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Resumen

Esta tesis retomamos el problema de encontrar soluciones BPS en la teoría de
supergravedad N = 4 SU(2)× SU(2) gauged. Reportamos una nueva solución
regular en toda la variedad en el sector Abeliano de la teoría. La solución es
1/4 BPS y puede ser obtenida de la doble continuación analítica de una solución
planar encontrada por Klemm en hep-th/9810090. También encontramos una
solución en el sector Abeliano con simetría esférica cuya naturaleza supersimétrica
fue pasada por alto en la literatura.

Estas configuraciones de agujeros negros y solitones, en el caso planar y esférico,
permiten integrar de forma exacta un campo escalar de prueba, incluso con la
presencia de un acomplamiento no-minimal con el escalar de Ricci. Calculamos el
espectro de los modos (cuasi-) normales del campo escalar con acoplamiento no-
minimal. Encontramos que las ecuaciones radiales se pueden integrar en término
de funciones hipergeometricas, lo cual permite encontrar una expresión para el
espectro de frecuencias de forma exacta. Los espacio tiempo considerados no
son de curvatura constante asintóticamente, sin embargo adquieren un vector de
Killing extra. La condiciones de borde para el caso de agujero negro es de modos
entrante en el horizonte y de tipo Dirichlet en infinito. Los modos cuasi-normales
no dependen del radio del agujero negro, por lo que esta familia de geometrías
puede ser interpretadas como isoespectral en lo que respecta al operadores de onda
acoplado no-minimalmente al escalar de Ricci. El comportamiento del campo
escalar dependen de los valores de la constante de acoplamiento con el escalar
de Ricci, donde encontramos configuraciones suprimidas exponencialmente en el
tiempo y configuraciones inestables que crecen exponencialmente. Mostramos que
las propiedades de integrabilidad del escalar de prueba son posibles en el caso de
los espacios tiempo regulares supersimetrico y no-supersimetrico. La condición
de borde para el caso del soliton es regular en el origen y Dirichlet de modo que
la solución sea un mínimo del principio de acción. En este caso, dependiendo
del valor de la constante de acoplamiento, encontramos soluciones oscilantes y
soluciones con un campo escalar inestable.

También construimos soluciones en el sector no-Abelian de la teoría de
supergravedad con el ansantz de meron para SU(2). Construimos soluciones
de doble meron y meron cargado. Esta última se convierte en una singularidad
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desnuda para los valores en el espacio de los parámetros que la solución es 1/4
BPS y adquiere un vector de Killing conforme extra. También consideramos
dos familias de potenciales de auto-interacción para campo escalar, de modo que
estamos fuera de la teoría de supergravedad pero conservamos el acoplamiento
dilatónico y el ansatz de Meron en el sector de Yang-Mills. En estas familias
construimos soluciones exactas de agujeros negros que son Lifshitz topológico
asintóticamente como también soluciones con propiedades asintóticas interesantes.
También analizamos algunas propiedades termodinámica de estos espacios tiempos.

Keywords – Agujeros negros, Solitones, SuperGravedad, modos (cuasi)-normales,
Soluciones exactas
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Abstract

We revisit the problem of finding BPS solutions in N = 4 SU (2)×SU (2) gauged
supergravity. We report on a new supersymmetric solution in the Abelian sector
of the theory, which describes a soliton that is regular everywhere. The solution
is 1/4 BPS and can be obtained from a double analytic continuation of a planar
solution found by Klemm in hep-th/9810090. Also in the Abelian sector, but now
for a spherically symmetric ansatz we find a new solution whose supersymmetric
nature was overlooked in the previous literature.

We identify these configurations, including the planar case, as a new family of black
holes and solitons that lead to the exact integration of scalar probes, even in the
presence of a non-minimal coupling with the Ricci scalar which has a non-trivial
profile. On these geometries, we compute the spectrum of (quasi-)normal modes
for the non-minimally coupled scalar field. We find that the equation for the
radial dependence can be integrated in terms of hypergeometric functions leading
to an exact expression for the frequencies. The solutions do not asymptote to a
constant curvature spacetime, nevertheless the asymptotic region acquires an extra
conformal Killing vector. For the black hole, the scalar probe is purely ingoing at
the horizon, and requiring that the solutions lead to an extremum of the action
principle we impose a Dirichlet boundary condition at infinity. Surprisingly, the
quasinormal modes do not depend on the radius of the black hole, therefore this
family of geometries can be interpreted as isospectral in what regards to the wave
operator non-minimally coupled to the Ricci scalar. We find both purely damped
modes, as well as exponentially growing unstable modes depending on the values
of the non-minimal coupling parameter. For the solitons we show that the same
integrability property is achieved separately in a non-supersymmetric solutions
as well as for the supersymmetric one. Imposing regularity at the origin and a
well defined extremum for the action principle we obtain the spectra that can also
lead to purely oscillatory modes as well as to unstable scalar probes, depending
on the values of the non-minimal coupling.

We also construct solutions in the non-Abelian sector of the theory by considering
the meron ansatz for SU (2). We construct electric-meronic and double-meron
solutions and show that the latter also leads to 1/4 BPS configurations that are
singular and acquire an extra conformal Killing vector. We then move beyond
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the supergravity embedding of this theory by modifying the self-interaction of
the scalar, but still within the same meron ansatz for a single gauge field, which
is dilatonically coupled with the scalar. We construct exact black holes for two
families of self-interactions that admit topologically Lifshitz black holes, as well
as other black holes with interesting causal structures and asymptotic behavior.
We analyze some thermal properties of these spacetimes.

Keywords – Black Holes, Solitons, SuperGravity, (Quasi)-normal modes, Exact
solutions
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Chapter 1. Introduction 1

Chapter 1

Introduction

It is well known that building a quantum gravity theory is needed because there
are configuration where the effective theories for gravity currently available are
not predictive. For example, considering General Relativity as a effective theory,
the black hole solutions have a singularity inside the horizon where the geometric
quantities, as the Riemann tensor and so on, blow up. Therefore, questions related
to black hole formation and black hole evaporation are difficult to answer only
considering the effective models.

However, thermodynamics is one of the notions that tell us something about
the quantum nature of gravitational objects. The framework was developed
in the seventies as a result of the no-hair theorems, which was summarized in
[1], the contribution by Bekenstein who realized that black holes must have
entropy and derived an heuristic formula for it [2]-[3]. The exact formula for
the entropy and the physical interpretation of the temperature of a black hole
were discovered by Hawking [4] where he considered quantum fields in a classical
curved spacetime. These features of classical solutions give us insights about the
macroscopic behaviour of a quantum system that we do not know.

One approach to construct models that could contain information about quantum
gravity come from supersymmetry. These types of theories possess some
symmetries generated by a global spinorial parameter in such a way that the
transformation mixes fermions with bosons. The theories with this symmetry have
shown to have improved quantum behaviour because of the divergence cancellation
between fermions and bosons [5].
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On the other hand, the standard model of particle physics showed that given a
global symmetry, its local extension requires extra bosonic gauge fields which are
essential to describe the interaction between particles. Thus, in the context of
supersymmetry, it is natural to ask for its local version where the extra fields may
describe an interaction between matter fields.

An interesting observation is that for a local supersymmetry, it is mandatory to
add a Rarita-Schwinger Ψµ spin 3/2 fermionic field. Due to the consistency of the
supersymmetry transformations, the spin 3/2 field transforms in a natural fashion
with the vielbeine field eaµ because of the index structure of both fields, which
leads to

δeaµ ∼ ϵ̄γaΨµ , (1.0.1)

where ϵ is the local spinorial parameter of the supersymmetry transformation.
Then, local supersymmetry implies naturally a coupling of matter fields to gravity
[6]. These type of theories are called supergravity theory and capture some ideas of
a quantum theory of gravity because of the improvement of its quantum behaviour.

Supergravity theories have been widely studied since the seventies and nowadays
it is an active research field, for example in the context of localization techniques
[7]-[9]. An interesting problem in this area relies on finding exact classical solutions
of a supergravity theory in such a way that they allow for the existence of a Killing
spinor. These configurations are called BPS and capture some aspects of the
quantum theory, as was shown by Stromigner and Vafa in [10] where they obtained
the Bekenstein-Hawking entropy by counting BPS states.

In this thesis we will consider a particular model of supergravity theory, known
as N = 4 SU(2) × SU(2) gauged supergravity or as Freedman-Schwarz model
[38]. It has non-Abelian gauge fields among their matter fields. We will revisit
the problem of finding BPS configurations in the Abelian and non-Abelian sectors
of the theory.

The BPS configurations satisfy a first order system of equations which implies
the second order system. Therefore, it is natural to consider the first order
system to find new interesting configurations. For example, the Freedman-Schwarz
model contains Yang-Mills fields coupled to gravity which are interesting in many
gravitational scenarios, such as close to a neutron star or close to a black hole in
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the early cosmology [11]. In these cases the gravitational field is too strong and
the curvature will influence the propagation of the matter fields, in addition to
the feature that the back-reaction of the Yang-Mills fields cannot be neglected.

Solving the Einstein-Yang-Mills system has been source of great efforts in order
to describe some interesting situations as the ones we mentioned above. Some
numerical results are the following [12]-[15]. On the other hand, an analytic
solution of the system which presents non-Abelian effects, such as the Jackiw-Rebbi-
Hasenfratz-’t Hooft mechanism [62]-[63], was constructed in [60] implementeing
the meron ansatz in the Yang-Mills sector. Thus, a natural question is if the
meron ansatz is useful to construct new configurations in the Freedman-Schwarz
model.

This thesis is structured as follows: in chapter two we will explain conventions
and motivation to study self-gravitating systems and supersymmetric systems.

In chapter three we present the first part of new result in this thesis, these results
were published in [97]. In section 3.1 we present new BPS and no-BPS soliton
solution. Section 3.2 is devoted to finding new Abelian BPS configurations. In
section 3.3 we study new solutions for the meron ansatz in the Yang-Mills sector,
and due to the fact that the Freedman-Schwarz model contains two non-Abelian
gauge fields we explore configurations with a meron in one gauge field and an
electric Abelian gauge field in the other, which we called a charged-meron. Also
we study double meron configurations which is not BPS. In section 3.4 we consider
two different potentials for the dilatonic field beyond supergravity. The first
potential has three parameters and is a sum of three exponentials. In this family
we obtained Lifshitz topological black holes with different number of horizons.
The second potential has a linear times exponential term which gives a solution
with a logarithmic term in the metric function.

Chapter 4 contains the second part of novel results of this thesis and it is in process
to be published in JHEP [103]. In this chapter, we consider the (quasi-)normal
modes for the solitons and black holes of the Freedman-Schwarz model discussed
in chapter 3. The (quasi-) normal modes are integrated analytically in term of
hypergeometric functions which gives us an exact expression for the frequencies.
Implementing Kummer indentities, which are fulfilled by the hypergeometric
functions, we impose ingoing boundary conditions at the horizon for black holes
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and regularity at the origin for solitons. The geometries are not asymptotically
locally flat nor asymptotically locally AdS, thus, we study the asymptotic behaviour
of the scalar field in order to impose Dirichlet boundary conditions and to obtain
an extremum of the action principle.

Introducción

Es bien conocido que es necesario construir una teoría de gravedad cuántica
debido a que hay configuraciones donde las teorías de gravedad que actualmente se
conocen no son predicativas. Por ejemplo, la teoría de Relatividad General admite
soluciones de agujeros negros, los cuales presentan una singularidad al interior del
horizonte donde las cantidades geométricas, como el tensor de Riemann, explotan.
Por lo tanto, es difícil responder a las preguntas relacionadas con la formación y
evaporación de agujeros negros considerando solo modelos efectivos.

Sin embargo, la termodinámica de agujeros negros es uno marcos conceptuales
que nos podría ayudar a entender algunas características cuánticas de objetos
gravitantes. Estas ideas fueron desarrolladas en los setenta como resultado de los
teoremas de no-pelo [1], y de las contribuciones de Bekenstein, quien se dio cuenta
que los agujeros negros deben tener entropía y derivó una formula heurística para
ello [2]-[3]. Hawking consideró campos cuánticos en un espacio tiempo curvo, lo
cual le permitió encontrar la fórmula exacta para la entropía de agujeros negros
como también la interpretación de la temperatura de un agujero negro [4]. Estas
características de las soluciones clásicas nos dicen algo sobre el comportamiento
macroscópico de un sistema cuántico que aún no conocemos.

Otra forma de intentar construir modelos que pueden contener información sobre
la gravedad cuántica viene de la supersimetría. Estas teorías gozan de una simetría
generada por un parámetro espinoral global que mezcla fermiones con bosones.
Las teorías con este tipo de simetría han mostrado tener un comportamiento
cuántico mejorado debido a que hay cancelación de divergencias entre los fermiones
y bosones [5].

Por otra parte, el modelo standard de física de partículas a mostrado que tomar
una simetría global y convertirla en local es crucial para describir las interacciones
entre partículas, debido a que esto da lugar a los bosones de gauge. Entonces en
el contexto de supersimetría es natural preguntarse en convertir la supersimetría
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global en local y que los nuevos campos que emergen puedan describir alguna
interacción a nivel cuántico.

Una observación interesante es que para hacer una supersimetría local es necesario
incluir un campo fermionico de Rarita-Schiwnger Ψµ de spin 3/2. Debido a la
consistencia de la teoría y de la estructura de índices, el campo de spin 3/2 debe
transformar con el vielbeine ea µ como sigue

δeaµ ∼ ϵ̄γaΨµ (1.0.2)

Donde ϵ es el parámetro espinorial local. Entonces hacer la supersimetría local
lleva naturalmente a acoplar los campos de materia con la gravedad [6]. Esta
teorías son llamadas de supergravedad y tienen posibilidades de capturar algunas
ideas de la teoría que describe la gravedad cuántica, pues como mencionamos, la
supersimetría mejora el comportamiento a nivel cuántico de la teoría en cuestión.

Las teorías de supergravedad fueron ampliamente estudiadas desde mediados de
la decada del 70 y hoy en dia es una área activa de investigación en el contexto
de localización y holografía [7]-[9]. Un problema interesante en este contexto es
construir soluciones clásicas de la teoría de supergravedad en el sector bosónico
que permitan tener espinores de Killing. Estas configuraciones son llamadas
BPS y capturan algunos aspectos cuánticos de la teoría, tal como fue mostrado
por Strominger y Vafa [10] donde mostraron que contando configuraciones BPS
lograron reconstruir la entropía de Bekenstein-Hawking.

En esta tesis nos vamos a concentrar especialmente en un modelo de teoría
de supergravedad, conocido como el modelo de freedman y schwarz, N = 4

SU(2)× SU(2) gauged supergravedad. La cual está conformada por campos de
gauge no-Abelianos y campos escalares, además de la métrica. Vamos a re-visitar
el problema de encontrar configuraciones BPS en esta teoría en el sector Abeliano
y no-Abeliano.

Las configuraciones BPS satisfacen sistemas de ecuaciones de orden menor
que las ecuaciones de campo de segundo orden. Por lo tanto, es natural
considerar esta ecuaciones como una forma de resolver las de segundo orden
y buscar configuraciones nuevas. Por ejemplo, el modelo de Freedman y Schwarz
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contiene campos de Yang-Mills que resultan interesantes en muchos escenarios
gravitacionales, tales como cerca de una estrella de neutrones o cerca de un agujero
negro en el universo temprano [11]. En estos casos el campo gravitacional es tan
intenso que los efectos de la curvatura afectarán la propagación de los campos de
materia.

Ha existido mucho esfuerzo en resolver el sistema de Einstein-Yang-Mills para
construir soluciones auto-gravitantes, algunos de los resultados numéricos son [12]-
[15]. Por otro lado, una solución analítica que presenta efectos no-Abelianos, tales
como el mecanismo de Jackiw-Rebbi-Hasenfratz-’t Hooft [62]-[63], fue encontrada
en [60] utilizando el ansatz de meron en el sector de Yang-Mills. Por lo tanto, es
natural preguntar si el ansatz de meron permite encontrar configuraciones nuevas
en el contexto del modelo de Freedman-Schwarz.

La presente tesis se encuentra estructurada de la siguiente forma: En el capitulo 2
se plantean las convenciones y motivaciones generales para el estudio de sistemas
auto-gravitantes y sistemas supersimétricos.

En el capitulo 3 se presentan los primeros resultados de esta tesis que fue publicado
en [97]. En la sección 3.1 presentamos las nuevas soluciones de solitones Abelianos
BPS y no-BPS. En la sección 3.2 se muestran configuraciones Abelianas BPS que
no habían sido vistas en la literatura. En la sección 3.3 estudiamos las soluciones
provenientes del ansatz de meron en el sector de Yang-Mills. Dado que el modelo de
Freedman-Schwarz contiene dos campos de gauge, exploramos las configuraciones
con meron en un campo de gauge y un campo cargadado en el otro campo de
gauge, como también un doble meron. En la sección 3.4 consideramos potenciales
más generales que los presentes en la supergravedad, donde el primer potencial
tiene tres parámetros y es suma de exponenciales. En esta familia construimos
soluciones con 1,2 y 3 horizontes que tienen un comportamiento asintótico Lifshitz
topológico. El segundo potencial tiene un término que es lineal por exponencial,
donde logramos construir soluciones con una término logarítmico en la función
métrica.

El capítulo 4 contiene la segunda parte de los resultados nuevo de esta tesis y
se encuentra en proceso para ser publicada en JHEP [103]. En este capítulo nos
concentramos en los modos (cuasi-)normales de los solitones y agujeros negros
que son soluciones de la supergravedad que construimos en el capitulo anterior.



7

Los modos (cuasi-) normales los integramos de forma exacta en ambos casos en
términos de funciones hipergeométricas, que gracias a las identidades de Kummer
nos permitieron imponer las condiciones de borde causales en el agujero negro y
de Dirichlet en el infinito espacial. Esto nos permitió obtener el espectro de forma
cerrada para el campo escalar de prueba.
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Chapter 2

Gauge theories and Gravity

Electrodynamics is the first theory of fields that humanity understood and on
top of allowing us to develop technology, allows us to realize some mathematical
aspects of world where we live in. One of the most exiting ideas that was developed
following the symmetries of the Maxwell equations is the structure of space and
time. This may be derived from the fact that the Maxwell equations are not
covariant under Galileo transformations, which consider the space and time in a
different footing. For example, the time difference between two events is the same
on any inertial frame. Then the question is, what are the transformations that
leave Maxwell equations invariant? The answer was found by Hendrik Lorentz who
discovered such transformations, currently known Lorentz transformations, which
leave invariant the speed of light for any inertial frame. These transformations
consider the space and time in the same footing and imply that two inertial frames
with different relative velocities have different notions of time.

Maxwell equations and Newton equations are incompatible because they are
invariant under a different set of transformations which relate the measurements
of moving observers. The way to reformulate the ideas of space and time in order
to obtain a theory for massive bodies that is compatible with electrodynamics
was developed by Einstein who derived the Lorentz transformations under the
hypothesis of Special Relativity.

To write down some aspects of Special Relativity, let us consider the vector space
R4 whose coordinates are xµ and the quadratic form that is invariant under
Lorentz transformation is xµxνηµν where ηµν = diag (−+++), this invariance
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implements the constancy of the speed of light for different inertial observers.
These type of spaces are called Lorentzian spacetimes and have three type of
vectors vµ: null vectors vµvνηµν = 0, space-like vectors vµvνηµν > 0 and time-like
vectors vµvνηµν < 0. Thus in any point, the spacetime is spitted in three regions
that is useful to define causality.

Let us consider two points in the spacetime whose coordinates with respect to
some inertial frame are xµ and yµ respectively, such that xt > yt. If these points
are connected with a curve whose tangent vector is always time-like, or always
null, then any inertial frame will agree with the fact that x̃t > ỹt, where the
tilde denotes the coordinates of the points with respect to a second inertial frame
connected with the former via a Lorentz transformation.

When the curve that connects those points is always spacelike, this statement is
no longer true because for some inertial frame x̃t > ỹt while for another set of
inertial frames one has x̃t < ỹt. From this discussion we see that two events may
be causally connected when they are connected with a time-like or null curve.

The idea of causality in quantum mechanics is much more subtle, because we
can compute the expectation value of a free particle that propagates from x⃗0 to
x⃗ which is P (t) = ⟨x⃗| e−itĤ |x⃗0⟩. Considering the relativistic dispersion relation
E =

√
p⃗2 +m2 and writing the expectation value as an integral in momentum

space, namely

P (t) =

∫
d3p⃗

(2π)3
⟨x⃗| e−it

√
p⃗2+m2 |p⃗⟩ ⟨p⃗ |x⃗0⟩ ,

=

∫
d3p⃗

(2π)3
e−it
√

p⃗2+m2
eip⃗·(x⃗−x⃗0) .

Writing the integral in spherical coordinates in momentum space and rotating the
system of coordinates so that x⃗− x⃗0 aligns with the pz axis, we obtain

P (t) = 2π

∫ ∞

0

dρ

(2π)3
ρ2
∫ π

0

dθ sin θe−it
√

ρ2+m2
eiρ|x⃗−x⃗0| cos θ ,

=
4π

|x⃗− x⃗0|

∫ ∞

0

dρ

(2π)3
ρ sin (ρ |x⃗− x⃗0|) e−it

√
ρ2+m2

.

Where ρ2 = p2x + p2y + p2z. We are interested in points that are connected with an
spacelike curve, then we can approximate the integral for x⃗ ≫ t2, using saddle
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point approximation, then we obtain that P (t) ∼ e−m
√
x2−t2 . Consequently, there

is a non-vanishing probability of a particle traveling faster than the speed of light.
This kind of troubles are cured considering a theory for fields instead of particles,
where the problem is solved by microcausality, namely

[ϕ̂H(x), ϕ̂H(y)] = 0 (2.0.1)

for x and y with a spacelike interval. This ensures that a measurement at x
cannot affect a measurement at y when x and y are not causally connected. In
the equation above ϕ̂H represents an operator in the Heisenberg picture.

2.1 Yang-Mills theories

Quantum electrodynamics (QED) is a theory for an Abelian gauge field and
Dirac fields that has one of the most accurate predictions when compared with
experiments. Despite of that, QED is not enough to describe all of the interactions
that are realized in Nature, and then a generalization to non-Abelian gauge
theories is mandatory. The renormalizability of the quantum theory restricts the
possible terms present in the Lagrangian in such a way that the coupling constants
must have positive mass dimension [16]. For gauge fields there are some terms
that we can add to the Lagrangian such as AA∂A and A4. In the following we will
construct Maxwell electrodynamics coupled to a Dirac field in a way that admits
a generalization for a general Lie group, which will give rise Yang-Mills theories.

The general idea behind the construction of gauge theories is that we start with
a theory of fields that has a global symmetry of the action generated by real
parameter which does not depend on the point. Then, we consider this symmetry
as a local symmetry, where the parameter depends on the point. In order to do
that, we have to add a new field called the gauge connection.

2.1.1 U (1) Maxwell field

Let us consider a Dirac spinor ψ in D = 4 with the Dirac matrices γµ. In flat
spacetime it fulfills the Clifford Algebra {γµ, γν} = 2ηµν . The Lagrangian for a
massive spinor is

L = −iψ̄ (γµ∂µ −m)ψ (2.1.1)
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where the Dirac conjugate is defined by ψ̄ = ψ†γ0. The Lagrangian (2.1.1) is
invariant under the following global transformation

ψ (x)→ eiαψ (x) , ψ̄ (x)→ ψ̄ (x) e−iα . (2.1.2)

The parameter α does not depend on the point. Phase transformations constitute
the group of 1 × 1 unitary matrices called U (1). The symmetry (2.1.2) means
that we have the freedom to choice the global phase of the field at some time t
and then the equation will determine the phase of the field at some later instant
of time, thus part of the physics is encoded in phase differences and an overall
phase factor is irrelevant.

Another example of theory that implements this type of symmetry is the wave
function of a non-relativistic particle, where the physical quantity that we can
measure is the squared modulus of the wave function which is invariant under
an overall phase. The global symmetry in the latter case is important because it
ensures the existence of a conserved probability current.

Imagine that we want to have the freedom of choosing the phase at any point of
the spacetime. Then, the theory must be invariant under

ψ (x)→ eiα(x)ψ (x) , ψ̄ (x)→ ψ̄ (x) e−iα(x) (2.1.3)

where α (x) is a smooth real function. It is clear that (2.1.1) is not invariant under
local transformations, because the derivative acts on the function α (x) and it
gives an extra term in the transformed derivative of the spinor. Changing the
fields by an arbitrary transformation on each spacetime point, we need to add an
extra field which will carry the information of the transformation from one point
to another. This quantity is the gauge field that in this case is a 1-form Aµ. As
we mentioned, the problem comes from the transformation rule of the derivative
of the spinor, indeed

∂µψ → (∂µψ)
′ = eiα(x) (∂µψ (x) + i∂µα (x)ψ (x)) . (2.1.4)

It does not transform covariantly under the local transformation (2.1.3). If we write
down a derivative Dµψ, sometimes called covariant derivative, which transforms
covariantly under gauge transformation, then we will be able to construct a new
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Lagrangian replacing the partial derivative by the covariant derivative. The new
derivative must transform according to

Dµψ (x)→ (Dµψ (x))′ = eiα(x)Dµψ (x) . (2.1.5)

The covariant derivative must contain a term that cancels the second term in
(2.1.4). One way to do that is considering the covariant derivative as

Dµψ (x) ≡ (∂µ − iAµ (x))ψ . (2.1.6)

We will figure out the transformation rule that Aµ fulfills in order to satisfy (2.1.5).
Replacing (2.1.6) into (2.1.5) we obtain that Aµ transforms with an extra piece:

Aµ → A′
µ = Aµ + ∂µα (x) . (2.1.7)

Then, we can construct a theory that is invariant under local transformations
by adding a new field Aµ which transforms as a connection under gauge
transformations. This new field is called a gauge field. The new Lagrangian
is given by

L = −i
(
ψ̄γµDµψ −mψ̄ψ

)
,

= −i
(
ψ̄γµ∂µψ −mψ̄ψ + ψ̄γµAµψ

)
.

The Dirac field is no longer free, there is a coupling between the gauge field Aµ

and the spinor. Notice that, only imposing gauge symmetry the interaction term
between the spinor and the gauge field was fixed.

The covariant derivative plays a crucial role in gauge theries, we will discuss some
of its properties in the non-Abelian case. So far the gauge field does not have
dynamics, it is a backgroud field that is coupled to a spinor. In principle, it is
difficult to obtaining a gauge invariant term which only depends on Aµ because
Aµ is a connection under gauge transformations.

However, in geometry it is constructed a covariant derivative in terms of a
connection, which transports local geometric objects, like vectors, from one point
to another. The curvature tensor, that transforms covariantly under general
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coordinate transformations, is constructed by acting with the commutator of two
covariant derivatives on a vector. Doing so in the context of gauge theories we
will obtain the curvature of the gauge field (also called the field strength) Fµν .
The commutator acting on the spinor gives

[Dµ, Dν ]ψ = Dµ (Dνψ)−Dν (Dµψ) , (2.1.8)

= −i (∂µAν − ∂νAµ)ψ .

We define the field strength of the gauge field as

Fµν = ∂µAν − ∂νAµ . (2.1.9)

Due to the fact that the left hand side of (2.1.8) transforms covariantly under
gauge transformations and in the right hand side ψ transforms covariantly, then
we conclude that Fµν is a covariant object under gauge transformations. Indeed
it is invariant under gauge transformations, but this is only a feature present in
the Abelian U (1) case. Note that in a pure gauge configuration the field strength
vanishes indentically because covariant derivatives commute.

Since the field strenght is invariant under gauge transformations we can use it to
write a gauge invariant Lagrangian for the gauge field

−1

4
FµνF

µν .

This is the Lagrangian of the free theory for the gauge field. Its equations of
motion are the Maxwell equations in vacuum. The Faraday and the Gauss law
for the magnetic field are satisfy by considering F = dA because dF = 0.

Then, the full theory that is gauge invariant and preserves the Poincare invariance
is

L = −1

4
FµνF

µν − iψ̄ (γµDµ −m)ψ .

In summery, to obtain a gauge theory we have to take a Lagrangian that is invariant
under a rigid transformation. Then, we gauge this symmetry by imposing that
the invariance is local, which requires an extra field called the gauge connection,
that allows us to construct a covariant derivative.
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2.1.2 Non-Abelian gauge theories

As we explained above, in this section we will consider a set of spinors ψi that
transform under the action of a non-Abelian Lie group G with generator Xi,
i = 1, . . . , NG which span a vector space G, called Lie Algebra of the group. The
elements in the connected part of the group can be written as

U = eiλ
iXi . (2.1.10)

Lie groups are endowed with a Lie algebra which is a direct consequence of
group axioms: The product of two different elements given in the exponential
form (2.1.10) must by another element in the group that can be written in the
exponential from as well. One must use the Baker-Campbell-Housdorff Formula
which is an infinite series of nested commutators whose first terms are

expX expY = exp

(
X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y , [X,Y ]]− 1

24
[X, [Y , [X,Y ]]] + · · ·

)
,

with X, Y ∈ G and [X,Y ] = XY − Y X. The product of two elements is in
the group when the generators fulfill an algebra

[Xi, Xj] = ifijkXk . (2.1.11)

The commutator is the binary operation of internal composition, namely [·, ·] :
G×G→ G, called product of the algebra. The commutator by definition satisfies
the axioms of a Lie algebra: Linearity, Antisymmetry and Jacobi identity. Then,
the vector space G is a Lie algebra.

From the Jacobi identity, filnfjkl + fjlnfkil + fklnfijl = 0, we can define a set of
matrices in terms of the structure constants

(Ti)jk ≡ ifijk (2.1.12)

which generate a representation of the algebra

[Ti,Tj] = ifijkTk . (2.1.13)
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This is called the adjoint representation and the dimension of these matrices is
the number of independent generators NG.

It is convenient to construct a scalar product that maps elements in the Lie
algebra to scalars (elements in R or C). This product must be invariant under
the action of the group, which is important to construct an action principle that
is gauge invariant. One candidate is the trace of the product of generators in
some representation R of the algebra TrR (titj). Now we will argue that it must
by proportional to the Kronecker delta δij.

Let us consider a linear transformation of the generators Xi → X ′
i = LijXj ,which

will induce a transformation on the structure constants

[
X ′

i, X
′
j

]
= LikLjlifklmXm ,

= iLikLjlfklmL
−1
mpX

′
p ,

Then, the transformed structure constant are then f ′
ijp = LikLjlfklmL

−1
mp and

consequently the new matrices in the adjoint read

(T′
i)jp = LikLjl (Tk)lm L

−1
mp (2.1.14)

This means that a linear transformation on Xa induces a linear transformation
on the matrices LikTk and at the same time a similarity transformation LTkL

−1.
In the trace the linear combination survives and the similarity transformations
cancels out:

Tr
(
T′

iT′
j

)
= LikLjlTr (TkTl) (2.1.15)

Notice that by the cyclicity of the trace the right hand side may be saw as the
transformation of a symmetric matrix Mkl = Tr (TkTl). Therefore, it is always
possible to choose a basis such that Tr (TkTl) is diagonal. Then,

Tr (T′
kT′

l) = λ(k)δkl . (2.1.16)

By rescaling the generators we can normalize the eigenvalues to one (or minus one),
but we cannot change the sign of the λ′s because the left hand side is cuadratic
in the rescaling. Hereafter we will consider only compact Lie algebras that have
only positive λ′s, for example SU (N) with special emphasis in SU (2). Then,



16 2.1. Yang-Mills theories

considering the T′
k in such a way that λ(k) = 1 and dropping the primes, we have

that the trace in the adjoint representation reads

Tr (TkTl) = δkl . (2.1.17)

In a different representation R of the Lie algebra with matrices ti, the number in
front of the Kronecker delta will be different and it is fixed because we have fixed
the normalization of the structure constants by fixing the trace in the adjoint
representation. The last comment on Lie Algebras is that for compact algebras
the structure constant fijk are completely antisymmetric.

As we found out in the previous section, to construct a gauge theory we have to
consider matter field as scalars or fermions which may be charged under the gauge
group. So, let us consider a set of spinors ψI , where I = 1, . . . , NR, transforming
in some representation R of dimension NR of the Lie algebra of the group G,

ψI → UIJψJ , ψ̄I → ψ̄jU
−1
IJ . (2.1.18)

We can construct a Lagrangian that is invariant under the global transformation
(2.1.18):

L = −iψ̄I (γ
µ∂µ −m)ψI .

Motivated by the Abelian case we can gauge this symmetry, i.e. make the
transformation parameter point dependent and as a consequence UIJ (x) depends
on the spacetime point. To obtain a Lagrangian that is invariant under local
transformations we have to change the partial derivative by a covariant derivative

(Dµ)IJ = δIJ∂µ − igYM

(
TR
k

)
IJ
Ak

µ , (2.1.19)

where TR
i are the matrices in the representation R. Notice that, when the matter

field transforms in the adjoint representation, for example a set of scalar fields
ΦiTi, then

(
TR
i

)
IJ
→ (Ti)jk = ifijk and the the covariant derivative is nothing

but the commutator

DµΦ = ∂µΦ + gYMfijkA
k
µΦ

jTi , (2.1.20)

= ∂µΦ− igYM [Aµ,Φ] .
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These types of configurations are interesting to construct solutions that have
interesting topological properties, because we can construct a gauge invariant
quantity by computing Tr (ΦFµν), for example the ’t Hooft-Polyakov monopole
[17]-[18] which is similar to the Dirac monopole but without any singularity. In this
sense the Higgs fields, represented by Φ in the adjoint representation, “regularizes”
the Dirac monopole that arises in Yang-Mills theories.

In order to obtain an object that transforms covariantly, the derivative (2.1.19)
must transform in the same way as the spinor

Dµψ → (Dµψ)
′ = U (x)Dµψ . (2.1.21)

Again, this constraint fixes the transformation rule for the gauge field as

(
TR
i A

i
µ

)′
= U (x)TR

i A
i
µU

−1 (x) +
i

gYM

U (x) ∂µU
−1 (x) . (2.1.22)

The object UdU−1 is the left invariant Maurer-Cartan 1-form which is an algebra
valued object, as well as the quantity UTR

i A
i
µU

−1. This is consistent with the
fact that A(R) ≡ Ai

µT
R
i ⊗ dxµ is an algebra valued object tensor product with the

co-tangent space of the manifold where we are working on.

Now, we will calculate explicitly the field strength for non-Abelian gauge field in
an arbitrary representation (then we will go back to the adjoint representation)
using differential forms (for a detailed review on the conventions, please check the
section 2.2.1).

The covariant derivative acting on the matter field is an algebra valued 1-form
Dψ = dψ − igYMA

(R)ψ, then, the commutator of covariant derivatives means
acting with the covariant derivative again and due to the fact that they are
differential forms the product is the wedge product:

D ∧Dψ = d ∧Dψ − igYMA
(R) ∧Dψ ,

= −igYMd
(
A(R)ψ

)
− igYMA

(R) ∧ dψ − g2YMA
(R) ∧ A(R)ψ ,

= −igYM

(
dA(R) − igYMA

(R) ∧ A(R)
)
ψ .

Then, we define the field strength as the parenthesis, writing it in the adjoint
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representation we get

F = dA− igYMA
iTi ∧ AjTj ,

= dA− 1

2
igYM

(
Ai

µA
j
ν − Ai

νA
j
µ

)
TiTjdx

µ ∧ dxν ,

= dA− 1

2
igYMA

i
µA

j
ν [Ti,Tj] dx

µ ∧ dxν ,

=
1

2

(
∂µAν − ∂νAµ + gYMfijkA

i
µA

j
νTk

)
dxµ ∧ dxν .

Consequently we can write the field strength in components as

F k
µν = ∂µA

k
ν − ∂νAk

µ + gYMfijkA
i
µA

j
ν , (2.1.23)

or in terms of the commutator

Fµν = ∂µAν − ∂νAµ − igYM [Aµ, Aν ] . (2.1.24)

We can show that, in spite of the fact that Aµ transforms as a connection
under gauge transformations, the field strength is covariant under such gauge
transformations

A→ UAU−1 +
i

gYM

UdU−1 and F → UFU−1 . (2.1.25)

Due to this fact, we can write an action principle as F square, but in this case we
have to add a trace because FµνF

µν is covariant under gauge transformations and
the trace of it is invariant due to the cyclicity property:

Tr (FµνF
µν)→ Tr

(
UFµνU

−1UF µνU−1
)
= Tr (FµνF

µν) . (2.1.26)

Consequently a simple action principle for non-Abelian gauge field is

LYM = −1

4
Tr (FµνF

µν) .

whose equations of motion are the Yang-Mills equations

DµF
µν ≡ ∂µF

µν − igYM [Aµ, F
µν ] = 0 . (2.1.27)
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The theory is intrinsically self interacting, as we can see from the Lagrangian
which has cubic a quartic terms in the gauge field.

Introducing gauge fields and then breaking gauge invariance through spontaneous
symmetry breaking is the only method we know to describe renormalizable theory
for massive spin 1 fields observed in Nature and called W± and Z0 bosons.

In the next section we will discuss Einstein gravity in order to consider
configurations where the backreaction on the spacetime due to the presence
of a non-Abelian gauge field is considered.

2.2 Einstein Gravity

As we saw in the previous section, the structure of spacetime may be described
by inertial frames of reference that are related to each other via Lorentz
transformations. This point of view is summarized in the special theory of relativity
which only assumes that the speed of light is the same for any inertial frame and
that the laws of physics are the same for any inertial frame. Consequently, one
derives a consistent theory for massive bodies that is invariant under the same
symmetry group as the electrodynamics.

Special Relativity also implies that we cannot send information or influence a
body with a signal that travels faster than the speed of light, otherwise causality
would be violated. However, in real life there are not only inertial frames; gravity
for example acts on bodies and change their state of motion. Newton’s theory of
gravity is not consistent with special relativity because one body can influence
another one, instantaneously, which is disproved by special relativity.

Einstein was aware of that and instead of try to fit Newtonian gravity with special
relativity, he sought a new theory of gravity motivated by two key observations:

The first one is that all bodies are influenced by gravity and all bodies fall precisely
the same way in a gravitational field. This fact is called the weak equivalence
principle, and is indeed present in Newtonian gravity under the assumption that
the gravitational force on a body is proportional to its inertial mass. This principle
is a key ingredient for the construction of General Relativity and it has been
tested many times using different methods [19]-[21].

As a consequence of this principle the paths of free falling bodies define a preferred
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set of curves in spacetime just as in special relativity where the inertial frames
describe straight lines in spacetime which are a preferred set of curves. Hence, we
can guess that gravity has to do with the structure of spacetime itself.

The second observation is that in small regions of the spacetime any local physical
experiment in a free falling laboratory is independent of the velocity of the
laboratory and its location in spacetime. In other words, the small laboratory
is an inertial frame for a short period of time, this principle is called strong
equivalence principle. This assumption is nice because allows us to apply the ideas
that we learnt in special relativity to systems that are indeed under the action of
a gravitational field.

These ideas can be expressed mathematically considering the spacetime, which
in special relativity is a vector space R4 with metric ds2 = ηµνdx

µdxν , as a curve
pseudo-Riemannian manifold whose curvature is generated by the energy of the
matter fields present in the spacetime as well as by the gravitational field it self
since the theory is non-linear. Some mathematical aspects related to manifolds
and vectors on a manifolds are summarized in the Appendix A1. This formalism
also allows us to construct a theory invariant under diffeomorphisms, because
obviously physics does not depends on the coordinates that we are using.

General Relativity is a theory for the spacetime manifold {Md, gµν} that describes
the gravitational field as the Riemannian curvature of the manifold. The metric
tensor gµν (x), that depends on spacetime points, is the generalization of the flat
metric ηµν . The metric is the dynamical field in this theory and since General
Relativity does not have torsion, as was formulated originally by Einstein, all of
the principal geometrical objects (the Christoffel connection and the Riemann
tensor) can be computed only knowing the metric tensor. It is also important to
stress that, in addition to having the metric, we have to specify the coordinates
and the range of them, otherwise, the patch of the manifold is ill defined.

Let us recall some basic definitions that are useful for the physical discussion.
As we said, the theory must be invariant under diffeomorphims, and the way to
ensures such invariance is by using vectors and tensors that transformas under
diffeomorphisms in the correct way. However, the partial derivative of a vector is
not a vector anymore. We have at least three ways of fix that problem: the first
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one is defining a connection that transports the vector from one point to another,
the second one is considering the antisymmetric part of the partial derivative
acting on the 1-form and the third one is the Lie transport which requires a
congruence ξµ on the manifold. We will discuss the second solution latter on. The
former solution requires a connection which in spacetimes without torsion is the
Christoffel connection

Γρ
σλ =

1

2
gρν (∂σgλν + ∂λgσν − ∂λgσλ) . (2.2.1)

Hence, we define the covariant derivative acting on vectors as

∇µξ
ν = ∂µξ

ν + Γν
µλξ

λ (2.2.2)

which transforms covariantly under coordinate transformations. As we did in
gauge theories, we can compute the commutator of covariant derivatives and
obtain the curvature tensor of the manifold

[∇ρ,∇σ] ξ
µ = Rµ

λρσξ
λ. (2.2.3)

It measures the lack of commutativity of the covariant derivatives and is called
the Riemann tensor given by the following expression

1

2
Rµ

νρσ = ∂[ρΓ
µ
σ]ν + Γµ

λ[ρΓ
λ
σ]ν . (2.2.4)

The Riemann tensor transforms covariantly under coordinate transformations,
therefore it is a good candidate to construct an action principle. Nevertheless, it
depends on second derivatives on the metric tensor which could lead to equations
of third order. Despite that, we will show that in some cases the equations of
motion remain second order in the metric, but we have to take care of the boundary
terms.

The traces of the Rieman tensor are

Rµν = Rλ
µλν and R = Rµνg

µν (2.2.5)

that are the Ricci tensor and the Ricci scalar, respectively.
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The mathematical formulation of the weak equivalence principle is as follows: a
particle moving on the spacetime is described by a curve parametrized by xµ (λ).
If the particle is moving on a spacetime with metric gµν (x) and is free falling,
then the curve is governed by the geodesic equation

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 (2.2.6)

with Γµ
ρσ the Christoffel connection defined as usual. In flat spacetime Γµ

ρσ = 0

and the geodesics are straight lines, as we expected.

The field equations for the metric tensor were presented by Einstein in 1915 [22]
and are given by

Rµν −
1

2
gµνR = 8πGTµν . (2.2.7)

The left hand side of (2.2.7) is a combination of the Ricci tensor and the Ricci
scalar called the Einstein tensor and is denoted by Gµν . The right hand side of
(2.2.7) is the energy momentum tensor of the matter fields that are present in the
spacetime. These equations are d (d+ 1) /2 = 10 equations for the metric tensor
in d = 4 because the metric, the Ricci tensor and the energy momentum tensor
are symmetric in their indices. The covariant divergence of the Einstein tensor is
cero ∇µG

µν = 0 using the Bianchi identity, Consequently the equations (2.2.7)
imply that the energy momentum tensor must fulfil

∇µT
µν = 0 . (2.2.8)

By the consistency of the system of equations, the equations (2.2.8) must be some
combination of the equation of motion of the matter field because the partial
derivative contained in the covariant derivative acts on the the energy momentum
tensor, that depends in general on first derivatives of the matter fields. Which
give second order equations for the matter fields.

It is worth mentioning that the system of equations is, in general, a non-linear
coupled system between the metric and the matter field.

The action principle that gives the equation (2.2.7) is the Einstein-Hilbert action
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plus the action principle of the matter fields,

S [gµν ] =
1

16πG

∫
M

d4x
√
−gR +

1

8πG

∫
∂M

d3x
√
−hK + SMatter . (2.2.9)

The energy momentum tensor is defined as Tµν = − 2√
−g

δSMatter
δgµν . As we mentioned

above, the action principle of General Relativity has second order derivatives
in the metric tensor, however, the equations of motion (2.2.7) are second order.
Computing the stationary variation of (2.2.9) we note that there is a boundary
term that depends on derivatives of the metric, so in general it is impossible to
have a minimum of the action only imposing Dirichlet boundary conditions at
the boundary ∂M of the spacetime. Nevertheless, it was shown by York [23],
Gibbons and Hawing [24] that supplementing the Eintein-Hilbert action with a
boundary term, that is the second term in (2.2.9), we obtain a well define action
principle because the variation of the Gibbons-Hawking-York (GHY) term cancels
the boundary term that comes from the variation of the Einstien-Hilbert term.

The GHY term depends on the trace of the extrinsic curvature K = Kµνh
µν of

the boundary surface ∂M which is a co-dimension one manifold.

In the following we will discuss some aspects and conventions of differential forms
that we will use to couple fermions to gravity, which are a crucial ingredient for
supersymmetry.

2.2.1 Differential forms

Let us consider a spacetime manifold {Md, gµν} with a patch whose coordinates are
{xµ}. As we discussed in the Appendix A1, we can construct vectors ξ = ξµ (x) ∂µ

and 1-forms A = Aµ (x) dx
µ at each point of the spacetime. When we have a notion

of metric, given a vector we can compute a 1-form and viceversa, so the following
discussion applies to both objects. We mentioned above that the derivative of a
vector (or 1-form) is not a tensor but we can consider the antisymmetric part of
it and construct a tensor again. The mathematical foundation of this statement
is that under a general coordinate transformation xµ = xµ (x̃ν) the object ∂µAν

transforms as

∂µAν → ∂̃µÃν =
∂xλ

∂x̃µ
∂xρ

∂x̃ν
∂λAρ + Aσ

∂2xσ

∂x̃µ∂x̃ν
. (2.2.10)
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The second term in (2.2.10) is terrible because the quantity ∂µAνdx
µ ⊗ dxν

transforms under coordinate transformations! In other words, if we change the
coordinates the geometrical object changes, which is not consistent for objects that
have an intrinsic nature, regardless of the coordinate basis used. We have fixed
this problem introducing a covariant derivative with the Christoffel connection,
but seeing (2.2.10) we realize that the second term is the second partial derivative
of a smooth function. Then, if we compute its antisymmetric part, the last term of
(2.2.10) vanishes and the derivative of a 1-form transforms in the correct fashion.
So that we will consider the antisymmetric part of the vector space spanned by
{dxµ ⊗ dxν} which gives the vector space spanned by the wedge product{

dxµ ∧ dxν ≡ 1

2
(dxµ ⊗ dxν − dxν ⊗ dxµ)

}
. (2.2.11)

The vector space spanned by this basis is called the space of 2-forms and denoted
by Ω2 (M). Consequently, the antisymmetric part of the partial derivative

dA ≡ ∂µAνdx
µ ∧ dxν (2.2.12)

does not transform under coordinate transformations. In a general fashion
we can define the space of p−forms as the vector space Ωp (M) spanned by
{dxµ ∧ · · · ∧ dxν} p-times. The operator d defined in (2.2.12) is called the exterior
derivative and takes a p−form and returns a (p+ 1)−form. Some properties that
we have to keep in mind related to differential forms are the following:

α[p] ∧ β[q] = (−1)pq β[q] ∧ α[p] , (2.2.13)

d ∧ dα[p] = 0 , (2.2.14)

d
(
α[p] ∧ β[q]

)
= dα[p] ∧ β[q] + (−1)p α[p] ∧ dβ[q] . (2.2.15)

where α[p] ∈ Ωp (M) and β[q] ∈ Ωq (M). The first property stablishes the
commutation of the differential forms. The second one means that acting two
times with the exterior derivative on a p−form, which is smooth enough, the result
vanishes. The last property is the modified Leibniz rule for differential forms.

The matter fields belong to a representations of the Lorentz group, in particular
spinors are representations of spin 1

2
of the Lorentz group. However, in General
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Relativity, a priori, it is not clear how to obtain a Lorentz group to couple fermions
in a curve spacetime. We will discuss now how to obtain a local Lorentz group in
this context.

We have mentioned that the metric gµν (x) is a symmetric tensor that depends on
the spacetime point. If we consider the metric evaluated at a point, then it is a
constant symmetric matrix which always can be diagonalized. To do so, let us
consider matrices e µ

a (x), called vielbeine, in such a way that it diagonalizes the
metric in each spacetime point, namely

e µ
a (x) e ν

b (x) gµν (x) = ηab . (2.2.16)

The inverse of e µ
a is denoted by eaµ that fulfills eaµe ν

a = δνµ. The indices {a, b, . . . }
are called indices of a non-coordinates basis or flat indices and run in 0, 1, . . . , d−1.
Notice that eaµ can be thought of as a 1-form ea = eaµdx

µ . The equation (2.2.16)
can be written as

gµν = ηabe
a
µe

b
ν . (2.2.17)

Something special emerges at this point, because transforming the vielbeine with
a local Lorentz transformation Λa

b (x) as eaµ → e′aµ = Λa
be

b
µ, the right hand side

of the equation (2.2.17) goes to ηabeaµebν → ηabΛ
a
cΛ

b
de

′c
µe

′d
ν = ηcde

′c
µe

′d
ν because

the flat metric ηab is invariant under Lorentz transformations. Therefore, the
vielbeine are defined up to a local Lorentz transformation. Notice that, the
condition ηabΛa

cΛ
b
d = ηcd implies that detΛ = ±1, but we need to exclude those

transformations that have det Λ = −1 because these change the orientation of the
spacetime, hence Λa

b (x) ∈ SO (d− 1, 1), which means that the matrix Λ is an
element of the special Lorentz group.

Given a vector ξµ or a 1-form αµ in the coordinate basis we can obtain its
component in the vielbeine basis as

ξa = eaµξ
µ and αa = e µ

a αµ . (2.2.18)

These objects transform naturally under local Lorentz transformations instead of
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the whole1 GL (d). In the previous section we discussed how to define the parallel
transport of vectors that transforms under GL (d). We did so by introducing the
Christoffel connection and defining a covariant derivative (2.2.2) in terms of it.
But now we have a different set of object that transforms under local Lorentz
transformations and it is clear that the derivative of a Lorentz vector does not
transform as a Lorentz tensor:

dξa → Λa
bdξ

b + dΛa
bξ

b ̸= Λa
bdξ

b (2.2.19)

under local Lorentz transformations. Thus we need to introduce another
connection, called the 1-form spin connection ω a

µ bdx
µ, and the Lorentz covariant

derivative is defined by
Dξa = dξa + ωa

bξ
b . (2.2.20)

Imposing that Dξa transforms as a Lorentz vector, the spin connection inherits
the transformation

ωa
b → Λa

cω
c
dΛ

d
b + Λa

cdΛ
c
b . (2.2.21)

It transforms as a connection. Note the similarities with the transformation of the
gauge field in a gauge theory with compact gauge group (2.1.25), so we can say
that (2.2.21) is a gauge transformation for the group SO (d− 1, 1). But this is a
slightly different situation compared with the last section because SO (d− 1, 1) is
no compact.

So far we have two notions of parallel transport for a vector depending on whether
it is a Lorentz vector or a vector under general coordinate transformation. These
two notions must be the same because we are transporting the same vector and eaµ
provides a map between these objects. Mathematically this means the following

∂µξ
λ + Γλ

µνξ
ν = e λ

a

(
∂µξ

a + ω a
µ bξ

b
)
. (2.2.22)

1That is another manner of saying that they are covariant under general coordinate
transformations because

∂x̃µ

∂xν
∈ GL (d)

at a fixed point.
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These equations are satisfied by any vector ξ when the condition

∂µe
a
ν + ω a

µ be
b
ν − Γλ

µνe
a
λ = 0 (2.2.23)

is fulfill. We see that this condition allows us to translate the information from the
connection Γ to the spin connection ω and viceversa. Notice that the connection
Γ could be anything, as long as it transforms as a connection. Indeed, in the
following we will see that the torsion is an object that exist only when the notion of
parallel transport is different than the notion of transport given by the Christoffel
connection (which is symmetric in the lower indices) and is the unique, torsionfree
connection which is compatible with the metric

∇µgρσ = 0 . (2.2.24)

It is worth mentioning that the metric compatibility condition for the Lorentz
covariant derivative (i.e. Dηab = 0) implies that the spin connection is
antisymmetric in their last indices

ω ab
µ = −ω ba

µ (2.2.25)

Once again, computing the commutator of Lorentz covariant derivatives one can
finds the curvature 2-form:

D ∧Dξa = Ra
bξ

b (2.2.26)

where the 2-form is given by

Ra
b ≡ dωa

b + ωa
c ∧ ωc

b . (2.2.27)

In the absence of torsion, this tensor codifies the same information as the Riemann
tensor, but in general they are different. In components the curvature 2-form
(2.2.27) reads

R ab
µν (ω) = ∂µω

ab
ν − ∂νω ab

µ + ω ac
µ ω b

νc − ω ac
ν ω b

µc . (2.2.28)

Another important object that characterizes a manifold comes from the Lorentz
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derivative acting on the vielbeine

T a ≡ dea + ωa
be

b (2.2.29)

which is called the torsion and if we write it in the coordinate basis we obtain that

T a =
1

2

(
Γλ

µν − Γλ
νµ

)
eaλdx

µ ∧ dxν . (2.2.30)

Here is the point that we wanted to stress: when we consider a manifold without
torsion, the connection is symmetric in their lower indices and imposing also the
metric compatibility (2.2.24), it implies that Γ = Christoffel connection, while if
the manifold has torsion the connection is different. Hereon T a = 0, which implies
that the right hand side of (2.2.29) vanishes:

∂[µe
a
ν] + ω a

[µ| be
b

|ν] = 0 . (2.2.31)

Usually, we have explicitly the metric tensor from which one can obtains a set
of vielbeine. Then, the equation above can be used to write the torsionfree spin
connection in terms of the vielbein (in the same way as the Christoffel connection
is defined in terms of the metric). Defining the anholonomity coefficients

Ωc
ab ≡ eµae

ν
b

(
∂µe

c
ν − ∂νe c

µ

)
, (2.2.32)

the equation (2.2.31) can be written as the following

Ωacb + ωcab − ωbac = 0 . (2.2.33)

The trick to solve the above equation for ω is considering the following indices
permutation (a → b, b → c, c → a) two times, then we have three equations:
(2.2.33) and

Ωbac + ωabc − ωcba = 0 , (2.2.34)

Ωcba + ωbca − ωacb = 0 . (2.2.35)

Now, we have to add these equation multiplying (2.2.35) by −1, then using the
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antisymmetry of Ω and ω in their last two indices we have the following result

ωc
ab =

1

2
(Ωc

ba − Ω c
a b − Ω c

ba ) . (2.2.36)

The spin connection is the building block to write a theory with spinors in a
curved spacetime. The covariant derivative for a fermion ψ is build up with it in
the following way

Dψ = dψ +
1

4
γabωabψ . (2.2.37)

We will use it in the discussion of supergravity theories where spinors are coupled
to gravity and other matter fields.

2.3 Supersymmetry

Symmetry in physics is very important because it allows us to solve difficult
problems and encodes deep secrets about nature. However, if we impose too
much symmetry the problem may turn out to be “trivial”. For example in the
Ginzburg-Landau model [25] which is a theory for a charged complex scalar field
and a Maxwell field, if we impose that the scalar field is constant at infinite, then,
the winding number (that is a topological invariant number) vanishes and the
configuration turns out to be topologically trivial.

In particle physics the situation is different but in spirit it is the same. Fundamental
particles are related to the irreducible representations of the Poincaré algebra, so
we can ask about the biggest symmetry, including internal symmetries, that we
can have in order to satisfy sensible assumtions. Coleman-Mandula’s theorem
stated that the only possible Lie groups that can be symmetries of a relativistic
theory for particles are isomorphic to the direct product of the Poincaré group
and an internal symmetry group, i.e. they do not have non-trivial mixing at the
algebra level.

One of the hypotesis of the theorem is that the Lie Algebra of the internal
symmetry is described by commutators. In the seventies it was realized that
one can avoid the theorem by taking Lie algebras based on commutators and
anticommutators, called graded Lie algebras.

Thus supersymmetry (SUSY) was born, as a way of mixing internal (super)-
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symmetry with Poincaré invariance. The supersymmetry generators must
transform as spin 1/2 spinors under Lorentz transformations for the consistency
of the theory. Consequently, under supersymmetry transformations bosons
turn into fermions and fermions turn into bosons, implying that an irreducible
representation of the susy algebra will correspond to a set of fields, forming the
so-called supermultiplet. The Pauli-Lubanski vector is no longer a Casimir of the
SUSY algebra, therefore different spins are allocated on the same supermultiplet.
Supermultiplets always contain the same number of fermionic and bosonic degree of
freedom2 (at least it must be true on-shell) and the particles in the same multiplets
must have the same mass, since PµP

µ remains a Casimir of super-Poincaré.

Supersymmetry looks nice from the theoretical point of view, but the constraint
on the mass for a given supermultiplet is too strong. If supersymmetry is realized
in Nature, it must appear as a broken symmetry. In spite of this, there are
theoretical reasons to study supersymmetry: It is the most natural extension
(from theoretical human point of view) of the quantum field theory framework.
It has an improved ultraviolet behaviour due to the fermionic and bosonic loops
cancelation. Supersymmetric theories are in general simpler than non-SUSY ones
because the symmetry constraints implies a more restrictive set of theories and
they can be used as toy models that could capture features of models that describe
the real word but are much more difficult. Finally supersymmetry naturally
emerges from consistency requirements of string theory.

In this section we want to show explicit calculations that have common aspects
with other more involved supersymmetric theories which we will use in the next
chapters. These computations will give us some insight in supersymmetry in order
to consider a more complicate supergravity theory such as the Freedman-Schwarz
model where we will find analytic solutions in the bosonic sector of it (with
fermions turned off), which may preserve some supersymmetries

This section is organized as follows: firstly we shall consider the Wess-Zumino
model and we will integrate the Lagrangian in such a way that the supersymmetry
transformations are a symmetry of the action. Then, we will show in certain
detail the invariance of a vector multiplet under supersymmetry transformations.
Finally, we will study the connection between spin 3/2 field, gravity and local

2The last statement may be proved rigorously [26].
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supersymmetry.

2.3.1 Integrating the Wess-Zumino Lagrangian

As we mentioned above, supersymmetry theories mix fermions with bosons through
the so-called supersymmetry transformation whose parameter is a spinor. In the
seventies Wess and Zumino [29] suggested that the idea developed in string theory
[27]-[28], where the supersymmetry was present, could be naturally extended to
quantum field theory in four spacetime dimensions.

The simplest model that they constructed contains a single Majorana spinor λ, a
pair of real scalar and pseudo scalar bosonic fields A and B, and a pair of real scalar
and pseudo scalar F and G. Counting the degrees of freedom we note that off-shell
we have #(λ) ≡ 4 = 1+1+1+1 ≡ #(A)+# (B)+# (F )+# (G), then they match.
Nevertheless, a posteriori we note that F and G do not have propagating degrees of
freedom because they are fixed by the equations of motion so the on-shell (denoted
by ≈) counting is #(λ) ≈ 2 = 1+1+0+0 ≈ #(A)+# (B)+# (F )+# (G) . It is
worth empathizing that when we replace the on-shell values in the Lagrangian the
commutator of the supersymmetry transformation closes on-shell, but off course
the action remains invariant without using the field equations.

We want to construct the Wess-Zumino model only by imposing that the
Lagrangian is invariant under supersymmetry transformations in Minkowski
spacetime. Let us consider one Majorana spinor and two real scalar and pseudo-
scalar A and B. We consider only for this chapter the Majorana basis for the γ
matrices

γ0 =


0 −1 0 0

1 0 0 0

0 0 0 −1
0 0 1 0

 , γ1 =


0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

 ,

γ2 =


1 0 1 0

0 −1 0 0

1 0 −1 0

0 0 0 1

 , γ3 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,

γ5 = iγ1γ2γ3γ0 .
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It is clear that the matrices are real and (γ0)
T
= −γ0, (γi)T = γi and (γ5)

T =

−γ5 = − (γ5)
† . γ5 anticommutes with any gamma matrix {γ5, γµ} = 0.

The ansatz for the infinitesimal supersymmetry transformation is

δA ≡ δ0A = ϵ̄λ , (2.3.1)

δB ≡ δ0B = −iϵ̄γ5λ , (2.3.2)

δλ ≡ δ0λ+ δ1λ , (2.3.3)

here λ̄ ≡ λiγ0 and the terms in the spinor are

δ0λ ≠ ∂ (A− iγ5B) ϵ and δ1λ = W1 (A,B) ϵ− iγ5W2 (A,B) ϵ . (2.3.4)

W1 (A,B) and W2 (A,B) are arbitraty function of the scalars and ̸ ∂ = γµ∂µ. Let
us consider the ansatz for the Lagrangian

L = L0 + Lint (2.3.5)

with

L0 = −1

2
(∂A)2 − 1

2
(∂B)2 − 1

2
λ̄ ̸ ∂λ , (2.3.6)

Lint = −V (A,B)− 1

2
U1 (A,B) λ̄λ+

i

2
U2 (A,B) λ̄γ5λ . (2.3.7)

The idea is finding the functions W1, W2, V, U1 and U2 by demanding
δL =boundary term. The variation of the kinetic term of the spinor reads

δ
(
λ̄ ̸ ∂λ

)
= ∂µ

(
δλ̄γµλ

)
− ∂µδλ̄γµλ+ λ̄ ̸ ∂δλ (2.3.8)

The second term in the right hand side is ∂µδλT iγ0γµλ and because (γ0γµ)
T
=

(γµ)T (γ0)
T
= −γµγ0 = γ0γµ we can interchange the spinor ∂µδλT with λ up to a

minus sign as they are Grassmann numbers. Thus,

δ
(
λ̄ ̸ ∂λ

)
= 2λ̄ ̸ ∂δλ+ ∂ . (2.3.9)

Where ∂ stands for boundary terms. We will show that the free lagrangian L0 is
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invariant under the infinitesimal transformation δ0. The variation gives

δ0L0 = −∂µδ0A∂µA− ∂µδ0B∂µB − λ̄ ̸ ∂δ0λ+ ∂ , (2.3.10)

= −ϵ̄∂µλ∂µA+ iϵ̄γ5∂µλ∂
µB − λ̄γσγρ∂σ∂ρ (Aϵ+ iBγ5ϵ) + ∂ ,(2.3.11)

= ϵ̄λ∂µ∂
µA− iϵ̄γ5λ∂µ∂µB − λ̄ϵ∂µ∂µA+ iλ̄γ5ϵ∂µ∂

µB + ∂ . (2.3.12)

The first term cancels with the third and the second one cancels with the last
one because γ0 and γ0γ5 are antisymmetric matrices. Consequently δ0L0 is a
boundary term. Let us now compute the variation of the whole Lagrangian

δL = δ0Lint + δ1Lint + δ1L0 . (2.3.13)

Using the same tricks as before we compute the terms in the right hand side of
(2.3.13):

δ0Lint = −V̇ ϵ̄λ+ iϵ̄γ5λV
′ + ϵ̄ ̸ ∂AλU1 − iϵ̄γ5 ̸ ∂BλU1 − iU2ϵ̄ ̸ ∂Aγ5λ(2.3.14)

−U2λ̄ ̸ ∂Bϵ−
1

2
∂AU1ϵ̄λλ̄λ+ i

1

2
∂BU1 (ϵ̄γ5λ) λ̄λ

+
i

2
∂AU2 (ϵ̄λ) λ̄γ5λ+

1

2
∂BU2 (ϵ̄γ5λ) λ̄γ5λ ,

δ1Lint = ϵ̄λ (−U1W1 + U2W2) + iϵ̄γ5λ (U1W2 + U2W1) , (2.3.15)

δ1L0 = ϵ̄ ̸ ∂AλẆ1 + ϵ̄ ̸ ∂BλW ′
1 − iϵ̄γ5 ̸ ∂AλẆ2 (2.3.16)

−iϵ̄γ5 ̸ ∂BλW ′
2 + ∂ . (2.3.17)

We have denoted ˙( ) ≡ ∂A and ( )′ ≡ ∂B. Then, the total variation reads

δL = ϵ̄λ
(
−V̇ − U1W1 + U2W2

)
+ iϵ̄γ5λ (V

′ + U1W2 + U2W1) (2.3.18)

+ϵ̄ ̸ ∂Aλ
(
Ẇ1 + U1

)
− iϵ̄ ̸ ∂Aγ5λ

(
U2 − Ẇ2

)
+iϵ̄γ5 ̸ ∂Bλ (−W ′

2 − U1) + ϵ̄ ̸ ∂Bλ (W ′
1 + U2)

+O
(
λ2
)
+ ∂ .

Where we have neglected cubic terms in the fermions. However the cubic terms
in fermions does not add new conditions on the function, because they provide
that W1 (A,B) + iW2 (A,B) is an holomorphic function (see e.g. [31]), which we
will derive later on. The independent equations for any A and B that we have to



34 2.3. Supersymmetry

solve are

−V̇ − U1W1 + U2W2 = 0 , (2.3.19)

V ′ + U1W2 + U2W1 = 0 , (2.3.20)

Ẇ1 + U1 = 0 , (2.3.21)

U2 − Ẇ2 = 0 , (2.3.22)

W ′
2 + U1 = 0 , (2.3.23)

W ′
1 + U2 = 0 . (2.3.24)

The equations coming from the substraction of (2.3.21) and (2.3.23) and (2.3.22)
minus (2.3.24) are given by

Ẇ1 = W ′
2 , (2.3.25)

W ′
1 = −Ẇ2 . (2.3.26)

Which are the Cauchy-Riemann equations for a holomorphic complex valued
function W = W1 (A,B) + iW2 (A,B). The equations for V are solved by

V =
1

2

(
W 2

1 +W 2
2

)
. (2.3.27)

Replacing these solutions into the Lagrangian, we obtain that

L = −1

2
∂µA∂

µA− 1

2
∂µB∂

µB − 1

2
λ̄ ̸ ∂λ (2.3.28)

−1

2

(
W 2

1 +W 2
2

)
+

1

2
∂AW1λ̄λ−

i

2
∂BW1λ̄γ5λ

is invariant under susy transformations at any order in fermions, as we mentioned.
It was unexpected that the interactions are controlled by a holomorphic function
W . This feature makes supersymmetry so powerful in quantum field theory in
four dimensions. The holomorphic function W is related to the superpotential W ,
up to an irrelevant constant, as

dW
dz

= W (2.3.29)

which plays an important role in supersymmetric theories in four dimensions.
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Notice that there is at least one choice of the function W such that we recover
the Wess-Zumino Lagrangian [29] (for details see e.g. [30]), that is given by

W1 (A,B) =
(
−A2 +B2

)
g − Am ,

W2 (A,B) = 2ABg +Bm .

The Lagrangian in this case reads

L = −1

2
∂µA∂

µA− 1

2
∂µB∂

µB − 1

2
λ̄ ̸ ∂λ− 1

2
mλ̄λ (2.3.30)

−1

2
m2
(
A2 +B2

)
− gmA

(
A2 +B2

)
− 1

2
g2
(
A2 +B2

)2
−gλ̄ (A+ iγ5B)λ .

This Lagrangian exhibits relations not only between scalar and fermions masses,
but also between Yukawa interactions and scalar self couplings. This example
shows that supersymmetry fixes the terms presents in the Lagrangian, up the
holomorphic function W .

2.3.2 Vector multiplet invariance

In this thesis we will consider the Freedman-Schwarz supergravity model that
contains non-Abelian gauge fields. We will not show the explicit invariance of
the action principle of the theory under local supersymmetry transformations.
Instead of that, we will consider a simpler supersymmetric model that is build up
of one Abelian gauge field Bµ, a Majorana spinor λ and one auxiliary scalar field
G. The Lagrangian

L = −1

4
FµνF

µν − 1

2
λ̄ ̸ ∂λ+

1

2
G2 (2.3.31)

is invariant under the following supersymmetric transformations

δBµ = −ϵ̄γµλ , (2.3.32)

δλ =
1

2
γµνFµνϵ+ iγ5Gϵ , (2.3.33)

δG = iϵ̄γ5 ̸ ∂λ . (2.3.34)
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The gamma matrices with more than one index are defined by

γµ1...µn = γ[µ1 . . . γµn] ≡ 1

n!
δµ1...µn
ν1...νn

γν1 . . . γνn . (2.3.35)

It is possible to show that

δλ̄ = −1

2
ϵ̄γµνFµν + iGϵ̄γ5 . (2.3.36)

Before starting, we will consider some useful identities:

γσµν = γσγµν + 2γ[µην]σ , (2.3.37)

[γσ, γµν ] = 4ησ[µγν] . (2.3.38)

To prove (2.3.37), let us consider the definition3 of γσµν , then, using the Clifford
algebra in order to put the gamma matrix with index σ on the left-hand side for
each term. After rearranging terms, we will obtain the right hand side of (2.3.37).
While the commutator (2.3.38) is obtained by expanding the commutator, then,
using the Clifford algebra to move the gamma matrix with index σ from the left
to the right in order to cancel the second term which comes from the commutator.

Let us compute the variation of the Lagrangian under the supersymmetry
transformations (2.3.31)

δL = −2∂µδBν∂
[µBν] − 1

2
δλ̄ ̸ ∂λ− 1

2
λ̄ ̸ ∂δλ+ δG , (2.3.39)

= 2ϵ̄γν∂µλ∂
[µBν] +

1

2
ϵ̄γµνγσ∂[µBν]∂σλ−

1

2
iGϵ̄γ5γ

σ∂σλ (2.3.40)

−1

2
λ̄γσγµνϵ∂σ∂[µBν] − i

1

2
λ̄γσγ5ϵ∂σG+Giϵ̄γ5γ

σ∂σλ+ ∂ .

Using the identity (2.3.38) we can show that

− 1

2
λ̄γσγµνϵ∂σ∂[µBν] = −λ̄γνϵ∂µ∂[µBν] , (2.3.41)

3For n = 3 the identity (2.3.35) reads

γσµν = γσγµγν + γµγνγσ + γνγσγµ − γµγσγν − γσγνγµ − γνγµγσ .
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and using (2.3.38) combined with (2.3.38) a similar result as the above is obtained

1

2
ϵ̄γµνγσ∂[µBν]∂σλ = −ϵ̄γµλ∂ν∂[µBν] + ∂ . (2.3.42)

Plugging back in the variation (2.3.40) we obtain the following equation

δL = 2ϵ̄γν∂µλ∂
[µBν] − ϵ̄γµλ∂ν∂[µBν] −

1

2
iGϵ̄γ5γ

σ∂σλ

−λ̄γνϵ∂µ∂[µBν] − i
1

2
λ̄γσγ5ϵ∂σG+Giϵ̄γ5γ

σ∂σλ+ ∂ ,

=
(
−ϵ̄γνλ− λ̄γνϵ

)
∂µ∂[µBν] (2.3.43)

+i
1

2
∂σG

(
−ϵ̄γ5γσλ+ λ̄γ5γ

σϵ
)
+ ∂ .

Notice that γ0γν is a symmetric matrix, then, −ϵ̄γνλ = λ̄γνϵ which cancels the
first term in (2.3.43). While the matrix γ0γ5γσ is antisymmetric then, −ϵ̄γ5γσλ =

−λ̄γ5γσϵ . Consequently, the Lagrangian is quasi-invariant under supersymmetry
transformations.

2.3.3 Rarita-Schwinger field and supergravity

So far we have discussed supersymmetry whose spinorial parameter does not
depend on the spacetime point. But as we saw in the Maxwell and Yang-Mills
sections, promoting a global symmetry to local symmetry requires to add new
fields which describe interactions between matter fields. A natural question in
supersymmetry relies on who to obtain the local version of it. As we will see, the
answer invokes gravity and spin 3/2 fields. In this section we will discuss aspects
on the spin 3/2 field and its connection with gravity.

In supergravity the spinorial parameter of the supersymmetry transformations is
a general function in spacetime ϵ (x) and the gauge field associated to it is the
spin 3/2 vector-spinor Ψµ (x), called Rarita-Schwinger field. In this section we will
consider the free Rarita-Schwinger which in flat spacetime enjoys the following
gauge transformation:

Ψµ (x)→ Ψµ (x) + ∂µϵ (x) . (2.3.44)

In a general curved spacetime {M4, gµν}, the action principle for the Rarita-
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Schwinger field in 4 spacetime dimensions is given by

SΨ = −
∫
d4x
√
−gΨ̄µγ

µνρ∇νΨρ , (2.3.45)

where ∇ stands for the full covariant derivative including local Lorentz covariant
derivative (2.2.37), and spacetime covariant derivative:

∇νΨρ = ∂νΨρ +
1

4
γabωabΨρ − Γλ

νρΨλ . (2.3.46)

In a torsionfree spacetime, from the point of view of the action principle the last
term in (2.3.46) is irrelevant due to the presence of γµνρ . Notice that in curved
spacetime the derivative of a 1/2 spinor is a vector when we consider the Lorentz
covariant derivative (2.2.37). Therefore, in curved spacetime (2.3.44) must be
promoted to

Ψµ (x)→ Ψµ (x) +Dµϵ (x) . (2.3.47)

Let us check if δΨµ = Dµϵ (x) is a symmetry of the Rarita-Schwinger action4

δSΨ = −
∫
d4x
√
−g
(
δΨ̄µγ

µνρ∇νΨρ + Ψ̄µγ
µνρ∇νδΨρ

)
,

= −
∫
d4x
√
−g
(
∇νΨ̄µγ

ρνµδΨρ +∇ν

(
Ψ̄µγ

ρνµ
)
δΨρ

)
+ ∂ .

using the vielbeine postulate (2.2.23) which in short tell us ∇µe
ρ
a = 0 which

implies that ∇νγ
ρνµ = 0. Then, replacing the variation in the equation above and

integrating by parts, we have that

δSΨ = 2

∫
d4x
√
−g∇ρ∇νΨ̄µγ

ρνµϵ + ∂ ,

= 2

∫
d4x
√
−gϵ̄γρνµ∇ρ∇νΨµ + ∂ . (2.3.48)

The commutator of covariant derivatives acting on the Rarita-Schwinger field is
proportional to the Riemann tensor. Let us expand the covariant derivatives in

4The gamma matrices in d = 4 used in this section satisfy the following identity

χ̄γµ1...µn
λ = tnλ̄γµ1...µn

χ

with λ and χ spinors, t0 = t3 = +1 and t1 = t2 = −1.
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the integrand above

γρνµ∇ρ∇νΨµ = γρνµDρDνΨµ ,

= γρνµ
(
∂[ρDν]Ψµ +

1

4
γabω[ρ|abD|ν]Ψµ

)
,

=
1

4
γρσµ

(
∂[ρω

ab
σ] γab +

1

4
ω ab
[ρ ω cd

σ] γabγcd

)
Ψµ . (2.3.49)

Only by using the Clifford algebra we can show that the gamma matrices of rank
two satisfy the Lorentz algebra

[γab, γcd] = −2 (ηbdγac + ηacγbd − ηadγbc − ηbcγad) . (2.3.50)

Thus, the ω2 term in (2.3.49) can be written as

ω ab
[ρ ω cd

σ] γabγcd =
1

2
ω ab
ρ ω cd

σ [γab, γcd] ,

= −ω ab
ρ ω cd

σ (ηbdγac + ηacγbd − ηadγbc − ηbcγad) ,

= 2
(
ω a
ρ cω

cb
σ − ω a

σ cω
cb

ρ

)
γab . (2.3.51)

Replacing (2.3.51) in the parenthesis of (2.3.49),

∂[ρω
ab

σ] γab +
1

4
ω ab
[ρ ω cd

σ] γabγcd (2.3.52)

=
1

2

(
∂ρω

ab
σ − ∂σω ab

ρ + ω a
ρ cω

cb
σ − ω a

σ cω
cb

ρ

)
γab , (2.3.53)

=
1

2
R ab

ρσ γab . (2.3.54)

We have used the Riemann tensor in components given by (2.2.28). We will use this
result in the computation of the integrability condition for the Freedman-Schwarz
model, at the beginning of chapter 3.

Thus, plugging back in (2.3.49) we get

γρνµ∇ρ∇νΨµ =
1

8
γρσµR ab

ρσ γabΨµ (2.3.55)

Replacing in the variation of the action principle (2.3.48), we obtain the following
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expression
δSΨ =

1

4

∫
d4x
√
−gϵ̄γµνργabR ab

µν Ψρ + ∂ . (2.3.56)

Using a similar identity as (2.3.37) we can show that

γµνργab = γµνρab + 6γ
[µν

bδ
ρ]
a + 3γ[µδ

νρ]
ba . (2.3.57)

The first term in the right hand side of (2.3.57) vanishes in d = 4. While the
second term in (2.3.57) acting on the Riemann tensor gives

6γ
[µν

bδ
ρ]
a R

ab
ρσ = 2γµνbR ρ

[µν b] + 4γνρbR[νb] = 0 . (2.3.58)

The third term in (2.3.57) acting on the Riemann tensor implies the following
result

3γ[µδ
νρ]
ba R

ab
µν = 2γµδνρbaR

ab
µν + γρδµνbaR

ab
µν , (2.3.59)

= 4γµ
(
R ρ

µ −
1

2
δρµR

)
.

Therefore, the variation of the action principle is not vanishing, but is proportional
to the Einstein tensor!

δSΨ =

∫
d4x
√
−g
(
Rµρ −

1

2
gµρR

)
ϵ̄γµΨρ + ∂ . (2.3.60)

Some remarks: On any Ricci flat spacetime the action principle is quasi-
invariant under the transformation (2.3.47). On a general curved spacetime
the transformation is no longer a symmetry, but is proportional to the Einstein
tensor δSΨ ∼ Gµν ϵ̄γ

µΨν . One can guess that the lack of invariance of the action
may be cured by adding the Einstein-Hilbert term in the action principle, namely

S =
1

2κ2

∫
d4x e eaµebνRµνab −

1

2κ2

∫
d4x e Ψ̄µγ

µνρ∇νΨρ . (2.3.61)
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It is indeed the case and supersymmetry transformations [6] are given by

δeaµ =
1

2
ϵ̄ (x) γaΨµ , (2.3.62)

δΨµ = Dµϵ (x) ≡ ∂µϵ+
1

4
γabωabϵ . (2.3.63)

This theory corresponds to N = 1, d = 4 supergravity theory and also is the
universal part of any supergravity. The Rarita-Schwinger field is the gauge field
of local supersymmetry in the same way as the Yang-Mills field are the gauge
field associated to the local action of a compact group G.

In the following section we will discuss aspects on Kaluza-Klein dimensional
reductions in such a way to connect with the bosonic sector of some supergravities
at the end of the next section.

2.4 Kaluza-Klein dimensional reduction

In the context of Kaluza-Klein (KK) dimensional reduction, the dilatonic coupling
in gravity theories with gauge fields arises in a natural fashion. Kaluza-Klein
reductions were firstly proposed by Theodor Kaluza in 1921 as a generalization of
General Relativity in five dimension. Its proposal was complemented by Oskar
Klein in 1926 who gave an interpretation of the extra dimension. He suggested
that the extra dimension must be identified with a radius of the Planck length.
Nowadays, Kaluza-Klein theories, as a general idea, consists of starting from
a theory in higher dimensions, formulated on a manifold MD and through a
compactification on a compact manifold or a coset space Np obtaining a theory in
lower dimensions formulated on a manifold Md with d ≡ D − p. In the simplest
case, it is possible to truncate out the massive modes of the fields in terms of the
harmonic functions of the compact manifold. The higher dimensional manifold
may be written as the product of Md and Np, not in the sense of a direct product,
but in the topological sense.

The group manifold may have an Abelian symmetry group (i.e. Np = S1×· · ·×S1),
which gives a set of Abelian gauge fields supplemented with dilatonic and axionic
scalar fields without potentials. While for a group manifold with non-Abelian
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isometries, there are non-Abelian gauge fields and in general the scalar fields have
a self-interaction potential [32].

The main goal of this section is to describe the dimensional reduction performed
by Chamseddine and Volkov [41] where they started from the type IA low energy
limit of string theory in D = 10 dimension and considered Np = S3×S3 as a group
manifold . They realized that the 4 dimensional theory obtained by this procedure
is the N = 4 gauged SU (2) × SU (2) supergravity theory, firstly developed by
Freedman and Schwarz [38]. In order to get some intuition in the discussion let
us consider the KK reduction in S1.

2.4.1 Reduction on S1

As we mentioned, the story of dimensional reductions start in a spacetime with
manifold MD, whose coordinates are xµ̂, the metric tensor is denoted by ĝµ̂ν̂ (x, z).
The greek letters with hat run from 0, 1, 2, . . . , D. For simplicity, we will consider
the reduction in the Abelian group manifold Np = S1 which is the simplest one.
The coordinate on the circle is xD = z. In this case, one basis for the harmonic
functions that take values in S1 is

{
ein

z
L , n ∈ N

}
where L is the characteristic

length of the circle. Using this basis we can expand the metric tensor as

ĝµ̂ν̂ (x, z) =
∑
n

ĝ
(n)
µ̂ν̂ (x) einz/L . (2.4.1)

Doing so, we obtain an infinite set of fields in the lower dimensional manifold
MD−1 labeled by n. We see that, in general MD ̸=MD−1 × S1 because the metric
MD−1 depends on z. We will show that those modes with n = 0 represent massless
fields, while the fields with n ̸= 0 have mass mn which depends inversly on L. To
stress this fact, let us consider a massless scalar field ϕ̂ :MD = RD−1

(−+···+)×S1 → R
whose dynamics is governed by the Klein-Gordon equation. Expanding the scalar
in Fourier modes we obtain that

ϕ̂ (x, z) =
∑
n

ϕ(n) (x) einz/L . (2.4.2)

We have to replace it into the equation ∂µ̂∂µ̂ϕ̂ = 0. Note that the box operator splits
into the Minkowskin part and the circle part ∂µ̂∂µ̂ = ∂µ∂µ + ∂z∂z. Consequently,
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the equation for the modes reads

∑
n

einz/L
(
∂µ∂µϕ

(n) (x)− n2

L2
ϕ(n) (x)

)
= 0 . (2.4.3)

Since the functions einz/L are linearly independent, all the fields ϕ(n) (x) fulfill
the Klein-Gordon equation with mass mn = |n| /L. The key point in formulating
theories in dimensions higher than four is that we can connect these theories with
a theory in four dimensions through compact space Np that has a characteristic
length which may be small enough as to be undetectable by current experiments.
This idea implies that the massive modes of the fields may have very large masses.
Thus, at low energies, we do not have to take care of the massive modes that
live in MD−1. In the simplest case Np = S1, it is enought to consider that the
metric does not depend on the compact coordinate z. This gives us three fields
defined on MD−1, which are related to ĝµν (x), ĝµz (x) and ĝzz (x). These degree
of freedom may be interpretated as the tensor of the manifold MD−1, a 1-form Aµ

and a scalar field ϕ. This intuition is right, but it is not the best parametrization
to see the symmetries that the fields enjoy in the manifold MD−1. In general,
there is not a recipe to find the correct parametrization. However, in this simple
case it is enough to consider

ĝµ̂ν̂dx
µ̂dxν̂ = e2αϕgµνdx

µdxν + e2βϕ (dz + A)2 . (2.4.4)

Here α and β are constant which will take values in terms of D in order to obtain
the canonical normalization of the fields in the action principle in MD−1. We
have not specified the theory in MD so far, but any sensible theory that we could
be interested in is invariant under diffeomorphism, because the physics does not
depends on the coordinates that we will use to define the measurable quantities.
Consequently, the action principle will be invariant under xµ̂ → x̃µ̂ = x̃µ̂

(
xν̂
)
. Let

us consider an infinitesimal coordinate transformation xµ̂ → xµ̂ − ξ̂µ̂
(
xν̂
)
, which

will imply a transformation of the metric tensor in M̂D which is the Lie derivative
of the metric tensor Lξ̂ĝµ̂ν̂ along the vector field ξ̂

δξĝµ̂ν̂ ≡ Lξ̂ĝµ̂ν̂ = ξ̂σ̂∂σ̂ĝµ̂ν̂ + ∂µ̂ξ̂
σ̂ĝσ̂ν̂ + ∂ν̂ ξ̂

σ̂ĝµ̂σ̂ . (2.4.5)

The parametrization of the metric in M̂D in terms of the fields in MD−1 gives the
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transformation rules of the fields in terms of the vector ξ̂. The parametrization
(2.4.4) allows us to see the transformation rules of the fields in a simple way.
For example, considering ξ̂ (x, z) = ξ (x) + (χ (x)− λz) ∂z and evaluating the
expression above

δξ̂ϕ = Lξϕ−
λ

β
, (2.4.6a)

δξ̂Aµ = LξAµ + ∂µχ+ λAµ , (2.4.6b)

δξ̂gµν = Lξgµν +
2αλ

β
gµν . (2.4.6c)

It is clear that in each transformation, the first term shows that the theory
formulated in MD−1 is invariant under diffeomorphism. The second term in
(2.4.6b) shows that the 1-form A[1] is invariant under a transformation that is
generated by a local parameter, therefore it is a gauge field. The last term in
each transformation from the point of view of M̂D is a dilatation of the circle with
parameter λ. While from the point fo view of MD−1 the metric and the 1-form
see a dilatation and the dilaton sees a traslation. It is possible to show that under
a finite dilatation, i.e. ϕ̃ = ϕ − λ

β
, Ãµ = eλAµ and g̃µν = e2αλ/βgµν , the action

principle transforms as S → e−λS.

The usual example of action principle in M̂D that is invariant under diffeomorphism
is General Relativity

S [ĝµ̂ν̂ ] =

∫
M̂D

dDx
√
−ĝR̂ (2.4.7)

The way to obtain the action principle in MD−1 is to consider the parametrization
(2.4.4) and compute the Ricci scalar. This is a straightforward computation, but
have to do it by hand. The easiest way to confront these kind of calculations is
compute the Ricci scalar with differential forms. In order to do that we must
write the metric tensor in terms of vielbeins

ĝµ̂ν̂ = ηâb̂ê
â
µ̂ ê

b̂
ν̂ . (2.4.8)

The indices â, b̂, . . . are the flat indices in M̂D which can be raised or lowered
using the flat metric ηâb̂. While the a, b, . . . are the flat indices in MD. In the
case of (2.4.4) a sensible set of vielbein are

êa = eαϕea , êz = eβϕ (A+ dz) , (2.4.9)
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and the inverse vielbeine are given by

êa = e−αϕ (e µ
a ∂µ − Aa∂z) , êz = e−2βϕ∂z , (2.4.10)

which fulfill êâµ̂ê ν̂
â = δν̂µ̂ . From these quantities we can compute the 1-form spin

connection without torsion ω̂âb̂ on M̂D that is given in terms of the structure
coefficientes Ω̂âb̂ĉ defined by (2.2.32). Using the vielbeins in (2.4.9) the structure
coefficientes are

Ω̂zza = −βe−αϕ∂aϕ , Ω̂bza = −e(β−2α)ϕFµνe
µ
a e

ν
b , (2.4.11)

Ω̂zca = 0 , Ω̂abc = −2αe−αϕ∂[cϕηa]b + e−αϕΩabc . (2.4.12)

where Ωabc are the structure coefficientes on MD−1. Then, we can compute the
1-form spin connection defined by (2.2.36) which gives

ω̂az = −βe−αϕ∂aϕêz − 1

2
e(β−2α)ϕF a

cê
c , (2.4.13)

ω̂ab = ωab − 1

2
e(β−2α)ϕF abêz − αe−αϕ

(
∂aϕêb − ∂bϕêa

)
. (2.4.14)

The spin connection on MD−1 is ωab = ω ab
c ec while ec is the vielbeine 1-form

on MD−1. Now, we can compute the curvature 2-form defined by (2.2.27) and
then computing the traces in order to get the Ricci scalar. Nevertheless, since
in (2.4.7) the Ricci scalar is under an integral, we can use the Palatini identity
that we proved in the Appendix A2. We need to compute the square root of the
determinant of the metric in M̂D. To do that, we use the fact that

√
−ĝ = det êâµ̂

and the determinant of a matrix may be computed as

D! det êâµ̂ = εµ̂1...µ̂D êâ1µ̂1
. . . êâDµ̂D

εâ1...âD , (2.4.15)

= Dεµ̂1...µ̂D êzµ̂1
êâ2µ̂2

. . . êâDµ̂D
εzâ2...âD ,

= Dεżµ2...µD êzż ê
a2
µ2
. . . êaDµD

εza2...aD

+ D (D − 1) εµ̂1żµ̂3...µ̂D êzµ̂1
êâ2ż ê

â3
µ̂3
. . . êâDµ̂D

εzâD...âD .

where ż is the coordinate index and z is the flat index. In the first term of the
last line, we have taken out the hat of all indices because the Levi-Civita symbol
cannot repeat indices. From (2.4.7) we see that êâż = 0. Then, following the
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computation above and replacing the vielbeins and the fact that εżµ2...µD reduces
to εµ2...µD , we get the following

det êâµ̂ = eβϕe(D−1)αϕ 1

(D − 1)!
εµ2...µDea2µ2

. . . eaDµD
εzaD...aD (2.4.16)

which is nothing but √
−ĝ = e(β+(D−1)α)ϕ

√
−g . (2.4.17)

Replacing this result and the spin connection (2.4.13) in the Palatini identity A2.6
we obtain

S =

∫
M̂D

dDx
√
−ĝR̂ ,

=

∫
M̂D

dDx
√
−ĝ
(
ω̂ĉâb̂ωâb̂ĉ − ω̂

ĉb̂
ĉ ω̂ d̂

d̂ b̂

)
, (Palaini identity)

= 2πL

∫
MD−1

√
−gdD−1xe(β+(D−3)α)ϕ

[
−1

4
e2(β−α)ϕF abFab + ωcabωabc − ω cb

c ω d
d b

+
{
− (D − 4)α2 − 2β2 − 2βα (D − 4)− α2 (D − 4)2

}
∂bϕ∂bϕ

+ {−2α− 2α (D − 4)− 2β}ω cb
c ∂bϕ

]
.

In order to get the canonical normalization for the kinetic term of the scalar field
and the Ricci scalar, we have to set β = − (D − 3)α which vanishes the last term
and α−2 = 2 (D − 2) (D − 3). Then, the action principle is the Einstein-dilaton-
Maxwell theory in four dimensions

S [gµν , ϕ, A] = 2πL

∫
MD−1

dD−1x
√
−g
(
R− 1

2
∂µϕ∂

µϕ− 1

4
e−2(D−2)αϕFµνF

µν

)
.

(2.4.18)
One can see that the scalar field is coupled in a non-linear fashion with the Abelian
gauge field. As a consequence, the gauge field appears in the equations of the
scalar and viceversa. These type of couplings are called dilatonic coupling.

There is a linear term in the scalar in action above, which comes from the series
expansion of the exponential, this fact in general implies that is subtle to turn
off the scalar field. Indeed, if we compute the field equation coming from the
minimization of (2.4.18) and then we set ϕ = 0. These equations are different
than the equations comming from set ϕ = 0 in (2.4.18) and then computing
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the extremum of the action principle. In the former case, we obtain an extra
constraint from the equation of the scalar field, namely FµνF

µν = 0. Therefore,
the right action principle with ϕ = 0 must have a Lagrange multiplier which gives
the constraint above.

The dilatation transformation that we discussed above transforms the action
principle as S → e−λS, which can be understood as a dilatation (or contraction)
of the characteristic length L of the circule.

From this example we can see some general features of the Kaluza-Klein reduction.
Such a similarities are, for example, the emergence of gauge fields related to the
Lie Algebra of the compact manifold Np, the dilatonic coupling between the scalar
field, and the gauge field and the subtleties upon the truncation of the massive
modes.

In the following, we will discuss some aspects of the Kaluza-Klein reduction
performed by Chamsseine and Volkov in [41] which gives theN = 4 SU (2)×SU (2)

gauged supergravity in d = 4.

2.4.2 N = 4 SU (2)×SU (2) gauged supergravity from eleven

dimensional supergravity

Eleven dimensional supergravity is a unique theory in eleven dimensions with
a remarkably simple field content: a vielbeine êâµ̂, one Majorana 3/2 spinor ψ̂µ̂

and one abelian 3-form K̂µ̂ν̂ρ̂. The theory was discovered by Cremmer, Julia and
Scherk in 1978 [33] to obtain extended O (N) (N = 1, . . . , 8) supergravity theories
in four dimensions, which were difficult to construct, via dimensional reduction
from 11D. This is the maximal supergravity theory in eleven dimension which
does not involve higher spins in its field content (with 32 supercharges). The
Lagrangian of the bosonic sector of 11D sugra is given by the following (In this
section we will use the metric with signature (+− · · ·−))

L11 = −
1

4
êR̂− 1

48
êĈµ̂ν̂ρ̂σ̂Ĉ

µ̂ν̂ρ̂σ̂ +
2

(12)4
εµ̂1...µ̂11Ĉµ̂1...µ4Ĉµ̂1...µ4K̂µ9µ10µ11 (2.4.19)

where the 4-form Ĉ[4] = d̂K̂[3] is the field strength of K[3] .

It was shown in [34] that one can obtain N = 1 in ten dimensions (with a half
of the maximum number of supersymmetries) via Kaluza-Klein reduction in S1
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from 11D supergravity, following a similar procedure as described in the previous
section. In this case the parametrization of the vielbeine, the Rarita-Schwinger
and the 3-form read

êâµ̂ =

(
eaµ (x) B11

µ

0 e4/3ϕ(x)

)
, ψ̂µ̂ =

(
ψµ, ψ .

11

)
, (2.4.20)

K̂µ̂ν̂ρ̂ =
(
Aµνρ, Aµν

.
11

)
respectively. In 10D it is possible to consider the Weyl condition and the
Majorana condition at the same time. Thus, each spinors coming from 11D:
the Rarita-Schwinger ψµ, the spinor ψ .

11
and the spinorial parameter of the susy

transformations ϵ (x) split into two Majorana-Weyl spinors. Then, without any
truncation we would obtain N = 2 supersymmetries in the 10D sugra [35].
Following [34] a consistent truncation that allows us to get IA sugra is

1

2
(1 + γ11)ψµ ≡ ψµ ,

1

2
(1 + γ11) ϵ ≡ ϵ ,

1

2
(1− γ11)ψ .

11
≡ ψ .

11
(2.4.21)

which means that the chirality of the spinors is fixed. Also we have to truncate at
bosonic level

B11
µ = 0 and Aµνρ = 0 . (2.4.22)

Following the same procedure as in the previous section to evaluate the action
principle (2.4.19) in the ansatz imposing the constraints, we obtain the action
principle in 10D with N = 1 supersymmetry whose bosonic Lagrangian is

LN=1
10 = −1

4
êR̂ +

1

2
∂µ̂ϕ̂∂

µ̂ϕ̂+
ê

12
e−2ϕ̂Ĥµ̂ν̂ρ̂Ĥ

µ̂ν̂ρ̂ . (2.4.23)

We write it with hat because we will reduce it again. The 3-form Ĥ[3] is the field
strength associated to the 2-form gauge potential coming from the 3-form in 11D.
Type I is not a maximal supergravity since it only contains 16 supercharges in a
single Majorana-Weyl spinor. It contains the graviton, the gravitino, the dilaton
ϕ, the dilatino ψ .

11
and the 2-form with field strength Ĥ[3].

The connection with N = 4 SU (2) × SU (2) gauged theory was found by
Chamseddine and Volkov in 1998 [41]. They showed that considering the Kaluza-
Klein reduction in the compact manifold S3 × S3 of (2.4.23) including fermions,
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one gets the Freedman Schwarz model N = 4 SU (2) × SU (2) gauged in four
dimensions. This result was also bore out in [36] where the authors considered
the dimensional reduction on S7 from 11D sugra to four dimensions and obtained
the N = 4 SO (4) gauged theory, and in the singular limit when the axion field is
shifted by an infinite constant they recover the full Freedman-Schwarz model5.

In what follows we will discuss how to obtain the field content of N = 4 SU (2)×
SU (2) gauged including non-Abelian gauge fields in four dimensions. We use
the following index convention. The manifold is splited as M10 =M4 × S3 × S3.
For the four dimensional spacetime indices we use µ, ν, ρ, . . . and m,n, . . . for
the space indices in the compact manifold:

{
xµ̂
}
=
{
xµ = 0̇, 1̇, 2̇, 3̇ ; zm = 1̇, . . . , 6̇

}
.

While for the flat indices we use a, b, c . . . to flat spacetime indices in M4 and
I, J,K for the flat indices in the inner manifold

{â} = {a = 0, 1, 2, 3 ; I = 1, . . . , 6} .

It is also useful using the explicit splitting between each S3 so that {I} =

{(s = 1, 2) ; i = 1, 2, 3}, where s indicated the “side” and i represents the 3 flat
indices. Using these conventions, we write the vielbeine in 10D as

ê â
µ̂ =

(
e

3
4
ϕe a

µ

√
2e

1
4
ϕAI

µ

0 e−
1
4
ϕU I

m

)
,

where U I
m is proportional to the left invariant Maurer-Cartan 1-form θImdz

m as

U I ≡ U (s)i = −
√
2

e(s)
θ(s)i (2.4.24)

which fulfill
dθ(s)i +

1

2
ϵijkθ

(s)j ∧ θ(s)k = 0 . (2.4.25)

It is interesting to notice that the curvature of the spheres S3 are related to
the inverse of the gauge couplings and in the limit when the coupling constant

5In order to compare [41] with [36], the conventions for the Hodge dual used in [36] is given in
the Appendix A3.



50 2.4. Kaluza-Klein dimensional reduction

associated to one sphere eA → 0 or eB → 0 we obtain S3 → R3 in the corresponding
sphere. On the other hand, the dilaton is reduced as

ϕ̂ =
ϕ

2
.

We see that the non-Abelian gauge fields appear because the compact manifold
has a group structure which is indeed the gauge group. The 3-form field strength
is parametrized in terms of the non-Abelian field strength F I

µν and a pseudo-scalar
a in the following way

Ĥabc = e
7
4
ϕϵabcd∂

da , ĤabI = −
1√
2
e−5ϕ/4F I

ab ,

ĤIJK =
1

2
√
2
e3ϕ/4fIJK , ĤIJa = 0 .

The reduction of the ten dimensional vielbeine leads to det êâµ̂ =

e−3ϕ/2 det
(
U I

m

)
det
(
eaµ
)

. Then, the resulting action principle in 4 dimensions is
the N = 4 SU (2)× SU (2) gauged supergravity, whose field content is given by
a vielbein e a

µ , four Majorana spin-3/2 fields ψµ ≡ ψI
µ, as well as four Majorana

spin-1/2 fields χ ≡ χI , where the index I = 1, . . . , 6 runs in the fundamental of
SU (2) × SU (2). The theory also contains a pseudoscalar axion field a(x), as
well as a real scalar ϕ(x), namely the dilaton. The Yang-Mills sector consists of a
vector and a pseudovector, non-abelian gauge field Ai

µ and Bi
µ, respectively, with

independent gauge couplings eA and eB, where the index i = 1, 2, 3 transforms in
the adjoint of each corresponding SU (2) copy. Following the conventions of [43],
the action reads

L√
−g

= −R
4
+

1

2

[
(∂ϕ)2 + e4ϕ (∂a)2

]
− V (ϕ)− e−2ϕ

4

(
AiµνAiµν +BiµνBiµν

)
− a

2

(
ÃiµνA

iµν + B̃iµνB
iµν
)
, (2.4.26)

where
√
−g = e = det

(
e a
µ

)
and the self-interaction of the dilaton is unbounded

from below and it is given by

V (ϕ) = −(e2A + e2B)

8
e2ϕ , (2.4.27)
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As usual

Aiµν = ∂µA
i
ν − ∂νAi

µ + eAϵijkA
j
µA

k
ν , (2.4.28)

Biµν = ∂µB
i
ν − ∂νBi

µ + eBϵijkB
j
µB

k
ν , (2.4.29)

Ãi
µν =

1

2
√
−g

ϵµνρσA
iρσ . (2.4.30)

The supersymmetry transformations are generated by the local spinorial parameter
ϵ (x) ≡ ϵI (x), which on a purely bosonic configuration, when acting on the
fermionic fields of the theory reduce to

δχ̄ =
i√
2
ϵ̄
(
∂µϕ+ iγ5e

2ϕ∂µa
)
γµ − 1

2
e−ϕϵ̄Cµνσ

µν +
1

4
eϕϵ̄ (eA + iγ5eB) , (2.4.31)

δψ̄ρ = ϵ̄

(
←−
Dρ −

i

2
e2ϕγ5∂ρa

)
− i

2
√
2
e−ϕϵ̄Cµνγρσ

µν +
i

4
√
2
eϕϵ̄ (eA + iγ5eB) γρ .

(2.4.32)

The Lorentz and gauge covariant derivative is given by

←−
Dρ =

←−
∂ ρ −

1

4
ω ab
ρ γab +

1

2
eAα

iAi
ρ +

1

2
eBβ

iBi
ρ , (2.4.33)

and the generators we will use are given by the following 4× 4 matrices (see [38])

α1 =

(
0 σ1

−σ1 0

)
, α2 =

(
0 −σ3
σ3 0

)
, α3 =

(
iσ2 0

0 iσ2

)
,

(2.4.34)

β1 =

(
0 −iσ2
−iσ2 0

)
, β2 =

(
0 −1
1 0

)
, β3 =

(
iσ2 0

0 −iσ2

)
.

(2.4.35)

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)

which generate the algebra su (2)× su (2), namely,

αiαj = −δij − ϵijkαk , βiβj = −δij − ϵijkβk ,
[
αi, βj

]
= 0 .

(2.4.36)[
αi, αj

]
= −2ϵijkαk ,

[
βi, βj

]
= −2ϵijkβk . (2.4.37)
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Furthermore, following [38] we have defined

Cµν ≡ αiAi
µν + iγ5β

iBi
µν . (2.4.38)

For the fermionic sector we consider the following conventions: {γµ, γν} = 2gµν ,
σµν = 1

4
[γµ, γν ] ≡ 1

2
γµν , γ5 = −iγ0γ1γ2γ3, so that γ25 = 1 and {γ5, γa} = 0. When

necessary, we will use the following basis

γ0 =

(
−1 0

0 1

)
, γ1 =

(
0 σ1

−σ1 0

)
, γ2 =

(
0 σ2

−σ2 0

)
, γ3 =

(
0 σ3

−σ3 0

)
.

(2.4.39)
The BPS configurations are such that they lead to non-trivial solutions for ϵ from
the equation δχ = 0 and δψµ = 0 in (2.4.31) and (2.4.32), respectively.

In order to analyze the existence of Killing spinors, it is customary to consider
consistency conditions that emerge from the manipulation of equations (2.4.31)
and (2.4.32). In particular, plugging the equation δχ = 0 from (2.4.31), in equation
(2.4.32) implies that BPS solutions must fulfill

δψ̄ρ = ϵ̄

(
←−
Dρ −

i√
2
e−ϕCρµγ

µ +
1

2
̸ ∂ϕγρ

)
− ϵ̄ i

2
e2ϕγ5 (∂ρa− ̸ ∂aγρ) = 0 , (2.4.40)

An integrability conditions for the Killing spinor comes from imposing δψ̄[ρ

←−
Dσ] = 0,

which after a lengthy but straightforward computation leads to

0 = δψ̄[ρ

←−
Dσ] (2.4.41)

= −1

8
ϵ̄R ab

σρ γab +
1

4
ϵ̄gAα

iAiσρ +
1

4
ϵ̄gBβ

iBiσρ + ϵ̄
1

2
e−2ϕC ν

[σ|γνC|ρ]µγ
µ + ϵ̄

i√
2
e−ϕ∂[σϕCρ]µγ

µ

+ ϵ̄
i√
2
e−ϕ

[
−αi

(
∇[σA

i
ρ]ν + gAϵ

ljiAj
ρνA

l
σ

)
γν − iβiγ5

(
∇[σB

i
ρ]ν + gBϵ

ljiBj
ρνB

l
σ

)
γν
]

+ ϵ̄
1

2
∇[σ|∂µϕγ

µγ|ρ] + ϵ̄
1

4
∂µϕ∂

µϕγσρ − ϵ̄
1

2
̸ ∂ϕ∂[σϕγρ] + ϵ̄

i√
2
e−ϕ∂νϕC[σ|νγρ] − ϵ̄

i√
2
e−ϕCσρ ̸ ∂ϕ

+ ϵ̄
eϕ√
2
γ5∂[σaCρ]µγ

µ + ϵ̄e2ϕγ5
i

2
∇[σ|∂µaγ

µγ|ρ] − ϵ̄
1

4
e4ϕ∂µa∂

µaγσρ + ϵ̄
1

2
e4ϕ ̸ ∂a∂[σaγρ]

+ ϵ̄
eϕ√
2
γ5∂

µaC[σ|µγ|ρ] − ϵ̄
eϕ√
2
γ5Cσρ ̸ ∂a− ϵ̄ie2ϕ∂[σϕ∂ρ]aγ5 + ϵ̄

ie2ϕ

2
̸ ∂a∂[σϕγρ]γ5

− ϵ̄ e
ϕ

√
2
γ5 ̸ ∂aγ[σCρ]µγ

µ + ϵ̄
i

2
e2ϕγ5∂µa∂

µϕγσρ − ϵ̄
i

2
e2ϕγ5 ̸ ∂ϕ∂[σaγρ] (2.4.42)
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As a matter of fact, in order to evaluate the existence of a Killing spinor in this
theory, one must study both equation δχ̄ = 0 from (2.4.31), and (2.4.41) which
respectively have the form

ϵ̄Θ = 0 and ϵ̄Ξµν = 0 , (2.4.43)

where Θ is a 16×16 matrix and Ξµν are six, 16×16 matrices acting on the column
arrange ϵ̄ of 16 components, which belongs to the tensor product of the vector
space of the spinors, times the vector space of the fundamental representation of
SU (2)× SU (2).
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Chapter 3

New solitons and black holes

solutions in Freedman Schwarz

model

The problem of providing partial classifications of BPS configurations in the
Freedman-Schwarz model has been considered in the literature. As mentioned
above, in [39] the authors found BPS solutions which are product spacetimes of
the form AdS2×R2 where the AdS2 factor emerges naturally since the gauge fields
contribute to the dilaton effective potential providing an extremum that leads to
an effective, two-dimensional, negative cosmological constant. Such configurations
may preserve one-quarter or one-half of the supersymmetry. Going beyond the
product space ansatz, in [40; 41] the authors constructed a 1/4 BPS soliton,
which is asymptotically locally flat and it is supported by a single gauge field
(see [44] for further properties of the uplift of the soliton to ten dimensions).
Some non-supersymmetric dyonic solutions where found in [45], while in [46] the
author constructed planar, spherical and hyperbolic solutions of the first order
BPS system, both analytically and numerically.

Restricting to the Abelian sector of both gauge fields in a double dyonic ansatz,
in [43] the author constructed planar BPS black holes and identified a family of
singular domain walls as supersymmetric configurations, which were previously
integrated in [47; 48]. Notwithstanding this, the analysis of [43] provides no new
supersymmetric configurations in the spherically symmetric case.
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In the present chapter we present the first part of new results of this thesis, these
results were published in [97]. The chapter is organized as follows: In Section
3.1, we will present a new supersymetric soliton. The solutions is regular, 1/4
BPS and can be obtained from a double Wick rotation of a non-supersymetric
configuration found in [43]. In Section 3.2, also in the Abelian sector of the theory
we show that there are supersymmetric solutions in the spherical case. This new
1/4 BPS solutions describe spacetimes which are singular. These spacetimes are
characterized by two integration constant, and Appendix A4 is devoted to the
explicit presentation of the Killing spinors. Then, in Section 3.3 we introduce
the hedgehog ansatz for a meron gauge field, and construct new solutions of
the N = 4 SU (2) × SU (2) gauged theory. We combine this magnetic meron
ansatz with both a non-Abelian electric field or a second meronic field. Out of the
new configurations, we show that only the purely magnetic, double meron leads
to a supersymmetric solution. In Section 3.4 we move beyond the supergravity
theory, keeping the field content fixed, but considering more general potentials
V (ϕ) that still lead to analytic solutions with interesting thermal properties. The
potentials we consider were already identified as well-behaved potentials regarding
the construction of exact solutions in field theories with similar matter content
(see e.g. [49]-[57]). For simplicity we will set the axion field a (x) = 0.

3.1 New BPS soliton

The following configuration for the metric, the dilaton and the gauge fields,
provides a solution of N = 4 SU(2)× SU (2) gauged supergravity

ds2 = ρdt2 − dρ2

g (ρ)
− g (ρ) dφ2 − ρdx2 , (3.1.1)

g (r) =
(e2A + e2B)

2
ρ−m− 2 (Q2

A +Q2
B)

ρ
, (3.1.2)

ϕ = −1

2
ln ρ , (3.1.3)

A =
QA

ρ
dφα3 and B =

QB

ρ
dφβ3 , (3.1.4)
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where the coordinate ρ0 ≤ ρ and φ ∈ [0, βφ], with

ρ0 =
m+

√
4 (e2A + e2B) (Q

2
A +Q2

B) +m2

(e2A + e2B)
, (3.1.5)

βφ =
4π

g′ (ρ0)
=

8πρ20

(e2A + e2B) ρ
2
0 + 4 (Q2

A +Q2
B)

2 . (3.1.6)

Here m is an integration constants, and we have consistently removed a pure
gauge, second integration constant ϕ0 that emerges from the integration of the
system. The spacetime (3.1.1) is regular everywhere and describes a charged
soliton, which asymptotically approaches

ds2 = ρdt2 − 2dρ2

(e2A + e2B) ρ
− (e2A + e2B)

2
ρdφ2 − ρdx2 . (3.1.7)

Notice that the asymptotic geometry acquires an extra conformal Killing vector
which acts as ρ → λρ. One can show that the soliton is asymptotically locally
flat, since all the components of the Riemann tensor vanish as ρ goes to infinity.

Let us now move to the analysis of the supersymmetry of this solution. As
mentioned above, the consistency and integrability conditions in this theory
reduce to the analysis of the matrices Θ and Ξµν which are of 16× 16. For our
soliton configuration (3.1.1)-(3.1.4), the determinant of Θ reads

detΘ =
1

224ρ16
(
4 (eBQA − eAQB)

2 +m2
)2 (

4 (eBQA + eAQB)
2 +m2

)2
.

(3.1.8)
Therefore the solution can be supersymmetric only if m = 0 and

eBQA ± eAQB = 0 . (3.1.9)

Setting m = 0 in Ξµν leads to the following determinant

det (Ξρφ) =

(
1

2ρ

)32

(eBQA − eAQB)
8 (eBQA + eAQB)

8 , (3.1.10)

which actually vanishes identically given the BPS constraint coming from (3.1.9).
All the remaining determinants identically vanish, even before using (3.1.9). In
summary, this implies that the configuration (3.1.1)-(3.1.4) with m = 0 and
eBQA = ∓eAQB is supersymmetric. This solution turns out to be 1/4 BPS,
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and the explicit expression for the Killing spinors is presented in Appendix A.
The supersymmetric solution with m = 0 takes a particularly simple form after
performing the change of coordinates

ρ =
2QA

eA
cosh l , (3.1.11)

with 0 ≤ l < +∞, since it reduces to

ds2BPS-Soliton =
QA

eA
cosh l

[
2dt2 − 4dl2

e2A + e2B
−
(
e2A + e2B

)
tanh2 ldφ2 − 2dx2

]
.

(3.1.12)

Our new solitonic solution can also be obtained from a double analytic
continuation of the planar solution found in [43]. Such spacetime is characterized
by an integration constant m̃, that maps to our m after the continuation.
Nevertheless, the planar solution found in [43] with m̃ = 0 is a naked singularity.
Notwithstanding this fact, the double analytic continuation, followed by a
compactification of the coordinate φ with an appropriate range, leads to a
completely regular soliton spacetime. The same effect has been recently seen to
work for N = 2 gauged supergravity in D = 4 and D = 5 in [67]. The new 1/2
BPS solitons discovered in such reference are connected, via a double analytic
continuation, to the plannar Reissner-Norstrom-AdS spacetime for a value of
the integration constant that would lead to a naked singularity in the latter.
Remarkably, the double Wick rotation leads to a smooth spacetime with unbroken
supersymmetries1 [67], as we have also reported here for N = 4 SU(2)× SU (2)

gauged supergravity.

3.2 New Abelian BPS configuration

In this section we reconsider the problem of spherically symmetric, supersymmetric
solutions of the Freedman-Schwarz model in the Abelian sector. In order to

1Double analytic continuations may also give rise to supersymmetric wormholes, when the seed
spacetime is Taub-NUT-AdS in the hyperbolic foliation [68].
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compare with reference [43], we consider the following ansatz for the metric2

ds2 = f (ρ) dt2 − dρ2

f (ρ)
− ρ

(
dθ2 + sin2 θdφ2

)
. (3.2.1)

Going to the areal radial gauge is trivially achieved by introducing the coordinate
r such that ρ = r2. We consider the following Abelian, dyonic ansatz for the
gauge fields

A =

(
QAe

2ϕ0

ρ
dt−HA cos θdφ

)
α3 , (3.2.2)

B =

(
QBe

2ϕ0

ρ
dt−HB cos θdφ

)
β3 , (3.2.3)

where ϕ0 is

ϕ0 =
ln (2 (H2

A +H2
B))

2
, (3.2.4)

while the dilaton reads
ϕ = ϕ0 −

1

2
ln ρ . (3.2.5)

The field equations are solved by

f (ρ) =
(
1 +

(
g2A + g2B

) (
H2

A +H2
B

))
ρ−m+

4 (Q2
A +Q2

B) (H
2
A +H2

B)

ρ
, (3.2.6)

with the constraint
HAQA +HBQB = 0 , (3.2.7)

which comes from the field equation of the vanishing axion.

Depending on the relation between the integration constant m and the remaining
charges, the spacetime (3.2.1) with the function (3.2.6) may describe a black hole,
which can be extremal. The black hole asymptotically matches the metric

ds2 =
(
1 +

(
g2A + g2B

) (
H2

A +H2
B

))
r2dt2− dr2

(1 + (g2A + g2B) (H
2
A +H2

B))
−r2

(
dθ2 + sin2 θdφ2

)
,

(3.2.8)
which is asymptotically, locally flat since Rµν

αβ goes to zero as r →∞.

2Notice that in [43] there is an extra γ factor in front of the sphere. Such factor can be
gauged-away in the solution by an appropriate redefinition of the radial and time coordinates,
including a shift in the integration constant ϕ0 of the dilaton.
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First, we are interested in revisiting the supersymmetry of this family of solutions
by analyzing the consistency equations ϵ̄Θ = 0 and ϵ̄Ξµν = 0 in (2.4.43). As in
reference [43], we obtain that the 16× 16 matrix Θ is block diagonal, and has the
form

Θ =

(
Θ+ 0

0 Θ−

)
, (3.2.9)

where Θ± are 8× 8 matrices, with determinants

det (Θ±) = r−8
(
K0

± + rK1
± + r2K2

±
)
. (3.2.10)

The functions K0,1,2
± depend only on the integration constants. Requiring a

nontrivial solution of ϵ̄Θ = 0 for ϵ̄, obviously implies detΘ+ = 0 or detΘ− = 0,
which leads to

(m± 4 (HBQA −HAQB))
2 − 16

(
H2

A +H2
B

)4
(QAeB ∓QBeA)

2 = 0 (3.2.11)

HAeA ±HBeB = 0 (3.2.12)

On the other hand, the six, 16× 16 matrices Ξµν that can be read from (2.4.43),
coming from the consistency condition of the variation of the Rarita-Schwinger
field, also acquire a block-diagonal structure with non-trivial 8× 8 blocks. The
only components of Ξµν in the consistency condition (2.4.43) with non-vanishing
determinants, lead to the following expressions

0 = det (Ξtr) =
1

(8r2)
16

(
−16 (QAeB −QBeA)

2 (
H2

A +H2
B

)2 − 16
(
Q2

A +Q2
B

) (
H2

A +H2
B

)
+m2

)4
(3.2.13)

×
(
−16 (QAeB +QBeA)

2 (
H2

A +H2
B

)2 − 16
(
Q2

A +Q2
B

) (
H2

A +H2
B

)
+m2

)4
(3.2.14)

0 = det (Ξθϕ) =

(
sin θ

4

)16

(gAHA + gBHB)
8
(gAHA − gBHB)

8 (3.2.15)

For detΘ± = 0 and det (Ξtr) = 0, we have obtained the same equations than
in reference [43]. Nevertheless, our expression for det (Ξθϕ) differs from the one
reported in [43], and in our case it can vanish for a suitable relation between the
magnetic charges, which leads to a novel supersymmetric solution. Implementing
all the supersymmetric constraints (3.2.11), (3.2.12), (3.2.13) and (3.2.14), the
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metric function f (ρ) reduces to

fBPS =
((e2A + e2B)

2H2
A + e2B)

e2B
ρ−mBPS +

4Q2
A(e

2
A + e2B)

2H2
A

e2Ae
2
Bρ

, (3.2.16)

where
mBPS =

4HAQA (e2A + e2B)

eAeB
. (3.2.17)

Notice that the expression for mBPS does not depend on the sign choice made in
(3.2.11)-(3.2.12), therefore without loosing generality one can restrict to one of the
two signs. One can see that fBPS (ρ) in (3.2.16) does not vanish, and since the
spacetime (3.2.1) has a singularity at the origin ρ = 0, this solution represents a
BPS naked singularity. It is well-known that singular spacetimes can indeed fulfill
BPS conditions, as it is the case of the Reissner-Norstrom-AdS solution in N = 2

U (1) gauged supergravity, with the mass equal to the charge [58]. After a simple
counting one sees that our BPS solution depends on two arbitrary integration
constants.

The BPS background obtained with QA = 0, which implies mBPS = 0, does not
lead to an enhancement of the supersymmetries, and it is actually a singular
spacetime, which has a divergence at the origin that is milder than the singularity
at the origin of a Schwarzschild black hole, since in this case setting HA = HB =

m = 0 in (3.2.6) leads to a Kretchmann scalar that diverges at the origin as r−4,
where r is the areal radial coordinate.

Notice that, as explained in [43] for planar black holes, the extremal configurations
are 1/4 BPS, while the background obtained by setting to zero all the integration
constants, which is also the metric approached by the black holes at infinity, do
acquire some extra supersymmetry leading to 1/2 BPS solutions. As explained here,
the situation for the spherically symmetric case is different and both, the metric
deformed by the non-vanishing value of the charges, as well as the asymptotic
metric, have the same amount of unbroken supersymmetry, namely they are 1/4
BPS

The solutions we have identified as BPS, preserves one-quarter of the
supersymmetry and one can pursue the explicit integration of the Killing spinors,
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which leads to the structure

ϵ̄i = Ψ1(ρ)Di +Ψ2(ρ)Ei . (3.2.18)

The details are given in Appendix A4.

The metric (3.2.1) with the function (3.2.6) has four isometries, which close in the
algebra R× so (3). These are generated by the Killing vectors ∂t plus the usual
three Killing vectors of the round sphere spanned in spherical coordinates. We
have explicitly checked that the bilinears

Kµ = ϵ̄iγ
µϵi no sum in i , (3.2.19)

do indeed lead to the isometries of the spacetime, for each of the four independent
Killing spinors.

3.3 Charged merons and double meron in gauged

supergravity

Hereafter we work with the following gauge for the metric

ds2 = N (r) f (r) dt2 − dr2

f (r)
− r2

(
dθ2 + sin2 θdφ2

)
, (3.3.1)

while the dilaton still depends only on the radial coordinate, namely ϕ = ϕ (r).

3.3.1 Charged meron

Let us consider the following ansatz for the gauge fields

A = ξU−1
(α)dU(α) , U(α) (x

µ) ∈ SU (2) , (3.3.2)

B =
QB

r2
dt β3 . (3.3.3)

This ansatz corresponds to a superposition of an electric Abelian SU(2) gauge field
and a meron configuration [59], the latter being proportional to the Maurer-Cartan
left-invariant form of su (2). It is interesting to notice that meron gauge fields
also lead to black holes supported by non-Abelian gauge fields [60; 61], on which
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the Jackiw, Rebbi, Hasenfratz, ’t Hooft mechanism of spin from isospin is present
[62]-[63]. We further specialize the expressions for the meron to the hedgehog
ansatz, in terms of a group valued function U given by

U±1
(α) = 1 cosΥ(α) (r)± sinΥ(α) (r) x̂

iαi , (3.3.4)

x̂1 = sin θ cosφ , x̂2 = sin θ sinφ , x̂3 = cos θ . (3.3.5)

Here we are using the generator of su (2) × su (2) given (2.4.34) and (2.4.35).
Setting Υ(r) = π/2 we can substantially simplify the equations; the new solutions
we find below, belong to such sector. The Yang-Mills equations as well as the
equation for the dilaton are fulfilled when the constant ξ is fixed as

ξ = − 1

eA
, (3.3.6)

and the dilaton is given by

ϕ = − ln

(
eAr√
2

)
, (3.3.7)

therefore the gauge field A and the dilaton are devoid of integration constants.
Consequently, the field strength associated to the gauge field A reads

A[2] =
1

2
Aµνdx

µ ∧ dxν =
1

2eA

(
1− 1

2eA

)[
U−1
(α)∂µU(α), U

−1
(α)∂νU(α)

]
dxµ ∧ dxν ,

(3.3.8)
which implies that if the meron ansatz (3.3.2) turns out to be aligned with a single
generator, its field strength would vanish. With these definitions, the gauge field
Aµ has the following explicit form

A = −e−1
A

[
(− sinφdθ − cos θ sin θ cosφdφ)α1 + (cosφdθ − cos θ sin θ sinφdφ)α2 + sin2 θdφα3

]
.

(3.3.9)

Some remarks on the nature of this ansatz are now in order. The configuration
(3.3.9) is related to an Abelian one by the group element3 g = e

1
2
θα2e

1
2
ϕα3 , such

that locally Amonopole = gAmerong
−1 − 2

eA
gdg−1. Given the fact that g does

not go to the identity at infinity and it it not continuous as r → 0, the two
configurations Amonopole and Ameron are not gauge equivalent, since two gauge
fields are gauge equivalent when they are related by a smooth gauge transformation

3We thank Andrés Anabalón for bringing this transformation to our attention.
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which approaches an element of the center of the gauge group at spatial infinity.
The discontinuity at the origin can be seen clearly by considering that

g(x = 0, y = 0, z = 0+) =

(
i 0

0 −i

)
, (3.3.10)

while

g(x = 0, y = 0, z = 0−) =

(
0 −i
−i 0

)
. (3.3.11)

Such discontinuity will be a feature of any transformation relating both
configurations, which confirms that they belong to different gauge equivalence
classes. For a more detailed discussion, see Section V of [60]. Furthermore
the transformation that relates (3.3.9) and Amonopole has a non-trivial winding,
and therefore it is topologically non-trivial. This can be seen as follow. If the
two configurations were globally gauge equivalent, it should be fulfilled that
Fmonopole = gFmerong

−1. Nevertheless, the two configurations are related by

Fmonopole = gFmerong
−1 + d

(
gdg−1

)
− dg ∧ dg−1 . (3.3.12)

For globally defined gauge transformations the last two terms in this equation
cancel each other, nevertheless, this is not the case for the transformation generated
by the group element g = e

1
2
θα2e

1
2
ϕα3 , which in turn can be seen integrating

equation (3.3.12) on the two dimensional surface 0 ≤ r ≤ 1 and 0 ≤ ϕ < 2π with
θ = θ0 and t = constant. Such integration leads to∫

disk
Fmonopole =

∫
disk

gFmerong
−1 +

∫
∂disk=S1

gdg−1 , (3.3.13)

and the last term is non-vanishing and given by

w
(
gdg−1

)
=

∫
∂disk=S1

gdg−1 = π sin(θ0)α1 − π cos(θ0)α3 . (3.3.14)

This argument reinforces the fact that the meron configuration (3.3.9) cannot be
identified as physically equivalent with the monopole configuration.

The metric of the spacetime is in the family of spherically symmetric solutions
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(3.3.1) and it is explicitly given by

ds2 = r2
(
1

2
+

e2B
4e2A

+
e2AQ

2
B

r4
− µ

r2

)
dt2− dr2(

1
2
+

e2B
4e2A

+
e2AQ2

B

r4
− µ

r2

)−r2 (dθ2 + sin2 θdφ2
)
,

(3.3.15)
where µ is an integration constant. The metric (3.3.15) represents a black hole
which can have an event horizon at r = r+, as well as an inner Cauchy horizon
located at r = r−, while the integration constant µ is related to the mass of the
black hole. The location of the horizons are

r± =

√
2e2A

2e2A + e2B

(
µ±

√
µ2 − (2e2A + e2B)Q

2
B

)
. (3.3.16)

Black hole solutions are present when

µ2 ≥
(
2e2A + e2B

)
Q2

B , (3.3.17)

and the spacetime becomes an extremal black hole when the bound is saturated.
Asymptotically, the spacetime is locally flat and the scalar field ϕ ∼ − ln (r),
reaches the absolute maximum of the potential (2.4.27).

The Hawking temperature in terms of r+ reads

T =
2e2A + e2B
8πe2A

− e2AQ
2
B

2πr4+
. (3.3.18)

Notice that in the absence of the non-Abelian electric charge, namely for QB = 0,
the temperature reduces to a constant. The integration constant µ does not appear
in the temperature when QB = 0. If one pushes forward the interpretation of µ as
the energy content of the spacetime, the family of black holes with QB = 0 would
lead to a divergence in the heat capacity C ∼ ∂µ(T,Q)

∂T
, which may be interpreted

as a sign of criticality. Therefore the non-Abelian gauge field is needed in order to
properly define the thermodynamics of these configurations.

Now, the analysis of the supersymmetry of this backgrounds is in order. In the
presence of the meron ansatz (3.3.2), the analysis of supersymmetry is again
dictated by the structure of the matrices Θ and Ξµν , defined in the previous
sections. Actually in this case, it is enough to analyze the range of the matrix
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Ξθϕ. In fact

det (Ξθϕ) =

(
sin θ

4

)16

̸= 0 . (3.3.19)

This shows that the electric-meronic configuration we have constructed in this
section, cannot preserve any supersymmetry.

In the next section, we move to the double meron configuration.

3.3.2 Double meron

Now, we introduce a meron ansatz in each of the su (2) factors, namely

A = ξA
[
(− sinφdθ − cos θ sin θ cosφdφ)α1 + (cosφdθ − cos θ sin θ sinφdφ)α2 + sin2 θdφα3

]
,

(3.3.20)

B = ξB
[
(− sinφdθ − cos θ sin θ cosφdφ)β1 + (cosφdθ − cos θ sin θ sinφdφ)β2 + sin2 θdφβ3

]
.

(3.3.21)

Again, Yang-Mills and the dilaton equations are satisfied if

ξA = − 1

eA
, ξB = − 1

eB
, (3.3.22)

and the dilaton field takes the form

ϕ (r) = − ln

(
eBeA√

2
√
e2A + e2B

r

)
. (3.3.23)

Notice that as it is the case in the electrically charged meron, the gauge fields and
the dilaton are completely fixed in terms of the couplings of the theory and are
devoid of any integration constant. In this case the spacetime metric reduces to

ds2 = r2
(
Λ̃2 − µ

r2

)
dt2 − dr2

Λ̃2 − µ
r2

− r2
(
dθ2 + sin2 θdφ2

)
, (3.3.24)

where µ is an integration constant and

Λ̃2 :=
e4A + 3e2Ae

2
B + e4B

4e2Ae
2
B

> 0 . (3.3.25)

When µ > 0, this metric describes a black hole with an event horizon located

at r = r+ =
(
µ/Λ̃2

)1/2
. It is worth emphasize that in (3.3.24) the 1/r4 term
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is absent, in contrast with (3.3.15). This implies that the electric and magnetic
parts enter on different footing in these configurations. One way to understand
this lack of democracy between electric and magnetic fields is the presence of the
dilaton, which changes the electromagnetic duality properties of the theory.

Now, we move to the analysis of the supersymmetry of the double meron family.
The non-vanishing integrability conditions for the Killing spinor, ϵ̄Θ = 0 and
ϵ̄Ξµν = 0 in (2.4.43) read

det Ξtr =
µ16

r48
,

detΘ =
(r2 − µ)2 (r2 + µ)

2
µ4

256r32
. (3.3.26)

Therefore, the background of the black hole (3.3.24) with µ = 0 preserves some
supersymmetry. This background metric is actually one-quarter BPS, and the
metric, which is also recovered as the asymptotic geometry of the black holes
(3.3.24) reduces to

ds2 = Λ̃2r2dt2 − Λ̃−2dr2 − r2
(
dθ2 + sin2 θdφ2

)
. (3.3.27)

This background possesses only the obvious Killing vectors as isometries, namely
the time translation and the SO (3) Killing vectors of the sphere at the r =constant
surfaces of the spacelike surfaces at t =constant. Nevertheless, it is worth
mentioning that this background has an extra conformal Killing vector given
by

l = r∂r . (3.3.28)

The temperature of the black hole (3.3.24) has the intriguing property of being
independent of r+, and it is given by

T =
Λ̃2

2π
. (3.3.29)

Wald’s formula for the entropy yields

S =
A

4G
= 4π2r2+ , (3.3.30)

since in the normalization of the Einstein term in (2.4.26) we have chosen G =
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(4π)−1. First law
dM = TdS , (3.3.31)

provides the following value for the mass of the black hole

M = 2πΛ̃2r2+ . (3.3.32)

Since the temperature of the black hole does not depend on its radius, we have
that the heat capacity

C =
dM

dT
, (3.3.33)

diverges, signaling the presence of a critical behavior. The free energy vanishes
identically.

The expression for the temperature in (3.3.29) can be considered as evidence of
the fact that the black hole we are currently analyzing is a particular case of a
more general solution in the double meron sector. It would be interesting to see
whether one can design a deformation of our ansatz that would allow to turn on
the axion field a (x) in a simple enough manner as to construct new exact and
possibly BPS solutions.

In the next sections, we show that there are families of potentials that go beyond
the supergravity potential (2.4.27) and that allow for the construction of exact
hairy black holes. As a matter of fact, we adapt the normalization and conventions
in the action principle for each case, in order to simplify the presentation and
analysis of the exact solutions.

3.4 Hairy black holes beyond supergravity

Since in the previous sections we have seen that the meron ansatz was fruitful in
the construction of exact solutions in gauged supergravity, in what follows we will
construct exact hairy black holes in the Einstein-Yang-Mills dilaton theory. Exact
solutions in field theories with similar matter content have already been considered
in the literature, see e.g. [49]-[57]). Here we focus on the meron sector of the
theory, with a single su (2) gauge field. We will introduce a suitable choice of the
coefficient in the dilatonic coupling as well as a self-interaction for the dilaton,
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which allow for the construction of solutions in a closed form. The theories we
consider in what follows can be seen as a truncation of the gauged supergravity of
the previous sections, supplemented by a deformation of the theory that explicitly
breaks the supersymmetry.

3.4.1 Exponential potential: topologically Lifshitz black

holes

For the first family of potentials it is convenient to introduce the following suitable
parametrization of the action

I [gµν , A, ϕ] =
1

16πG

∫
d4x
√
−g
(
R− 1

2e2
e
− 2√

z−1
ϕ
F i
µνF

iµν − 1

2
(∂ϕ)2 − V1 (ϕ)

)
(3.4.1)

where the potential is given by

V1 (ϕ) = ξe
√
z−1ϕ +

2 (z − 1)

η2 (z − 2)
e

ϕ√
z−1 − (z + 2) (z + 1)

l2
, (3.4.2)

with

η :=

(
l2

4e2 (z + 2) (z − 1)

)1/4

. (3.4.3)

These type of potentials are interesting by its own right and have been used in
other context for Abelian and non-Abelian gauge fields with dilatonic couplings
[50]-[52].

Here the field strength off the SU(2) gauge field A = Ai
µdx

µti reads

F = dA+ A ∧ A (3.4.4)

The range z > 1 will allow us to obtain a topologically Lifshitz asymptotic
behavior. For z > 2 and ξ ≥ 0, the potential (3.4.2) is clearly bounded from below,
and it is characterized by three independent constants, ξ, l and z. The gauge
coupling e also appears here. In these cases, the potential takes its minimum value
(which is negative), when ϕ→ −∞. Notice that the potential (3.4.2) cannot be
continuously connected with the supergravity potential in equation (2.4.27).
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For this model, the field equations are solved by the following scalar field

ϕ (r) = −2
√
z − 1 ln

(
r

η

)
, (3.4.5)

which approaches the minimum of the potential in the asymptotic region r →∞
since the metric of the spacetime in this case reads

ds2 = − r2z

l2z−2
g (r) dt2 +

dr2

r2g (r)
+ r2dΩ2 (3.4.6)

with
g (r) =

1

l2
− µ

rz+2
− 1

(z − 2) z

1

r2
+

η2(z−1)ξ

2 (z − 4)

1

r2(z−1)
. (3.4.7)

While the gauge field as in the previous sections reads

A =
1

2

[
(− sinφdθ − cos θ sin θ cosφdφ)α1 + (cosφdθ − cos θ sin θ sinφdφ)α2 + sin2 θdφα3

]
.

(3.4.8)

Here µ is an integration constant that will determine the energy content of
the spacetime, namely its mass. It is important to stress that the spacetime
configuration (3.4.6)-(3.4.7) is characterized by a single integration constant, since
all the remaining variables, z, ξ, η, l, are determined by the self-interaction (3.4.2)
and by the definition (3.4.3). Therefore, the black holes have a secondary hair.

Asymptotically, the spacetime defined by (3.4.6)-(3.4.7) approaches

ds2asymp = −r
2z

l2z
dt2 +

l2dr2

r2
+ r2dΩ2 , (3.4.9)

which is the topological extension of a Lifshitz spacetime [64]. Notice that, as
r → ∞ the constant r surfaces have an induced light cone structure which is
non-relativistic in such limit, since for r = rc we have

ds2induced = −r
2z
c

l2z
dt2 + r2cdΩ

2 , (3.4.10)

and therefore a massless particle moving on the sphere S2, along a trajectory
θ = θ (λ) and ϕ = ϕ (λ), will fulfil

dω (λ)

dt
= l2zr2z−2

c , (3.4.11)

which goes to infinity as rc → ∞ when z > 1. Here we have defined dω (λ) =
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√(
dθ
dλ

)2
+ sin2 θ

(
dϕ
dλ

)2
dλ. Lifshitz spacetimes are defined when the sphere in (3.4.9)

is replaced by flat space. If we use Cartesian coordinates x⃗ for such flat space, the
corresponding spacetime has the following anisotropic scaling symmetry r → χr,
x⃗ → χ−1x⃗ and t → χ−zt, a symmetry that emerges for non-relativistic systems
near criticality [65]. Topologically Lifshitz spacetimes break such scaling symmetry,
nevertheless the non-relativistic interpretation of a potential dual theory living
on the boundary of the spacetime remains, due to the previous argument [64]. A
massless particle travelling radially takes a finite time to go from a point in the
bulk to infinity, and the causal asymptotic behavior of (3.4.6)-(3.4.7) is that of
AdS, therefore the spacetime has a timelike boundary.

The spacetime defined by (3.4.6) with (3.4.7), has a curvature singularity at r = 0,
which may be covered by an event and a Cauchy horizon, depending on the details
of the potential as well as on the value of the integration constant µ.

Since we do not have a supergravity embedding of the potential (3.4.2), which may
allow us to prove the positivity of the energy, the cases with potentials bounded
from below will be particulary relevant. This is ensured z > 2 and ξ ≥ 0.

- For 2 < z ≤ 4, there is a minimum negative value of µ = µe, for which there is an
extremal horizon4. For µ in the range µe < µ < 0, the topological Lifshitz black
hole has an event and a Cauchy horizon. When this upper bound is saturated, the
Cauchy horizon shrinks to cero, leading to a null singularity hidden by an event
horizon. For µ > 0, the spacetime has a single horizon, and its causal structure
coincides with that of Schwarzschild-AdS.

- For z > 4 and ξ = 0, the structure of the black holes in terms of the different
values of µ is exactly as the previous one. Nevertheless, for z > 4 and ξ > 0, the
analysis changes. There is a minimum value of µ, that can have either sign, for
which the black hole is extremal, and above which the are both an event and a
Cauchy horizon.

4The case z = 4 can be integrated from scratch and it requires to impose ξ = 0 in the
self-interaction (3.4.2). The metric function in this case reduces to (3.4.7), without the last
term.
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Figure 3.4.1: The panels show the structure of the curve µ = µ(rh) for different
values of ξ for z = 3/2. For a given fixed value of µ the horizons are located at
the intersections of the horizontal lines with the curves.

Even though the range 1 < z < 2 leads to a potential (3.4.2) that is unbounded
from below, there is a rich set of causal structures that are worth to be analyzed
even when one maintains the restriction ξ > 0. In order to explore the parameter
space, it is useful to consider the plane (rh, µ) as well as the plane (µ, ξ), where
rh as a function of µ is obtained by solving g (rh) = 0, with g(r) given in (3.4.7).

In Figure 3.4.1, we have chosen z = 3/2 for the three panels, that depict the
curves µ = µ (rh) for different values of the self-coupling ξ. For a given value of the
integration constant µ, the horizons will be located at the crossings of the horizontal
line µ = µcte and the curves. In the first panel we see that there is a critical value
of ξ = ξ1crit ∼ 17.2

√
e
l3

, below which there is a single event horizon for any value
of µ > 0 (see e.g. the curve with ξ = 15). For ξ1crit < ξ < ξ2crit ∼ 18.78

√
e
l3

(see
an example in the second panel), decreasing µ from infinity we have a black hole
with a single horizon, which for a given value of µ develops a degenerate inner
horizon, still surrounded by the external event horizon. Then, there is a range of
values for µ that lead to a black hole inside a black hole structure. Such range for
µ is bounded from below by a critical value that leads to an inner horizon covered
by a degenerate external event horizon. Finally, for lower values of µ > 0, one
recovers causal structure of a unique event horizon. The second and third panels
indicate the horizon structures for ξ = 18.5 and ξ = 20, respectively.

Finally, Figure 3.4.2 summarizes the causal structures that can be obtained, in
the plane (µ, ξ) for z = 3/2.
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Figure 3.4.2: Causal structures that emerge for different values of the parameter
ξ and the integration constant µ for z = 3/2.

It is also worth to discuss the thermal properties of the black holes we have
considered in this section. As usual, the temperature of the event horizon can be
computed requiring the regularity of the Euclidean continuation. The entropy
can be computed using Wald’s formula, and since all the fields are regular on
the horizon, and the couplings of matter with the Einstein-Hilbert action are
minimal, the entropy reduces to the Bekenstein-Hawking formula, which in the
normalization of the action (3.4.1) takes its usual form

S =
A

4G
=
πr2+
G

. (3.4.12)

Notice that the black holes that we are currently discussing are characterized by a
single integration constant, that defines the energy content of the spacetime. One
can obtain the mass of these black holes by the Abbott-Deser method, adapted
to asymptotically, topologically Lifshitz black holes, which in this case leads to a
finite result. In order to fix the absolute value of the energy using the Abbott-Deser
method one requires to identify a background, nevertheless the first law will be
fulfilled for any choice of such reference geometry. As discusses above, for z > 2

in order to have an event horizon, the value of µ is always bounded from below
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by an extremal case, which can be naturally chosen as a background metric (see
e.g. [49]). One can show that for z > 2, for a given choice of the temperature,
there is a unique branch of black holes, which are always thermally favoured with
respect to the extremal background since the free energy of the latter is set to
zero, while the free energy of the former is always negative. Figure 3.4.3 presents
the corresponding plots.
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Figure 3.4.3: Temperature vs radius and Free energy vs temperature for black
holes with z = 5, ξ = 15 ℓ = 1, e = 1.

The situation for 1 < z < 2 is more subtle, since there is a range of ξ for which no
extremal black hole exists, and therefore there is no natural choice of background
in this case. In Figures 3.4.4 and 3.4.5 we have considered the thermal properties
of event horizons ξ = 18ℓ and ξ = 15ℓ, respectively, and fixing z = 3/2. The
former family contains an extremal black holes while the latter does not.
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Figure 3.4.4: Temperature vs radius, and Free energy vs temperature for black
holes with z = 3/2, ξ = 18 ℓ = 1, e = 1.

Let us discuss in some detail the case with the z = 3
2

and ξ = 18ℓ, which is
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particularly interesting (see Figure 3.4.4). As the mass decreases the radius of the
event horizon shrinks and eventually the horizon becomes extremal at zero mass.
If the mass falls below this minimum value, we still find a small black hole, which
has a maximum size that is gaped with respect to radius of the extremal black
hole (see also panel two of Figure 3.4.1). Large black holes, with radius above
the extremal value always dominate the canonical ensemble as depicted in Figure
3.4.4. The free energy of the extremal case has been set to zero since we have
used such geometry as background.

Some details of the case z = 3/2 and ξ = 15 are discussed in the caption of figure
3.4.5, a family that does not contain an extremal black holes.
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Figure 3.4.5: The figures show the temperature vs radius and Free energy
vs temperature for black holes with z = 3/2, ξ = 15 and l = 1. There is no
extremal black hole in this family. Thus, the second panel only leads to sensible
information if one is comparing the free energy between the large and the small
black holes. In this case the configuration with vanishing free energy is actually a
naked singularity.

3.4.2 Linear times exponential potentials

The second family of potentials are given by a deformation of the scalar potential
that appears in N = 4 SU (2) × SU (2) gauged supergravity (2.4.27). In this
section, in order to present the exact solutions in a simple manner, we will see
that it is useful to normalize the action functional as follows

I [gµν , A, ϕ] =

∫
d4x
√
−g
(
R

4
− 1

2
∂µϕ∂

µϕ− e2ϕ

2g2
F i
µνF

iµν − V2 (ϕ)
)

(3.4.13)
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with
V2 (ϕ) = ξe−2ϕ + ζϕe−2ϕ , (3.4.14)

and
ζ =

(g2η2 − 1)

η4g2
, (3.4.15)

which has to be interpreted as an equation for η in terms of the coupling g and
ζ. The potential (3.4.14) is bounded from below when ζ > 0 for either sign
of ξ, while for ζ < 0 the potential is unbounded from below. Notice that we
have fixed the dilatonic coupling, which is required if we want to consider this
theory as a deformation of a truncation of the mentioned supergravity theory,
that is obtained by modifying the potential only. Indeed, when ζ = 0, the theory
(3.4.13) is recovered as a consistent truncation of N = 4 SU (2)× SU (2) gauged
supergravity by setting ξ = −g2

8
and η = 1/g. Again, the gauge field is given by

the meron configuration (3.4.8) while in this case the dilaton reduces to

ϕ (r) = ln

(
r

η

)
. (3.4.16)

For the present family of solutions, the metric of the spacetime is given by

ds2 = −r2f (r) dt2 + dr2

f (r)
+ r2dΩ2 , (3.4.17)

with
f (r) = −ζ ln

(
r

η

)
η2 + (ζ − ξ) η2 + 1

4η2g2
− µ

r2
. (3.4.18)

Here µ is an integration constant. In spite of the fact that the metric has a
logarithmically growing term in the areal radial coordinate, the curvature of the
spacetime vanishes when r →∞, therefore the spacetime is asymptotically locally
flat.

Using the Abbott-Deser method, and choosing as a background the spacetime
with µ = 0, leads to the following expression for the mass (cf. equation (3.4.13)):

M = 2πµ . (3.4.19)

Now we proceed to analyze the causal structures contained in this family of
black holes. The equation for the zeros of the function f (r) in (3.4.18) leads to
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the a Lambert W function5. For ζ > 0 the largest zero of (3.4.18) represents a
cosmological horizon, while for ζ < 0 the largest zero of (3.4.18) gives rise to an
event horizon. When ζ vanishes there could be only one horizon located at

rh|ζ=0 =

(
4µg2

g2 − 4ξ

) 1
2

, (3.4.20)

which for g2 > 4ξ and µ > 0 is an event horizon, while for g2 < 4ξ and µ < 0

represents a cosmological horizon.

Now, let us further analyze the Lambert W function obtained for the location of
the would be horizons, which will be useful in the study of the thermal properties
of these black holes. Indeed, the horizons will be located at r = rh such that

f (r) = a+ br2h ln r + cr2h = 0 , (3.4.21)

which setting x = r−2
h leads to

ax− b

2
lnx+ c = 0 , (3.4.22)

where

a = −µ, b = −ζη2, c = 1

4η2g2
+ (ζ − ξ) η2 + ζη2 ln η . (3.4.23)

The existence, and number of solutions of (3.4.22) depends on the value of the
discriminant6

∆ = −2a
b
e2

c
b . (3.4.24)

We have two zeros when −1
e
< ∆ < 0, which restricts the values of µ depending

also on the sign of ζ (see analysis below). Within such ranges the two roots of
(3.4.22) are given by

rh2 = e
1
2
W0(∆)− c

b , rh1 = e
1
2
W−1(∆)− c

b , (3.4.25)

5The Lambert W function is defined by W (z) eW (z) = z. This relation leads to a multivalued
W = W (z). Restricting our attention to W (z) : R → R, there are two branches W0 (z) :(
−e−1,∞

)
→ (−1,+∞) and W1 :

(
−e−1, 0

)
→ (−1,−∞).

6See reference [66] for an example of a different setup where the location of the event horizon of
a black hole is given in terms of a Lambert W function. The formulae in the appendix of such
reference are relevant to our analysis.
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and since W0 (x) > W−1 (x) , x ∈
(
−1

e
, 0
)
, the root rh2 is always larger than

rh1 . For ζ > 0 in order to have two roots,µ must lie within the range 0 < µ <

µmax =
η2ζ
2
e1+

2c
b , and as mentioned above rh2 = r++ and rh1 = r+ correspond to a

cosmological and an event horizon, respectively. On the other hand, for ζ < 0 and
µmin = −η2|ζ|

2
e1+

2c
b < µ < 0, there are two horizons as well, located at rh2 = r+

and rh1 = r−, which in this case correspond to an event and a Cauchy horizon,
respectively.

For ∆ ≥ 0 and for ∆ = −1
e
, there is a unique horizon, which can be an event or a

cosmological horizon, depending on the values of the remaining constants. Finally
for ∆ < −e−1, there are no horizon.

Let us now provide the expression for the temperature and the entropy for a
horizon located at r = r⋆. The former reads

T⋆ =
1

4π

√
d

dr

(
r2
( a
r2

+ b ln r + c
)) d

dr

(( a
r2

+ b ln r + c
))∣∣∣∣∣

r=r⋆

(3.4.26)

=

√
b

4π

√
b+ bW⋆ (∆)− 2ae−W⋆(∆)+2 c

b − 2aW⋆ (∆) e−W⋆(∆)+2 c
b , (3.4.27)

while the entropy, is given by the Bekenstein-Hawking formula, which in the
normalization of (3.4.13) leads to

S⋆ = 4π2eW⋆(∆)− 2c
b . (3.4.28)

Here W⋆ (∆) has to be understood as W−1 (∆) or W0 (∆) depending on whether
we are dealing with a single event horizon, a cosmological and an event horizon,
or an event and a Cauchy horizon.

As a final consistency check, let us verify that the first law is fulfilled, which will
turn out to require using some identities satisfied by the Lambert W function.
Our black holes are characterized by a single integration constant, µ, and the
difference in entropy of two equilibrium configurations corresponding to the values
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µ and µ+ δµ, is given by

δS⋆ = 4π2eW⋆(∆)− 2c
b δ (W⋆ (∆)) (3.4.29)

= 4π2eW⋆(∆)− 2c
b W ′

⋆ (∆)
2δµ

b
e2

c
b (3.4.30)

= −4π2 e
W⋆(∆)− 2c

b

∆+ eW⋆(∆)

∆

a
δµ , (3.4.31)

where in going from the before to last to the last line we have used the following
identity of the derivative of the Lambert W function:

W ′
⋆ (∆) =

(
∆+ eW⋆(∆)

)−1
. (3.4.32)

Multiplying δS⋆ times the temperature (3.4.27) leads to

TGHδS⋆ = −4π2δµbe−2 c
b
∆

a

√
b

4π

√√√√ 1 +W⋆ (∆)

b+ W⋆(∆)
∆

b
(
−2a

b
e

2c
b

) (3.4.33)

= −πδµb1
a

(
−2a

b
e2

c
b

)
e−2 c

b (3.4.34)

= 2πδµ (3.4.35)

which shows that the first law is fulfilled for every potential type of horizon

δM = T−δS− and δM = T+δS+ and δM = T++δS++ . (3.4.36)
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Chapter 4

Exact scalar (Quasi-)normal modes

of black hole and solitons

Quasinormal modes play a very important role both in astrophysical as well as
in theoretical contexts. In the former, they dominate the ringdown dynamics of
the final black hole obtained from the fusion of compact objects, and a direct
measurement of the mode with the lowest damping helps obtaining the mass and
angular momentum of the final object [79]. In the latter, black hole quasinormal
modes, within the context of holography, allow for the computation of relaxation
properties of the dual field theory living at the boundary of AdS [80],[81]. It is well-
known that even for simple black holes, as for example for Schwarzschild-(A)dS
the computation of quasinormal modes relies on numerical techniques. These
techniques are fully reliable, notwithstanding there are particular interesting cases
where the spectrum of quasinormal frequencies can be found analytically which
are useful to explore the relaxation properties of perturbations outside a black hole
in an exact manner as one modifies the parameters that define the background
geometry. A partial list of such cases is given by [82]-[94]. We have identified
a new family of black holes and solitons that allow for the exact integration of
non-minimally coupled scalar probes, in the context of SU (2) × SU (2) N = 4

gauged supergravity in four dimensions. We have identified this theory in section
2.4.2 as the dimensional reduction on S3 × S3 from 10D supergravity [40], [41].
In this chapter we will consider the mostly plus signature for which the action
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principle reads

S =

∫
d4x
√
−g
[
R

4
− 1

2
∂µϕ∂

µϕ− 1

2
e4ϕ∂µa∂

µa+
e2A + e2B

8
e2ϕ (4.0.1)

− e−2ϕ

4

(
AiµνAiµν +BiµνBiµν

)
−a

4

ϵµνρσ√
−g
(
AiµνA

i
ρσ +BiµνB

i
ρσ

)]

This chapter contains the second part of new results of this thesis and it is in process
to be published in JHEP [103]. We will focus on the computation of quasinormal
modes of scalar probes on black holes of this theory as well as on the computation of
normal frequencies of the same probe fields on the gravitational soliton constructed
in the previous section, both in the supersymmetric and non-supersymmetric cases.
We will deal with solutions with vanishing axion field, and since the self-interaction
of the dilaton does not have a local extremum, the solutions have an asymptotic
structure that has less symmetry than a maximally symmetric spacetime, although
we will see the emergence of an asymptotic conformal Killing vector.

4.1 Scalar (quasi-)normal modes of black holes and

solitons

The two families of black holes we will be interested in this section were constructed
in [43]. The metric in both cases, namely spherical and planar, reads

ds2 = −αr2
(
1−

r2+
r2

)
dt2 +

dr2

α
(
1− r2+

r2

) + r2dΣ2
2 , (4.1.1)

where Σ2 is a two-dimensional Euclidean manifold of constant curvature γ = +1, 0.

In the spherically symmetric case, γ = +1 and dΣ2
2 = dθ2 + sin2 θdφ2 is the line

element of the round two-sphere, while the constant α, the dilaton and gauge
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fields read

α =
1

2

(
e2A + e2B

) (
H2

A +H2
B

)
+

1

4
, (4.1.2)

ϕ (r) = − ln

(
r

2
√
H2

A +H2
B

)
, (4.1.3)

Ai
[1] = −HA cos θdφδi3 , (4.1.4)

Bi
[1] = −HB cos θdφδi3 . (4.1.5)

In the planar case, γ = 0, dΣ2
2 = dx2 + dy2 the gauge fields vanish and

α =
e2A + e2B

8
, (4.1.6)

ϕ (r) = − ln (r) . (4.1.7)

The black holes (4.1.1) approach the background

ds2back = −αr2dt2 + dr2

α
+ r2dΣ2

2 , (4.1.8)

with the following asymptotic behavior

δgtt = O (1) , δgrr = O
(
r−2
)
. (4.1.9)

Notice that the background (4.1.8) has an extra conformal Killing vector generated
by r → λr. The temperature of this black hole has the intriguing property of
being independent of the r+, namely a constant, and in this normalization is given
by

T =
α

2π
. (4.1.10)

As we show below, a similar feature occurs with the quasinormal frequencies of
the non-minimally coupled scalar on this geometry, which do not depend on r+,
leading to isospectral geometries in what regards to such operator. Wald’s formula
for the entropy yields

S =
A

4G
= πr2+Vol (Σ) , (4.1.11)

where Vol(Σ) is the volume of the Euclidean manifold Σ2 and we have normalized
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the Einstein term in the action (4.0.1) such that G = (4π)−1. First law

dM = TdS , (4.1.12)

provides the following value for the mass of the black hole

M =
αr2+Vol (Σ)

2
. (4.1.13)

Here, as an avatar for the study of the stability of these black holes, we will
consider a real scalar probe, coupled to the Ricci scalar in a non-minimal manner:

□Φ− ξRΦ = 0 , (4.1.14)

on the background (4.1.1).

Given the local isometries of the spacetime, the scalar probe admits a mode
separation which is given by

Φ
(
t, r, yi

)
= Re

(∫
dω
∑
A

e−iωtHω,A (r)YA (y)

)
, (4.1.15)

where yi are the coordinates on the Euclidean manifold Σ2 and Yk (y) are harmonic
function on such manifold, which are labeled by the multi-index A. Concretely,
for the spherically symmetric case the harmonic functions are standard spherical
harmonics, namely A = {l,m} and they fulfil

∇2
S2Yl,m = −k2Yl,m = −l (l + 1)Yl,m , (4.1.16)

while for the planar case, the harmonic functions are trivially given by plane waves
of the form

YA = Yk⃗ = Ce−ik⃗·y⃗ , (4.1.17)

which fulfil
∇R2Yk⃗ = −k

2Yk⃗ = −
(
k21 + k22

)
Yk⃗ . (4.1.18)

Hereafter, for brevity we introduce the notation Hω,A (r) = H (r).
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Notice that since the Ricci scalar of the spacetime has a non-trivial radial profile

R =
2γ − 6α

r2
−

2αr2+
r4

, (4.1.19)

the non-minimal coupling term in (4.1.14) cannot be seen as an effective mass term.
In spite of this fact, we will show that the equation for the radial profile of the
scalar probe H (r) can be solved in an exact manner in terms of hypergeometric
functions.

Introducing the separation (4.1.15) on the scalar field equation (4.1.14) as a probe
field on the black hole metric (4.1.1), after performing the change of variables

r =
r+

(1− x)1/2
, (4.1.20)

which maps the region of outer communication r ∈ [r+,+∞[ to x ∈ [0, 1[, leads
to the following equation for the radial profile

d2H (x)

dx2
+
1

x

dH (x)

dx
+

(
ω2

4α2x2 (1− x)2
− k2

4αx (1− x)2
− (αx− 4α + γ)

2αx (1− x)2
ξ

)
H (x) = 0 .

(4.1.21)
Remarkably, this equation admits a solution in terms of hypergeometric functions.
After imposing ingoing boundary condition at the horizon one obtains

H (x) = C1x
− iω

2α (1− x)
α+

√
(1−6ξ)α2+2ξαγ+αk2−ω2

2α F (a1, b1, c1, x) , (4.1.22)

with

a1 =
1

2
− iω

2α
−
√
2ξ

2
+

√
(1− 6ξ)α2 + 2ξαγ + αk2 − ω2

2α
, (4.1.23)

b1 =
1

2
− iω

2α
+

√
2ξ

2
+

√
(1− 6ξ)α2 + 2ξαγ + αk2 − ω2

2α
, (4.1.24)

c1 = 1− iω

α
. (4.1.25)
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Using Kummer identities, the ingoing solution (4.1.22) can be rewritten as

H (x) = C1x
− iω

2α (1− x)
α+

√
(1−6ξ)α2+2ξαγ+αk2−ω2

2α (4.1.26)

×
[
Γ (c1) Γ (c1 − a1 − b1)
Γ (c1 − a1) Γ (c1 − b1)

F (a1, b1, a1 + b1 + 1− c1, 1− x)

+ (1− x)c1−a1−b1 Γ (c1) Γ (a1 + b1 − c1)
Γ (a1) Γ (b1)

F (c1 − a1, c1 − b1, 1 + c1 − a1 − b1, 1− x)
]
,

(4.1.27)

which near infinity, as a function of the radial coordinate r, leads to

H (r) ∼r→∞
Abh

rη+

(
1 +O

(
1

r

))
+
Bbh

rη−

(
1 +O

(
1

r

))
(4.1.28)

where

Abh =
Γ (c1) Γ (c1 − a1 − b1)
Γ (c1 − a1) Γ (c1 − b1)

, (4.1.29)

Bbh =
Γ (c1) Γ (a1 + b1 − c1)

Γ (a1) Γ (b1)
, (4.1.30)

and

η± = 1±
√

(1− 6ξ) +
(2γξ + k2)

α
− ω2

α2
. (4.1.31)

This implies that different modes will have polynomial asymptotic expansions at
infinity in the radial coordinate, with an exponent that is frequency dependent.
This is in contrast with the asymptotically flat case for which R (r) ∼ e±iωr, and
with the asymptotically AdS case for which η± = ∆± being independent of both
the angular momentum k and the frequency ω. Since in general ω ∈ C, in order
to understand the possible boundary conditions at infinity, we will require the
action principle to attain an extremum on the family of solutions that are ingoing
at the horizon. The action principle leading to (4.1.14) reads

I =

∫
d4x
√
−g
(
−1

2
∇µΦ∇µΦ− 1

2
ξRΦ2

)
, (4.1.32)

and its on-shell variation with respect to the scalar field leads to the boundary
term

δI = −
∫
M

d4x
√
−g∇µ (∇µΦδΦ) = −

∫
∂M

d3x
√
−γn̂µ∇µΦδΦ , (4.1.33)
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where γ is the determinant of the induced metric on the boundary, while n̂µ is its
unit normal vector. The boundary is the union of the spatial surfaces at t = ti

and t = tf , with the surface r = r0 with r0 →∞. As usual, the contribution of
the former vanish since we impose δΦ (ti, r, y) = δΦ (tf , r, y) = 0, while the latter
leads to

− lim
r0→∞

r3∂rHδH|r=r0 = lim
r0→∞

η+A
2
bh

r2η+−2
+
η−B

2
bh

r2η−−2
+
AbhBbh (η+ + η−)

rη++η−−2

∣∣∣∣
r=r0

δC1

(4.1.34)
One can check that η++η−−2 vanishes, while Re (2η− − 2) < 0 and Re (2η+ − 2) >

0 on the whole complex ω-plane, therefore in order to obtain a genuine extremum
of the on-shell action principle on the ingoing solution at the horizon, we need to
impose Bbh = 0. From the view point of the asymptotic expansion (4.1.28), this
corresponds to a Dirichlet boundary condition. Considering the expression for
Bbh in (4.1.30) we obtain the following two equations for the spectrum

a1 =
1

2
− iω

2α
−
√
2ξ

2
+

√
(1− 6ξ)α2 + 2ξαγ + αk2 − ω2

2α
= −p with p = 0, 1, 2, ... ,

(4.1.35)

b1 =
1

2
− iω

2α
+

√
2ξ

2
+

√
(1− 6ξ)α2 + 2ξαγ + αk2 − ω2

2α
= −q with q = 0, 1, 2, ... .

(4.1.36)

Equation (4.1.35) leads to the following purely imaginary spectrum

ωp = −
(
(2γ − 8α) ξ + 2

√
2ξ (1 + 2p)α− 4p (1 + p)α + k2

) (
1 + 2p+ 21/2ξ1/2

)
4ξ − 2(1 + 2p)2

i ,

(4.1.37)
which is a valid solution of (4.1.35) provided

νp :=

(
1− 4ξ + (2p+ 1)2

)
α + 2γξ + k2 − 2 (2p+ 1)α

√
2ξ

4
(
1 + 2p−

√
2ξ
)
α

< 0 . (4.1.38)

On the other hand, equation (4.1.36) leads to the following set of frequencies

ωq = −
((2γ − 8α)ξ − 2

√
2ξ (1 + 2q)α− 4q(1 + q)α + k2)(1 + 2q −

√
2ξ)

4ξ − 2(1 + 2q)2
i ,

(4.1.39)
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Figure 4.1.1: Frequency ωp and νp on the spherically symmetric black hole
γ = 1, for the non-minimally coupled scalar with non-minimal coupling ξ, on the
mode with p = 0 and angular momentum l = 1. The allowed modes correspond to
values of ξ such that νp < 0. The modes with frequencies with positive imaginary
part are unstable. In consequence, stability sets an upper bound on the value of
the non-minimal coupling parameter.

which is instead a valid solution of (4.1.36) provided

νq :=

(
1− 4ξ + (2p+ 1)2

)
α + 2γξ + k2 + 2 (2p+ 1)α

√
2ξ

4
(
1 + 2p+

√
2ξ
)
α

< 0 . (4.1.40)

It can be checked that both spectra (4.1.37) and (4.1.39), in the “s-wave" case
(k2 = 0) lead purely imaginary frequencies with negative imaginary part. The
conditions (4.1.38) and (4.1.40) restrict the values of the non-minimal coupling
parameter that lead to non-trivial spectra. An exhaustive exploration of these
spectra is beyond the scope of this work, nevertheless, for the spherically symmetric
black holes, with k2 = l (l + 1) = 2 we find a range of values of the non-minimal
coupling ξ leading to unstable modes coming from the spectrum (4.1.37) when
p = 0. Figure 1 depicts both Im (ωp) and νp from (4.1.37) and (4.1.38), respectively
for a certain range of the non-minimal coupling, showing the presence of valid
modes with Im (ωp) > 0, therefore unstable. Notice that there is a valid mode for
which ω = 0, which can be interpreted as a static scalar cloud [95]. The existence
of these static solutions are usually interpreted as smoking guns for the existence
of a new branch of solutions in which the probe becomes fully backreacting (see
e.g. [96]). Notice that in our case, the would-be static backreacting solution might
be non-spherically symmetric since l = 1.
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We can see from equations (4.1.38) and (4.1.40) that for a massless, minimally
coupled scalar, namely for ξ = 0, it is not possible to fulfill the boundary conditions
and there are no quasinormal modes of such massless scalar probe fields on the
black hole background. This situation is similar to what occurs for a massless
scalar probe on the asymptotically locally flat, static black holes in New Massive
Gravity [93]. In the present case, a non-vanishing value of the non-minimal
coupling allows for non-trivial quasinormal modes, provided (4.1.38) and (4.1.40)
are fulfilled. It is very interesting to notice that such quasinormal frequencies
do not depend on the black hole mass M = M(r+), and therefore all the black
holes in the family (4.1.1) for different values of r+ are isospectral in what regards
the quasinormal modes of the non-minimally coupled scalars. Notice that this is
the case both, in the spherically symmetric and planar cases recovered by setting
γ = 1 and γ = 0, respectively.

It is also illuminating to rewrite the second order equation for the radial profile
of the non-minimally coupled scalar probe in a Schroedinger-like form. This is
achieved by introducing the tortoise coordinate r∗ for the metric (4.1.1)

r∗ =
1

2α
ln
(
r2 − r2+

)
→ r =

√
r2+ + e2αr∗ , (4.1.41)

which maps r ∈]r+,∞[ to the whole real line, i.e. r∗ ∈]−∞,+∞[. Notice that
we have been able to explicitly solve r in terms of r∗, which is not possible for
Schwarzschild black hole. Using this fact, we can obtain the potential of the
Schroedinger-like equation explicitly in terms of r∗. Introducing

F (r) =
H (r)

r
, (4.1.42)

leads to
− d2F

dr2∗
+ U (r∗)F = ω2F , (4.1.43)

with

U (r∗) =
α
[
r2+ (2 (1− 4ξ)α + 2γξ + k2) e2αr∗ + e4αr∗ ((1− 6ξ)α + 2γξ + k2)

]
(r2+ + e2αr∗)

2 .

(4.1.44)
Notice that this potential always vanishes in the near horizon region, namely when
r∗ → −∞. Even more, when ξ = 0 as r∗ →∞ the potential approaches a positive
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constant and has a Heviside-like shape, being a monotonically increasing function
of r∗. As mentioned above, for the minimally coupled case it is impossible to
find quasinormal modes, which is consistent with the basic fact that Schroedinger
equation on a Heviside potential cannot have solutions that approach zero at
x→∞ and that represent purely “outgoing" modes travelling towards the left as
x→ −∞.

In what follows we move to the problem of computing the spectrum for a non-
minimally coupled scalar probe on the gravitational solitons constructed in section
3.1 in N = 4 SU (2)× SU (2) gauged supergravity, both in the supersymmetric
and non-supersymmetric cases.

4.2 Spectrum of probe scalars on solitons

As we showed in section 3.1, N = 4 SU(2)× SU (2) gauged supergravity has the
following soliton solution

ds2 = −ρdt2 + g (ρ) dφ2 +
dρ2

g (ρ)
+ ρdy2 , (4.2.1)

where
g (ρ) = α

(
ρ−m− q2

ρ

)
, (4.2.2)

m and q being integration constants, α is related with the gauge couplings and φ
is identified with period βφ given by

βφ =
4π

g′ (ρ0)
. (4.2.3)

Here g (ρ0) = 0, ρ ≥ ρ0 and the constants α, q, the gauge fields and the dilaton
are given by

α =
1

2

(
e2A + e2B

)
, q2 =

8 (Q2
A +Q2

B)

e2A + e2B
, (4.2.4)

Ai
[1] =

QA

ρ
dφδi3 , Bi

[1] =
QB

ρ
dφδi3 , (4.2.5)

ϕ (r) = −1

2
ln ρ . (4.2.6)
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For general values of the integration constants m and q, the non-minimally coupled
scalar probe does not admit a solution in a closed form. Nevertheless, for the
case q = 0 and m arbitrary, as well as for the case m = 0 and q arbitrary, the
non-minimally coupled scalar field can indeed be solved in terms of hypergeometric
functions, consequently boundary conditions can be imposed in a closed manner,
leading to a discrete set of frequencies. Hereafter we refer to these special cases as
soliton-1 and soliton-2, which are defined by the metric (4.2.1), with g (ρ) given
by

gsol1 (ρ) = α (ρ−m) , (4.2.7)

gsol2 (ρ) = α

(
ρ− q2

ρ

)
, (4.2.8)

respectively. The soliton-2 spacetime leads to a supersymmetric configuration
that preserves 1/4 of the supersymmetry.

Defining φ = βφ

2π
ϕ, the coordinate ϕ will have period 2π, and the metric (4.2.1)

reduces to
ds2 = −ρdt2 +

β2
φ

4π2
g (ρ) dϕ2 +

dρ2

g (ρ)
+ ρdy2 . (4.2.9)

Given the isometries of this spacetime we write the following separation ansatz
for a scalar probe

Φ = Re

(∑
n

∫
dωdke−iωt+iky+inϕHω,k,n (ρ)

)
. (4.2.10)

The Ricci scalar of (4.2.9) has a non-trivial profile and it is given by

R =
g (ρ)

2ρ2
− g′′ (ρ)− 2g′ (ρ)

ρ
. (4.2.11)

Introducing the notation Hω,k,n (ρ) = H (ρ), the equation for the non-minimally
coupled scalar

□Φ− ξRΦ = 0 , (4.2.12)

leads to the following ODE for the radial dependence

2ρ2g2β2
φH

′′+2gρβ2
φ (gρ)

′H ′+
(
gβ2

φ

(
2g′′ρ2 + 4g′ρ− g

)
ξ − 2ρ

(
4π2n2ρ+ gβ2

φ

(
k2 − ω2

)))
H = 0 .

(4.2.13)
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Here the prime denotes derivative with respect to ρ. In what follows we analyze
this equation for both soliton-1 and soliton-2 spacetimes, separately.

4.2.1 Non-supersymmetric soliton

For the family of solitons defined by the function soliton-1 in (4.2.7), we have
ρ0 = m, and g′ (ρ0) = α, therefore βφ = 4π

α
. Introducing the coordinate x such

that
ρ =

ρ0
1− x

, (4.2.14)

which maps ρ ∈ [ρ0,∞[ to x ∈ [0, 1[, leads to an equation for the radial profile
that can be integrated in terms of hypergeometric functions. Imposing regularity
at the origin ρ = ρ0 (x = 0) leads to the following solution

H (ρ (x)) = C1x
|n|
2 (1− x)

1
2

(
1−
√

(1−6ξ)+n2+
4(k2−ω2)

α

)
F (α1, β1, γ1, x) , (4.2.15)

with

α1 =
1

2

(
1 + |n|+

√
2ξ
)
− 1

2

√
(1− 6ξ + n2) +

4 (k2 − ω2)

α
, (4.2.16)

β1 =
1

2

(
1 + |n| −

√
2ξ
)
− 1

2

√
(1− 6ξ + n2) +

4 (k2 − ω2)

α
, (4.2.17)

γ1 = 1 + |n| .

As in the previous section, using Kummer identities allows to rewrite (4.2.15) as

H (ρ (x)) = C1x
|n|
2 (1− x)

1
2

(
1−
√

(1−6ξ)+n2+
4(k2−ω2)

α

)
×[

Γ (γ1) Γ (γ1 − α1 − β1)
Γ (γ1 − α1) Γ (γ1 − β1)

F (α1, β1, α1 + β1 + 1− γ1, 1− x) (4.2.18)

+(1− x)γ1−α1−β1
Γ (γ1) Γ (α1 + β1 − γ1)

Γ (α1) Γ (β1)
F (γ1 − α1, γ1 − β1, 1 + γ1 − α1 − β1, 1− x)

]
(4.2.19)

which leads to the following two leading terms on each branch of the asymptotic
behavior as x→ 1

H (x) ∼
x→1

A1 (1− x)δ− +B1 (1− x)δ+ , (4.2.20)
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with

δ± =
1

2

(
1±

√
(1− 6ξ) + n2 +

4 (k2 − ω2)

α

)
, (4.2.21)

and

A1 =
Γ (γ1) Γ (γ1 − α1 − β1)
Γ (γ1 − α1) Γ (γ1 − β1)

, (4.2.22)

B1 =
Γ (γ1) Γ (α1 + β1 − γ1)

Γ (α1) Γ (β1)
. (4.2.23)

Since the exponents in the asymptotic behavior (4.2.20) are ω dependent, we must
be careful when imposing the boundary conditions. Again, the boundary term
coming from the on-shell variation of the action principle (4.1.32)-(4.1.33) leads
to a single contribution at infinity coming from the surface x = x0 → 1. In terms
of the coordinate x, the non-supersymmetric soliton spacetime reads

ds2 = − ρ0
1− x

dt2 +
4ρ0x

1− x
dϕ2 +

ρ0

αx (1− x)3
dx2 +

ρ0
1− x

dy2 , (4.2.24)

while the boundary term of the on-shell variation of the action reads

lim
r→∞

∫
d3x
√
−γn̂µ∇µΦδΦ

∼ lim
x→1

(
δ2−A

2
1 (1− x)

2δ−−1 + δ2+B
2
1 (1− x)

2δ+−1 + A1B1 (δ+ + δ−) (1− x)δ++δ−−1
)
δC1

(4.2.25)

It can be checked that Re (2δ− − 1) < 0 on the whole complex ω-plane, while
Re (2δ+ − 1) > 0 and δ+ + δ− − 1 = 0. Therefore, in order to make the boundary
term to vanish when evaluated on-shell on the branch that is regular at the origin,
we must impose

A1 =
Γ (γ1) Γ (γ1 − α1 − β1)
Γ (γ1 − α1) Γ (γ1 − β1)

= 0 . (4.2.26)

Notice that this is actually a Dirichlet boundary condition as can be seen from
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(4.2.20). The spectrum is therefore obtained from

γ1 − α1 =

√
(1− 6ξ + n2)α + 4 (k2 − ω2) +

√
α
(
1 + |n| −

√
2ξ
)

2
√
α

= −p ,

(4.2.27)

γ1 − β1 =
√
(1− 6ξ + n2)α + 4 (k2 − ω2) +

√
α
(
1 + |n|+

√
2ξ
)

2
√
α

= −q ,

(4.2.28)

with q and p in {0, 1, 2, ...}. One can also check that the second quantization
condition (4.2.28) cannot be fulfilled, nevertheless the quantization condition
(4.2.27) leads to the spectrum

ωp = ±
1

2

√
2α (|n|+ 2p+ 1)

√
2ξ + 4k2 − 2 (|n| (1 + 2p) + 4ξ + 2p (1 + p))α ,

(4.2.29)
which is a valid solution of (4.2.27) provided

νns := |n|+ 1−
√
2ξ + 2p < 0 . (4.2.30)

As in the case of the black hole, for the non-supersymmetric soliton requiring
regularity at the origin and Dirichlet boundary condition at infinity leads to an
eigenvalue problem with a void spectrum when ξ = 0. Nevertheless, the presence
of the non-minimal coupling leads to non-trivial probe modes.

The spectrum of the scalar on the non-supersymmetric soliton can be of diverse
nature. Depending on the values of the parameters, it could be void, purely
oscillatory namely with real frequencies (4.2.29) or unstable. The different behavior
can be seen as separated by thresholds in the value of the non-minimal coupling
ξ. Figure 2 shows two possible spectra.

4.2.2 Supersymmetric soliton

The 1/4 supersymmetric soliton is given by the metric (4.2.9) with the function
g (ρ) given by

gsol2 (ρ) = α

(
ρ− q2

ρ

)
. (4.2.31)

In this case the smooth origin of the spacetime is located at ρ = ρ0 = q and the
equation for the radial profile of the non-minimally coupled scalar probe has the
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Figure 4.2.1: The panels show the spectra of stable and unstable modes of the
non-minimally coupled scalar probe on the background of the non-supersymmetric
soliton. Valid solutions for the quantization equation leading to the frequencies
require νp < 0, therefore in both panels, to the left of the vertical black line, there
are no allowed modes given our boundary conditions.

following solution which is regular at the origin

H (x) = C1x
|n|
2 (1− x)

1
4
− 1

4

√
(1−6ξ)+4n2+

(k2−4ω2)
α F (α2, β2, γ2, x) , (4.2.32)

where in this case the coordinate x is conveniently chosen as

ρ =
ρ0

(1− x)1/2
. (4.2.33)

Here, the parameters of the hypergeometric function in (4.2.32) are given by

α2 = −
1

4

√
1− 6ξ + 4n2 +

4 (k2 − ω2)

α
+

1

2

(
|n|+ 1 +

1

2

√
1 + 2ξ

)
, (4.2.34)

β2 = −
1

4

√
1− 6ξ + 4n2 +

4 (k2 − ω2)

α
+

1

2

(
|n|+ 1− 1

2

√
1 + 2ξ

)
, (4.2.35)

γ2 = 1 + |n| . (4.2.36)

Using Kummer identity in (4.2.32) leads to the following leading terms of the two
branches of asymptotic behavior

H (x) ∼x→1 A2 (1− x)λ− +B2 (1− x)λ+ , (4.2.37)

with

λ± =
1

4
± 1

4

√
(1− 6ξ) + 4n2 +

(k2 − 4ω2)

α
, (4.2.38)
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and

A2 =
Γ (γ2) Γ (γ2 − α2 − β2)
Γ (γ2 − α2) Γ (γ2 − β2)

,

B2 =
Γ (γ2) Γ (α2 + β2 − γ2)

Γ (α2) Γ (β2)
. (4.2.39)

As in the previous section, when the variation of the action is evaluated on the
solution that is regular at the origin, one obtains a boundary term that vanishes
iff

A2 =
Γ (γ2) Γ (γ2 − α2 − β2)
Γ (γ2 − α2) Γ (γ2 − β2)

= 0 . (4.2.40)

In consequence, this implies the following two quantization conditions for the
spectrum

γ2 − α2 =
1

2
+
|n|
2

+
1

4

√
1− 6ξ + 4n2 +

4 (k2 − ω2)

α
− 1

4

√
1 + 2ξ = −p ,

(4.2.41)

γ2 − β2 =
1

2
+
|n|
2

+
1

4

√
1− 6ξ + 4n2 +

4 (k2 − ω2)

α
+

1

4

√
1 + 2ξ = −q ,

(4.2.42)

with p and q elements of {0, 1, 2, 3, ...}. It can be shown that the second condition
cannot be fulfilled, while the former leads to the spectrum

ω = ±
√
k2 + (1 + |n|+ 2p)α

√
1 + 2ξ − α

(
2ξ + (1 + 2p)2 + 2|n| (1 + 2p)

)
,

(4.2.43)
which are genuine solutions of (4.2.41) provided

νsusy = 2 + |n|+ 4p−
√
1 + 2ξ < 0 (4.2.44)

Depending on the ranges of the parameters one can obtain the same qualitative
spectra as in the non-supersymmetric soliton, namely there is a range of values
for the non-minimal coupling for which the spectrum is void, while in the
complementary range one can have both stable and unstable modes. Stable
oscillatory behavior can be achieved provided one restricts the values of the
non-minimal coupling.
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Chapter 5

Conclusion

In this thesis, we have found a new family of solutions of the Freedman-Schwarz
supergravity model. Some of these spacetimes have a geometry simple enough
to obtain the spectrum of a scalar probe non-minimally coupled. Also, we went
beyond supergravity and found two families of potentials for the scalar field in
such a way that the equations are solved by topologically Lifshitz black holes
with interesting causal structures and spacetimes with a logarithmic branch in
the metric function.

In sections 3.1 and 3.2 we started by revisiting the problem of BPS solutions in
the N = 4 SU (2)× SU (2) gauged supergravity. In the Abelian sector of gauge
fields of the theory, we have found a new completely regular, soliton spacetime,
which preserves one-quarter of the supersymmetry. The soliton is charged, and
asymptotically admits an extra conformal Killing vector. This spacetime can also
be obtained from the double analytic continuation of a plannar solution found in
[43]. The BPS conditions lead to a naked singularity in [43], nevertheless due to the
double Wick rotation, the conditions for unbroken supersymmetry in our case lead
to a regular spacetime. Also in the Abelian sector of the theory, but now assuming
spherical symmetry on the metric, we have also found a new BPS configuration
which preserves one-quarter of the supersymmetries, and that describes a naked
singularity. Notice that singular spacetimes are known to appear as BPS solutions
in gauged supergravities, as it is the case of the Reissner-Nordstrom solution in
AdS with Q =M [58].

The supergravity theory considered in this work has a potential for the dilaton
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without a local extremum, which leads to asymptotically locally flat spacetimes,
instead of locally AdS as it is the case in other gauged supergravities. Then, we
have moved to the construction of new, non-Abelian solutions, by considering
the meron ansatz [59]. Since the supergravity theory contains two su (2) gauge
fields, we have constructed electric-meronic solutions as well as double-meron
solutions with a spacetime that is spherically symmetric. The latter leads to
one-quarter BPS configurations where the spacetime is again singular. It is
interesting to remark that the non-BPS black holes in the double-meron sector,
have a temperature that is independent of the mass of the spacetime, which can be
seen as a signal of criticality. It would be interesting to allow non-trivial profiles
for the axion, which has been set to zero along our work, and to explore the
construction of more general exact solutions in this supergravity model.

A thorough exploration of self-interactions that allow for the explicit construction
of black holes has proven to be a worth task in different contexts, since for
example in the series of works [69]-[73] such analysis turned out to lead to a
one-parameter deformation of the four, single scalar truncations of the maximal
supergravity in four dimensions [74], as well as to the potentials of the two cases
that admit an ω-deformation [75] in the single dilaton consistent sectors identified
in [76]. With this in mind, in Section 3.4 we have moved beyond supergravity,
but keeping the metric, one gauge field and the dilaton as field content of the
theory. Within the meron ansatz for the gauge field, we have found that there
are at least two families of self-interactions for the scalar field which allow to
find exact analytic black holes with interesting properties. The first family of
self-interactions leads to topologically Lifshitz black holes [64] with a variety of
causal structures, containing for example a black hole inside a black hole. The
second family of potentials can be seen as a two-parameter deformation of the
dilaton potential of the Freedman-Schwarz model. The spacetime metric contains
a logarithmically growing term, in spite of which the asymptotic region is locally
flat. In this case there can be a single event horizon, a single cosmological horizon,
an event horizon surrounded by a cosmological one, and finally an event horizon
hiding a Cauchy horizon; the latter configuration can achieve extremality.

The spacetimes where we have integrated the scalar probe are solutions of the
Freedman-Schwarz model and approach a background at infinity which is not
maximally symmetric, but possesses and extra conformal Killing vector, which
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is due to the fact that the dilatonic potential of the theory does not have local
extrema. The solitonic geometries presented in section 3.1 are smooth at the
origin and can preserve 1/4 of the supersymmetries. At the origin and in the near
horizon region, the boundary conditions are clear and are given by regularity and
purely ingoing modes, respectively. Due to the non-trivial geometry at infinity,
the behavior of the scalar probe in the asymptotic region is given by powers
of the radial coordinate which depend on the frequencies. In order to select a
consistent boundary condition at infinity we impose that the on-shell variation of
the action functionals must vanish. This leads to a Dirichlet boundary condition
and allows to write the spectra in a closed form. For the massless scalar probe
it is impossible to fulfil these boundary conditions. For the black holes, this is
consistent with the fact that the effective Schroedinger-like potential controlling
the radial dependence of the scalar probe in terms of the tortoise coordinate,
has a Heaviside function shape. Including a non-minimal coupling allows for a
non-trivial spectrum which surprisingly, in the case of the black hole, does not
depend on the value of the mass of the spacetime. Therefore all these geometries
are isospectral in what regards to the non-minimally coupled wave operator. Given
the integrability properties of this potential it will be interesting to compare our
results with the recently reported potentials coming from a geometric approach to
spectral theory in connection with SU (2) Seiberg-Witten theory with fundamental
hypermultiplets (see Section 2 of [99]). Such potentials are also given in terms of
ratios of linear combinations of exponentials, and the technique elaborates on the
previous work [100] (see also the recent [101] and [102]).

Stability of the modes is achieved for a certain range of non-minimal couplings,
above which one finds modes that are exponentially growing in time, and that
are in consequence unstable. The stable and unstable regimes are separated by
solutions to the boundary eigenvalue problem which are time independent. These
solutions have the same properties as the scalar clouds found in [95] which from
the point of view of the fully backreacting theory are branching spacetimes to a
new family of solutions (see e.g. [96]).

We have been able to solve in a closed form the non-minimally coupled scalar
probe on a family of black holes and solitons of the Freedman-Schwarz model,
even in the case of 1/4-BPS geometries. Such scalar probe goes beyond the field
content of the theory, and it would be interesting to see whether some of the exact
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results we have obtained here, are also present in the context of gravitational
perturbation theory considering only the fields that lead to the supersymetric
model even if one has to rely on numerical or perturbative methods.

Conclusión

En esta tesis, encontramos nuevas soluciones al modelo de supergravedad
de Freedman-Schwarz. Algunos de estos espacios tiempos tienen geometrías
suficientemente simples para obtener el espectro de un escalar de prueba no-
minimalmente acoplado. Además, consideramos teorías mas generales que la
supergravedad de Freedman-Schwarz donde encontramos dos familias de potencias
para el campo escalar. Las ecuaciones de campo son resultas por agujeros negros
Lifshitz topológicos asintóticamente con estructuras causales interesante y espacios
tiempos con términos logarítmicos en la función métrica.

En las secciones 3.1 y 3.2 revisamos el problema de encontrar soluciones BPS
a la supergravedad N = 4 SU (2) × SU (2) gauged. En el sector Abeliano
de la teoría, encontramos soluciones regulares nuevas que preservan 1/4 de la
supersimetría. Estos solitones estan cargado, y asintóticamente adquieren un
nuevo vector de Killing conforme. Este espacio tiempo puede ser obtenido de la
doble continuación analítica de una solución planar de agujero negro encontrada
en [43]. Sin embargo, la condición BPS lleva a una singularidad desnuda en [43]
pero, gracias a doble rotación de Wick la condición BPS lleva a un espacio que
es regular. Exigiendo simetría esférica y aún en el sector Abeliano de la teoría,
encontramos configuraciones BPS nuevas que preservan 1/4 de la supersimetría
y describen una singularidad desnuda. Los espacios singulares BPS aparecen en
teorías de supergravedad, tal como el caso de las soluciones de Reissner-Nordstrom
en AdS con Q =M [58].

La teoría de supergravedad que consideramos en este trabajo tienen un potencial
para el campo escalar que no tiene un mínimo local. Esto lleva a soluciones
planas asintóticamente en vez de AdS asintóticamente como es el caso de otras
teorías de supergravedad gauged. Después construimos soluciones no-Abelianas
nuevas utilizando el ansatz de meron [59]. Debido a que la supergravedad contiene
dos campos de gauge no-Abelianos, construimos soluciones de meron cargado y
de doble meron en espacios tiempo con simetría esférica. La solución de doble
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meron es 1/4 BPS y el espacio tiempo es singular. Una propiedad curiosa de la
solución de doble meron es que la temperatura no depende de la masa, lo que se
puede entender como un signo de criticalidad. Sería interesante desformar estas
soluciones y permitir un perfil no trivial para el axion, que fue apagado en este
trabajo.

Explorar de forma exhaustiva los potenciales auto-interactuantes que permiten
soluciones de agujero negro es una tarea que ha mostrado ser importante en
varios contextos. Por ejemplo, este tipo de análisis fueron hechos en la serie de
trabajos [69]-[73], que dio lugar a una deformación uniparamétrica de las cuatro
supergravedades maximalmente simétricas truncadas con un solo campo escalar
[74], como también dio lugar a los dos potenciales que admiten una ω-desformación
[75] en el sector con un dilaton que es consistente y que fue identificado en [76].
Con estas ideas en mente, en la sección 3.4 consideramos potenciales más generales
que los de la supergravedad en cuestión, pero dejamos como contenido de campos
la métrica, un campo de gauge y el dilaton. Siguiendo con el ansantz de meron
en el sector de Yang-Mills, encontramos que hay al menos dos familias de auto-
interacciones para el campo escalar que admiten soluciones exactas de agujeros
negros con propiedades interesantes. La primera familia de auto-interacciones
admite soluciones de tipo agujero negro con comportamiento asintótico Lifshitz
topológico [64] con amplia variedad de estructuras causales, como por ejemplo un
agujero negro dentro de un agujero negro. La segunda familia de soluciones puede
ser pensada como una deformación biparamétrica del potencial presente en el
modelo de Freedman-Schwarz. Los espacios tiempo que resuelven las ecuaciones de
campo en esta familia tienen un término logarítmico, y a pesar de eso, son planos
asintóticamente. En estos casos puede haber un horizonte de eventos, un horizonte
cosmológico, un horizonte de eventos rodeado por un horizonte cosmológico, y
finalmente un horizonte de eventos que rodea a un horizonte de Cauchy. Éste
último puede alcanzar la extremalidad.

Lo espacios tiempo de donde logramos integral el campo escalar de prueba son
solución al modelo de Freedman-Schwarz y se aproximan a un espacio que no es
máximamente simétrico asintóticamente, pero posee un vector de killing conforme
extra, el cual es consecuencia de que el potencial del dilaton no tiene un extremo
local. La geometrías del solitón fue presentada en la sección 3.1 son regulares en el
origen y preservan 1/4 de la supersimetría. Las condiciones de borde en el origen
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y en la región cercana al horizonte son de regulares y causales respectivamente.
Debido a la geometría no trivial en la región asintótica, el campo escalar de prueba
es dado en términos de potencias, que dependen de la frecuencia, de la coordenada
radial. Las condiciones de borde fueron impuestas de modo que la variación de la
acción evaluada en la solución sea cero. Esto dio lugar a condiciones de borde tipo
Dirichlet, que nos permitió escribir el espectro en forma cerrada. Es importante
enfatizar que los campos escalares de prueba sin masa no pueden satisfacer estas
condiciones de borde. En el caso de agujeros negros, esto es consistente con el
hecho que el potencial efectivo tipo Schroedinger que controla la dependencia
radial del escalar en términos de la coordenada tortuga, tiene una forma de función
de Heaviside. Cuando se incluye un acomplamiento no-minimal, es posible obtener
el espectro de forma analítica. En el caso del agujero negro, es sorprendente que
el espectro no depende del valor de la masa del espacio tiempo. Por lo que estas
geometrías son isoespectrales en lo que se refiere al operador de onda acoplado
no-minimalmente al escalar de Ricci. Las propiedades de integrabilidad de este
potencial nos permiten contrastarlo con los resultados reportados recientemente,
que vienen de un enfoque geométrico de teoría espectral en conexión con la
teoría de Seiberg-Witten SU (2) con hipermultiplete fundamental (para detalles
ver la sección 2 de [99]). Estos potenciales son dados en términos de cocientes
de combinaciones lineales de exponenciales, y usando técnicas elaboradas en el
artículo previo [100] (vea los artículos recientes [101] y [102]).

La estabilidad de los modos se logra para cierto rango del parámetro que regular
el acoplamiento no-minimal, sobre cierto valor se encuentran modos inestables que
crecen exponencialmente en el tiempo. Los regímenes estables e inestables están
separados por soluciones que son independientes del tiempo. Estas soluciones
tienes propiedades similar a una nube escalar encontradas en [95], que desde el
punto de vista de la teoría donde la gravedad es dinámica, estos son espacios
tiempos que se ramifican a nuevas familias de soluciones (vea e.g. [96]).

Hemos logrado resolver de forma cerrada las ecuaciones para un campo escalar
no-minimalmente acoplado en una familia de soluciones de agujero negros y de
solitones al modelo Freedman-Schwarz, incluso en los casos supersimétricos. Este
tipo de escalar de prueba está fuera del contenido de campos de la teoría, y es
interesante estudiar los resultados presentados en esta tesis siguen presentes en el
contexto perturbativo de la teoría de supergravedad.
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A1 Manifolds and vectors

The first concept that we want to discuss is the concept of a pseudo-Riemannian
manifold. The main property of a manifold is that it is made of points for which
we can give a name using at least one set of coordinates. The coordinates are a
set of real numbers x1 (p) , x2 (p) , . . . , xd (p) associated to each point p ∈M . The
adjective “Riemannian” briefly speaking means that the manifold is also equipped
with a metric gµν that allows us to calculate distances between two events or
points and “pseudo” means that the signature of the metric is Lorentzian.

Mathematically a d−dimension manifold Md is a set together with a collection of
subsets{Oj} of Md, such that:

(i) each point p ∈M lies in at least in one subset Oj.

(ii) For each j there is a one-to-one map ϕj : Oj → Uj, where Uj is a open subset
of Rd.

iii) If two sets Oj and Ok overlap then we can construct a map between Uj → Uk

that is a map between two subsets of Rd.

In general, we will not able to obtain a single chart that covers the whole manifold,
but a set of {Oj} that perform such task always exists. We want to stress that
the range of coordinates (i.e. the set Uj) must be specified, otherwise the patch is
ill defined.

The second concept that we will discuss is the concept of vectors in a manifold. In
Special Relativity the concept of vector is straightforward because we formulated
it in R4 that is a vector space, but General Relativity is formulated in a curved
manifold then, at first sight it is not clear how to define vectors on it. The idea
of vector is closely related to tanget vector of a curve. In a manifold we define a
curve as a map C (t) : [0, 1]→ Oi ⊂Md.

Then, we define a smooth real function from a subset of the manifold Oi to the
real line f : Oi ⊂Md → R, the composite function f (C (t)) ≡ g (t) maps [0, 1] to
R, thus, we can calculate its derivative with respect to the parameter t at t = 0

that reads as follows
dg

dt

∣∣∣∣
t=0

=
∂f

∂xµ
dxµ

dt

∣∣∣∣
t=0

. (A1.1)
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Notice that if we specify the explicit parametrization of the curve xµ (t) one can
compute the quantity cµ = dxµ

dt

∣∣
t=0
∈ R then we have

dg

dt
= cµ

∂f

∂xµ
. (A1.2)

The equation (A1.2) can be understood as the action of a differential operator on
the space of smooth functions

t ≡ cµ
∂

∂xµ
(A1.3)

The set of operators defined by (A1.3) satisfy the axioms of vector space. This
discussion justifies that the tangent space Tp(Md) at p ∈ Md is defined as the
vector space of first order differential operators acting on smooth functions. The
basis of this space is {∂µ}, in the coordinates xµ that we are using. It is worth to
emphasize that the transformations law for the component of a vector under a
diffeomorphism xµ = xµ (x̃ν) is as usual cµ → c̃µ = ∂x̃µ

∂xν c
µ .

From here it is clear that there exist a dual vector space called the cotangent
vector space T ∗

p (Md) whose basis is {dxµ}. We can compute the tensor product
between these spaces and construct tensors with more legs, for example the object

T = T ν1...νm
µ1...µn

dxµ1 ⊗ · · · ⊗ dxµn ⊗ ∂ν1 ⊗ · · · ⊗ ∂νm (A1.4)

belongs to T ∗
p (Md)⊗ · · · ⊗ T ∗

p (Md)⊗ Tp(Md)⊗ · · · ⊗ Tp(Md) .

A2 Palatini identity

In Kaluza-Klein dimensional reduction we have to compute the Einstein-Hilbert
action in the ansatz for the vielbeine. Thus, we compute the spin connection
1-form and then we compute curvature 2-form given by (2.2.27) which can be
written as

Rab
[2] =

1

2

(
∂µω

ab
ν − ∂νω ab

µ + ω a
µ cω

cb
ν − ω a

ν cω
cb

µ

)
dxµ ∧ dxν . (A2.1)

Plugging in the Einstein-Hilbert action in forms language we get
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∫
R
√
−gddx =

1

(d− 2)!
ϵabc1...cd−2

∫ (
dωab + ωa

d ∧ ωdb
)
∧ ec1 ∧ · · · ∧ ecd−2 ,(A2.2)

=
1

(d− 2)!
ϵabc1...cd−2

∫ (
dωab ∧ ec1 ∧ · · · ∧ ecd−2 (A2.3)

+ ωa
d ∧ ωdb ∧ ec1 ∧ · · · ∧ ecd−2

)
.

Integrating by parts the first term, neglecting the boundary term and using the
torsionless constraint dea + ωa

be
b = 0 , we obtain that∫

R
√
−gddx =

1

(d− 2)!
ϵabc1...cd−2

∫
ωab ∧ (dec1 ∧ · · · ∧ ecd−2 − ec1 ∧ dec2 · · · ∧ ecd−2 + · · · )

+
1

(d− 2)!
ϵabc1...cd−2

∫
ωa

d ∧ ωdb ∧ ec1 ∧ · · · ∧ ecd−2 ,

=
1

(d− 2)!
ϵabc1...cd−2

∫
(d− 2)ωab ∧ dec1 ∧ · · · ∧ ecd−2

+
1

(d− 2)!
ϵabc1...cd−2

∫
ωa

d ∧ ωdb ∧ ec1 ∧ · · · ∧ ecd−2 ,

= − 1

(d− 3)!
ϵabc1...cd−2

∫
ωab ∧ ωc1

e ∧ ee ∧ · · · ∧ ecd−2

+
1

(d− 2)!
ϵabc1...cd−2

∫
ωa

d ∧ ωdb ∧ ec1 ∧ · · · ∧ ecd−2 .
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Writting the component of the spin connection explicitlly and using the relation
between the coordinate basis and the vielbein, we get that∫

R
√
−gddx = − 1

(d− 3)!
ϵabc1...cd−2

∫
ω ab
d ω c1

f ee
d ∧ ef ∧ ee ∧ · · · ∧ ecd−2

+
1

(d− 2)!
ϵabc1...cd−2

∫
ω a
d eω

eb
f ed ∧ ef ∧ ec1 ∧ · · · ∧ ecd−2 ,

= − 1

(d− 3)!
ϵabc1...cd−2

∫
ω ab
d ω c1

f eϵ
dfec2...cd−2

√
−gddx

+
1

(d− 2)!
ϵabc1...cd−2

∫
ω a
d eω

eb
f ϵdfc1...cd−2

√
−gddx ,

= − 1

(d− 3)!

∫ √
−gddxω ab

d ω c1
f eδ

dfec2...cd−2

abc1c2...cd−2

+
1

(d− 2)!

∫ √
−gddxω a

d eω
eb

f δ
dfc1...cd−2

abc1...cd−2
,

= − 1

(d− 3)!

∫ √
−gddxω ab

d ω c1
f e (d− 3)!δdfeabc1

+
1

(d− 2)!

∫ √
−gddxω a

d eω
eb

f (d− 2)!δdfab ,

=

∫ √
−gddx

(
−ω ab

d ω c1
f eδ

dfe
abc1

+ ω a
d eω

eb
f δdfab

)
. (A2.4)

expanding the Kronecker delta as

δdfeabc1
= δdaδ

f
b δ

e
c1
+ δdb δ

f
c1
δea + δdc1δ

f
aδ

e
b − δdb δfaδec1 − δ

d
aδ

f
c1
δeb − δdc1δ

f
b δ

e
a , (A2.5)

we obtain that∫
R
√
−gddx =

∫ √
−gddx

[
−ω ba

b ω c
c a + ω ab

c ω c
ab

]
. (A2.6)

This is the so-called Palatini identity. It is useful because computing the spin
connection, we can compute the Einstein-Hilbert action without spending time
computing derivatives of the spin connection.
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A3 Another convention for the Hodge dual

In this appendix we want to write down the conventions used in [36] where the
authors wrote the following action principle

LFS
4 = R ∗4 1−

1

2
∗4 dϕ ∧ dϕ−

1

2
e2ϕ ∗4 dχ ∧ dχ+ 2

(
g2 + g̃2

)
eϕ ∗4 1 (A3.1)

−1

2
e−ϕ ∗4 F i

(2) ∧ F i
(2) −

1

2
e−ϕ ∗4 F̃ i

(2) ∧ F̃ i
(2) −

1

2
χF i

(2) ∧ F i
(2) −

1

2
χF̃ i

(2) ∧ F̃ i
(2)

which is equivalent to (2.4.26) up to a field re-definitions and coupling constants
re-definitions. The convention used in [36] for the Hodge dual in a manifold
{Md, gµν} reads

∗d (dxµ1 ∧ · · · ∧ dxµp) =
1

p!
ϵ µ1...µd
ν1...νd

dxν1 ∧ · · · ∧ dxνd , (A3.2)

then
∗dα[p] =

1

p! (d− p)!
ϵν1...νd−pµ1...µpα

µ1...µpdxν1 ∧ · · · ∧ dxνd−p .

Where we used the following

ϵµ1...µd
=
√
−gεµ1...µd

, ϵµ1...µd =
1√
−g

εµ1...µd (A3.3)

and ε01...(d−1) = 1 , ε01...(d−1) = −1 .

Therefore,
ϵµ...νϵ

ρ...σ = −δρ...σµ...ν .
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The wedge product ∗A ∧B, for p-forms A and B, in this convention is given by

∗dA ∧B (A3.4)

=
1

p! (d− p)!
ϵν1...νd−pµ1...µpA

µ1...µp
1

p!
Bρ1...ρpdx

ν1 ∧ · · · ∧ dxνd−p ∧ dxρ1 ∧ · · · ∧ dxρp ,

=
1

(p!)2 (d− p)!
ϵν1...νd−pµ1...µpA

µ1...µpBρ1...ρp

1

d!
δ
ν1...νd−pρ1...ρp
α1 ... αd dxα1 ∧ · · · ∧ dxαd ,

=
1

(p!)2 (d− p)!
δ
ν1...νd−pρ1...ρp
ν1...νd−pµ1...µpA

µ1...µpBρ1...ρp

√
−gddx ,

=
1

(p!)2 (d− p)!
(d− p)!δρ1...ρpµ1...µp

Aµ1...µpBρ1...ρp

√
−gddx ,

=
1

p!
Aµ1...µpBµ1...µp

√
−gddx ,

≡ 1

p!
A ·B ∗d 1 .

This is consistent with the notation in (A3.1).

A4 Explicit expressions for the Killing spinors of

Sections 3.1 and 3.2 and 3.3

Killing spinors for the Soliton: The Killing spinors for the soliton presented
in Section II are given by

ϵ̄1 = (cosh l)
−1/4



−
√
e2A + e2B

√
cosh l − 1

√
cosh l + 1

0
ieA
eB

√
cosh l + 1

i

√
e2A+e2B
eB

√
cosh l − 1

−i
√
cosh l + 1

0
eA
eB

√
cosh l + 1

0

08×1



, ϵ̄2 = (cosh l)
−1/4



i
√
e2A + e2B

√
cosh l + 1

i
√
cosh l − 1

0

− eA
eB

√
cosh l − 1

−
√

e2A+e2B
eB

√
cosh l + 1

−
√
cosh l − 1

0

−i eAeB
√
cosh l − 1

0

08×1


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ϵ̄3 = (cosh l)
−1/4



i eAeB

√
cosh l+1

0
√
cosh l + 1√

e2A+e2B
eB

√
cosh l − 1

− eA
eB

√
cosh l + 1

0

i
√
cosh l + 1

i

√
e2A+e2B
eB

√
cosh l − 1

0

08×1



, ϵ̄4 = (cosh l)
−1/4



− eA
eB

√
cosh l − 1

0

i
√
cosh l − 1

−i
√

e2A+e2B
eB

√
cosh l + 1

i eAeB

√
cosh l − 1

0
√
cosh l − 1

−
√

e2A+e2B
eB

√
cosh l + 1

0

08×1


which shows that the soliton spacetime preserves 1/4 of the supersymmetries of
the theory.

Killing spinors for the spherically symmetric, supersymmetric solution

in the Abelian sector: For the Abelian BPS solution discussed in section III,
the four Killing spinors that preserve the supersymmetry transformations have
half of the components vanishing. It is not possible to factorize the dependence
on the radial coordinate ρ. Nevertheless, the explicit form of the Killing spinors
can be given in a compact manner as follows:

ϵ̄1 = Ψ1 (ρ)



−eAcφsθ
−ieAsφsθ

2Λ
sin θ

sφc
2
θsθ + ieBcφsθ

iΛcφcθ − eBsφsθ
Λcφcθ +

2ieB
sin θ

sφs
2
θcθ

− 2iΛ
sin θ

sφc
2
θsθ + eBcφsθ

− 2eA
sin θ

sφcθs
2
θ

ieAcφsθ

08×1



T

+Ψ2 (ρ)



−eAcφcθ
ieAsφcθ

− 2Λ
sin θ

sφs
2
θcθ + ieBcφcθ

iΛcφsθ + eBsφcθ

−Λcφsθ + i2eB
sin θ

sφsθc
2
θ

− i2Λ
sin θ

sφs
2
θcθ − eBcφcθ

− 2eA
sin θ

sφc
2
θsθ

−ieAcφcθ
08×1



T
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ϵ̄2 = Ψ1 (ρ)



−eAcθcφ
ieAsφcθ

2Λ
sin θ

sφs
2
θcθ + ieBcφcθ

eBsφcθ − iΛcφsθ
−Λcφsθ − 2ieB

sin θ
sφc

2
θsθ

− i2Λ
sin θ

sφs
2
θcθ + eBcφcθ

2eA
sin θ

sφsθc
2
θ

ieAcφcθ

08×1



T

+Ψ2 (ρ)



eAcφsθ

ieAsθsφ
2Λ
sin θ

sφc
2
θsθ − ieBsθcφ

icφcθΛ + eBsθsφ

−cφcθΛ + 2ieB
sin θ

sφs
2
θcθ

2iΛ
sin θ

sφc
2
θsθ + eBcφsθ

− 2eA
sin θ

sφs
2
θcθ

ieAcφsθ

08×1



T

ϵ̄3 = Ψ1 (r)



eAsφsθ

−eAicφsθ
2Λ
sin θ

cφc
2
θsθ − ieBsφsθ

−eBcφsθ − iΛsφcθ
−Λsφcθ + i2eB

sin θ
cφs

2
θcθ

− i2Λ
sin θ

cφc
2
θsθ − eBsφsθ

− 2eA
sin θ

cφcθs
2
θ

−ieAsφsθ
08×1



T

+Ψ2 (r)



eAsφcθ

ieAcφcθ

− 2Λ
sin θ

cφs
2
θcθ − ieBsφcθ

eBcφcθ − iΛsφsθ
Λsφsθ +

i2eB
sin θ

cφc
2
θsθ

− i2Λ
sin θ

cφs
2
θcθ + eBsφcθ

− 2eA
sin θ

cφc
2
θsθ

ieAsφcθ

08×1



T

ϵ̄4 = Ψ1 (ρ)



−eAsφcθ
−ieAcφcθ

− 2Λ
sin θ

cφs
2
θcθ + ieBcθsφ

−iΛsθsφ − cφeBcθ
−Λsφsθ + i2eB

sin θ
cφc

2
θsθ

i2Λ
sin θ

cφs
2
θcθ + eBsφcθ

− 2eA
sin θ

cφc
2
θsθ

ieAsφcθ

08×1



T

+Ψ2 (ρ)



eAsφsθ

−ieAcφsθ
− 2Λ

sin θ
cφc

2
θsθ − ieBsφsθ

iΛsφcθ − eBcφsθ
−Λsφcθ − i2eB

sin θ
cφs

2
θcθ

− i2Λ
sin θ

cφc
2
θsθ + eBsφsθ

2eA
sin θ

cφs
2
θcθ

ieAsθsφ

08×1



T

where

Ψ1 (ρ) =

√
(ρeA + i2QA) Λ2HA − ieAeBρ

ρ1/4
,

Ψ2 (ρ) =
eAeB

√
fBPS (ρ) ρ

ρ1/4
√

(ρeA + i2QA) Λ2HA − ieAeBρ
,
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and fBPS(ρ) is defined by (3.2.16).

Killing spinors for the double-meron: In section IV we have shown that the
double-meron solution with µ = 0 admits a set of four Killing spinors that satisfy
the equations (2.4.31) and (2.4.32). Now we will provide the explicit form of these
spinors, which take the form

ϵ̄i =
√
r (A⊗Bi + η ⊗ Ci)

T (A4.1)

where T means transpose and the vectors A and η are common for the four spinors
and are given by

A =


sin θ cosφ

sin θ sinϕ

cos θ

0

 , η =


0

0

0

1

 .

Notice that the radial dependence is factorized on the killing spinor and the
depends on the angles are in the vector and spinors A, Bi and Ci which are given
by
(
Λ̃→ Λ̃2eAeB

)

B1 =


cφsθ

isφsθ
2eBΛ̃
Λ
sφsθ + i eB

Λ
sφcθ − i eBeA cφsθ

−i2eBΛ̃
Λ

(cφsθ)− eB
Λ
cφcθ +

eB
eA
sφsθ

 , C1 =


i
2e2BΛ̃

Λ2 sφcθ +
e2B
Λ2 sφsθ +

Λ
eA
cφcθ

−2e2BΛ̃

Λ2 cφcθ − i
e2B
Λ2 cφsθ − i Λ

eA
sφcθ

4eAeB
Λ2 sin2 θ

s2θc
2
θ

(
isφsθ − 2Λ̃sφcθ

)
4eAeB
Λ2 sin2 θ

s2θc
2
θ

(
cφsθ − 2iΛ̃cφcθ

)



B2 =


cφcθ

−isφcθ
−2eBΛ̃

Λ
sφcθ + i eB

Λ
sφsθ − i eBeA cφcθ

−i2eBΛ̃
Λ
cφcθ +

eB
Λ
cφsθ − eB

eA
sφcθ

 , C2 =


i
2e2BΛ̃

Λ2 sφsθ −
e2B
Λ2 sφcθ − Λ

eA
cφsθ

2e2BΛ̃

Λ2 cφsθ − i
e2B
Λ2 cφcθ − i Λ

eA
sφsθ

4eAeB
Λ2 sin2 θ

s2θc
2
θ

(
−isφcθ − 2Λ̃sφsθ

)
4eAeB
Λ2 sin2 θ

s2θc
2
θ

(
cφcθ + 2iΛ̃cφsθ

)



B3 =


isφsθ

cφsθ

−i2eBΛ̃
Λ
cφsθ +

eB
Λ
cφcθ +

eB
eA
sφsθ

2eBΛ̃
Λ
sφsθ − i eBΛ sφcθ − i

eB
eA
cφsθ

 , C3 =


2e2BΛ̃

Λ2 cφcθ − i
e2B
Λ2 cφsθ + i Λ

eA
sφcθ

−i2e
2
BΛ̃

Λ2 sφcθ +
e2B
Λ2 sφsθ − Λ

eA
cφcθ

4eAeB
Λ2 sin2 θ

s2θc
2
θ

(
cφsθ + 2iΛ̃cφcθ

)
4eAeB
Λ2 sin2 θ

s2θc
2
θ

(
isφsθ + 2Λ̃sφcθ

)


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B4 =


−isφcθ
cφcθ

−i2eBΛ̃
Λ
cφcθ − eB

Λ
cφsθ − eB

eA
sφcθ

−2eBΛ̃
Λ
sφcθ − i eBΛ sφsθ − i

eB
eA
cφcθ

 , C4 =


−2e2BΛ̃

Λ2 cφsθ − i
e2B
Λ2 cφcθ + i Λ

eA
sφsθ

−i2e
2
BΛ̃

Λ2 sφsθ −
e2B
Λ2 sφcθ +

Λ
eA
cφsθ

4eAeB
Λ2 sin2 θ

s2θc
2
θ

(
cφcθ − 2iΛ̃cφsθ

)
4eAeB
Λ2 sin2 θ

s2θc
2
θ

(
−isφcθ + 2Λ̃sφsθ

)


Where cφ = cos φ

2
, sφ = sin φ

2
, cθ = cos θ

2
, sθ = sin θ

2
.
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