the BMS3 one in (2.1), while D(1) stands for the “canonical” Poisson structure,

defined through the following differential operator

D(1) ≡

 0 ∂φ

∂φ 0

 . (2.31)

In (2.30) the functions µ
(1)
J and µ

(1)
P are then given by

 µ
(1)
J

µ
(1)
P

 =

 P

J + aP

 , (2.32)

and thus, according to (2.6), the canonical Poisson structure (2.31) is associated to the following

Hamiltonian

H(1) =

∫
dφ
(
JP +

a

2
P2
)
. (2.33)

It is worth highlighting that the conserved charge H(1) can also be obtained from (2.19)

provided that the parameters of the symmetries are given by εJ = µ
(1)
J = P and εP = µ

(1)
P =

J +aP. Indeed, if the parameters are allowed to depend only on the fields and their derivatives,
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but not explicitly on the coordinates t, φ, one is able to construct an infinite set of independent

commuting conserved charges of this sort. This is shown in section 2.3.3.

In sum, the analysis of this extremely simple dynamical system with BMS3 Poisson structure

D(2), being trivially integrable, allows to unveil a naturally related Poisson structure given by

D(1). The presence of both Poisson structures turns out to be the key in order to proceed

with the construction of nontrivial integrable systems as well as an entire hierarchy associated

to them. This can be seen as follows. One begins verifying that both Poisson structures are

“compatible” in the sense that any linear combination of D(2) and D(1) also defines a Poisson

structure. It is then enough proving that the operator D(3) = D(2) +D(1) also defines a Poisson

structure (see e.g. [150]). This is so because the Poisson bracket constructed out from D(3) is

clearly antisymmetric, and furthermore, since D(3) also fulfills the BMS3 algebra, but just being

shifted by the zero modes of P0 → P0 + π, the Jacobi identity also holds. Besides, by virtue of

the fact that our Poisson structure D(1) is nondegenerate, the hypotheses of a strong theorem for

bi-Hamiltonian systems in [151], and further elaborated in [150], are satisfied, which guarantees

the existence of the type of hierarchy of integrable systems that we are searching for.

Furthermore, and remarkably, the simple dynamical system described in this section can be

seen to be equivalent to the Einstein equations for the reduced phase space that is obtained

from a suitable set of boundary conditions for General Relativity in three spacetime dimensions,

including its extension with purely geometrical parity-odd terms in the action. This is discussed

in section 2.4. It is also worth pointing out that our field equations (2.26), in the case of

cJ = a = 0, can be interpreted as the ones of a compressible Euler fluid [152].

In the next subsection we carry out the explicit construction and the analysis of a simple,

but nontrivial, integrable system with BMS3 Poisson structure.
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2.3.2 Integrable bi-Hamiltonian system (n = 1)

The first nontrivial integrable system of our hierarchy is obtained from (2.7) with µJ = µ
(1)
J and

µP = µ
(1)
P , where µ

(1)
J and µ

(1)
P are given by eq. (2.32), so that the Hamiltonian corresponds to

H(1) in (2.33). The field equations are then explicitly given by

J̇ = 3J ′P + 3JP ′ − cPJ ′′′ − cJP ′′′ + a
(
3P ′P − cPP ′′′

)
,

Ṗ = 3P ′P − cPP ′′′ . (2.34)

Note that P evolves according to the KdV equation,2 while the remaining equation is linear

in J , with an inhomogeneous source term that is entirely determined by P and their spatial

derivatives.

The field equations in (2.34) can also be seen to arise from a bi-Hamiltonian system with the

same BMS3 and canonical Poisson structures given by (2.1) and (2.31), respectively. Indeed,

they can be written as

 J̇
Ṗ

 = D(2)

 µ
(1)
J

µ
(1)
P

 = D(1)

 µ
(2)
J

µ
(2)
P

 , (2.35)

where the functions µ
(2)
J and µ

(2)
P are given by

 µ
(2)
J

µ
(2)
P

 =

 3
2P

2 − cPP ′′

3JP − cPJ ′′ − cJP ′′ + a
(

3
2P

2 − cPP ′′
)
 , (2.36)

which can be obtained from the functional derivatives of a different Hamiltonian, as in (2.6),

2This is a direct consequence of the choice of µJ and the fact that the off-diagonal terms in the Poisson
structure D(2) exclusively depend on D(P). Besides, a common practice in the literature is rescaling the field and
the coordinates so that the KdV equation does not depend on cP (see, e.g., [150]). However, as explained in
section 2.3.2, for our purposes, and for the sake of simplicity, keeping cP explicitly in the field equations turns
out to be very useful and convenient.
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that reads

H(2) =

∫
dφ

[
3

2
P2J − cPP ′′J +

cJ
2
P ′2 + a

(
1

2
P3 +

cP
2
P ′2
)]

, (2.37)

being clearly conserved.

Symmetries

As explained in section 2.2.1, in order to find the remaining conserved quantities, it is necessary

to find the general solution of the consistency conditions in (2.18) for the functions εJ and εP

that parametrize the symmetries of the field equations. In this case (n = 1), the consistency

conditions in (2.18), with µJ and µP given by eq. (2.32), explicitly reduce to

ε̇J = 3Pε′J − cPε′′′J ,

ε̇P = 3J ε′J + 3Pε′P − cPε′′′P − cJ ε′′′J + a
(
3Pε′J − cPε′′′J

)
. (2.38)

Note that the equations in (2.38) are linear for the parameters εJ and εP . However, finding their

solution is not that simple because their coefficients depend on J and P, who evolve according

to the nonlinear field equations in (2.34). Nevertheless, if one assumes that the parameters

εJ , εP depend only on the dynamical fields and their spatial derivatives, but not explicitly

on the coordinates t, φ, and takes into account that the parameters must correspond to the

variation of a functional, the theorem in [150, 151] then guarantees that the general solution of

the consistency conditions (2.38) can be formally found. In our case, the explicit solution turns

out to be given by a linear combination of two independent arrays, K(j) and K̃(j), that stand

for a suitable generalization of the Gelfand-Dikii polynomials. The solution can then be written

as  εJ

εP

 =
∞∑
j=0

[
ηjK

(j) + η̃jK̃
(j)
]
, (2.39)
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where ηj and η̃j are arbitrary constants, and both generalized polynomials K(j) and K̃(j) fulfill

the same recursive relationship, given by

D(1)K(i+1) = D(2)K(i) . (2.40)

If the initial seeds of the independent arrays are chosen as

K(0) =

 0

1

 , K̃(0) =

 1

0

 , (2.41)

the recursion relation (2.40) then implies that the remaining ones are given by

K(n) =

 0

R(n)

 , K̃(n) =

 R(n)

T (n)

 , (2.42)

where R(n) stand for the standard Gelfand-Dikii polynomials, while T (n) correspond to a different

set of polynomials that fulfill the following recursion relationships

∂φR
(n+1) = D(P)R(n) , (2.43)

∂φT
(n+1) = D(P)T (n) +D(J )R(n) . (2.44)

Remarkably, both sets of polynomials can be obtained from the variation of two independent

functionals, H
(n)
KdV [P] and H̃(n) [P,J ], so that

R(n) =
δH

(n)
KdV [P]

δP
=
δH̃(n) [P,J ]

δJ
, (2.45)

T (n) =
δH̃(n) [P,J ]

δP
, (2.46)
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where H
(n)
KdV stands for n-th conserved quantity of the KdV equation, while H̃(n) [P,J ] depends

linearly on J and it is given by

H̃(n) [P,J ] = cJ
∂H

(n)
KdV [P]

∂cP
+

∫
dφJ

δH
(n)
KdV [P]

δP
. (2.47)

Therefore, the generalized polynomials can also be compactly defined as

K(n) =

 δ
δJ

δ
δP

H
(n)
KdV , K̃(n) =

 δ
δJ

δ
δP

 H̃(n) . (2.48)

An explicit list of the first six polynomials R(n) and T (n), with their corresponding functionals

H
(n)
KdV and H̃(n) is given in Appendix A.

Conserved charges

Since the general form of the parameters that describe the symmetries of the field equations has

been explicitly found to be given by (2.39), by virtue of the fact that the generalized polynomials

come from the functional derivatives of suitable functionals as in (2.48), the variation of the

canonical generators in (2.19) reduces to

δQ [η, η̃] = −
∞∑
j=0

∫
dφ

[
ηj
δH

(j)
KdV

δP
δP + η̃j

(
δH̃(j)

δP
δP +

δH̃(j)

δJ
δJ

)]
, (2.49)

which then readily integrates as

Q [η, η̃] = −
∞∑
j=0

(
ηjH

(j)
KdV + η̃jH̃

(j)
)
. (2.50)

Therefore, we have explicitly found two infinite independent towers of conserved quantities,

being spanned by H
(j)
KdV and H̃(j), which by virtue of the recursion relation in (2.40), turn out
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to be in involution for both Poisson structures D(2) and D(1), i.e.,

{
Q[η, η̃], Q[ζ, ζ̃]

}
(2)

=
{
Q[η, η̃], Q[ζ, ζ̃]

}
(1)

= 0 , (2.51)

where the subscripts for the brackets in (2.51) stand for the corresponding Poisson structures.3

Note that the pair of Hamiltonians that yield the same field equations in (2.35), given by

(2.33) and (2.37), can then be written as

H(1) = H̃(1) + aH
(1)
KdV , H(2) = H̃(2) + aH

(2)
KdV . (2.52)

In sum, as pointed out in the introduction, eq. (2.50) turns out to be an explicit realization

of the infinite set of commuting conserved charges that is constructed out from precise nonlinear

combinations of the generators of the BMS3 algebra and their spatial derivatives. As discussed

in section 2.3.3, this provides the basis to extend this integrable system to an entire hierarchy.

Remarks on some additional symmetries

The existence of additional symmetries, enlarging the set spanned by the parameters εJ , εP

in (2.39), is unveiled by relaxing our hypotheses, so that the parameters of the symmetries are

now allowed to depend not just on the dynamical fields and their spatial derivatives, but also

explicitly on the coordinates t, φ. Hence, apart from the infinite set of symmetries spanned by

(2.15), with εJ and εP given by (2.39), the field equations (2.34) can also be seen to be invariant

under Galilean and anisotropic scale transformations:

• Galilean transformations.- They are parametrized by a single constant velocity parameter

v0, so that the coordinates and the fields transform according to

φ̄ = φ− v0t , t̄ = t , (2.53)

3For an explicit proof of the involution of the conserved charges see Appendix B.

49



and

P̄ = P +
v0

3
, J̄ = J − a

3
v0 , (2.54)

respectively.

For simplicity, if one chooses the Poisson structure D(1), the parameters εJ , εP that

correspond to the infinitesimal Galilean transformations are then given by

εJ = v0tP +
φ

3
,

εP = v0tJ −
aφ

3
, (2.55)

which manifestly fulfill their consistency conditions in (2.38). Equivalently, the parameters

in (2.55) can be expressed in terms of the generalized polynomials as in (2.39), where now

the coefficients ηj and η̃j acquire an explicit dependence on the coordinates t, φ, so that

 εJ

εP

 = v0tK̃
(1) +

v0φ

3

(
K̃(0) − aK(0)

)
. (2.56)

Therefore, since εJ = v0
δG
δJ and εP = v0

δG
δP , one readily obtains the conserved charge that

corresponds to the generator of the Galilean transformations, which reads

G =

∫
dφ

[
tJP +

φ

3
(J − aP)

]
. (2.57)

• Anisotropic scaling of Lifshitz type.- This symmetry is defined through a constant param-

eter σ, and it is generated by the transformations

t̄ = σ3t , φ̄ = σφ ,

 J̄
P̄

 = σ−2

 J
P

 , (2.58)
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which correspond to anisotropic scaling of Lifshitz type with dynamical exponent z = 3. In

this case, in terms of the Poisson structure D(2), the parameters that span the infinitesimal

anisotropic scaling transformations in (2.58) read as

εJ = λ (3tP + φ) ,

εP = 3λt (J + aP) , (2.59)

which satisfy the consistency conditions in (2.38). These parameters can also be written

as a linear combination of the generalized polynomials as in (2.39), where the coefficients

depend on t and φ, so that

 εJ

εP

 = 3λt
(
K̃(1) + aK(1)

)
+ λφK̃(0) . (2.60)

Hence, the form of the generator of the anisotropic scaling transformations D can be

directly read from εJ = λ δDδJ and εP = λ δDδP , with

D =

∫
dφ
[
3t
(
JP +

a

2
P2
)

+ φJ
]
. (2.61)

For later purposes, it is worth noting that both sets of conserved quantities, H
(n)
KdV and

H̃(n), scale under (2.58) according to

H̄(n) = σ−(2n+1)H(n) . (2.62)

Equivalence with the Hirota-Satsuma coupled KdV system of type ix

Here we show that the field equations of the bi-Hamiltonian integrable system with BMS3 and

canonical Poisson structures, described by (2.34), can be seen to be equivalent to a particular
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class of a generalization of the Hirota-Satsuma coupled KdV system [153]. Specifically, the

equivalence can be seen as follows.

If one changes the dynamical fields and rescale time according to

u =
1

4cP
P , v =

1

4
(J + aP) , τ = −cPt , (2.63)

the field equations in (2.34) read

∂τv = −12uv′ − 12vu′ + v′′′ + γu′′′ , (2.64)

∂τu = −12uu′ + u′′′ , (2.65)

with

γ ≡ cJ + acP . (2.66)

The equations in (2.64), (2.65) then turn out to be precisely the ones of type ix in [154]. Thus,

at the level of the field equations there are actually only two inequivalent cases. The generic

one corresponds to γ = 1, since the field equation in (2.64) can always be brought to this form

provided that v is rescaled as v → γv. The remaining case is described by γ = 0, which is also

known in the literature as “perturbed KdV” (see e.g. [155, 156, 157, 158, 159]).

Note that for γ = 0 (cJ = −acP), configurations with v = 0 (J = −aP) are devoid of

energy, since H = H(0) in (2.24) vanishes. Nonetheless, they are generically endowed with both

towers of conserved charges H
(j)
KdV and H̃(j).

The structures discussed in this subsection provide all what is needed in order to generalize

the integrable system to a hierarchy of them that is labeled by a nonnegative integer n.
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2.3.3 The hierarchy (n ≥ 0)

The results obtained in the previous section ensure that a hierarchy of bi-Hamiltonian integrable

systems with BMS3 and canonical Poisson structures, given by D(2) and D(1), can be readily

constructed out from choosing any of their Hamiltonians to be given by an arbitrary linear

combination of the independent conserved charges H
(n)
KdV and H̃(n) in (2.47). Hereafter we focus

in the subclass of them that possesses well-defined scaling properties. In order to achieve this

task, we recall that if one rescales the spacelike coordinate and the fields as in (2.58), then both

sets of conserved charges scale according to (2.62). Therefore, the most general combination

that possesses the suitable scaling properties that we look for is described by a Hamiltonian of

the form

H(n) = H̃(n) + aH
(n)
KdV , (2.67)

with a constant and any fixed value of the integer n ≥ 0.

The field equations of the corresponding hierarchy of integrable systems then read

 J̇
Ṗ

 = D(2)

 µ
(n)
J

µ
(n)
P

 , (2.68)

with

µ
(n)
J =

δH(n)

δJ
and µ

(n)
P =

δH(n)

δP
. (2.69)

The hierarchy defined through (2.68) is clearly bi-Hamiltonian, since by virtue of the recur-

sion relationship in (2.40), the field equations can also be expressed as

 J̇
Ṗ

 = D(2)

 µ
(n)
J

µ
(n)
P

 = D(1)

 µ
(n+1)
J

µ
(n+1)
P

 . (2.70)

The field equations of the hierarchy can also be explicitly written in terms of the polynomials
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T (n) defined through (2.46) and the Gelfand-Dikii polynomials R(n), so that they read

J̇ = D(P)T (n) +
(
D(J ) + aD(P)

)
R(n) ,

Ṗ = D(P)R(n) . (2.71)

It is worth pointing out that for any representative of the hierarchy with n > 1, not only

the field equations in (2.71), but also the consistency condition for the functions εJ and εP that

parametrize the symmetries in (2.18) become severely more complicated than the simplest cases

of n = 0, 1 (see eqs. (2.25), (2.27), and (2.34), (2.38), respectively). However, and remarkably,

when εJ and εP are assumed to depend only on the dynamical fields and their spatial derivatives,

but not explicitly on t, φ, by virtue of the theorem in [150, 151], the general solution of the

consistency condition for the parameters in (2.18) for n ≥ 0 turns out to be precisely given

by the same expansion in terms of the generalized Gelfand-Dikii polynomials K(j) and K̃(j),

as in (2.39) for n = 1. This is explicitly verified in Appendix C. Therefore, as a consequence,

the corresponding canonical generators turn out to be given by the two independent sets of

conserved charges given by (2.50), which are in involution, i.e., the commuting charges fulfill

(2.51) for both Poisson structures. Nevertheless, depending on the choice of Poisson structure,

D(2) or D(1), the energy of the system in (2.22), now corresponds to the Hamiltonian, H(n) or

H(n+1), defined through (2.67), respectively.

Furthermore, by construction, the field equations for any representative of the hierarchy turn

out to be invariant under anisotropic scaling transformations given by

t→ σzt , φ→ σφ ,

 J
P

→ σ−2

 J
P

 , (2.72)

which is of Lifshitz type, and characterized by a dynamical exponent z = 2n + 1. Isotropic

scaling then only holds for n = 0.
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In terms of the BMS3 Poisson structure D(2), the parameters εJ , εP that correspond to the

infinitesimal anisotropic scaling transformation in (2.72), are then given by

 εJ

εP

 = λzt
(
K̃(n) + aK(n)

)
+ λφK̃(0) , (2.73)

and fulfill the consistency conditions in (2.18). The corresponding conserved charge can then be

obtained from εJ = λ δDδJ and εP = λ δDδP , with

D = ztH(n) +

∫
dφφJ , (2.74)

where H(n) stands for the Hamiltonian, given by eq. (2.67).

As an ending remark of this subsection, it is worth noting that the field equations of the so-

called “perturbed KdV hierarchy” are precisely recovered from (2.71) for the particular case of

cJ = a = 0. In this case, for the entire hierarchy, according to (2.67), configurations with J = 0

do not carry energy, which goes by hand with the fact that the Hamiltonian corresponds to the

energy of a perturbation described by J . Indeed, for this class of configurations, the entire set

of conserved charges H̃(j) in (2.47) also vanishes. Note that the remaining ones, given by H
(j)
KdV

generically remain nontrivial, which can be interpreted as the conserved charges associated to an

arbitrary “background configuration” described by P = P (t, φ) that solves the field equations

of the n-th representative of the KdV hierarchy.

2.3.4 Analytic solutions

Exact analytic solutions of the KdV equation, as well as for the k-th representative of the

KdV hierarchy, have been thoroughly studied in the literature since long ago through different

methods (see e.g., [158]).

Here we show how to obtain an interesting wide class of analytic solutions of the field
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equations in (2.71) for an arbitrary value of the nonnegative integer k that labels our hierarchy

of integrable systems with BMS3 Poisson structure.

As a warming up exercise, let us begin considering the simplest case, described by choosing

the field P to be constant, so that the field equation of the KdV hierarchy in (2.71) is trivially

solved for an arbitrary value of k. In this case, the field equation for J (t, φ) in (2.71) just

reduces to a dispersive linear homogeneous equation with constant coefficients, given by

J̇ =
k∑

m=0

αk,m(−cP)k−mPm∂2k−2m+1
φ J , (2.75)

with αk,m ≡ (2k+1)!!
m!(2k−2m+1)!! , which can be easily solved for an arbitrary member of the hierarchy.

Indeed, expanding in Fourier modes according to4

J (t, φ) =
1

2π

∞∑
n=0

Jne−i(ωk,nt+nφ) , (2.76)

one finds that the corresponding dispersion relation is given by

ωk,n =

k∑
m=0

αk,mcP
k−mPmn2(k−m)+1 . (2.77)

In the case of nontrivial solutions P = P(t, φ) of the k-th KdV equation, it is also possible

to find generic analytic solutions for J (t, φ). Remarkably, in spite of the fact that J (t, φ)

obeys a linear differential equation, their exact solutions are able to be nondispersive. This

effect occurs because the coefficients of the linear equation for J in (2.71) are determined by

nontrivial solutions of the k-th KdV equation, and it persists even in presence of a source term

(with a 6= 0 or cJ 6= 0). This is explicitly discussed in what follows.

4J (t, φ) is real provided that the modes fulfill (Jn)∗ = J−n.
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Generic analytic solutions

Let us assume that P = P(t, φ) corresponds to an arbitrary generic solution of the field equations

of the k-th representative of the KdV hierarchy, described by the second line of (2.71). Note that,

since the central extension cP has not been scaled away, nontrivial solutions P(t, φ) explicitly

depend on cP .

In order to find the form of J = J (t, φ) one has to solve the remaining equation in (2.71),

which turns out to be linear in J , and possesses an inhomogeneous term that is completely

specified by P and their spatial derivatives. Hence, the generic solution for J is given by the

sum of the particular and the homogeneous solutions, i.e.,

J = Jh + Jp . (2.78)

Noteworthy, as it is shown in Appendix D, for an arbitrary value of the label k of the hierarchy,

a particular solution J = Jp(t, φ) can be analytically expressed in a very compact way, so that

it reads5

Jp = cJ
∂P
∂cP

+ atṖ . (2.79)

Besides, a generic solution of the homogeneous equation can be found by virtue of the symmetries

in (2.15), being spanned by the subset of parameters given by (2.39) that preserve the form of

P(t, φ), i.e., the ones for which δP = 0. The suitable subset of symmetries we look for then

becomes generated by an arbitrary combination of the generalized polynomials K(j), excluding

K̃(j); and hence the parameters are given by εJ and εP in (2.39) with η̃j = 0. Thus, according

to (2.15), the homogeneous solution is given by

Jh = δηjJ =
∞∑
j=0

ηjD(P)R(j) . (2.80)

5Note that this particular solution becomes trivial (Jp = 0) in the case of “perturbed KdV” described by
cJ = a = 0.
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Therefore, by virtue of the recursive relation of the Gelfand-Dikii polynomials in (2.43), the

generic solution for J acquires the form

J =

∞∑
j=0

ηj∂φR
(j+1) + cJ

∂P
∂cP

+ atṖ . (2.81)

As a cross-check, in Appendix D it is explicitly shown that eq. (2.81) solves the field equation

for J in (2.71).

In sum, the generic solution for J in (2.81) has been generated through acting on the

particular solution Jp with the symmetries that are spanned by the corresponding canonical

generators in (2.50) with η̃j = 0. Hence, since the generators are in involution, the full set

of conserved charges for the solution characterized by the fields P and Jp must coincide with

the ones for the fields P with J given by (2.81). In other words, the homogeneous part of the

solution Jh does not contribute to the conserved charges.

The conserved charges are then described by the corresponding ones for KdV, given by H
(n)
KdV,

together with the independent set H̃(n) in (2.47). Once the latter set is evaluated in the generic

solution (2.81), it can be compactly written in terms of the total derivative of H
(n)
KdV with respect

to cP , so that it reads (see appendix D)

H̃(n) = cJ
dH

(n)
KdV

dcP
. (2.82)

Therefore, for the BMS3 Poisson structure D(2), the energy of our generic solution for the

n-th representative of the hierarchy is given by the Hamiltonian in (2.67), which reduces to

H(n) = cJ
dH

(n)
KdV

dcP
+ aH

(n)
KdV . (2.83)

It is worth pointing out that the conserved charges of the solution can be expressed exclusively

in terms of P and their spatial derivatives.
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Note that the generic class of solutions presented here is mapped into itself under the

anisotropic scaling of Lifshitz type given in (2.72), where the arbitrary constants ηj of the

homogeneous solution (2.80) transform as η̄j = σ2j−1ηj .

Additionally, as pointed in section 2.3.2, in the case of n = 1 the field equations are also

invariant under Galilean transformations. Hence, in this case, by virtue of the Galilean boost

spanned by (2.53), our solution in (2.81) acquires nontrivial zero modes once expressed in the

moving frame.

In the next subsection, we explicitly describe a couple of simple and interesting particular

examples of analytic solutions in the case of n = 1.

Particular cases for n = 1

• Single KdV soliton on the real line.- The integrable system described in section 2.3.2 can

be extended to R2 provided that the angular coordinate is unwrapped (−∞ < φ < ∞),

so that our previous analysis still holds once the fall-off of the fields is assumed to be fast

enough so as to get rid of boundary terms.

In our conventions, the well-known single soliton solution of the KdV equation in (2.34)

reads

P = −v sech2 (x) , (2.84)

where x =
√

v
4cP

(φ− vt), and v stands for the integration constant that parametrizes the

velocity and amplitude of the soliton.

An analytic solution for the remaining field equation in (2.34) can then be constructed

out from (2.81), with P given by (2.84). For simplicity we consider that the integration

constants in (2.81) are chosen as ηj = η1δj,1, with η1 arbitrary, so that the solution for J
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becomes explicitly given by

J =

(
η1
v3/2

√
cP
− vx(acP + cJ )

cP

)
tanh (x) sech2 (x) + av sech2 (x) . (2.85)

Therefore, although J obeys a linear differential equation, the solution in (2.85) clearly

maintains its shape as it evolves in time. The profile of J in (2.85) is depicted in Figure

2.1.

x

J

Figure 2.1: The form of J in (2.85) is plotted for generic fixed values of cP , cJ , a, v and for
different values of η1. Note that when the integration constant η1 vanishes, J becomes an even
function of x (solid line).

• Cnoidal wave on S1.- In the case of periodic boundary conditions (−π ≤ φ < π) an

analytic solution for the KdV equation in (2.34) of solitonic type is known as a “cnoidal

wave”, since it is described in terms the Jacobi elliptic cosine (cn) (see e.g. [158]). The

solution is given by

P = 4cP
[
A− αcn2 (y,m)

]
, (2.86)
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with y =
√

α
m(φ−cPvt), and the velocity parameter is related to the remaining integration

constants as

v = 4α

(
2− 1

m

)
− 12A . (2.87)

The wavelength of the solution is given by 2
√

m
αK(m), where K stands for a complete

elliptic integral of the first kind. Accordingly, the elliptic parameter m can take values

within the range 0 < m < 1, satisfying 2
√

m
αK(m) = 2π

n with n ∈ N.

As in the previous example, we then construct the analytic solution for J from the generic

one in (2.81), with P given by the cnoidal wave in (2.86). For the sake of simplicity, we

again choose the integration constants to be given by ηj = η1δj,1, and hence the searched

for analytic solution becomes

J = 4cJ
[
A− αcn2 (y,m)

]
+

[
8αcP

√
α

m
(η1 − (acP + cJ )vt)

]
cn (y,m) sn (y,m) dn (y,m) ,

(2.88)

where sn and dn stand for the elliptic sine and the delta amplitude, respectively. Note that

the profile of J preserves its form as it evolves in time only in the case of γ = acP+cJ = 0

(perturbed KdV), otherwise the amplitude grows linearly with time. Nonetheless, the

energy in (2.83) as well as the remaining conserved charges given by H
(n)
KdV, and H̃(n) in

(2.47), turn out to be finite regardless the value of γ. The profiles of P and J are sketched

in Figure 2.2.

As an ending remark of this section, it is worth pointing out that in the special case of

cJ = a = 0, the field equation for J becomes devoid of a source. The particular solutions, given

by (2.85) for the real line, and by (2.88) in the case of S1, in this case turn out to be described

by odd analytic functions that maintain its shape as they propagate with the same velocity as

their corresponding KdV solitons described by P in (2.84) and (2.86), respectively. Note that,

according to eq. (2.83), the total energy of this sort of soliton-antisoliton bound states for J
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Figure 2.2: Profiles of P (cnoidal wave in (2.86)) and J in (2.88) for a fixed generic value of A,
α, m and t.

vanishes, and the conserved charges H̃(n) in (2.47) also do. Nevertheless, the conserved charges

H
(n)
KdV remain being nontrivial.

2.4 Geometrization of the hierarchy: the dynamics of locally

flat spacetimes in 3D

In this section, we show that the entire structure of the class of integrable systems with BMS3

Poisson structure described above can be fully geometrized, in the sense that the dynamics

turns out to be equivalently understood through the evolution of spacelike surfaces embedded

in locally flat spacetimes in three dimensions.

For the sake of simplicity, here we focus in the case of BMS3 Poisson structures with cJ = 0.

Thus, following the lines of [23], it is possible to unveil a deep link between the class of integrable

systems aforementioned and General Relativity in three spacetime dimensions. Concretely, here

we show that the Einstein-Hilbert action without cosmological constant in 3D can be endowed

with an appropriate set of boundary conditions, so that in the reduced phase space, the Einstein
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equations in vacuum, which imply the vanishing of the Riemann tensor, precisely reduce to the

ones of the dynamical systems with BMS3 Poisson structure in (2.7). As a consequence, it is

possible to establish a one-to-one map between any solution of this kind of integrable systems and

certain specific locally flat metric in three spacetime dimensions. Furthermore, the symmetries

of the integrable systems can be seen to naturally emerge from diffeomorphisms that preserve

the asymptotic form of the spacetime metric. Hence, and remarkably, the symmetries manifestly

become Noetherian in our geometric framework. Therefore, the infinite set of conserved charges

for the integrable system is transparently recovered from the corresponding surface integrals in

the canonical approach. This can be seen as follows.

The Einstein-Hilbert action in three spacetime dimensions

I =
1

16πG

∫
d3x
√
−gR , (2.89)

can be equivalently expressed as a Chern-Simons action for the isl(2,R) algebra [113, 114].

Thus, up to boundary terms, the action (2.89) can be written as

ICS [A] =
k

4π

∫
〈A ∧ dA+

2

3
A ∧A ∧A〉 . (2.90)

where the Chern-Simons level is given by k = 1/4G, and 〈· · · 〉 stands for the invariant bilinear

form defined in eq. (2.9) with cJ = 0 and cP = 1. The components of the isl(2,R)-valued gauge

field are then identified with the dualized spin connection and the dreibein according to

A = ωaJa + eaPa . (2.91)

In order to describe the asymptotic structure of the fields, as explained in [115, 116, 117] it
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is useful to choose the gauge so that the connection reads

A = b−1ab+ b−1db , (2.92)

where the radial dependence is completely captured by the group element b = b (r), which as

shown in [75] can be conveniently chosen as b = erP2 . One of the advantages of this gauge choice

is that the remaining analysis can be performed in terms of the auxiliary connection

a = atdt+ aφdφ , (2.93)

that only depends on t, φ. Here we propose that the asymptotic form of the auxiliary connection

for the gravitational field in (2.93) is precisely given by the two-dimensional locally flat gauge

field that describes the field equations of the dynamical system with BMS3 Poisson structure in

Section 2.2.

Their components will be described by (2.10) and (2.11), but with a slight change of con-

ventions: P → cP
2 P, J → cP

2 J . Consequently, the components of the gauge fields that describe

the boundary conditions are

aφ = J1 +
1

2
(JP0 + PJ0) ,

at = λ [µJ , µP ] , (2.94)

where

λ [εJ , εP ] = εPP1 + εJ J1 − ∂φεP P2 − ∂φεJ J2

+

(
1

2
PεJ − ∂2

φεJ

)
J0 +

(
1

2
J εJ +

1

2
PεP − ∂2

φεP

)
P0 (2.95)

Therefore, from (2.90), the field equations imply that the connection A is flat (F = dA+A2 =
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0), which by virtue of (2.91) amounts to deal with three-dimensional manifolds with vanishing

curvature and torsion; whereas eq. (2.92) means that the field strength of the auxiliary gauge

field also vanishes as in (2.13). Hence, for our boundary conditions, the Einstein equations in

vacuum precisely reduce to the ones of a dynamical system with BMS3 Poisson structure in

(2.5).

Besides, the asymptotic symmetries, being defined as the diffeomorphisms that preserve

the asymptotic form of the spacetime metric, turn out to be equivalent to the set of gauge

transformations δa = dλ + [a, λ] that maintain the asymptotic form of the above gauge field.

For our boundary conditions, one then finds that the asymptotic symmetries are spanned by a

Lie-algebra-valued parameter is exactly given as in eq. (2.95), including the consistency condition

for the parameters εJ , εP in (2.18). Furthermore, the transformation law of the dynamical fields

J , P precisely agrees with the transformations in eq. (2.15).

Since the asymptotic symmetries are Noetherian, the global conserved charges can be readily

obtained using the canonical approach [119]. Indeed, their variation is explicitly given by surface

integrals defined at the boundary of the spatial section,6 which read

δQ[εJ , εP ] =
k

2π

∫
dφ 〈λδaφ〉 =

k

4π

∫
dφ (εJ δJ + εPδP) . (2.96)

In particular, if the Lagrange multipliers µJ and µP are kept fixed at the boundary according

to (2.69), so that they correspond to the variation of the functional H(n) defined in (2.67), the

Einstein equations reduce to the ones of the hierarchy of integrable systems discussed in section

2.3.3. Therefore, in this case, the variation of the surface integrals in (2.96) integrates precisely

as in (2.50). Note that the angular momentum of the gravitational configuration that fulfills

6It is worth noting that the boundary can be located at any fixed value of the radial coordinate, and hence,
not necessarily at null infinity.
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these boundary conditions is then given by

Q[∂φ] = Q[1, 0] =
k

4π

∫
dφJ , (2.97)

while the variation of the energy,

δQ[∂t] = δQ[µJ , µP ] =
k

4π

∫
dφ (µJ δJ + µPδP) , (2.98)

integrates by virtue of (2.6) and then reduces to

Q[∂t] =
k

4π
H(n) =

k

4π

(
H

(n)
KdV + H̃(n)

)
. (2.99)

In the simplest case of n = 0, described in section 2.3.1, we recover the set of boundary condi-

tions proposed in [75]7 which contain the boundary conditions in [35] for a particular choice of

Lagrange multipliers at the boundary. Note that in this case, the BMS3 algebra is realized as the

asymptotic symmetry algebra. For the remaining cases (n ≥ 1), the new class of boundary con-

ditions is such that the asymptotic symmetry algebra is infinite-dimensional, abelian and devoid

of central charges, which is equivalent to the fact that the conserved charges of the hierarchy

are in involution (see eq. (2.51)).

2.5 Flat space cosmology with boundary conditions associated

to the integrable system

The phase space covered by the boundary conditions (2.94) is quite wide. However, in this section

we will focus on the case where the state-dependent functions P,J are constants. Within this

7Strictly speaking, we are dealing with the boundary conditions in [75] provided that the higher spin fields
and their corresponding chemical potentials are turned-off.
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sector of the phase space is the Flat Space Cosmology (FSC) [84, 85], which is described by8

PFSC = r̂2 , J FSC = 2r̂rc . (2.100)

where rc correspond to the cosmological horizon of the solution and r̂ is a parameter that plays

a similar role than r− in the BTZ metric. Since the Lagrange multipliers (2.6) are functionally

dependent of the dynamical fields, all the spatial derivatives of them vanish. Consequently, the

leading terms of the asymptotic form of the metric writen in the Schwarzschild gauge acquires

the following form,

ds2 = −µ2
PF (r)2 dt2 +

dr2

F(r)2
+ r2

(
dφ+N φ (r) dt

)2
, (2.101)

where

F(r)2 =
J 2

4r2
− P ,

N φ(r) = µJ +
J
2r2

µP . (2.102)

Note that this class of configurations provides an exact solution of the field equation in (2.5) for

all possible values of n.

2.5.1 Thermodynamics

In the generic case when J and P are constants. It is convenient to adopt the normalization of

the Gelfand-Dikii polynomials used in (1.24). Then, taking into account that the Hamiltonians

H̃ can be defined by those of the KdV hierarchy (2.47), the polynomials that generate the H̃

charges will be consistently normalized. The Lagrange multipliers µJ and µP , acquired a much

8Here, we are using the metric parameters of the FSC defined in [84].
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more handly form, which, by writing them in terms of z instead of n, look like

µ
(z)
P = P

z−1
2 N + (z − 1)

JP
z−3
2

2
Nφ , µ

(z)
J = P

z−1
2 Nφ . (2.103)

As in Section 1.3.1, we have included the factors N and Nφ with the purpose of keeping track

of the explicit presence of chemical potentials in the metric. Thus, for z = 1, the Lagrange

multipliers reduce to chemical potentials, µ
(1)
P = N and µ

(1)
J = Nφ.

On the other hand, demanding regularity on the Euclidean continuation of (2.101) around

rc, the Lagrange multipliers (in Lorentzian variables) must be set as

µ
(z)
P = −πJ

P
3
2

, µ
(z)
J =

2π√
P
. (2.104)

Thus, matching with (2.103), we obtain the chemical potentials for an arbitrary choice of z,

N [z] = − zπJ
P1+ z

2

, Nφ [z] = 2πP−
z
2 . (2.105)

For completeness, setting z = 1, we see that the temperature and angular velocity of the FSC

(2.100) with standard boundary conditions are

T = − 1

N
=

r̂2

2πrc
, Ω = −N

φ

N
=

r̂

rc
, (2.106)

which agrees with [84]. Note that the minus sign between the temperature and N is because,

in the Euclidean continuation of the solution, the cosmological horizon is located at the “south

pole” of the surface r − tE (see [75] for a deeper discussion on this detail).

Therefore, the following expressions for chemical potentials hold

N [z] = z(2π)1−zN [1]Nφ[1]z−1 , Nφ [z] = (2π)1−zNφ[1]z . (2.107)
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In this constant state-dependent functions case, it is possible to show that the conserved

charges associated to the Lagrange multipliers (2.103), also adopt a generic compact form

H
(z)
KdV =

4π

z + 1
P
z+1
2 N , H̃(z) = 2πJP

z−1
2 Nφ . (2.108)

Therefore, replacing this in (2.99), we obtain the mass of the cosmological spacetime (2.100)

for an arbitrary choice of boundary conditions associated to the integrable systems with BMS3

Poisson structure (2.103),

M [z] =
1

4G

r̂z+1

z + 1
. (2.109)

Hence, for z = 1, we obtain the mass of the FSC in the standard set-up [84],

M =
r̂2

8G
. (2.110)

Finally, as in the case of the BTZ black hole, the angular momentum does not depend on the

particular choice of boundary conditions (2.111). Thus, for the FSC (2.100) we obtain

J =
rcr̂

4G
. (2.111)

Independently of the choice of boundary conditions, the FSC (2.100) must satisfy the

Bekenstein-Hawking area law,

S =
A

4G
=
πrc
2G

. (2.112)

We also express this entropy in terms of the conserved charges of the integrable systems through

HKdV and H̃, namely

S =
k

2

H̃[z](
z+1
4π HKdV[z]

) z
z+1

. (2.113)

Our remaining task is to explore whether this entropy could be understood through a microscopic

counting by means of a some suitable modification of the Cardy formula. Since the conserved
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charges of the integrable systems possess the same scaling properties as the left and right energies

of KdV (1.38), one might think that the anisotropic version of Cardy formula (1.44) could

accomplish that task. However, If we compare (2.113) with (1.44) it is easy to see that there

is no way to identify the conserved charges HKdV and H̃ with E±. The problem of how is the

entropy of the flat space cosmology in a non-trivial ensemble, described by (2.103), and how it

can be reproduced through a holographic counting of microstates, is one of the main motivations

of this thesis.

In the next chapter we obtain a formula that precisely achieves this goal. First we briefly

discuss the general aspects that must be taken into account in order to obtain a Cardy-like

formula. Then, we develop a simple formalism, by which we can derive some of the different

versions of the Cardy formula discussed in this thesis, of course including the one that reproduces

the entropy of the cosmological spacetime with boundary conditions associated to the integrable

systems with BMS3 Poisson structure

70



Chapter 3

Holographic counting of black hole

microstates

In this section, we work on a generic 2D field theory at finite temperature, defined on a cylinder

with coordinates (t, φ), where the time coordinate takes values in the real line, i.e., −∞ < t <

+∞, and the spatial coordinate is periodic, φ ∼ φ + 2π. Then, in order to define the theory

on the torus, we just have to perform the compactification by cutting out a finite piece from

the infinite cylinder and identify the edges so that the time coordinate becomes periodic too.

Nevertheless, before gluing together the edges, we could also twist the cylinder. This generates

an additional non-trivial periodicity in the spatial coordinate of the torus, which, as we will

see, is holographically related to the chemical potential associated to the angular momentum of

black holes in 3D (see e.g. [162, 163]).

We will start by defining the partition function for a generic 2D field theory on the torus

as it is done in standard statistical mechanics, i.e., as a sum over all possible configurations

weighted with the Boltzmann factor exp(−βH). It is well-konwn that the same object can be

deduced from an quantum field theory perspective with the time coordinate compactified on a

circle of radius β = 1/T [164]. The imaginary part of the (Euclidean) temporal period β is then

71



corresponds to the inverse of the system temperature. From now on, we deal with the grand

canonical ensemble, where the chemical potentials are held fixed to arbitrary values. Then, the

total energy (in Lorentzian variables) is given byM−ΩJ , whereM and J corresponds to the

internal energy and the momentum of the system, respectively. In consequence, the partition

function is defined by

Z(β, θ) = TrH e
−βM−θJ , (3.1)

where Ω = −θ/β. Here, the trace is taken over all states in the Hilbert space of the theory. In

what follows, we assume that the spectrum of the field theory possesses a gap between the ground

state and the first excited states. In the following section we exploit the modular properties of

the torus in order to define a notion of duality between the high and low temperatures regimes.

The latter allows us to obtain a precise formula for the asymptotic growth of the number of

states for fixed charges M and J , which also depends on the charges of the ground state M0

and J0.

The procedure described above is a applied to different classes of 2D field theories. These

theories are characterized by according to the type of local symmetry that each one possesses.

The only features of the theories under discussion that are relevant in our analysis, in addition

to their corresponding local symmetry, are those specified above, i.e., that they are defined in a

torus and they possesses a gap in their spectrum.

3.1 Modular group of the torus

In order to properly define some useful concepts, the torus can be define by introducing arbitrary

identifications on the complex plane (see e.g., [165]),

w ∼ w +mα1 + nα2 , m, n ∈ Z , w, α1, α2 ∈ C . (3.2)
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As is shown in Figure 3.1, the pair (α1, α2) spans a lattice, where the torus can be defined by

identifying opposite edges of the smallest cell. The quantity that encodes the properties of the

torus is called modular parameter and is defined by the rate of its complex periods,

τ =
α2

α1
. (3.3)

Nevertheless, different choices of the complex periods (α1, α2) could span to the same lattice

and therefore the same torus. In this sense, assuming that (α1, α2) and (β1, β2) define the same

lattice, one should be able to write the second pair as

 β1

β2

 =

 a b

c d


 α1

α2

 , a, b, c, d ∈ Z . (3.4)

Consistency requires that this relationship must be invertible. Thus, one can write (α1, α2) in

terms of (β1, β2). In general, demanding that the inverse matrix has integer components, one

obtain that ad − bc = ±1 [165]. We must also take into account that the lattice generated by

(α1, α2) is equivalent to that generated by (−α1,−α2), and hence one has to quotient by Z2

action. Matrices with these properties are elements of SL(2,Z)/Z2 ' PSL(2,Z). Thus, every

equivalent pair of complex periods must be related by an SL(2,Z)/Z2 transformation.

Now, we will briefly discuss two modular transformations (transformations acting on the

modular parameter τ), which, in fact, constitute the complete set of generators of the modular

group SL(2,Z)/Z2.

• T-modular transformation:

This transformation act on the modular parameter in the following way

T : τ 7→ τ ′ = τ + 1 . (3.5)
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Figure 3.1: Lattice of a torus generated by (α1, α2), conveniently chosen as (1, τ1 + iτ2).

Under this change the lattice remains invariant and thus the torus with modular parame-

ters τ and τ + 1 are equivalent.

• S-modular transformation:

This transformation act on the modular parameter as follows

S : τ 7→ τ ′ = −1

τ
. (3.6)

It is worth to note that, according to the definition of the modular parameter (3.3), this

operation is equivalent to swap the complex periods as

w ∼ w + α1 −→ w′ ∼ w′ + α′2 ,

w ∼ w + α2 −→ w′ ∼ w′ − α′1 , (3.7)

Since the modular parameter is actually defined trough (α1, α2), we will proclaim the

operation in (3.7) as the fundamental realization of the S-modular invariance of the torus.
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Going back to the cylinder, it is well-known that, one can obtain the geometry of the torus by

a Wick rotation, so that the time coordinate is replace by, t→ −itE , where “tE” stands for the

Euclidean time. Thus, in addition to the angular cycle, (tE , φ) ∼ (tE , φ+ 2π), the identification

of the temporal coordinate introduces the thermal cycle1, (tE , φ) ∼ (tE + β, φ + θE), where β

and θE correspond to the period of Euclidean time and the period of the angle generated by

twisting the cylinder, respectively. These cycles correspond to a pair of complex periods of the

form, (α1.α2) = (2π, iβ − θE). From now on, we will work with Lorentzian variables, therefore,

the angular and thermal cycles of the torus are given by

Angular: (t, φ) ∼ (t, φ+ 2π) , (3.8)

Thermal: (t, φ) ∼ (t− iβ, φ− iθ) , (3.9)

Thus, the S-modular transformation (3.7) is equivalent to the following swap between the angular

and thermal cycles of the torus,

(t, φ) ∼ (t, φ+ 2π) −→
(
t′, φ′

)
∼
(
t′ − iβ′, φ′ − iθ′

)
,

(t, φ) ∼ (t− iβ, φ− iθ) −→
(
t′, φ′

)
∼
(
t′, φ′ − 2π

)
. (3.10)

Since the S-modular invariance is an inherent feature of the torus, every 2D field theory defined

on the cylinder (i.e., the torus in Lorentzian variables) is invariant under local transformations

that preserve the relations (3.10). In what follows, we will show how different kind of transfor-

mations performs different realizations of the S-modular invariance of the torus.

1The reason why (3.9) is called “thermal cycle”, is because in the grand canonical ensemble, β and θE are
interpreted as the inverse of the temperature and the chemical potential associated to spatial traslations, respec-
tively.
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3.2 Revisiting the asymptotic growth of the number of states

In this section we explore inequivalent realizations of the S-modular invariance of the torus (3.10).

Different realizations correspond to inequivalent identifications of the periods of the cycles of the

torus with the chemical potentials in the grand canonical ensemble. These realizations would

play the relevant role in the high/low temperature duality of the theory, which is the key in order

to derive the different kinds of generalizations of the Cardy fomula that describe the asymptotic

growth of the number of states.

3.2.1 Standard Cardy formula

A conformal transformation corresponds to a local map that preserves the angles between any

two vectors. Such definition can be expressed by a coordinate transformation that leaves the

form of the metric invariant up to a conformal factor, i.e., ds2 → ds′2 = λds2. Then, it is easy

to show that the following transformation,

t→ λtt
′ + λφφ

′ , φ→ λtφ
′ + λφt

′ , (3.11)

corresponds to a conformal transformation of a theory defined on the cylinder, with a conformal

factor given by λ2
t − λ2

φ. In the present case, It is convenient to work in null coordinates,

x± = t± φ, so that the above transformation can be rewritten as

x± → λ±x
′
± , (3.12)

76



where we have defined λ± = λt ± λφ. In terms of these variables, the swap between the angular

and thermal cycles induced by the S-modular transformation (3.10) can be written as

(x+, x−) ∼ (x+ + 2π, x− − 2π) −→ (x′+, x
′
−) ∼ (x+ − iβ′+, x− − iβ′−) ,

(x+, x−) ∼ (x+ − iβ+, x− − iβ−) −→ (x′+, x
′
−) ∼ (x′+ − 2π, x′− + 2π) , (3.13)

where we have defined the null periods through β± = β ± θ.

Requiring compatibility of the conformal transformation (3.12) with the S-modular trans-

formation (3.13), implies that the periods of the corresponding thermal cycles are related by

β′± =
4π2

β±
. (3.14)

In terms of the modular parameter, τ = α2/α1 = iβ+/2π, the above relationships reduces to

the familiar S-modular transformations of the chiral and anti-chiral sectors of a CFT2 [165],

τ ′ = −1

τ
, τ̄ ′ = −1

τ̄
. (3.15)

In terms of null variables, the partition function is written as

Z(β+, β−) = TrH e
−β+E+−β−E− , (3.16)

where E± = 1/2(M±J ). In this way, the system decouples into two independent subsystems,

each one in the canonical ensemble where we can naturally interpret the null periods β±, as

the inverse of left and right temperatures (chiral and antichiral movers in the CFT2 language).

Note that the S-modular transformation (3.14) can be understood as a duality between the high

and low temperature regimes of each subsystem. Hence, assuming that the spectrum possesses
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a gap, the partition function at the low temperature regime approximates as

Z(β+, β−) ≈ e−β+E0
+−β−E0

− , (3.17)

where E0
± stand for the ground state energies of left and right movers. Thus, by virtue of (3.14),

in the high temperature regime the partition function reads

Z(β+, β−) ≈ e−
4π2

β+
E0

+−
4π2

β−
E0
− . (3.18)

Therefore, at fixed energies E± � E0
±, the asymptotic growth of the number of states can be

computed by evaluating the above partition function in the saddle-point approximation, so that

the logarithm of the leading term of the asymptotic growth of the number of states is given by

the following entropy

S = 4π
√
−E0

+E+ + 4π
√
−E0
−E− . (3.19)

This is the celebrated Cardy formula. It is worth highlighting that (3.19) has been writen in

terms of the left and right ground state energies of the theory, instead of being written in terms

of the central charge c±, associated with the conformal symmetry, as in (2). Understanding

the Cardy formula in terms of the ground state charges has proven to be the key in order to

reproduce the Bekenstein-Hawking entropy of hairy black holes in General Relativity [166, 167].

This is also the case for other theories of three-dimensional gravity with asymptotically Lifshitz

black holes [135, 168], as well as for asymptotically Warped-AdS3 spacetimes [100, 169].

Remarkably, this formula exactly reproduces the entropy of the BTZ black hole, with Brown-

Henneaux boundary conditions. Indeed, if we replace E± = 1/2 (M`± J), where M and J

corresponds to the mass and angular momentum of the BTZ black hole in the standard set-up,

i.e., (1.40) and (1.41), respectively, and E0
± = 1/2

(
M0`± J0

)
, where M0 = −1/8G and J0 = 0
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corresponds to the mass and the angular momentum of the AdS3 spacetime, we obtain that

S =
πr+

2G
, (3.20)

which is precisely the entropy of the BTZ black hole. Note that according to (2) and (3.19), the

ground state energies are related to the central charges by E0
± = −c±/24 [14].

3.2.2 Flat analogue of the Cardy formula

The second class of theories in 2D that we are interested in is assume to be invariant under

t→ λtt
′ + λφφ

′ , φ→ λtφ
′ . (3.21)

When comparing this with (3.11), we can realize that both belong to different types of trans-

formations, in the sense that we cannot obtain one from the other by turning off any of its

parameters. Demanding compatibility of the transformations (3.21) with the S-modular trans-

formation (3.10), the periods of the thermal cycle must be related by

θ′ =
4π2

θ
, β′ = −4π2β

θ2
. (3.22)

In this case, we work directly in the grand canonical ensemble (3.1), so the interpretation of the

thermal periods β and θ is simply the inverse of the temperature and the chemical potential as-

sociated to spatial traslations, respectively. As in the previous section, the relationships in (3.22)

can also naturally be understood as a high/low temperature duality relation. Consequently, if

the spectrum possesses a gap, the partition function at low temperatures approximates as

Z (β, θ) ≈ e−βP0−θJ0 , (3.23)
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where P0 and J0 stands for the ground state charges. Thus, by virtue of (3.22), in the high

temperature regime the partition function reads

Z (β, θ) ≈ e4π2 β

θ2
P0− 4π2

θ
J0 . (3.24)

Therefore, when the global charges are much larger than those of the ground state the asymptotic

growth of the number of states can be computed by evaluating the above partition function in

the saddle-point approximation. Then, the leading term of the entropy is given by

S = 2π
√
−P0P−1J + 2π

√
−PP−1

0 J0 . (3.25)

This formula was derived in terms of the BMS3 central charges in [170]. Here, we have written

it in terms of the ground state charges. Remarkably, if in (3.25) we identify P = M and J = J ,

where M and J corresponds to the global charges of the FSC, (2.110) and (2.111), respectively,

and if we also identifies the charges of the ground state with the mass and angular momentum

of Minkowski spacetime, i.e., M0 = −1/8G and J0 = 0, we obtain that the entropy,

S =
π

4G

J√
P

=
πrc
2G

, (3.26)

exactly reduces to the quarter of the area of the cosmological horizon. This result was first shown

in [84, 85] where the formula was obtained for the particular case, P0 = −cP/2 and J 0 = 0.

3.3 Generalized Cardy formulae

We have already recognize the relevance that the S-modular transformation plays in the deriva-

tion of a Cardy-like formula. Here we go one step further and note that if instead of using

(β, θ) in (3.10), we use a sort of “generalized thermal periods”, defined by arbitrary fuctions of
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the standard canonical periods (β, θ). In this generalized set-up, the S-modular transformation

implies that the cycles are exchanged according to

(t, φ) ∼ (t, φ+ 2π) −→
(
t′, φ′

)
∼
(
t′ − iβ′, φ′ − iθ′

)
,

(t, φ) ∼ (t− if (β, θ) , φ− ig (β, θ)) −→
(
t′, φ′

)
∼
(
t′, φ′ − 2π

)
. (3.27)

In null coordinates, the corresponding swap reads

(x+, x−) ∼ (x+ + 2π, x− − 2π) −→ (x′+, x
′
−) ∼ (x+ − iβ′+, x− − iβ′−) ,

(x+, x−) ∼ (x+ − if+(β+), x− − if−(β−)) −→ (x′+, x
′
−) ∼ (x′+ − 2π, x′− + 2π) . (3.28)

These generalized thermal periods, f(β, θ), g(β, θ), or equivalently f±(β±), could also depend

on some additional parameters that possess a well defined transformation rule under modular

transformation. Note that the generalized transformation rule must be involutive, so that by

successively applying the S-modular transformation twice, one has to consistently return to the

original torus.

3.3.1 The anisotropic generalization of Cardy formula

As shown in (1.37), the boundary conditions of the KdV-type induce generalized thermal periods

in the left and right inverse temperatures, N±. In the our terms, we can rewrite these periods

as

f
(z)
± (β±) = (2π)1−zβz± . (3.29)

Here, we can interpret the dynamic exponent z, as a parameter of the generalized periods f±,

which, as we discussed above, should be subject to an appropriate transformation law associated

to the S-modular invariance of the torus. As argued in [23, 168, 171], there is a good geometric

reason that tells us how this transformation must be. Performing a swap between the generators
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of Euclidean time and space translations, it can be show that 2D Lifshitz algebras with dynamical

exponents z and z−1 are in fact isomorphic [168]. Hence, the rule that the parameter has to

follow under an S-modular transformation is simply

z → z′ =
1

z
. (3.30)

Therefore, taking into account (3.30) and the aforementioned generalized thermal period, we

can derive from (3.28) the anisotropic version of the conformal S-modular transformation found

in [23],

β′± =
(2π)1+ 1

z

β
1
z
±

, z′ =
1

z
. (3.31)

Since in the definition of the KdV-type boundary conditions, the label n is a positive integer,

then z = 2n + 1 is also an odd positive number. Thus, we can interpret (3.31) as a high/low

temperature duality relation. Therefore, assuming a gap in the spectrum of the theory, one

can perform the saddle-point approach in order to find the asymptotic growth of the number of

states. The leading term of the entropy reads

S = 2π (z + 1)

[(
|E0

+[z−1]|
z

)z
E+[z]

] 1
z+1

+ 2π (z + 1)

[(
|E0
−[z−1]|
z

)z
E−[z]

] 1
z+1

. (3.32)

Note that for the case z = 1, this anisotropic version of the Cardy formula reduces to the

standard one (3.19). The above formula also exactly agrees with the leading term of the entropy

of the free boson with Lifshitz scaling [172], or equivalently, two copies of the anisotropic chiral

boson [173] (up to the zero modes). Furthermore, each copy of (3.32) also agrees with the

leading term of the Hardy-Ramanujan formula for the counting of partitions of an integer into

z-th powers [171]. Remarkably, plugging into (3.32) the left and right energies of the BTZ black

hole with arbitray KdV-type boundary conditions (1.38), and using AdS3 as the ground state

(LAdS± = −1), the entropy (1.43) is exactly recovered. Finally, using the relationship between
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the global charges and the inner and outer in (1.29), we can see that entropy is consistent with

the Bekenstein-Hawking area law (1).

3.3.2 The flat analogue of the anisotropic generalization of the Cardy formula

According to (2.107), we can see that the boundary conditions associated with the integrable

systems with BMS3 Poisson structure, induce generalized thermal periods on the chemical po-

tentials N and Nφ. In our terms, we can rewrite these periods as

f (z)(β, θ) = z(2π)1−zβθz−1 , g(z)(θ) = (2π)1−zθz . (3.33)

As in the previous case, the parameter z in these generalized periods has the same interpretation,

we can inherit the transformation law (3.30) for it. Consequently, using the swap between cycles

given by (3.27), we can derive the following version of the flat S-modular transformation

β′ = −(2π)1+ 1
z β

zθ1+ 1
z

, θ′ =
(2π)1+ 1

z

θ
1
z

, z′ =
1

z
. (3.34)

Then, hereafter, (3.34) is regarded as a high/low temperature regime duality and we also assume

a gap in the spectrum of a theory with the partition function (3.1). Note that the energy and

the momentum are given by HKdV[z] and H̃[z], respectively. Therefore, the partition function

reads

Z(β, θ) = TrH e
−βHKdV[z]−θH̃[z] . (3.35)

Proceeding as in the previous section, the asymptotic growth of the number of states can be

obtained in the saddle-point approximation, so that the leading term of the entropy gives the

flat version of the anisotropic generalization of the Cardy formula,

S = 2π

(
|H0

KdV[z−1]|
zHKdV[z]

) z
z+1

H̃[z] + 2π

(
zHKdV[z]

|H0
KdV[z−1]|

) 1
z+1

H̃0[z−1] . (3.36)
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It is worth pointing out that if one rewrites this formula in terms of the chemical potentials N

and Nφ, instead of the charges of the ground state, it satisfies a flat version of the anisotropic

Smarr relation (1.56),

S = (z + 1)NHKdV + (z + 1)NφH̃ . (3.37)

Note that for z = 1 and by virtue of (2.108), the above flat version of the anisotropic Cardy

formula reduces to the flat Cardy formula (3.25), with P = HKdV[1] and J = H̃[1].

Finally, plugging into the flat version of the anisotropic Cardy formula (3.36) the Minkowski

spacetime as the corresponding ground state, which is characterized by PMink. = −1, JMink. =

0, we exactly recover the entropy of the cosmology with arbitrary boundary conditions associ-

ated to the BMS3 integrable systems (2.113). This result is remarkable, since it allows us to

holographically understand through a microstate counting of states, the entropy of the cosmol-

ogy in a non-trivial anisotropic ensemble. The anisotropic version of the flat Cardy formula

(3.36) and its holographic application are undoubtedly one of the main results of this thesis.

Consistently, if we replace the global charges (2.108) into the anisotropic flat Cardy formula

(3.36), provided by the state-dependent functions of the flat space cosmology (2.100) and using

the Minkowski spacetime as the ground state, we can check that the FSC satisfies also the

Bekenstein-Hawking area law (1).
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Conclusions

One of the main goals of this thesis was to stablish a simple set-up to understand how the

Lagrange multipliers in a ADM foliation of 3D gravity correspond to the thermal periods of the

torus and the chemical potentials in the grand canonical ensemble of the partition function of a

2D dual field theory.

We have then shown that boundary conditions that allow a full geometrization of a class of

integrable systems (i.e., boundary conditions for 3D gravity, where the Lagrange multipliers are

identified with the polynomials that span a hierarchy of integrable systems in one dimension

less at the boundary) are correspond to a one-parameter family of generalized thermal periods

of the torus, and to the chemical potentials present in the partition function of a 2D field theory

with anisotropic scaling properties.

We have focused in two specific realizations. The first one related to the holographic com-

putation of the entropy of the BTZ black hole, through the microscopic counting of states of

a 2D field theory, whose partition function is given in a anisotropic ensemble. We extend the

discussion to include thermal stability and shown that the phase transitions are sensitive to the

generalized modular properties of the torus, associated with the generalized thermodynamic de-

scription of the chemical potentials induced by the choice of KdV-type boundary conditions. In

the second example, we derived an anisotropic version of the flat analogue of Cardy formula. We

have also shown that our formula successfully reproduced the entropy of the flat space cosmol-

ogy with an arbitrary choice of boundary conditions for General Relativty without cosmological
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constant, associated to a new hierarchy of integrable systems, whose Poisson structure is given

by the BMS3 algebra.

Extensions of our results

As pointed out in the introduction, the BMS3 algebra admits interesting extensions. It is

natural to expect these algebras be linked to new classes of integrable systems. In particular, an

interesting nonlinear extension of BMS3 that includes additional generators of spin s > 2 was

found in [74] (in full agreement with the algebra simultaneously found in [73] for s = 3). This kind

of extensions can be regarded as “flat W -algebras”, since they can be recovered from a suitable

Inönü-Wigner contraction of two copies of certain classical W -algebras (for a review about W -

algebras, see e.g. [174]). Noteworthy, preliminary results show that new hierarchies of integrable

systems whose Poisson structures correspond to flat W -algebras indeed exist. In fact, this family

of integrable systems turns out to be bi-Hamiltonian, and furthermore, following the lines of

section 2.4, they can also be geometrized in terms of higher spin gravity without cosmological

constant in three spacetime dimensions endowed with a suitable set of boundary conditions.

Therefore, the symmetries of this novel class of integrable systems can be seen as combinations

of diffeomorphisms and higher spin gauge transformations that preserve the asymptotic form

of the three-dimensional configurations. As a consequence, in the three-dimensional geometric

setup, the infinite set of conserved charges of the integrable systems emerge as the canonical

generators that correspond to the asymptotic symmetries, being described by suitable surface

integrals at the boundary, which turn out to be in involution.

Further interesting links between certain well-known classes of integrable systems and higher

spin gravity on AdS3 have been explored in [23, 175, 176, 177, 178].

We are currently considering a new example in the geometrization of integrable systems,

which would extend our results beyond General Relativity.
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Topologically Massive Gravity (TMG) [179, 180], is a 3D gravity theory that, unlike GR,

has a local degree of freedom; the graviton. This property makes TMG, in a certain sense, a

better model for study gravity in 3D. TMG with negative cosmological constant also admits the

AdS3 spacetime as a vacuum solution for any value of the graviton mass. However, for positive

Newton constant, massive perturbations around AdS3 give rise to a propagating graviton with

negative energy, while if the Newton constant is negative, it is obtained that the graviton energy

is positive, but the energy of the BTZ black hole turns negative. Taking this into account, AdS3

does not seems to be a good ground state for the theory. Nonetheless, there is another rich

choice of vacuum for the theory, given by the Warped AdS3 (WAdS3) spacetime whose group of

isometries corresponds to SL(2,R)× U(1).

Considering boundary conditions for asymptotically WAdS3 spacetimes, the algebra of asymp-

totic symmetries for TMG with negative cosmological constant is given by the semi-direct sum

of the Virasoro algebra with a Kac-Moody current u(1) [181, 182, 183]. Following the same

line as in Chapters 1 and 2, this infinite-dimensional algebra might define a new sort of Poisson

structure of integrable systems. It is then natural to conjecture that the integrable system has

a second Poisson structure, which would allow the construction of a hierarchy associated with

this integrable system. Although TMG is not a strictly topological theory like GR, it still ad-

mits a Chern-Simons-type formulation [184], where the usual Hamiltonian methods for finding

conserved symmetries and charges have already been studied in the literature (see e.g., [185]).

Therefore, we hope that these methods can naturally adapt to our purposes.
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Appendix A

List of conserved quantities and

polynomials

Here we provide an explicit list of the first six conserved charges H
(n)
KdV and H̃(n), and their

associated polynomials R(n) and T (n).

The conserved quantities H
(n)
KdV correspond to the ones of the KdV equation in (2.34), which

in our conventions, generically depend on the central extension cP . Therefore, they read

H
(0)
KdV =

∫
dφP ,

H
(1)
KdV =

∫
dφ
P2

2
,

H
(2)
KdV =

∫
dφ

[
1

2
cPP ′2 +

1

2
P3

]
,

H
(3)
KdV =

∫
dφ

[
1

2
c2
PP ′′2 +

5

2
cPPP ′2 +

5

8
P4

]
,

H
(4)
KdV =

∫
dφ

[
1

2
c3
P(P(3))2 +

7

2
c2
PPP ′′2 +

35

4
cPP2P ′2 +

7

8
P5

]
,

H
(5)
KdV =

∫
dφ
[1

2
c4
P(P(4))2 +

9

2
c3
P(P(3))2P +

63

4
c2
PP2P ′′2 − 5c3

PP ′′3

+
105

4
cPP3P ′2 − 35

8
c2
PP ′4 +

21

16
P6
]
.

88



The remaining conserved charges H̃(n), can then be readily obtained from (2.47), which are

given by

H̃(0) =

∫
dφJ ,

H̃(1) =

∫
dφJP ,

H̃(2) =

∫
dφ
[
J
(3

2
P2 − cPP ′′

)
+

1

2
cJP ′2

]
,

H̃(3) =

∫
dφ
[
J
(
c2
PP(4) − 5cPPP ′′ −

5

2
cPP ′2 +

5

2
P3
)

+ cJ

(
cPP ′′2 +

5

2
PP ′2

)]
,

H̃(4) =

∫
dφ
[
J
(
− c3
PP(6) + 7c2

PP(4)P − 35

2
cPP2P ′′ + 21

2
c2
PP ′′2 −

35

2
cPPP ′2

+14c2
PP(3)P ′ + 35

8
P4
)

+ cJ

(3

2
c2
P(P(3))2 + 7cPPP ′′2 +

35

4
P2P ′2

)]
,

H̃(5) =

∫
dφ
[
J
(
c4
PP(8) − 9c3

PP(6)P − 69

2
c3
P(P(3))2 +

189

2
c2
PPP ′′2

−27c3
PP(5)P ′ − 57c3

PP(4)P ′′ + 63

2
c2
PP(4)P2 − 105

2
cPP3P ′′

+126c2
PP(3)PP ′ + 231

2
c2
PP ′2P ′′ −

315

4
cPP2P ′2 +

63P5

8

)
+cJ

(
2c3
P(P(4))2 +

27

2
c2
PP(P(3))2 − 15c2

PP ′′3 +
63

2
cPP2P ′′2

−35

4
cPP ′4 +

105

4
P3P ′2

)]
.
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Hence, according to (2.45), the Gelfand-Dikii polynomials read

R(0) = 1 , R(1) = P , R(2) = −cPP ′′ +
3

2
P2 ,

R(3) = c2
PP(4) − 5cPPP ′′ −

5

2
cPP ′2 +

5

2
P3 ,

R(4) = −c3
PP(6) + 7c2

PP(4)P − 35

2
cPP2P ′′ + 21

2
c2
PP ′′2 −

35

2
cPPP ′2

+14c2
PP(3)P ′ + 35

8
P4 ,

R(5) = c4
PP(8) − 9c3

PP(6)P +
63

2
c2
PP(4)P2 − 69

2
c3
P(P(3))2 − 105

2
cPP3P ′′

+
189

2
c2
PPP ′′2 −

315

4
cPP2P ′2 − 27c3

PP(5)P ′ − 57c3
PP(4)P ′′

+126c2
PP(3)PP ′ + 231

2
c2
PP ′2P ′′ +

63

8
P5 ,
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while the polynomials T (n) can be obtained from (2.46), so that they are given by

T (0) = 0 , T (1) = J , T (2) = −cPJ ′′ − cJP ′′ + 3JP ,

T (3) = c2
PJ (4) − 5cPPJ ′′ − 5cPJP ′′ − 5cPJ ′P ′ +

15

2
JP2

+cJ

(
2cPP(4) − 5PP ′′ − 5

2
P ′2
)
,

T (4) = −c3
PJ (6) + 7c2

PJ (4)P + 14c2
PJ (3)P ′ + 21c2

PJ ′′P ′′ −
35

2
cPP2J ′′ + 14c2

PP(3)J ′

+7c2
PJP(4) − 35cPPJ ′P ′ − 35cPJPP ′′ −

35

2
cPJP ′2 +

35

2
JP3 − cJ

(
3c2
PP(6)

−14cPPP(4) − 21cPP ′′2 +
35

2
P2P ′′ + 35

2
PP ′2 − 28cPP(3)P ′

)
,

T (5) = c4
PJ (8) − 9c3

PJ (6)P − 27c3
PJ (5)P ′ − 57c3

PJ (4)P ′′ + 63

2
c2
PJ (4)P2 − 69c3

PJ (3)P(3)

+126c2
PJ (3)PP ′ − 57c3

PP(4)J ′′ + 189c2
PPJ ′′P ′′ +

231

2
c2
PJ ′′P ′2 −

105

2
cPP3J ′′

−27c3
PP(5)J ′ + 126c2

PPP(3)J ′ − 315

2
cPP2J ′P ′ + 231c2

PJ ′P ′P ′′ − 9c3
PJP(6)

+63c2
PJPP(4) +

189

2
c2
PJP ′′2 −

315

2
cPJP2P ′′ − 315

2
cPJPP ′2 + 126c2

PJP(3)P ′

+
315

8
JP4 + cJ

(
4c3
PP(8) − 27c2

PPP(6) + 63cPP2P(4) − 207

2
c2
P(P(3))2 + 189cPPP ′′2

−81c2
PP(5)P ′ − 171c2

PP(4)P ′′ + 252cPPP(3)P ′ + 231cPP ′2P ′′ −
105

2
P3P ′′ − 315

4
P2P ′2

)
.
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Appendix B

Involution of the conserved

quantities

In order to prove that our set of conserved charges, H̄(m) =
(
H

(n)
KdV; H̃(n)

)
, is abelian in both

Poisson brackets, one can follow the lines of the proof of the same statement in the case of the

pure KdV equation that can be found in standard textbooks (see e.g., [112, 150]).

Without loss of generality, let us assume that m > n. Thus, the Poisson bracket associated

to the BMS3 operator D(2) of two conserved charges, which reads

{H̄(m), H̄(n)}(2) =

∫
dφ

(
δH̄(m)

δJ
δH̄(m)

δP

)
D(2)

 δH̄(n)

δJ

δH̄(n)

δP

 , (B.1)

by virtue of the recursion relation in (2.40), can be written in terms of the Poisson bracket
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associated to the “canonical” operator D(1), according to

{H̄(m), H̄(n)}(2) =

∫
dφ

(
δH̄(m)

δJ
δH̄(m)

δP

)
D(1)

 δH̄(n+1)

δJ

δH̄(n+1)

δP


= {H̄(m), H̄(n+1)}(1) (B.2)

= −{H̄(n+1), H̄(m)}(1) .

Analogously, making use of the recursion relationship again, one finds that

{H̄(m), H̄(n)}(2) = −{H̄(n+1), H̄(m)}(1) = {H̄(m−1), H̄(n+1)}(2) . (B.3)

Therefore, once the procedure is applied m− n times, one obtains

{H̄(m), H̄(n)}(2) = {H̄(n), H̄(m)}(2) , (B.4)

which implies that the conserved charges are involution in both Poisson brackets, i.e.,

{H̄(m), H̄(n)}(2) = {H̄(m), H̄(n)}(1) = 0 . (B.5)
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Appendix C

Solving the consistency condition of

the symmetry parameters

Here we explicitly verify that eq. (2.39) solves the consistency condition for the parameters

εJ , εP in (2.18) for an arbitrary representative of the hierarchy, being characterized by the

Hamiltonian H(k) given by (2.67). Since the equation is linear for the parameters, it is then

enough proving that

εJ (φ) =
δH̄(j)

δJ (φ)
, εP(φ) =

δH̄(j)

δP(φ)
, (C.1)

fulfills, for an arbitrary member of the set of conserved charges H̄(j) =
(
H

(j)
KdV; H̃(j)

)
.

Note that the consistency condition for the parameters in (2.18) can also be written as

 ε̇J (φ)

ε̇P(φ)

 = −
∫
dϕ


 δ

δJ (φ)

δ
δP(φ)


D(2)

 µJ (ϕ)

µP(ϕ)



T
 εJ (ϕ)

εP(ϕ)

 , (C.2)
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which by virtue of the definition of µJ and µP in (2.69), it reads

 ε̇J (φ)

ε̇P(φ)

 = −
∫
dϕ


 δ

δJ (φ)

δ
δP(φ)


D(2)

 δH(k)

δJ (ϕ)

δH(k)

δP(ϕ)



T
 εJ (ϕ)

εP(ϕ)

 . (C.3)

Therefore, once (C.1) is evaluated on (C.3), the consistency condition reduces to

 ε̇J (φ)

ε̇P(φ)

 = −
∫
dϕ


 δ

δJ (φ)

δ
δP(φ)


D(2)

 δH(k)

δJ (ϕ)

δH(k)

δP(ϕ)



T
 δH̄(j)

δJ (ϕ)

δH̄(j)

δP(ϕ)

 . (C.4)

Besides, taking the time derivative of (C.1), by virtue of the field equations in (2.68) one

can readily show that

 ε̇J (φ)

ε̇P(φ)

 =

∫
dϕ


 δ

δJ (φ)

δ
δP(φ)

( δH̄(j)

δJ (ϕ)
δH̄(j)

δP(ϕ)

)D(2)

 δH(k)

δJ (ϕ)

δH(k)

δP(ϕ)

 . (C.5)

Then, integrating by parts, the latter equation reads

 ε̇J (φ)

ε̇P(φ)

 =

 δ
δJ (φ)

δ
δP(φ)

∫ dϕ

(
δH̄(j)

δJ (ϕ)
δH̄(j)

δP(ϕ)

)
D(2)

 δH(k)

δJ (ϕ)

δH(k)

δP(ϕ)



−
∫
dϕ


 δ

δJ (φ)

δ
δP(φ)


D(2)

 δH(k)

δJ (ϕ)

δH(k)

δP(ϕ)



T
 δH̄(j)

δJ (ϕ)

δH̄(j)

δP(ϕ)

 , (C.6)

which reduces to

 ε̇J (φ)

ε̇P(φ)

 = −
∫
dϕ


 δ

δJ (φ)

δ
δP(φ)


D(2)

 δH(k)

δJ (ϕ)

δH(k)

δP(ϕ)



T
 δH̄(j)

δJ (ϕ)

δH̄(j)

δP(ϕ)

+

 δ
δJ (φ)

δ
δP(φ)

 {H̄(j), H(k)} ,

(C.7)
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where we have made use of the definition of the Poisson brackets in (2.3). Therefore, since the

conserved charges commute with the Hamiltonian ({H̄(j), H(k)} = 0), the second term at the

r.h.s. of (C.7) vanishes; and consequently, the consistency condition evaluated on the parameters

(C.1), given by (C.4), has been shown to be fulfilled.
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Appendix D

Generic solution for the field

equations of the hierarchy

Here we show that the generic solution in (2.81) solves the field equations (2.71) for an arbitrary

value of the label of the hierarchy k, provided that P stands for an arbitrary generic solution

for the field equations of the k-th representative of the KdV hierarchy.

In sum, we want to prove that

J =
∞∑
j=0

ηj∂φR
(j+1) + cJ

∂P
∂cP

+ atṖ , (D.1)

is a solution of

J̇ = D(P)T (k) +
(
D(J ) + aD(P)

)
R(k) , (D.2)

provided that P solves

Ṗ = D(P)R(k) , (D.3)

where the Gelfand-Dikii polynomials R(k), and the polynomials T (k) are defined through (2.45)
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and (2.46), with H̃(k) given by (2.47), i.e.,

R(k) =
δH

(k)
KdV [P]

δP
, (D.4)

T (k) = cJ
∂R(k)

∂cP
+

∫
dϕJ (ϕ)

δR(k)(ϕ)

δP
. (D.5)

Thus, once (D.5) is evaluated on (D.1), it reduces to

T (k) =

∞∑
j=0

ηj

∫
dϕ∂ϕR

(j+1)(ϕ)
δR(k)

δP(ϕ)
+ cJ

dR(k)

dcP
+ at∂tR

(k) , (D.6)

where dR(k)

dcP
stands for the total derivative of R(k) with respect to the central charge cP , given

by

dR(k)

dcP
=
∂R(k)

∂cP
+

∫
dϕ
∂P(ϕ)

∂cP

δR(k)

δP(ϕ)
. (D.7)

Besides, the time derivative of (D.1) can be written as

J̇ =

∞∑
j=0

ηj∂φ

[∫
dϕ
δR(j+1)

δP(ϕ)
Ṗ(ϕ)

]
+ cJ

∂Ṗ
∂cP

+ a∂t (t∂tP )

= aD(P)R(k)

+∂φ

− ∞∑
j=0

ηj

∫
dϕ
δ∂ϕR

(j+1)

δP(ϕ)
R(k+1)(ϕ) + cJ

∂R(k+1)

∂cP
+ at∂tR

(k+1)

 ,
(D.8)

where we have made use of the k-th KdV equation in (D.3), as well as the recursion relation

for the Gelfand-Dikii polynomials in (2.43). Note that by virtue of (D.4), the following identity

holds

∫
dϕ
δ∂ϕR

(j+1)

δP(ϕ)
R(k+1)(ϕ) =

δ

δP

∫
dϕ∂ϕR

(j+1)(ϕ)R(k+1)(ϕ)−
∫
dϕ∂ϕR

(j+1)(ϕ)
δR(k+1)(ϕ)

δP
,

(D.9)
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where the first term in the r.h.s. of (D.9) vanishes due to the fact that the conserved charges

H
(k)
KdV are in involution, i.e., {H(k+1)

KdV , H
(j+1)
KdV }(1) = 0. Hence, eq. (D.9) implies that (D.8) reduces

to

J̇ = aD(P)R(k)

+∂φ

 ∞∑
j=0

ηj

∫
dϕ∂ϕR

(j+1)(ϕ)
δR(k+1)(ϕ)

δP
+ cJ

∂R(k+1)

∂cP
+ at∂tR

(k+1)


= aD(P)R(k) + ∂φT

(k+1) . (D.10)

Therefore, making use of the recursion relation for the polynomials T (k) in (2.44), one finally

proves that eq. (D.10) reduces to the field equation in (D.2), which implies that J in (D.1) is

indeed a solution.

Consequently, making ηj = 0 in (D.1), one concludes that Jp in (2.79) provides a particular

solution for the field equation (D.2).

The conserved charges associated to this exact solution are then given by H
(n)
KdV and H̃(n)

defined in (2.47). Note that once H̃(n) is evaluated on the exact solution (D.1), the contribution

due to the homogeneous part vanishes, because

∫
dφJh

δH
(n)
KdV

δP
=
∞∑
j=0

ηj

∫
dφ∂φR

(j+1) δH
(n)
KdV

δP
=
∞∑
j=0

ηj

{
H

(n)
KdV, H

(j+1)
KdV

}
(1)

= 0 . (D.11)

Therefore, H̃(n) reduces to

H̃(n) = cJ

(
∂H

(n)
KdV

∂cP
+

∫
dφ

∂P
∂cP

δH
(n)
KdV

δP

)
+ atḢ

(n)
KdV , (D.12)

where the last term in (D.12) vanishes since H
(n)
KdV is conserved. Hence, (D.12) can be written

99



in terms of the total derivative with respect to the central extension cP , according to

H̃(n) = cJ
dH

(n)
KdV

dcP
. (D.13)
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