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Abstract

In this dissertation an experimental method to generate and measure high dimen-
sional quantum states is presented. Weak coherent pulses in the single photon level
are prepared when a continuous wave 690 nm laser is pulsed with an Acousto
Optical Modulator (AOM) and attenuated using neutral filters. The quantum
states are encoded in the transverse linear momentum (TLM) of individual pho-
tons. The manipulation of TLM is performed by Spatial Light Modulators (SLMs),
who display sets of d transmissive apertures (slits) giving the photon d alternative
paths to propagate through, addressing the d dimensional state |ψ〉 the user wants
to prepare. Two SLMs combined manipulate the real and imaginary part of the
coefficients of |ψ〉, completing the generation stage of the setup. The SLMs are fully
automated using Field Programmable Gate Array (FPGA) electronics. Once the
state is generated, we can choose a previously calculated projective measurement
〈φ| to be implemented. This is done preparing a new set of d slits in another pair
of SLMs, located in the measurement stage of the setup. Finally, an Avalanche
Photo Diode masked with a 10 µm pinhole measures the overlap probability of
|〈φψ〉|2 from the accumulated statistics of the binary APD outcomes. Since the
visibility of the output signal of the is around 0.98, a wide variety of quantum
tasks can be performed using the presented experimental setup.
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Resumen

En esta disertación se presenta un método para generar y realizar mediciones de
estados cuánticos en altas dimensiones. Pulsos débilmente coherentes al nivel de
fotones individuales son generados cuando un láser continuo es pulsado usando
un AOM y atenuado con filtros neutros. Los estados cuánticos están codificados
en el TLM de los fotones individuales. SLMs son usados para manipular el TLM
cuando los SLM programan d aperturas transmisivas (rendijas), permitiendo que
el fotón tenga d caminos posibles para su propagación, generando el estado d
dimensional |ψ〉 que el usuario desea. Los SLMs están completamente automati-
zados mediante electrónica basada en FPGA. Una vez que el estado es generado,
escogemos una medida proyectiva (previamente calculada) 〈φ| que es implemen-
tada al preparar un nuevo conjunto de d rendijas en los SLMs localizados en la
estapa de medición del experimento. Finalmente, un Fotodiodo de Avalancha
(APD) mide la probabilidad de |〈φψ〉|2 al acumular la estadistı́stica necesaria a
partir de las medidas binarias que el APD proporciona. Debido a que la visibilidad
del las salidas de nuestro experimento es de 0.98, una amplia variedad de tareas
cuánticas pueden ser realizadas usando el arreglo experimental presentado.
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CHAPTER 1
Introduction

During the last years, Quantum Computing (QC) and Quantum Information
(QI) has become a relevant matter under the eyes of the scientific community
and also for business companies. Several protocols and ideas for cryptography,
tomography, error corrections, communication, fundamental physics, and many
others had been proposed and proved, making this field a promising framework
for the development of new technologies [94, 178]. Nevertheless, QC and QI is
still in its dawn, it’s said that we are living an age similar to the 60’s, when the
transistor/computer science had its initial steps. The development of QC and QI
protocols and the experimental implementation of them are crucial steps in order
to lead mankind to the quantum technology era.

In this dissertation we explore the experimental generation of high dimen-
sional quantum states using TLM of single photons. We propose that TLM is
an excellent framework to work in high dimensional QI. Our reasons are based
on the high visibility obtained in this method, since it is high enough to perform
cutting edge protocols in the area. The construction of such experimental setup is
economically affordable since commercial SLMs can be used for de manipulation
of such states. SLMs are controlled by conventional video signals, that we generate
using FPGA. Another advantage is the reprogrammability of SLMs, letting us to
perform different consecutive generation and projections of quantum states, or
even perform a new experiment just by changing the set of states and measurement
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CHAPTER 1. INTRODUCTION

basis stored in the FPGAs. Today, the use of SLMs for the generation of quantum
states is a well established technique used by the QI community [172, 171, 34].
During my PhD I have been working on the realization and publication of three let-
ters, whose are already published in prestigious journals, and we’re still working
in the production of one more. The list of the mentioned works is the following:

• Certifying an Irreducible 1024-Dimensional Photonic State Using Refined
Dimension Witnesses. Phys. Rev. Lett., 120(23):230503 [3].

• High-Dimensional Quantum Communication Complexity beyond Strategies
Based on Bells Theorem. Phys. Rev. Lett., 121(15):150504 [111].

• Experimental quantum tomography assisted by multiply symmetric states
in higher dimensions. Phys. Rev. A, 99(012336) [110].

• High dimensional adaptive standard quantum tomography [136].

To end this chapter I present the outline of this dissertation. The second chapter
covers the theoretical background needed for the description of the generated
states, including basic notions of HD quantum states and QI definitions needed to
understand the main experiments here presented. The third chapter explains with
more detail the experimental setup. The fourth, fifth and sixth chapters are about
the three experiments we published. The final chapter includes the conclusions
and final remarks.
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CHAPTER 2
Theoretical background

2.1 High dimensional quantum states

The generation, manipulation and measurement of high-dimensional quantum
systems (qudits) are important theoretical and experimental research subjects in
quantum information science. This is motivated, in part, because certain funda-
mental features of quantum mechanics such as, for instance, quantum contextu-
ality [154, 89, 35], cannot be tested with 2-dimensional quantum systems. The
use of high-dimensional quantum systems also leads to improvements in several
entangled based quantum information protocols since, in this case, some Bell
inequalities exhibit increased robustness against noise [87, 44], and tolerate lower
detection efficiencies for closing the detection loophole [173]. Last, due to the larger
amount of information that can be encoded in single qudits, the performance of
several protocols in quantum communications [25, 29, 39, 53, 122, 5] and quantum
computation [123, 97, 103, 67, 167] is enhanced when they are employed. Typically,
photonic platforms are used as test experiments to study quantum information
processing in higher dimensions because different degrees of freedom of single
photons can be efficiently used to encode the qudits. For instance, one can resort
to the orbital angular momentum [107, 96, 83, 48, 1], frequency [98, 19, 92], time
bin [158], path [142], and the transverse position/momentum [121, 120] encoding

3
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methods.

2.2 Dimensional witness

The dimension d of physical systems is a fundamental property of any model,
and its operational definition arguably reflects the evolution of physics itself. In
quantum mechanics, it can be seen as a key resource for information processing
since higher dimensional systems provide advantages in several protocols of
quantum computation [94] and quantum communications [178]. In the field of
quantum foundations, a recent proposal suggests that in order to understand and
create macroscopic quantum states it will be necessary to take advantage of high-
dimensional systems [68]. Therefore, it is natural to understand why there is an
growing strive to coherently control quantum systems of large dimensions [49, 57,
66, 48, 17, 60, 91, 177, 115, 174, 15, 108, 59]. Nonetheless, such new technological
advances require the simultaneous development of practical methods to certify
that the sources are truly producing the required quantum states. In principle,
one can rely on the process of quantum tomography [51, 52, 85, 165, 99, 100, 71],
but this approach quickly becomes intractable in higher dimensions as at least d2

measurements are required [176].
To address this problem, the concept of dimension witness (DW) was intro-

duced. The original idea was based on the violation of a particular Bell inequality
[28], but then extended to the more practical prepare-and-measure scenario [64].
In general, DWs are defined as linear functions of a few measurement outcome
probabilities and have classical and quantum bounds defined for each considered
dimension [49, 28, 64, 4, 78, 27, 20]. Thus, they allow for the device-independent
certification of the minimum dimension required to describe a given physical
system, and can also infer if it is properly described by a coherent superposition
of logical states. Nevertheless, these tests do not provide information about the
composition of the system, which is crucial for high-dimensional quantum in-
formation processing. This point has been recently investigated by W. Cong et
al. [45], where they introduced the concept of an irreducible dimension witness
(IDW) to certify the presence of an irreducible 4-dimensional system. Specifically,
their IDW distinguishes if the observed data is created by one pair of entangled
ququarts, or two pairs of entangled qubits measured under sequential adaptive
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operations and classical communication.

2.3 Communication Complexity Problems

Communication complexity problems (CCPs) are tasks in which distant parties
hold local data, the collection of which is needed for a computation of their
interest. To make the computation possible, the parties communicate with each
other. However, the amount of communication is limited and therefore not all
data can be sent. The CCP consist in parties adopting an efficient communication
strategy which allows them to perform the desired computation with a probability
as high as possible. Efficient use of quantitatively limited communication is a
broadly relevant matter [93], which provides fundamental insights on physical
limitations [21, 130].

The ability to process information depends on the choice of the physical sys-
tem into which the information is encoded [95]. Consequently, quantum entities
without a classical counterpart can be regarded as tools for quantum information
processing. The most famous example is entanglement. In a quantum CCP, parties
may share an entangled state on which they perform local measurements, generat-
ing strongly correlated data which violates a Bell inequality. That data can then
be used to assist a classical communication strategy [30]. In fact, Bell inequalities
have been systematically linked to CCPs [24, 31, 163], and their violation enables
better-than-classical communication efficiencies [43, 32, 25, 23, 24, 56, 77, 143, 163].

Nevertheless, quantum theory presents also a second approach to CCPs: substi-
tuting classical communication with quantum communication. Such a substitution
must ensure that no more than the allowed amount of classical information can be
extracted from the quantum communication, i.e., that the constraints of the CCP
are respected. Since the Holevo theorem [79] implies that no more information can
be extracted from a quantum d-level system than from a classical d-level system,
a valid quantum communication strategy may encode information in quantum
states of a specified limited Hilbert space dimension, and subsequently extract it
by a measurement. The ability of quantum communication to outperform classical
constraints in CCPs is well-established [7, 6, 38, 65, 119, 169, 75, 159, 150].

Many quantum communication tasks can be successfully completed both
by means of local measurements on an entangled state followed by classical

5
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communication, or by the communication of a single quantum system [55, 61, 180].
For two-party CCPs with binary communication followed by binary-outcome
measurements, classical communication assisted by correlations violating a Bell
inequality is always at least as good as an implementation based on quantum
communication [131]. Explicit examples in which the advantage is strict are known
[132, 76]. However, there also exists examples of particular scenarios of two-party
CCPs with more than two outcomes in which quantum communication holds an
advantage over the Bell inequality based approach [160, 161].

2.4 Quantum state tomography

Quantum tomography (QT) is a collection of methods that makes possible
the estimation of unknown quantum states [128]. Today, QT has become a stan-
dard tool for the quality assessment of the generation of quantum states [22, 124],
the implementation of quantum processes [41, 42, 114], and the performance
of quantum devices [50, 166]. Quantum tomographic methods provide an es-
timate of the unknown state from the outcomes of measurements carried out
on an ensemble of identically, independently prepared systems. Finite statis-
tics effects and unavoidable experimental errors require the postprocessing of
the experimentally acquired data by means of statistical inference methods such
as, for instance, maximum likelihood estimation [81, 85, 84, 140] or bayesian in-
ference [86, 149, 33, 144, 82, 90, 156, 72, 70]. Traditionally, the total number of
measurement outcomes is considered as a resource. Thus, there is a search for QT
methods relying on a smaller number of measurement outcomes [46, 74, 71, 133].
Standard quantum tomography for a single qudit is based on the measurement of a
D-dimensional representation of the D2 − 1 generators of the SU(D) group, which
leads to a total number of measurement outcomes of 2D2 −D [165]. This number
can be reduced toD2 +Dwith quantum tomography based on mutually unbiased
bases (MUB) [176]. The existence of MUB has been proven when the dimension D
is an integer power of a prime number [14, 54]. Otherwise, the existence of mutu-
ally unbiased bases is still an open problem. A further reduction can be achieved
with quantum tomography based on a symmetric informationally complete (SIC)
positive-operator valued measure (POVM), which consists of D2 sub-normalized
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projectors [141]. This is the smallest number of measurement outcomes to estimate
unknown quantum states. Numerical studies [146, 63, 73] have indicated the
existence of this class of measurements in all dimensions up toD = 1155 and exact
analytical solutions are available in dimensions D = 216, 19, 24, 28, 35, 48, 120, 124,
and 323 [146, 9, 11, 10, 12]. Unfortunately, a dimension-independent demonstra-
tion is still missing.
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CHAPTER 3
Experimental setup description

During this chapter I will cover some fundamental aspects of the experimental
setup. Then I will show the process to characterize the transmission and phase of
the SLMs. Also I will discuss about the measurement of the mean photon number,
an important factor taking into account that we want to work in the single photon
regime. Finally, I will briefly cover the electronic control system and I will explain
the distribution of the main program running in the FPGA.

3.1 Experimental setup

At the preparation stage we generate an state of a single qudit that is encoded
in a single photon. A 690 nm continuous-wave laser, an AOM, and calibrated
attenuators (not shown in figure 3.1 for sake of clarity), are employed to gener-
ate weak coherent pulses. These illuminate spatial light modulators SLM1 and
SLM2, which with the help of polarizers (P) and quarter-wave plates (QWP) are
employed to modulate the incoming light in amplitude and phase, correspond-
ingly. Electronically addressable slits patterns at SLM1 (as shown in 3.2) and
SLM2 control the state |ψd〉 of the photonic qudit, ash shown in equation 3.1. The
measurement stage projects state |ψd〉 onto a predefined, arbitrary single-qudit
state |φj〉. Spatial light modulators SLM3 and SLM4, combined with a pointlike
avalanche photodiode (APD), implement the projection. In this way we are able

9
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Figure 3.1: Experimental setup.

to estimate the probability |〈φj|ψd〉|2. A set of lenses is employed to transport the
images generated by the SLMs along the setup. Focal lengths are as follows: L1
= 25 mm, L2 = 200 mm, L3=L4=L5=L6=L7=L8=125 mm, and L9 = 100 mm. The
overall detection efficiency is around 13%.

|ψ〉 = 1√
d

d/2∑
l=−d/2

√
tle

iφl |l〉 (3.1)

|l〉 =
√
a

π

∫
dqe−iqldsinqa|1,q〉
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Figure 3.2: Spatial Light Modulator with seven slits.

3.2 Amplitude and phase characterization

The characterization of the transmittance and phase profiles of each SLM is a
crucial requirement in order to program the exact gray level in the LCD and in
this section I will describe the process and results of such characterizations.

Amplitude characterization

The basic idea is to display two slits in the LCD, with a fixed gray level, shine a
light pulse for a fixed amount of time and measure the resulting counts using an
Avalanche Photo diode placed in the center of the interference pattern in the Far
Field plane of the last SLM. Then we repeat the process once again but this time
changing the gray level value for both slits. The experiment is repeated for the 256
different gray level values (8 bit) and a histogram is plotted. Take as an example
the figure 3.3, concerning to the amplitude characterization of SLM3 and SLM4.

11
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Figure 3.3: Normalized number of counts vs GL for SLM3 and SLM4.

Phase characterization

For this characterization we display two slits, we take a photo of the interference
pattern in the far field plane of the SLM and finally a Matlab routine fits the pattern
to a previously calculated one.

As discussed earlier, we display two slits, the first one has a fixed gray level
value of 0 and the other slit changes its gray level value form pulse to pulse. Once
we’ve taken the 256 photos and fitted all plots we can extract the relative phase
between the the actual gray level value and zero. The figure 3.4 shows the phase
characterization of SLM2 and SLM4.

3.3 Mean number of photons µmeasurement

An approximation to a single photon source can be produced when we generate
weak coherent pulses. Pulsing a continuous wave laser and a proper attenuation
lead us to the single photon regime. Photons in such pulses follow the Poissonian

12
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Figure 3.4: Relative phase between the slits vs GL. One of the slits has a GL = 0
and the other is variable.

distribution, that reads as follows

P(n|µ) =
µne−µ

n!
(3.2)

In order to measure µwe prepare the measurement |〈ψ|ψ〉|2 and record the number
of counts in each pulse. In figure 3.5 we present an histogram of the number of
pulses that have n clicks in the detector. Fitting the probabilities to the poissionan

13
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Figure 3.5: Counts in the detector and calculated probabilities for µ = 0.87.

distribution we can find the appropriate experimental parameters involved in the
generation of the pulse in the AOM.

3.4 Electronic control system

The control system of the experiment is based on FPGA electronics. We use
the Atlys-Spartan6 FPGA from Xilinx, due to its versatility, port connections and
speed. We use it control the light pulses, the HDMI video signals for the SLMs,
the state and measurement vectors storage in a Random Access Memory (RAM)
module, the Universal Asynchronous Receiver and Transceiver (UART) for the
communication between FPGA and PC and finally a module for recording the
clicks counted in the APD. I wrote all the programs in the Verilog language and
also a Visual C# application for controlling the system. The system is user friendly
and straight forward to use. The C# app needs the user to enter the states in a
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UART

Control

ALICE
VIDEO

BOB
VIDEO

AOM

DET

PARA-
METERS

RAM

Rx

APD

AOM

Tx

HDMI1

HDMI2

Atlys-Spartan6

Figure 3.6: Top module diagram containing the most representative modules in
the control system, working on a Xilinx Spartan6 FPGA.

.txt file so they are sent and stored in the RAM module of the FPGA. By today,
the system is fully automated, so it can work continuously for the days needed to
complete the experiments. In figure 3.6 the block diagram of the main program is
shown.
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CHAPTER 4
Certifying an irreducible

1024-dimensional photonic state
using refined dimension witnesses

4.1 Introduction
In this experiment we introduce a new class of DWs, namely gamut DWs, which
certifies the dimension of the system and has the new distinct feature of identifying
whether any high-dimensional quantum system is irreducible. It is based on
quantum random access codes (QRACs), which is a communication task defined
in a prepare-and-measure scenario [8]. To demonstrate the practicability of our
new technique we experimentally certify the generation of an irreducible 1024-
dimensional photonic quantum system encoded onto the transverse momentum
of single photons transmitted over programmable diffractive optical devices [57,
120, 99, 100, 71, 101, 37]. To our knowledge, our work represents an increase of
about two orders of magnitude to any reported experiment using path qudits.
From the recorded data one observes a violation of the bounds associated to all
possible decompositions of a 1024-dimensional quantum system, thus, certifying
that the generated state is not encoded using non-coupled different degrees of
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freedom of a photon, e.g., polarization and momentum. For instance, the ability
to certify whether different non-coupled degrees of freedom of a single photon
are simultaneously being used to encode information is crucial for the security of
quantum communication tasks, as there could be information leakage that wont
be detected in the communication protocol. Nonetheless, our method is broadly
relevant and should also find applications in multipartite photonic scenarios
and new platforms for the fast-growing field of experimental high-dimensional
quantum information processing.

4.2 Gamut dimension witness
As stated earlier, the protocol we use in our main theorem is based on QRACs.
Thus, we first give a brief description (see e.g. [8] for more details) of this task (see
Fig. 4.1): one of the parties, Alice, receives two input dits: x1 and x2 ∈ {1, . . . ,d}.
She is then allowed to send one d-dimensional (quantum) state, ρx1x2 to Bob,
depending on her input. Bob is then given a bit y ∈ {1, 2} and his task is to
guess xy. He does so by performing a quantum measurementMy and a classical
post-processing function Dy. As a result, he outputs b ∈ {1, . . . ,d}.

For a single round of the protocol, the success probability is P(b = xy | x1, x2,y).
As a figure or merit over many rounds with uniformly random inputs, we employ
the average success probability (ASP): p̄ = 1

2d2

∑
x1,x2,y P(b = xy | x1, x2,y). Thus, we

are looking for the maximal value of p̄, optimizing over all possible encoding and
decoding strategies. It was proven [47] that for classical strategies (i.e. classical
states and decoding functions), the optimal ASP is p̄Cd

= 1
2(1+

1
d). In the quantum

case, the optimal strategy is reached by using mutually unbiased bases (MUBs)
for encoding and decoding [2, 58], and the ASP is p̄Qd

= 1
2(1 + 1√

d
).

Now, we estimate the optimal ASPs for composite systems, for all possible
product structures, defined as follows:

Definition 4.2.1 For a fixed d, we define a product structure by the set
{
r, {dk}, {αk}

}
.

For a composite system, d =
∏r
k=1 dk, where dk is the dimension of each subsystem

and r is the number of subsystems. The state of the composite system can be written as
ρ = ρ1

α1
⊗ ρ2

α2
⊗ · · · ⊗ ρrαr . Here, αk = c and αk = q are used to denote the “classical”

and “quantum” nature of the subsystem, respectively. Then, ρkc ∈ ∆dk−1 is a classical
state, and ρkq ∈ S(Cdk) is a quantum state.
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Figure 4.1: Our d-dimensional QRACs scenario. Alice receives the input dits x1
and x2 ∈ {1, . . . ,d}, and prepares the state ρx1x2 which is sent to Bob. He receives
the input y ∈ {1, 2}, which defines the quantum measurementMy and the classical
post-processing function Dy to be applied to ρx1x2 . As a result, Bob outputs b.

Consider a set of measurement and state preparation settings, and fix the total
dimension of the physical system in question. We call a linear function on the
measurement outcome probabilities a gamut dimension witness (GDW), if its
extremal values for all possible product structures are different. For example, in
d = 4, a GDW has different extremal values for a ququart, two qubits, one qubit
and a bit, and a quart. The main theoretical result of this work is to demonstrate
that d-dimensional QRACs can be used as GDWs for d-dimensional physical
systems. To highlight this, we set it as a theorem.

Theorem 1 d-dimensional QRACs serve as gamut dimension witnesses using the ASP
function.

The proof of this theorem and all related lemmas can be found in the supple-
mentary material of [3]. Let us now sketch the main tools for proving the theorem.
They help to understanding the problem, and can be independently used. Note
that the following lemmas apply in more general QRAC scenarios as well.
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We assume that Bob’s measurements have the same product structure as the
state generated by Alice. That is, we exclude that Bob’s state certification would
use entangling measurements. The motivation here is to rule out sequential uses
of lower dimensional systems as a way to simulate higher dimensional statistics,
e.g. to discriminate between n sequential uses of a d dimensional system, and a
dn dimensional system. A physical motivation for this assumption is to think that
if Alice cannot couple a particular set of degrees of freedom (e.g. polarization and
momentum), then neither can Bob because he has access to the same equipment
as Alice does.

Therefore, the most general strategy for decoding the d-dimensional system
ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρr is as follows: Bob performs sequential adaptive measures
on the subsystems in the sense of [45]. He starts by measuring subsystem ρ1 to
obtain the outcome b1. Then, his choice of the measurement to be performed in ρ2

may depend on b1. Successively, each measurement on ρk can depend on all the
measurement outcomes obtained previously. After performing all measurements,
Bob feeds the obtained outcomes to a classical post-processing function, and
outputs his final guess on xy, which is b = Dy(b1b2 . . .br).

The bounds of the GDW in this general scenario are extremely hard to obtain.
The following results help making the analysis easier. First, it is argued in [8] that
in an optimal strategy, it is enough to use encoded pure states. Similarly, it has
been shown that rank 1 projective measurements (explicitly: mutually unbiased
bases) optimize two-input QRACs [58]. Thus,in the following we only deal with
pure states for both Alice and Bob. Additionally, we can eliminate classical post-
processing functions:

Lemma 4.2.1 In QRACs, for optimality of the ASP, there is no need for classical post-
processing functions.

Last, we note that:

Lemma 4.2.2 In QRACs, for optimality of the ASP, there is no need for sequential
adaptive measurements.

Observe that the above lemmas together imply that the highest ASP for a
composite system can be achieved with a strategy that consists of r QRACs in
parallel, one on each subsystem ρk, independently. In this case, if we write Al-
ice’s inputs as dit-strings xy = x1

yx
2
y . . . xry, the success probability for each round
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Case Optimal p̄
Q1024 0.515625
Q512Q2 0.500980
Q512C2 0.500973
Q32Q32 0.500521
(Q2)

10 0.500493
Q2C512 0.500489
C1024 0.500488

Table 4.1: Relevant cases for a 1024-dimensional system and the respective optimal
ASPs (Eq.(4.1)) considering each product structure.

is: P(b = xy|x1, x2,y) =
∏r
k=1 P(bk = xky|x

k
1 , xk2 ,y). The optimal p̄ is not neces-

sarily given by the independent optimal strategies on the individual subspaces.
Therefore, in order to optimize it we introduce the trade-off function Md(z), which
provides the optimal probability of guessing dit x2 given a fixed probability of
guessing dit x1. Let z = P(Bob correctly guesses x1). Then, Md(z) in dimension d
is defined by Md(z) = max{P(Bob correctly guesses x2)|z}, where the maximiza-
tion is limited to all encoding-decoding strategies respecting the condition of
guessing x1 with probability z. Thus, in a general case

p̄Qd1 ...Cdr
= max
z1,...,zr

1
2
[z1 · · · zr +M

q
d1
(z1) · · ·Mc

dr
(zr)], (4.1)

where we denote d-dimensional quantum and classical states by Qd and Cd,
respectively. Mq

d and Mc
d are the corresponding quantum, and classical trade-off

functions . Therefore, p̄ is a function of r real variables, and its maximum can be
found using standard heuristic numerical search algorithms [139]. We present the
ASP optimal values for some relevant cases of a d = 1024 dimensional system in
Table 4.1. The full list of cases is found in the supplementary material [3]. Note that
the gaps between the different ASP values are large enough to be experimentally
observed, as we demonstrate next.

21



CHAPTER 4. CERTIFYING AN IRREDUCIBLE 1024-DIMENSIONAL
PHOTONIC STATE USING REFINED DIMENSION WITNESSES

4.3 Experiment
To demonstrate the practicability of our technique we generate a 1024-dimensional
photonic state, encoded into the linear transverse momentum of single-photons,
and use the 1024-dimensional QRAC GDW to certify that it is an irreducible
quantum system. To achieve this, we first show that the ASP (Eq.(4.1)) can be
written as a simple function of the detection events. Then, we observe that our
recorded statistics violate the second highest ASP bound, Q512Q2, given in Table
4.1. Thus, ensuring that it is an irreducible 1024-dimensional quantum system.

In the 1024-dimensional QRAC GDW, Bob measures the elements of the two
1024-dimensional MUBs given in the supplementary material [3]. We denote the
MUBs states by |m

y
j 〉, where y = 1, 2 defines the measuring base MUB1 or base

MUB2, and j = 1, ..., 1024 denotes the state of a given base. Alice’s state is written
in terms of the two input dits x1 and x2 as an equal superposition of the states Bob
would need to guess xy correctly:

|Ψx1x2〉 =
1
N
(|m1

x1
〉+ sgn(〈m1

x1
|m2
x2
〉)|m2

x2
〉), (4.2)

where N =
√

2(1 + 1
32) is a normalization factor and sgn is the sign function.

The optimality of the encoded states (4.2), and the use of MUBs is derived in the
supplementary material [3].

For the experimental test, we resort to the setup depicted in Fig. 4.2. At the state
preparation block, the single-photon regime is achieved by heavily attenuating
optical pulses with well calibrated attenuators. An acousto-optical modulator
(AOM) placed at the output of a continuous-wave laser operating at 690nm is used
to generate the optical pulses. The average number of photons per pulse is set
to µ = 0.4. In this case, the probability of having non-null pulses is P(n > 1|µ =
0.4) = 33%. Pulses containing only one photon are the majority of the non-null
pulses generated and accounts to 82% of the experimental runs. Thus, our source
is a good approximation to a non-deterministic single-photon source, which is
commonly adopted in quantum communications [178].

The single-photons are then sent through two spatial light modulators, SLM1
and SLM2, addressing an array of 32×32 transmissive squares. The square side
is a = 96µm and they are equally separated by δ = 160µm (see Fig. 4.2b). Thus,
effectively creating a 1024-dimensional quantum state defined in terms of the
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a)

b)

Figure 4.2: a. Experimental setup. We employ a prepare-and-measure scheme to
generate and project spatial qudits, encoded into the linear transverse momentum
of single-photons. At the state preparation block, the spatial encoding is applied
through two spatial light modulators (SLMs), and the state projection is likewise
performed by a SLM combined with a point-like single-photon detector (APD) at
the measurement projection block (see main text for details). b. The 32×32-square
mask addressed by the SLMs.

number of modes available for the photon transmission over the SLMs [57, 120,
99, 100, 71, 101]. Specifically, the state of the transmitted photon is given by |Ψ〉 =

1√
C

∑lNc
l=−lNc

∑lNr
v=−lNr

√
tlve

−iφlv |clv〉, where |clv〉 is the logical state representing
the photon transmitted by the (l, v) square. tlv represents the transmission and
φlv the phase-shift given by the (l, v) square. The transmission of each square
is controlled by the SLM1, which is configured for amplitude-only modulation.
The phases φlv are controlled by SLM2 working on the configuration of phase-
only modulation [100]. Nc and Nr represent the number of columns and rows,
respectively. For simplicity, we define lNc

≡ Nc−1
2 , lNr

≡ Nr−1
2 , and C is the
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normalization factor.
At the measurement block we use a similar scheme to the one used in the state

preparation block. It consists of a SLM3, also configured for phase-modulation,
and a “pointlike” avalanche single-photon detector (APD). As explained in details
at [100, 57], by placing the “pointlike” APD at the SLM3 far-field (FF) plane, and
properly adjusting the (l, v) square phase-shifts, Bob can detect any state |m

y
j 〉

required for the 1024-dimensional QRAC session. The “pointlike” APD is com-
posed of a pinhole (aperture of 10µm diameter) fixed at the center of the FF plane,
followed by the APD module. In this case, the probability of photon detection is
proportional to the overlap between the prepared and detected states. For the case
of a d-dimensional QRACs implemented with a single-detector scheme, we show
at the supplementary material that the ASP function can be written as [3]

p̄ =
D1

D1 +D2
. (4.3)

We first consider the events with xy = j (again, j = 1, ..., 1024 denotes the state of a
given base) and define the total number of such events to be X1. Then, we define
D1 as the number of ”clicks” recorded in the experiment in those cases. Likewise,
we denote X2 to be the number of events where xy 6= j and define D2 to be the
clicks in those cases.

By means of two field-programmable gate arrays (FPGA) electronic modules
we are able to automate and actively control both blocks of the setup. At the state
preparation block, since the state |Ψ〉 needs to be randomly selected from the set
of states defined by the 1024-dimensional QRACs, a random number generator
(QRNG - Quantis) is connected to FPGA1. FPGA1 controls the optical pulse
production rate by the AOM, set at 60 Hz as limited by the refresh rate of the
SLMs. Each attenuated optical pulse corresponds to an experimental round. At
the measurement block, a second QRNG is connected to FPGA2, providing an
independent and random selection for the projection |m

y
j 〉 at each round. FPGA2

also records whether a detection event occurs. The overall detection efficiency is
13%. The protocol is executed as follows: In each round, FPGA1 reads the dits x1
and x2 produced by its QRNG. Then, FPGA1 calculates the amplitude and phase
of each (l, v) square of SLM1 and SLM2 to encode the state |Ψx1x2〉 onto the spatial
profile of the single-photon in that experimental round. Simultaneously, FPGA2,
reads from its QRNG the value of y and j. Similar to what is done in the state
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Figure 4.3: Experimental results. We experimentally observe p̄ = 0.515± 0.008,
violating the second highest ASP bound p̄Q512⊗Q2 (see Tab.4.1). The error bar is
calculated assuming Poissonian statistics for a photon detection event.

preparation block, FPGA2 also calculates the phase for each (l, v) square in SLM3
to implement the chosen projection |m

y
j 〉. The amplitude and relative phase for

each SLM was previously characterized in order to obtain the modulation curves
as a function of its grey level. In this experiment, this is necessary to dynamically
generate all possible states, as it would be unfeasible to pre-record pre-defined
masks for the SLMs on the FPGAs for each one of the 10242 required initial states.

The experiment continuously ran over 316 hours. In this way, the statistics fluc-
tuations observed for D1 and D2 were sufficiently small to unambiguously certify
the generation of an irreducible 1024-dimensional quantum system. The overall
visibility in our system is 97.00± 0.07% and the corresponding recorded average
success probability is p̄ = 0.515± 0.008. In Fig. 4.3 we compare it with the second
highest ASP bound shown in table 4.1, associated with a composite system of the
type Q512Q2. This certifies, only from the statistics recorded, that the generated
state is not encoded using non-coupled different degrees of freedom of a photon,
for instance polarization and momentum. Thus, ensuring it to be an irreducible
1024-dimensional quantum system that can provide all the advantages known for
high-dimensional quantum information processing, in the sense explained in [45].
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4.4 Conclusion
Dimension witnesses are practical protocols on the field of quantum informa-
tion as they allow one to obtain information regarding unknown quantum states
[28, 64]. They are especially appealing while addressing the generation and char-
acterization of high-dimensional quantum states, where quantum tomography
demands at least d2 measurements [176]. In general, DWs are functions of only
a few measurement outcome probabilities and allow for assessments on the di-
mension required to describe a given quantum state in a device-independent way
[49, 28, 64, 4, 78, 27, 20]. Here we give a step further by introducing a new class
of DW, which certifies the dimension of the system, and has the new distinct
feature of allowing the identification whether a high-dimensional system is ir-
reducible. The application of this new feature is of broad relevance for several
new architectures aiming for high-dimensional quantum information process-
ing [49, 57, 66, 48, 17, 60, 91, 177, 115, 174, 15, 108, 59], and the understanding of
macroscopic quantumness [68]. We demonstrate the practicability of our technique
by using it to certify the generation of an irreducible 1024-dimensional photonic
quantum state encoded into the linear transverse momentum of single-photons
transmitted by programable diffractive apertures, which have been used for sev-
eral high-dimensional quantum information processing tasks [57, 37, 109, 35, 152].
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CHAPTER 5
High-dimensional quantum

communication complexity beyond
strategies based on Bell’s theorem

5.1 Introduction
In this work, we theoretically explore and experimentally demonstrate advan-

tages of performing CCPs with quantum communication in high-dimensional
Hilbert space, as compared to exploiting the violation of a Bell inequality. To this
end, we focus on a family of CCPs [25, 23] based on the (to the best of our knowl-
edge) only known family of bipartite facet Bell inequalities. Facet inequalities
optimally bound correlations with a local hidden variable model [26]. We consider
the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequalities, involving any
d number of outcomes [44, 112]. We demonstrate the advantage of quantum
communication over strategies based on violations of the CGLMP inequalities,
which we show to be even larger than previously thought [161]. In particular,
whilst resolving two conjectures of [161], we show that below dimension six, both
quantum CCP-implementations are equally efficient, whereas above (and includ-
ing) dimension six they are not. In this sense, dimension six acts as a threshold
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for revealing the advantages of quantum communication. To shine light on the
suddenly emerging discrepancy between the two quantum CCP-implementations,
we evidence that optimal quantum communication strategies in high-dimensional
Hilbert space require projective measurements that are not rank-one. Subsequently,
we present an experimental realisation. Using high-dimensional photonic systems,
specifically up to dimension ten, we outperform strategies based on violating the
CGLMP inequalities, emerging from dimension six, by means of quantum nonlocal
correlations. Furthermore, we also outperform strategies based on super-quantum
violations of said inequalities respecting only no-signaling and macroscopic local-
ity [118]. Finally, we prove that the experimental data cannot be simulated with
any rank-one projective measurement without additional post-processing of the
data. Since only a dimensional bound on the relevant Hilbert space is assumed,
this constitutes a semi-device-independent [129] falsification of said property.

5.2 The communication complexity problems

Bell inequalities can be systematically mapped to CCPs. In a Bell experiment, any
choice of shared state and local measurements, which then generates a probability
distribution, can also be used in a strategy for a CCP leading to an efficiency
analogous to that observed in the Bell experiment [24, 163]. A quantum advantage
(in such strategies) over classical methods relies on generating correlations that
violate the relevant Bell inequality. A natural candidate for such constructions
are facet Bell inequalities, since these optimally bound correlations obeying local
realism. The CGLMP inequalities [44] constitute a family of facet Bell inequalities
for two parties, each with two choices of measurements and with d > 2 possible
outcomes.

The construction of CCPs based on the CGLMP inequalities has been developed
in [25, 23]. In this family of CCPs (parameterised by d), a party Alice is given
random inputs x0 ∈ {0, . . . ,d− 1} and x ∈ {0, 1}, and another party, Bob, is given a
random input y ∈ {0, 1}. Alice may communicate no more than logd bits to Bob,
after which he outputs a guess g ∈ {0, . . . ,d− 1}. If g coincides with the value of a
function fk(x0, x,y) = x0 − xy− (−1)x+yk mod d, for some k = 0, . . . , bd/2c− 1,
the partnership is awarded ck = 1 − 2k/(d− 1) points. However, if g coincides
with hk = x0 − xy+ (−1)x+y(k+ 1) mod d, the partnership loses ck points. The

28



CHAPTER 5. HIGH-DIMENSIONAL QUANTUM COMMUNICATION
COMPLEXITY BEYOND STRATEGIES BASED ON BELL’S THEOREM

task is to efficiently communicate such that the average number of points earned
is large. The payoff function is given by

∆Bell
d =

1
4d

∑
x0,x
y,k

ck [P(g = fk|x0, x,y) − P(g = hk|x0, x,y)] .

On the one hand, in an approach based on Bell inequalities, Alice and Bob
share an entangled state and perform local measurements x and ywith d-valued
outcomes a and b respectively. In order to exploit the fact that the CCP is tai-
lored to the CGLMP inequalities, Alice encodes the classical communication
m(a, x0, x) ∈ {0, . . . ,d− 1} using m = x0 + a mod d and Bob subsequently de-
codes it using g = m− b mod d (see Fig. 5.1). It was shown [25, 23, 161] that
the resulting value of ∆Bell

d is in one-to-one correspondence with the quantity
evaluated from the statistics p(a,b|x,y) in a test of the CGLMP inequalities. In
this sense, the efficiency in the CCP is determined by the amount of nonlocal-
ity present in the distribution p(a,b|x,y). In particular, if p(a,b|x,y) generates
a maximal violation of the (suitably normalised) CGLMP inequalities, then by
the outlined communication strategy it can be used to achieve an equally large
value of ∆Bell

d . The maximal quantum value achievable in a test of the CGLMP
inequalities lacks a simple analytical form but is known up to large d and achieved
with non-maximally entanged states [179]. Violations of the CGLMP inequalities
have been experimentally observed for high-dimensional systems [164, 48, 102].

On the other hand, these CCPs can also be implemented without exploiting
entanglement and Bell inequality violations [161]. Instead, Alice and Bob can
use single quantum systems for direct quantum communication. In such an
implementation, Alice associates her random inputs (x, x0) to a d-dimensional
quantum state, ρx0x ∈ Cd, which is sent to Bob who performs a measurement
{M

g
y}
d−1
g=0, the outcome g of which determines his output guess (see Fig. 5.1). In a

quantum model, the performance of the CCP reads

∆QS
d =

1
4d

∑
x0,x,y,k

ck tr
(
ρx0x

(
Mfk
y −Mhk

y

))
. (5.1)

An efficient quantum communication strategy, i.e., a suitable choice of state prepa-
rations and measurements, aims to find the largest value of ∆QS

d . In Supplemen-
tary Material we qualitatively discuss the advantages and limitations of the two
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Figure 5.1: (a) Quantum CCP implementation based on the violation of the CGLMP
inequalities. (b) Quantum CCP implementation based on communicating a single
d-level quantum system.

quantum CCP implementations. In Ref. [161], it was shown that the optimal
performance of the two different quantum approaches is equal, i.e., ∆QS

d = ∆Bell
d ,

when d = 2, 3, 4. Numerical results suggested the same relation also for d = 5, 6.
However, for d > 7, lower bounds on ∆QS

d were shown to outperform the maximal
value of ∆Bell

d . Next, we revisit this analysis, show improved quantitative results,
establish the precise dimension revealing the inequivalence, and provide insight
to the qualitative differences between the two quantum implementations of the
CCPs.
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5.3 The efficiency of quantum communication

We begin by quantifying the advantage of quantum communication over strategies
based on the violation of the CGLMP inequalities. Specifically, we numerically
infer lower bounds on the maximal value of ∆QS

d for d 6 10. This has been done
by running two optimisations in see-saw [175, 127]; first optimising over the
states of Alice for fix measurements of Bob, and then over the measurements
of Bob for fix states of Alice, repeatedly. Each such optimization constitutes a
semidefinite program [170]. The best found states and measurements are listed
in Supplementary Material. The results are presented in Table 5.1 together with
the known [179, 161] optimal CGLMP-based values of ∆Bell

d as obtained both in
quantum theory, and by the super-quantum principle of macroscopic locality
[118]. The latter correlations are only constrained by the inability of violating a
Bell inequality when the measurements are macroscopic, i.e., that a large number
of particles are collectively measured instead of microscopic measurements on
single particles. The results substantially improve on the lower bounds for ∆QS

d
obtained in [161], and thus establish an increased quantitative advantage of high-
dimensional quantum communication over strategies based on Bell inequality
violation. In particular, note that for d = 8, 9, 10, quantum communication can even
outperform the Bell inequality based approach when the correlations established
are only required to be macroscopically local, i.e., the violation of the CGLMP
inequalities is larger-than-quantum.

Furthermore, we rectify the main result of [161] by resolving two of its con-
jectures: that the optimal quantum communication strategy performs equally
well as that based on the quantum violation of the CGLMP inequalities when
d = 5 and when d = 6. For d = 5, we have used the second hierarchy level of
dimensionally bounded quantum correlations [117]. In order to reduce the com-
putational requirements of this evaluation, we have employed the symmetrisation
techniques and toolbox of [162]. We obtain a tight bound on the efficiency of quan-
tum communication matching that obtained through a maximal violation of the
CGLMP inequalities. This proves the conjecture. For d = 6, the presented lower
bound on ∆QS

d shows that quantum communication outperforms the analogous
Bell inequality based result. Thus, the improved lower bound falsifies the conjec-
ture. This establishes dimension six as the dimension revealing the quantitative
inequivalence between the two quantum implementations of the CCPs.
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d
Lower bound

∆
QS
d

Lower bound
∆

QS
d from [161] ∆Bell

d ∆ML
d

Lower bound∆QS
d

rank-one projective
2 - 0.7071 0.7071 0.7071 0.7071
3 - 0.7287 0.7287 0.7887 0.7287
4 - 0.7432 0.7432 0.8032 0.7432
5 - 0.7539 0.7539 0.8249 0.7539
6 0.8000 0.7624 0.7624 0.8345 0.7624
7 0.8175 0.7815 0.7694 0.8461 0.7814
8 0.8571 0.8006 0.7753 0.8529 0.8006
9 0.8622 0.8622 0.7804 0.8605 0.8188

10 0.8889 0.8778 0.7849 0.8657 0.8396

Table 5.1: Lower bounds for the maximal value of ∆QS
d as compared to the maximal

value of ∆Bell
d obtained via the maximal quantum (and macroscopically local i.e.,

∆ML
d ) violation of the CGLMP inequalities. The final column was obtained through

optimization over unit-trace measurement operators and optimal measurements
were always found to be rank-one projective.

A relevant question is whether the breaking of the equivalence of the two
quantum implementations, emerging when the dimension is increased above five,
is linked to qualitatively different properties in the optimal use of the respective
quantum systems. Below the critical dimension six, the optimal found preparations
of Alice can be effectively prepared by Alice locally measuring an entangled
state, and then considering the post-measurement state of Bob for her given
outcome. The collection of Bob’s post-measurement states is then identical to
the collection of states communicated over a quantum channel in an optimal
strategy. Consequently, there is no advantage over Bell inequality based strategies.
Furthermore, the optimal measurements coincide with the rank-one projective
measurements optimal for violating the CGLMP inequalities. However, when
d > 6 our numerical calculations for d = 6, . . . , 10 suggests that: (I) the states
{ρx0x} cannot be prepared remotely with entanglement in a test of the CGLMP
inequalities, and that some inputs may be associated to the same state, and (II)
the two measurements of Bob are such that one is rank-one projective, whereas
the other is higher-rank projective, i.e., some measurement operators are zero-
operators, meaning that the associated outcomes never can occur regardless of
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the state being measured. Degenerate measurements are known to be optimal
for some quantum information problems [126, 104]. They can be viewed as rank-
one projective measurements with additional post-processing by which some
outcomes remain untouched and other outcomes are given new labels. To further
evidence the sub-optimality of rank-one projective measurements (without post-
processing), we have numerically optimised ∆QS

d over measurements in which
all measurement operators are of trace one. Since all rank-one projectors are of
trace one, and we always find the optimal measurement to be rank-one projective,
the results constitutes a lower bound valid for such measurements. The results
(see Table 5.1) show that although rank-one projective measurements are sufficient
to outperform strategies based violating the CGLMP inequalities, they are not
optimal.

5.4 Experimental demonstration of
high-dimensional quantum communication
advantage

We present an experimental demonstration of the advantages of single-system
quantum communication in the considered CCPs for d = 6, ..., 10. In our exper-
iment, d-dimensional quantum systems are encoded into the linear transverse
momentum of single photons transmitted by programmable diffractive apertures,
which nowadays is a standard technique used for high-dimensional quantum
information processing [101, 100, 71, 36, 3, 155, 152, 109, 113, 105, 49, 62, 37].

The experimental setup is presented in Fig. 5.2. It is composed of two main
parts: one for the state preparation and another for performing projective measure-
ments on the prepared system. Each part is controlled by a Field Programmable
Gate Array (FPGA) electronics. In the state preparation, a 690 nm single mode
laser modulated with an Acousto-Optic Modulator (AOM) and optical attenuators
(not shown in Fig. 5.2) prepare weak coherent states with an average number of
0.9 photons per pulse. This source can be seen as an approximation to a nondeter-
ministic single-photon source, since pulses with a single-photon account for 62.3%
of the generated non-null pulses. Accidental counts are strongly suppressed by
using a detection window that matches the optical pulse duration of 45µs.
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Figure 5.2: Experimental setup for implementing the CCPs with quantum commu-
nication. d-dimensional quantum systems are encoded into the linear transverse
momentum of single photons. The experiment is composed of two main parts:
one for the state preparation and another for performing measurements on the pre-
pared system. Both parts rely on the programmability of spatial light modulators
for preparing the required states and measurements.

To encode the quantum states in the linear transverse momentum of single
photons we exploit the pixel-programmability of spatial light modulators (SLMs)
[101, 100]. The state preparation and measurement stages has two fundamental
blocks: an amplitude-modulation only SLM1 (SLM3), built with two linear polariz-
ers and a liquid crystal display (LCD), and a phase-modulation only SLM2 (SLM4),
composed of two linear polarizers, two quarter wave plates and an LCD. Each
SLM is placed in the image plane of its predecessor. In order to experimentally
generate some desired states ρx0x = |ψx,x0〉〈ψx,x0 |, a set of d slits with a width of 64
µm and equal center to center separation are displayed on SLM1 and SLM2. The
individual transmittances tl and phases φl of each slit “l” are set to reconstruct the
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real and imaginary parts of |ψx,x0〉. The state vector of the transmitted photon after
the SLM2 is given by |ψ〉 = 1√

N

∑d/2
l=−d/2

√
tle

iφl |l〉, where N is a normalisation
constant. The coefficients tl and the phases φl are independently controlled by
the SLM 1 and SLM 2, respectively. To implement the desired measurements at
the measurement stage, different amplitude and phase sets of the d slits are used
at the SLM3 and SLM4. The transmittances and phases of each set are chosen to
post-select for detection one of the required state vectors |ϕy,by〉. In the final part
of the setup, a “pointlike” avalanche single-photon detector (APD) with a 10 µm
pinhole is placed at the center of the far field plane of the SLM4. In this case, the
probability of single-photon detection P(x, x0,y,b) is proportional to |〈ϕy,b|ψx,x0〉|2
[100, 71, 36, 3]. However, since for each d one of the targeted protocol measure-
ments is rank-two projective (see Supplementary Material, we post-process the
experimental data to emulate the statistics such a measurement. This is done
by suitably relabling the outcomes of the relevant measurements whenever, in
the raw data, it is associated to an outcome which never occurs in the desired
rank-two projective measurement.

After several rounds of the experiment, an experimental value of ∆QS
d is calcu-

lated from the acquired data, namely ∆Exp
d . Since the measurement uncertainty of

∆
Exp
d decreases with the total number of counts, the repetition of the experimental

rounds for each dimension were chosen such that ∆Exp
d violates the bounds for

Bell inequality based strategies with at least six standard deviations for each d
considered. Hence, any explanation in terms of an arbitrary entangled quantum
system is excluded by at least 6 standard deviations, which corresponds to a
p-value of 1× 10−9.

For d = 6, ..., 10, we obtain the results

∆
Exp
6 = 0.7893± 0.0026 ∆

Exp
7 = 0.8082± 0.0034

∆
Exp
8 = 0.8453± 0.0041 ∆

Exp
9 = 0.8427± 0.0051

∆
Exp
10 = 0.8773± 0.0018. (5.2)

In Figure 5.3, we compare the experimental results to the theoretical predictions
for quantum communication, as well as with the limitations of both quantum and
macroscopically local Bell correlations. The results are in good agreement with the
theoretical predictions, surpassing the values associated to the maximal violation
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of the CGLMP inequalities. In the particular, in the case of d = 10, the results
also surpass the limitations of the post-quantum Bell correlations obeying only
macroscopic locality.

Finally, we revisit the previously numerically evidenced hypothesis of rank-
one projective measurements being sub-optimal. Focusing on the case of d = 6,
we have considered whether the experimental data can be reproduced by some
quantum communication strategy utilising only such measurements. To this end,
we have used an intermediate level of the hierarchy of dimensionally bounded
quantum correlations [117], and additionally imposed upper and lower bounds
on the particular probabilities measured in the lab corresponding to (x0, x) = (4, 0)
and y = 0. In order to respect the errors of the measured probabilities, they
was constrained to an interval twice larger than the experimental errors of each
measurement outcome. In this manner, we have obtained the bound 0.7830 on ∆QS

6
which is smaller than the experimentally measured value. This demonstrates that
under the assumption of a six dimensional Hilbert space, there exists no quantum
communication strategy based on rank-one projective measurements which can
reproduce the experimental results.

5.5 Conclusion
We have theoretically and experimentally studied the efficiency of high-dimensional
quantum communication in a family of CCPs, as opposed to classical commu-
nication assisted by nonlocal correlations violating the facet Bell inequality to
which the CCPs were originally tailored. We demonstrated significant advantages
of quantum communication which increase with Hilbert space dimension, and
showed that they stem from degenerate measurements. Our work shows the
usefulness and strength of quantum correlations generated via the communication
of a high-dimensional quantum system, and the practicality of experimentally
realising them.
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CHAPTER 6
Experimental quantum tomography

assisted by multiply symmetric states
in higher dimensions

6.1 Introduction
In this experiment, we propose and experimentally test a new quantum to-
mographic method, which is based on the measurement of an informationally
complete POVM formed by sub-normalized projectors onto multiply symmetric
states [125]. These are constructed by applying products of integer powers of
unitary transformations on a fixed fiducial quantum pure state. Unlike SIC-POVM
and MUB, our tomographic method can be constructed in any finite dimension.
Furthermore, in the case of odd dimensions, the POVM has D2 sub-normalized
projectors and thus it requires the smallest number of measurement outcomes to
estimate unknown quantum states. In the case of even dimensions, the POVM has
3D2/2 measurement operators, which is a significative reduction from the case of
standard tomography. A first estimate of the unknown state can be obtained by lin-
ear inversion, which does not introduce bias [145]. The numerical stability of this
process can be improved at a great extent by a suitable choice of the fiducial state.
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This also contributes to speed up the rate of convergence in the postprocessing
of the experimentally acquired data. Our experimental implementation is based
on the encoding of D-dimensional quantum states onto the linear transverse mo-
mentum of single photons. These are created by defining D different propagation
paths available for the photon transmission at diffractive apertures addressed on
spatial light modulators (SLM) [101]. A second set of SLMs allows one to project
the D-dimensional state onto any other fixed D-dimensional state [100]. The use
of SLMs for preparation [101, 100, 153, 172, 171] and measurement of these so-
called spatial qudits has been extensively explored for quantum information tasks
such as QKD [57], Bell-type nonlocality and noncontextuality tests [48, 35, 13, 34],
and quantum tomography [137, 100, 138, 71], among others [152, 3, 111]. We test
our tomographic method in dimensions 6 and 15 reaching fidelities of 0.998 and
0.984 with ensemble sizes of only 6× 104 and 1.5× 105, respectively. Experiments
performed with similar optical setups have achieved lower fidelities of 0.96 for
dimensions 6 and 7, 0.985 for dimension 8, and 0.887 for dimension 10 [100, 18, 71]
while resorting to larger ensembles of detected photons. Thus, our experimental
results demonstrate the practicability of our method in higher dimensions and the
good performance of our experimental setup.

This article is organized as follows: In Sec. 6.2, we introduce the theoretical
background and formulate our tomographic method. In Sec. 6.3, we introduce
the experimental setup and analyze the results provided by the experimental
realization of our method. In Sec. 6.4, we summarize, comment on possible
extensions to the multipartite case, and conclude.

6.2 Theory

In this section we briefly recall the general notion of multiply symmetric states.
Thereafter, we study a particular family of multiply symmetric states and build
the tomographic method upon it. We solve explicitly the inversion problem and
provide a simple analytical expression relating the experimentally acquired data,
the measurement settings, and the estimate of the unknown state.
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Multiply symmetric states

In general, states |ψk1,k2,...,kM〉 are said to be multiply symmetric if they can be
written as [16]

|ψk1,k2,...,kM〉 = U
k1
1 U

k2
2 · · ·U

kM
M |ψ0,0,...,0〉, (6.1)

where kj = 0, . . . ,Nj − 1, |ψ0,0,...,0〉 is the fiducial state of the set, and Uj are unitary
transformations that satisfy UNj

j = I (for every j), where I is the identity operator
acting onto the Hilbert space of a single qudit. We will limit ourselves to the case
ofM = 3. Thus, we define the constant matrices

X =

D−1∑
k=0

|k⊕ 1〉〈k|, (6.2)

Z =

D−1∑
k=0

e2πik/D|k〉〈k|, (6.3)

V =

κ−1∑
k=0

|k〉〈k|− i
D−1∑
k=κ

|k〉〈k|, (6.4)

where D is the dimension of the Hilbert space and κ = [[D/2]], being [[x]] the
operation that rounds x to the closest integer number. These matrices represent,
respectively, the shift operator (X), the clock operator (Z) and an additional phase-
only transform (V) with diagonal entries vk = 〈k|V|k〉 that adopt values of 1 and
−i. The symbol ⊕ in Eq. (6.2) denotes addition mod(D). By using the operators X,
Z, and V, we now define a set of multiply symmetric states {|α`,m,j〉} given by

|α`,m,j〉 = V`XmZj|α0〉 =
D−1∑
k=0

akv
`
k⊕me

2πijk/D|k⊕m〉, (6.5)

where ` = 0, 1, 2, 3, m = 0, . . . ,D− 1, and j = 0, . . . ,D− 1. The fiducial state is a
pure quantum state |α0〉 =

∑D−1
k=0 ak|k〉, whose coefficients fulfill the normalization

condition
∑D−1
k=0 |ak|

2 = 1.
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Value of s Ks odd dimension Ks even dimension
0 6 s 6 κ− 1 D 2D
κ 6 s 6 D− 1 D D

D 6 s 6 D− 1 + κ Does not apply 2D

Table 6.1: Values of Ks depending on the values of s and dimension, where
κ = [[D/2]].

Essential subsets of states

Let us now consider a physical system described by an unknownD-dimensional
quantum state ρ. In 2010, Paiva-Sanchez and coworkers [125] studied quantum
state tomography assisted by a basis B0(α) of D equidistant states, which they
denoted as |αj〉. These states are such that the inner product between them is given
by 〈αj|αj ′〉 = α (j > j ′), where α is a fixed constant. Additional D− 1 bases Bs(α)
are constructed by applying Xs on the elements of B0(α). This amounts for a total
ofD2 measurements. Additionally, they report a strange behavior that depends
on the dimension of the Hilbert space where the state belongs to. In summary,
odd dimensions require the aforementionedD2 measurements only, whereas even
dimensions require additional measurements attainable by applying V on the
elements of each Bs(α), which leads to a total of 3D2/2 measurements.

The form of the equidistant states used in Ref. [125] for this purpose resembles
the one of Eq. (6.5). Nevertheless, an analysis of the computations of Ref. [125]
indicates that a similar mathematical procedure allows us to accomplish such
tomographic process regardless of the fiducial state used, that is, states |αj〉 do
not need to be equidistant. Thus, we resorted to multiply symmetric states for
such goal. If D is an odd number, quantum state tomography can be performed
by measuring on projectors of the form |α0,m,j〉〈α0,m,j|, with ` = 0 and for everym
and j ranging from 0 to D− 1. For even dimensions, we must also consider ` = 1,
with j = 0, . . . ,D− 1 andm = 0, . . . ,D/2 − 1 for these additional measurements.

In this context, a simpler mathematical description can be obtained by resorting
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to two subscripts only, regardless of the dimension. Thus, we define

|αsj〉 =Vbs/DcXsZj|α0〉,

=

D−1∑
k=0

akv
(s)
k⊕se

2πijk/D|k⊕ s〉, (6.6)

where v(s)k = 〈k|Vbs/Dc|k〉, j = 0, . . . ,D− 1, s = 0, . . . , smax − 1, and

smax =

D, if D is odd,
3D
2

, if D is even.
(6.7)

Thus, the set of states {|αsj〉} in odd dimensions is still a complete set of multiply
symmetric states under transformations X and Z, as seen from Eq. (6.5). For even
dimensions, on the other hand, this set encompasses a subset of the multiply
symmetric states under the action of X, Z, and V. Despite the different behavior
exhibited by states |αsj〉 as defined here, they allow one to construct POVMs.
Indeed, we may define

Πsj =
1
Ks

|αsj〉〈αsj|,
smax−1∑
s=0

D−1∑
j=0

Πsj = I, (6.8)

where the values of Ks are given in Table 6.1. This POVM will be useful for
tomographic and post-processing purposes.

Tomography using multiply symmetric states

Let us define the matrix P =
∑
s,j psj|s〉〈j|, where psj = tr(ρΠsj). Explicitly,

P =

smax−1∑
s=0

D−1∑
j=0

(
D−1∑
l,m=0

a∗lam
Ks

e2πi(m−l)j/D

× v(s)∗l⊕sv
(s)
m⊕sρl⊕s,m⊕s

)
|s〉〈j|. (6.9)
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This matrix contains the experimental probabilities that can be found by taking
the completeness relation of Eq. (6.8) into consideration. So, if nsj is the number of
registered counts when Πsj is measured, then every probability can be experimen-
tally estimated as psj = nsj/

∑
t,k ntk. Afterwards, a right-Fourier transformed

probability matrix P̃ can be defined as P ·F, where F = 1√
D

∑D−1
l,m=0 e

2πilm/D|l〉〈m|.
Explicitly,

P̃ =

D−1∑
k=0

[
smax−1∑
s=0

√
D

Ks
|s〉 (6.10)

×

(
D−1∑
q=0

a∗q	s⊕kaq	sv
(s)∗
q⊕kv

(s)
q 〈q|

)
|~ρk〉

]
〈k|,

where |~ρm〉 denotes them-th diagonal of ρ, given by1

|~ρm〉 =
D−1∑
q=0

ρq⊕m,q|q〉. (6.11)

For convenience, we will define ancillary vectors

|~ξsk〉 =
(
Xs−k|α0〉

)
◦
(
Xs|α0〉∗

)
◦
(
X−k|~vs〉

)
◦ |~vs〉∗, (6.12)

where “◦” denotes the Hadamard product between matrices, and

|~vs〉 =
D−1∑
r=0

v
(s)
r |r〉 = diag

(
Vbs/Dc

)
. (6.13)

Consequently, the right-transformed probability matrix can be compactly written
as

P̃ =

D−1∑
k=0

Gk|~ρk〉〈k|, (6.14)

1Throughout this document, notation |~a〉will refer to a purely mathematical vector ~a that does
not represent any physical state. However, Dirac notation is used for comfortability.
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where matrix Gk is given by

Gk =
smax−1∑
s=0

√
D

Ks
|s〉〈~ξsk|. (6.15)

Now, it is possible to construct the density operator ρ by rearranging its compo-
nents in a vector ~ρ = vec(ρ) (see Appendix of [110]), which is computed according
to

~∆ρ =

D−1∑
k=0

|k〉 ⊗ |~ρk〉, (6.16)

~ρ =SSWAPX · ~∆ρ, (6.17)

where⊗ represents the Kronecker product between matrices, ~∆ρ is aD2-dimensional
vector containing the diagonals of ρ—given by |~ρk〉—stacked on top of each other,
SSWAP is a D2 ×D2-matrix that acts as SSWAP(|j〉 ⊗ |k〉) = |k〉 ⊗ |j〉, and

X =

(
D−1∑
m=0

Xm ⊗ |m〉〈m|

)
. (6.18)

Finally, after taking Eqs. (6.10), (6.12), (6.14), (6.15), and (6.17) into account, the
components of ρ can be isolated by computing

G =

D−1∑
m=0

|m〉〈m|⊗ Gm, (6.19)

Ga =
D−1∑
m=0

|m〉〈m|⊗ G am, (6.20)

and

~ρ =SSWAP XGa vec(P̃)

=
(
SSWAP XGa

)(
(F⊗ Ismax)vec(P)

)
, (6.21)
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where xa denotes the Moore-Penrose pseudoinverse [134] matrix of x, Ismax is a
smax × smax identity matrix, and vec(P) is the vectorization of matrix P (see Ap-
pendix of [110]). We have used Eq.A.3 of of [110] in order to write vec(PF) = (F⊗ I)vec(P),
being F a symmetric matrix. We have resorted to vectorized versions of some
matrices as these allow one to write efficient numerical codes. The use of sparse ma-
trices, as explained in Sec. 6.2, may contribute substantially to the efficiency of the
computation of ~ρ for quantum systems of very high dimensions. Matrix pseudoin-
verse has been used instead of the usual matrix inverse because G contains Dsmax

rows and D2 columns and, consequently, may be not square. Equation (6.21), in
summary, relates the components of the reconstructed density matrix—stored
in vector ~ρ—with the experimental measurements (P) and the measurement set-
tings (G) in an explicit way. The density operator ρ is obtained by just rearranging
the elements of ~ρ in a square matrix, which can be post-processed if required.
Large parentheses in Eq. (6.21) indicate the recommended multiplication order
with the goal of optimizing the use of memory.

Comparison with general linear inversion

Let us consider an arbitrary M-outcome quantum measurement described by
POVM elements Πµ, where µ = 1, . . . ,M. If ~p is a vector containing the probabili-
ties associated with this measurement, it can be shown [see Eq.A.5 of of [110]] that
~p = M~ρ, where

M =

 M∑
µ=1

|vec(Πµ)〉〈µ|

† . (6.22)

Thus, a simple way to obtain ~ρ is by means of ~ρ = Ma~p. If the set of measurements
is not informationally complete, there will be ambiguities in the state, i.e., there
can exist several solutions ~ρ for the problem ~p = M~ρ and, thus, we should expect
the performance of the reconstruction to be poor in terms of fidelity, as it may
depend highly on the algorithm used to compute Ma. The use of informationally
complete measurements eliminates these ambiguities.

Moreover, the computation of Ma for the method studied in this article might
be infeasible in very high dimensions as it requires (i) being able to store in memory
a highly dense matrix M of size D2 ×Dsmax, and (ii) the ability of computing its
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pseudoinverse. For instance, matrix M for a 8-qubit system (D = 256, smax = 384)
requires 96 GB of memory for the sole purpose of being stored using complex
double-precision floating-point numbers. Thus, the computation of Ma for a
multiqubit/multiqudit system might be impractical in most current computers.

On the other hand, we may see from the previous section that matrices SSWAP,
X, Ga, and (F⊗ Ismax) are very sparse for high dimensions: their densities (ratio of
nonzero elements) are 1/D2, 1/D2, 1/D, and 1/smax, respectively. Consequently,
the aforementioned matrices for the 8-qubit case require less than 1 GB of memory
each when using sparse matrices2, making now the computations possible in
many computers.

Figure 6.1: Left panels: Condition number C (G(α)) as function of α—given that
fiducial state |α0〉 is given by Eqs. (6.24) and (6.25)—for dimensions 6 and 15.
Red squares indicate the values of α that were used in the experiment reported
in this article. Since C (G(α)) might adopt very different values, these graphs
were presented in logarithmic scale. Right panels: Fidelity of reconstructed states
simulated by Monte Carlo method.

2Numerical tests for the 8-qubit case show that (F⊗ Ismax) and Ga require 576.75 MB each,
whereas SSWAP and X need only 1.5 MB each.
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Due to finite statistic effects and experimental error sources, the estimates
generated via linear inversion might not be positive semidefinite matrices, and
thus cannot be accepted as physical states. To solve this problem, several statis-
tical inference techniques can be employed. In particular, maximum likelihood
estimation (MLE). This is formulated as an optimization process on the space
of the physical states whose output is the state with the highest probability of
generating the experimentally acquired data. MLE requires an initial guess. This
is chosen in our case as the matrix provided by linear inversion, which contributes
to speed up the convergence of MLE. Thus, both MLE and linear inversion are
employed to generate physically acceptable estimate. MLE is formulated as an
optimization problem on an exponentially scaling number of variables, and thus
its computational feasibility is constrainted by the available computing power.
Recently, efficient techniques for solving MLE in higher dimensional systems have
been proposed [147]. Thereby, the slow convergence of MLE is postponed to even
higher dimensions, but not eliminated. In this scenario, linear inversion becomes a
viable alternative since it is less computationally demanding than MLE. Moreover,
unlike estimates obtained with the help of MLE, the linear inversion process does
not exhibit bias [145, 148].

Other alternative approaches such as Forced Purity, Quick and Dirty [88], or
searching for the closest density operator [151] are suitable to find physically acept-
able states without resorting to numerically demanding optimization problems .
All of them require an initial matrix to work on, which can be obtained from ~ρ by
linear inversion.

Stability of the inversion

The stability of the inversion under variations of the experimentally obtainable
probabilities can be studied by inspecting Eq. (6.21). The problem is either well or
ill-conditioned depending on the condition number C of the matrix involved in
the inversion. This, in turn, depends on the singular values of such matrix [40].
As matrices SSWAP, X, and F⊗ Ismax are all unitary, they do not modify singular
values and, hence, matrix G suffices to analyze the robustness of the tomographic
procedure under experimental noise. Indeed,

C
(
SSWAP XGa (F⊗ Ismax)

)
= C (G) =

σmax (G)

σmin (G)
, (6.23)
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where σmax(G) and σmin(G) stand for the maximal and minimal singular values of
G, respectively. It can be concluded from Eqs. (6.12), (6.19), and (6.23) that a study
of C (G) as function of |α0〉 allows one to predict whether a given fiducial state will
be a good choice for quantum tomography. A small condition number indicates
that the fiducial state is a good candidate for building the tomographic method.

As C (G) depends on D complex parameters, its optimization over the Hilbert
space does not seem to be computationally easy. For sake of simplicity, we will
resort to the notation used in Ref. [125] in order to analyze C (G) in terms of a
single complex parameter α. Thus, the fiducial state will be given by

|α0(α)〉 =
D−1∑
k=0

√
λk(α)

D
|k〉, (6.24)

where

λk(α) =1 − |α|
sin
(
kπ+(D−1) arg(α)

D

)
sin
(
kπ−arg(α)

D

) . (6.25)

Left panels of Figure 6.1 show the decimal logarithm of C (G) as a function of
the absolute value and phase of α for dimensions 6 and 15. As it can be observed,
C (G(α)) can adopt values ranging from ∼ 101 to ∼ 105. Right panels show the
fidelity of the reconstruction via Monte Carlo simulations, in which the simulated
number of counts by measurement had Poisson noise added. As many simulations
were performed, we implemented the “Quick and Dirty” method [88] for post-
processing the density operator in Figure 6.1. Direct comparison of left and right
panels indicate that numerical instability (high condition number) may introduce a
significant inaccuracy in the estimate of the density matrix. This further motivated
us to look for adequate fiducial states before making measurements.

In each of the left panels of Figure 6.1, three red squares highlight the values
of α that were used for our experiment. These values, also displayed in Table 6.2,
were chosen from regions at the figures exhibiting small condition numbers. We
have dealt with the problem of numerical stability by choosing fiducial states such
that C (G) adopts small values. Instead of resorting to a given parametrization,
we could have generated a large set of random fiducial states and compute the
value of C (G) for each one. If done so, condition numbers even lower than the
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D α1 α2 α3
6 0.4 e1.7πi 0.8 e0.36πi 0.5 e0.5πi

(7.796) (6.848) (8.946)
15 0.365 eπi 0.54 e0.4πi 0.98 e1.42πi

(40.94) (27.32) (33.15)

Table 6.2: Values of α chosen for experimental purposes. Numbers in parentheses
below each α indicate the condition number, which is extracted from data of
Figure 6.1.

ones used here could be obtained. Nonetheless, using the former procedure we
were able to ensure the states on a neighborhood with small condition numbers to
have a more robust reconstruction in the case of having noise due to experimental
imperfections.

6.3 Experiment

Our setup is depicted in Fig. 6.2. It consists of two main blocks: the state preparation
(SP) and projective tomographic measurement (PM) stages. In SP, weak coherent
states are produced resorting to a 690 nm continuous-wave single-mode laser
heavily attenuated with calibrated optical filters (not shown in Fig. 6.2 for sake of
simplicity) and modulated with an Acousto-Optic Modulator (AOM) configured
at a repetition rate of 30 Hz. The mean photon number per pulse is set to µ = 0.9.
Consequently, this source works as an approximation to a nondeterministic single-
photon source since pulses with a single photon account for 62.3% of the generated
non-null pulses [69]. Contributions of multiphoton events to the recorded statistics
is strongly suppressed by using a detection window much smaller than the optical
pulse duration. Lastly, extra polarizing cubes with an overall extinction ratio
greater than 10−7 are used to ensure a high quality of horizontal polarization of
the transmitted photons. In this way, we are able to attain a high purity degree for
the high-dimensional states generated with the spatial light modulators [168].

SLMs are a central part of our setup. Each pixel of a SLM is part of a twisted
nematic liquid crystal display (LCD) whose birefringence can be controlled by
means of standard video signals emitted by a field programable gate array (FPGA).
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Figure 6.2: Experimental setup.

As a result of an adecquate control of the photon polarization before and after
crossing the LCD, we can set the SLM to work as an amplitude-only spatial
light modulator (SLM1 and SLM3) or a as a phase-only modulator (SLM2 and
SLM4) [116]. Arrays of D slits are displayed on SLM1, each having a width
of 96 µm and transmittance coefficients t`. The centers of contiguous slits are
separated by 192 µm. An imaging system projects the image of SLM1 on SLM2,
where phases φ` are added to each slit. Thus, the state of the single photons
transmitted by these SLMs is |Ψ〉 ∝

∑D−1
`=0
√
t`e

iφ` |`〉—where |`〉 denotes the state
of the photon transmitted by the `th-slit of the SLMs—and it represents a D-
dimensional quantum system encoded into the linear transverse momentum of
the photons [120, 101, 100].

To test our new tomographic method we considered 3 different types of states
for dimension D = 6 and D = 15. The reason for choosing such dimensions
are: (i) to illustrate the relevance of our method while considering even and odd
dimensions, and (ii) the tomographic method based on mutually unbiased bases
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can not be used in these dimensions. To be more specific, the prepared states were

∣∣∣Ψ6
1

〉
=

1√
6

5∑
j=0

|j〉, (6.26a)∣∣∣Ψ6
2

〉
= |0〉, (6.26b)∣∣∣Ψ6

3

〉
=

1√
6

[(
|0〉+ |2〉

)
+ e−iπ/4|4〉

+ e−iπ/8
(
|1〉+ |3〉+ |5〉

)]
, (6.26c)

for dimension 6, and∣∣∣Ψ15
1

〉
=

1√
15

14∑
j=0

|j〉, (6.27a)∣∣∣Ψ15
2

〉
= |7〉, (6.27b)∣∣∣Ψ15

3

〉
=

1√
15

[(
|0〉+ |5〉+ |8〉+ |14〉

)
+ e−iπ/10

(
|1〉+ |3〉+ |9〉+ |12〉

)
+ e−iπ/9|2〉+ e−iπ/8

(
|6〉+ |11〉

)
+ e−iπ/7

(
|4〉+ |10〉

)
+ e−iπ/6

(
|7〉+ |13〉

)]
. (6.27c)

for dimension 15.
The Projective Tomographic Measurement stage contains SLM3 and SLM4,

used for post-selecting the state to be detected. For this purpose, a new set of trans-
mittance coefficients τ` and phases ζ` are used on SLM3 and SLM4, respectively.
Finally, detection is performed at the center of the focal plane of a lens located
after SLM4 using an avalanche single-photon detector (APD) with a 10 µm-wide
pinhole placed in front of it. The probability of detecting a single photon is, thus,
proportional to |〈Θ|Ψ〉|2 [100, 57, 157], where |Θ〉 ∝

∑
`

√
τ`e

−iζ` |`〉. In our case, |Θ〉
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represents each of the states |αsj〉 on which the measurements are performed, so
parameters τ` and ζ` are adjusted accordingly. In order to show the possibility
of using different fiducial states, we used |α0(αk)〉 [see Eq. (6.24)] as the fiducial
state for reconstructing state |ΨDk 〉, where the values of αk are the ones shown in
Table 6.2.

Each projective measurement related to our tomographic method was repeated
10 times, which allowed us to obtain its associated mean value of detection counts.
We denote nsj,r as the counts obtained from measuring Πsj in the rth round of
measurements, where r = 1, . . . , 10. Average numbers of counts n̄sj can then be
obtained by

n̄sj =
1
10

10∑
r=1

nsj,r. (6.28)

Measurements were taken for times long enough to obtain around 10000×D
counted photons, as a total over all projections Πsj, for each round. Once all the
detection counts were recorded and the average probabilities were computed, we
proceeded to the post-measurement processing of the data. Error margins for
density matrices and its corresponding figures of merit were determined through
10000 Monte Carlo simulations for each reconstructed state. Simulated counts
numbers n(µ)

sj are obtained by adding Poisson noise to the originally averaged
data, where µ denotes the number of the Monte Carlo trial and ranges from 1 to
10000. Only in the first case there is no noise considered, i.e.,

n
(µ)
sj =

{
n̄sj, for µ = 1,
Poisson

(
n̄sj
)

, otherwise.
(6.29)

Afterwards, simulated probability matrices P(µ) are computed for each Monte
Carlo trial according to

P(µ) =

smax−1∑
s=0

D−1∑
j=0

n
(µ)
sj |s〉〈j|

smax−1∑
t=0

D−1∑
k=0

n
(µ)
tk

, (6.30)
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Figure 6.3: Examples of the Monte Carlo simulations performed (uppper panels)
and their respective histograms (lower panels). Three horizontal dot-dashed lines
in the upper graphs represent the mean value (〈F〉) of the simulations and the
〈F〉 ± 5σ interval. The continuous line in each histogram represents a fitted beta
distribution. For each fitted function, the probability of having a value outside
the ±5σ interval is ∼ 10−6.

where Eq. (6.8) was taken into account. Then, matrix P(µ) is used in Eq. (6.21) in
order to obtain a reconstructed density matrix ρ(µ). As Eq. (6.21) cannot ensure its
positiveness, maximum likelihood estimation (MLE) was subsequently employed
(see Appendix of [110] for details) in order to ensure matrix positiveness [81, 85,
165]. The fidelity F(µ) between ρ(µ) and the state |Ψ〉 we intended to prepare is
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computed as figure of merit for each state resulting from MLE, where

F(µ) =〈Ψ|ρ(µ)|Ψ〉. (6.31)

The final result for the fidelity is expressed in terms of the mean and standard
deviation of the simulated results, that is,

F =
〈{
F(µ)
}〉
± 5σ

({
F(µ)
})

. (6.32)

Two examples of the Monte Carlo simulations are shown in Fig. 6.3. We have
chosen±5σ as error margins since the probability of obtaining a value outside it in
a new round of experiments is less than 10−6 in the case the values of F(µ) distribute
around their mean value following a normal distribution. In the worst-case
scenario, such probability is less than 4%, according to the Bienaymé-Chebyshev
inequality. The reconstructed density operators in dimension 6 are depicted in
Fig. 6.4, whereas Fig. 6.5 illustrate the results for dimension 15. A summary of
the results is shown in Table 6.3. As it can be seen, high values of fidelities were
obtained. More specifically, for dimension 6 (15) an overall fidelity of 0.977 (0.957)
has been recorded, while considering an ensemble of only 6× 104 (1.5× 105) events
of photo-detection for the state reconstruction procedure. In the literature there
are several experiments toward quantum tomography of a single qudit: Ref. [100]
reported the experimental realization of tomography using mutually unbiased
bases and they obtained fidelities of 0.96± 0.03 and 0.93± 0.03 for dimensions
7 and 8, respectively. Ref. [71] reported 0.985± 0.015 for D = 8 using a method
designed for reconstructing pure states. The experiment of Ref. [18] using SIC-
POVM obtained fidelities of 0.960 ± 0.003 and 0.887 ± 0.003 for dimensions 6
and 10, respectively. Our experimental results compare favorably with these
previous results, which validates the good performance of the experimental setup
employed to realize the quantum tomography assisted by multiply symmetric
states in higher dimensions.

6.4 Concluding remarks
In summary, we have reported the experimental realization of quantum state
tomography assisted by multiply symmetric states for dimensions D = 6 and
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Figure 6.4: Reconstructed quantum states forD = 6. The insets show the theoreti-
cally expected results.
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Figure 6.5: Reconstructed quantum states forD = 15. The insets show the theoreti-
cally expected results.
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D
∣∣ΨD1 〉 ∣∣ΨD2 〉 ∣∣ΨD3 〉

6 0.998± 0.001 0.977± 0.013 0.956± 0.010
15 0.965± 0.006 0.984± 0.009 0.922± 0.007

Table 6.3: Fidelities obtained for each of the reconstructed states, with their
respective 5σ uncertainty extracted from 10000 Monte Carlo trials. MLE was used
in each trial.

D = 15. Unlike MUB and SIC-POVM tomographic methods, this method is
guaranteed to exist in any dimension and provides a significant reduction in
the number of measurement outcomes when compared to standard quantum
tomography. Furthermore, in the case of odd dimensions the method requires
the least possible number of measurement outcomes. As explained in Sec. 6.2,
this tomographic method is different from a general linear inversion in the sense
that (i) multiply symmetric states constitute an informationally complete set of
measurements, and (ii) it was possible to rewrite the equations in such a way
the inversion is represented now in terms of multiplying sparse matrices and
computing inverses of smaller matrices rather than computing the inverse of a
large matrix, which is more practical for high dimensions. The POVM elements
used for this reconstruction method, as Eq. (6.6) shows, depend on a given fiducial
state |α0〉 that can be freely chosen. Nevertheless, this fiducial state is chosen in
such a way the inversion algorithm remains numerically stable. Such stability can
be analyzed in terms of the condition number of matrix G of Eq. (6.19).

Further improvements can be obtained by studying the condition number. We
have reduced the complexity of this problem by studying fiducial states defined
by two parameters, which led to condition numbers of the order of 10. However,
Monte Carlo simulations with randomly generated fiducial states have shown that
smaller condition numbers are possible. Other continuation of the current work
concerns the case of multipartite systems. For instance, the state of a two-qudit sys-
tem can be estimated with a minimal number of D4 measurement outcomes. This
can be achieved for D odd by conditional local estimations employing quantum
tomography assisted by multiply symmetric states.

Recently, QT has been studied from the point of view of the achievable es-
timation accuracy. Here, the figure of merit is the Gill-Massar lower bound
Ī = (D2 − 1)(D+ 1)/4N for the infidelity, where N is the size of the ensemble of
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identically, independently prepared copies of the unknown state to be estimated.
This is the highest estimation accuracy for mixed states that can be achieved
by means of local measurements, that is, measurements that are carried out on
individual members of the ensemble. It has been demonstrated that two-stage
quantum tomography for a single qudit approaches Ī [136]. In the first stage of this
adaptive tomographic method a small ensemble is employed to obtain a first esti-
mate via standard quantum tomography. This estimate’s eigenstates are employed
to represent the D2 − 1 generators of SU(D), which are subsequently measured in
a second stage of standard quantum tomography. For D = 2 two-stage quantum
tomography saturates the Gill-Massar lower bound [106, 80]. However, for D > 2
this is not the case. Furthermore, numerical evidence suggests that the estimation
accuracy behaves as ĪD. It is possible to improve the accuracy by modifying
two-stage quantum tomography. Instead of projecting onto the eigenstates of the
D2 − 1 Gell-Mann generators, it is possible to gather enough information to esti-
mate an unknown state by projecting onto 2D+ 1 (2D− 1) bases for D odd (even).
The adaptive version of this method leads to an estimation accuracy that behaves
as 2Ī [135], independently of the dimension. Here arises the question whether an
adaptive version of quantum tomography assisted by multiply symmetric states
would lead to an estimation accuracy better than 2Ī with the added benefit of a
reduced number of total measurement outcomes.
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Conclusion

In this dissertation we explored the generation of high dimensional qudits. We
accomplished the generation of such states and also we performed projective mea-
surements on them. The experimental setup is completely automated, using the
advantages that SLMs and FPGA give. The optical system is robust against mis-
alignment, and because of that, we can perform measurements for large amounts
of time (in the order of 30 days). The visibility of the output signal rounds 0.98,
allowing the realization of experiments where the violation of tight bounds is
not possible with low visibility. Finally I’d like to remark that the versatility
of the experimental setup its mainly due to the reconfigurability of the SLMs.
We performed three experiments using the presented techniques, that count as
follows:

• Certifying an Irreducible 1024-Dimensional Photonic State Using Refined
Dimension Witnesses. Phys. Rev. Lett., 120(23):230503 [3].

• High-Dimensional Quantum Communication Complexity beyond Strategies
Based on Bells Theorem. Phys. Rev. Lett., 121(15):150504 [111].

• Experimental quantum tomography assisted by multiply symmetric states
in higher dimensions. Phys. Rev. A, 99(012336) [110].

Said that, I can conclude that the TLM of single photons is an excellent
candidate to codify qudits to be used un QI and QC protocols.

61



CHAPTER 7. CONCLUSION

Nevertheless, there are a few backwards in our system. Due to the video
protocols that control the SLMs, its native repetition rate is 60 Hz. Furthermore,
we work using weak coherent pulses in the single photon level. This two consider-
ations leads to low detection statistics. A second backward relies on the dicotomic
outcomes of the APD (0 or 1 count) and the fact that we can only project one 〈φ|
per pulse, taking as result that our system have a unique outcome per pulse.

Even when we count the backwards of the experimental scheme, because its
versatility, this setup is going to be productive for the next years in the field of QI.
If one think objectively, most of the experiments in QI try to measure |〈φ|ψ〉|2, just
as this setup is intended to.
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Conclusión

Durante esta disertación exploramos la generación de estados cuánticos en altas
dimensiones. Logramos generar dichos estados y realizar mediciones proyectivas
sobre ellos. El esquema experimental está completamente automatizado, siendo
parte fundamental del sistema de control la electrónica programable basada en
FPGAs. El sistema óptico es robusto ante desalineación, por ende es posible
realizar experimentos continuos por largos tiempos (en el orden de 30 dı́as). La
visibilidad de la seal de salida ronda el 98%, permitiendo realizar experimentos
que necesitan altas fidelidades, por ejemplo cuando es necesario superar lı́mites
de funciones de interés. Finalmente remarcamos que versatilidad que tiene este
arreglo experimental se debe en buena medida a las reconfigurabilidad de los
SLMs, siendo parte esencial en nuestro sistema.

Con dicho setup, realizamos tres experimentos en donde una visibilidad alta
era un requerimiento crucial para lograrlo.

• Certifying an Irreducible 1024-Dimensional Photonic State Using Refined
Dimension Witnesses. Phys. Rev. Lett., 120(23):230503 [3].

• High-Dimensional Quantum Communication Complexity beyond Strategies
Based on Bells Theorem. Phys. Rev. Lett., 121(15):150504 [111].

• Experimental quantum tomography assisted by multiply symmetric states
in higher dimensions. Phys. Rev. A, 99(012336) [110].
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Dicho esto podemos concluir que el TLM de fotones individuales es un
excelente candidato para codificar qudits y realizar protocolos de QI y QC.

Sin embargo, existen algunas desventajas en nuestro sistema. Debido a que las
señales que controlan los SLMs se rigen por protocolos de video convencionales,
su tasa de repetición es de 60 Hz. Aunado a esto, nosotros trabajamos en el
régimen de fotones individuales. Estas dos consideraciones tienen como resultado
que la estadı́stica de adquisición del sistema sea muy baja y que no puede ser
superada debido a la electrónica nativa de los SLM. Una segunda desventaja es
que debido a la naturaleza dicotómica de las mediciones (esto quiere decir que al
hacer la proyección |〈φ|ψ〉| los únicos valores posibles en el detector son 0 o 1 en
cada pulso) y a que solo puedo proyectar un solo 〈φ| por pulso, nuestro sistema
ve una única outcome a la vez.

Aún contando las desventajas del esquema experimental, este arreglo va a
seguir produciendo buenos resultados para los avances en el campo de la QI
debido a su versatilidad. Si uno piensa de manera concreta, el objetivo de la mayor
parte de los experimentos cuánticos es medir |〈φ|ψ〉|2 que es el objetivo del sistema
aquı́ presentado.
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[126] Pál, K. F. and Vértesi, T. (2009). Quantum bounds on bell inequalities. Phys.
Rev. A, 79:022120.
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