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Abstract

In the present work, the interactions mediated by fluctuations between two atoms
in the presence of an aplanatic lens were studied, demonstrating an improvement
in their resonant dipole-dipole interaction. We derive the field propagation of the
linear optical system in terms of the dyadic Green’s tensor for an aplanatic lens. The
collective atomic dynamics is analyzed via a Lindblad master equation for open sys-
tems, which allows characterizing the dispersive and dissipative interactions between
distant atoms, and also through their respective interaction Hamiltonian. Thus, it
is shown that the resonant dipole-dipole coupling between atoms can be enhanced
in the focal zone of the lens, enough to guarantee an atomic trap with a reason-
able lifetime. Our work opens new avenues to expand dipole-dipole interactions to
macroscopic scales and the experimental platforms to study them.
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Resumen

En el presente trabajo se estudiaron las interacciones mediadas por las fluctuaciones
de los campos entre dos átomos en presencia de una lente aplanática, demostrando
un aumento en su interacción resonante dipolo-dipolo. Derivamos la propagación del
campo a través del sistema óptico lineal en términos del tensor de Green diádico para
tal lente con ambas distancias focales iguales. La dinámica colectiva es analizada
a través de la ecuación maestra de Lindblad para sistemas abiertos, la cual per-
mite caracterizar las interacciones dispersivas y disipativas entre átomos distantes,
y a también mediante su respectivo Hamiltoniano de interacción. Así, se demues-
tra que el acoplamiento dipolo-dipolo resonante entre los átomos la zona focal se
puede aumentar significativamente, lo suficiente como para garantizar una trampa
atómica con un tiempo de vida tiempo razonable. Nuestro trabajo abre nuevas vías
para expandir las interacciones dipolo-dipolo a escalas macroscópicas y añade una
plataforma experimental para estudiarlas.
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Chapter 1

Introduction

Quantum electrodynamics (QED) has the fundamental and fascinating feature that
quantum fluctuations can result in forces between two neutral bodies, known as fluc-
tuation forces [1, 2]. In the context of atomic interactions these forces are typically
referred to as Casimir-Polder, or van der Waals forces [3]. While typically weak,
these forces become relevant in nanophotonic systems. For example, the Casimir-
Polder forces on atoms are detrimental for trapping particles near surfaces [4]. This
fluctuation-mediated forces can be engineered in different ways, for example, by
modifying properties of external macroscopic bodies [5–9], the density of modes
of the electromagnetic (EM) field via the geometry [10], using magnetic interac-
tions [11], driving the system [4,12], or preparing the system in a collective state [13].

The control of individual atoms by high numerical aperture (NA) lenses, which
collect and focus light into small regions, has reached sufficient development to ex-
plore atom-field interactions, such as quantum gases microscopes [14], programmable
atom arrays [15, 16], and other novel arrangements of lenses [17, 18]. An important
achievement of this control of single nano-particles was to reveal the dynamics of
the proteins in our own DNA using optical tweezers [19]. State-of-the-art optical el-
ements allow for a NA as high as 0.92 [20], near the theoretical limit. In the context
of high-NA lenses, the possibility of studying long-range atom-atom interactions,
not yet explored, opens up.

The possibility of guiding a fraction of an emitter’s light over long distances has
been of significant interest in waveguide quantum electrodynamics. This branch
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CHAPTER 1. INTRODUCTION

rely on the evanescent light-matter coupling wherein the emitters are either placed
nearby a solid waveguide structure.

In the literature it is usual to find long-range interaction between atom by guid-
ing a fraction of the light from an emitter over macroscopic distances. This has
been of significant interest in the quantum electrodynamic waveguide branch, which
rely on the evanescent light-matter coupling wherein the emitters are either placed
nearby a solid waveguide structure in order to establish a collective state between
the particles [21–24]. On the other hand, imaging systems imply large operating
distances that allow atoms to be treated as if they were in free space [25], while fa-
cilitating interactions with their distant counterparts. The possibility of enhancing
the long-range interaction using the far-field emission represents an exciting way to
combine the collective behavior with the exchange of real photons.

In this work we explore the idea of using an ideal lens together with a weak ex-
ternal drive to amplify and engineer the interaction between two distant atoms. As
the atoms scatter the laser field, the lens collects and amplifies the far-field resonant
dipole-dipole interaction mediated via the drive photons. This opens the possi-
bility of using atomic imaging technology for engineering long-range dipole-dipole
interactions and implementing collective systems without near-field interactions.
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Chapter 2

Theoretical Foundations

As humans, we like light. We look forward to the arrival of spring and summer,
which are characterized by a greater presence of natural light for a longer time.
This is mainly due to the fact that the energy of light quanta (photons) is within
the energy range of electronic transitions in matter and, for evolutionary reasons,
our eyes are adapted to detect this range (optical spectrum). This gives us the
beauty of color.

The understanding of this moving phenomenon (light-matter interaction) has
been one of the greatest advances in recent centuries. Thanks to this advance
we can handle physical events as we please, something dreamed of by the 10,000
generations prior to ours. For the study of the interaction of an atom with radiation
of different types, it will be convenient to have an idea of the relevant knowledge of
the description of light, atoms, and the interaction between them.

With the beginning of the development of quantum mechanics came a revolu-
tionary paradigm shift: light could be treated both as a wave and as a particle.
Convention today dictates that light behaves as light or as a particle depending on
which feature you exploit in your particular experiment. To describe optical radia-
tion in nano-optics it is mostly sufficient to adopt the wave picture. This allows us
to use classical field theory based on Maxwell’s equations. Also, in nano-optics, the
systems with which the light fields interact are small, such as individual molecules or
single atoms, which requires a quantum description of the properties of the material.
Therefore, in most cases we can use the framework of semi-classical theory, which
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CHAPTER 2. THEORETICAL FOUNDATIONS

combines the classical picture of fields and the quantum picture of matter.

2.1 Electrodynamics

In 1873, James Clerk Maxwell combine the laws formerly established by Faraday,
Ampère, Gauss, Poisson, and others and derived what would become the first equa-
tions for the dynamics of the electromagnetic field. Those corresponded to a macro-
scopic electrodynamics, considering charge densities ρ and current densities j. In
differential form and in SI units, Maxwell’s macroscopic equations have the form

∇ ·D(r, t) = ρ(r, t) (2.1.1)

∇× E(r, t) = −∂B(r, t)

∂t
(2.1.2)

∇ ·B(r, t) = 0 (2.1.3)

∇×H(r, t) =
∂D(r, t)

∂t
+ j(r, t) (2.1.4)

where E denotes the electric field, D the electric displacement, H the magnetic field,
B the magnetic induction, j the current density, and ρ the charge density. These
equations determine the behavior of fields. Centuries ago, the usual observable
was force, and these fields came to explain strange phenomena such as "forces at a
distance". The source terms in this description are continuous and macroscopic.

An important feature is the conservation of current, which is implicitly contained
in Maxwell’s equations. Taking the divergence of Eq. 2.1.4, using ∇ · ∇ ×H = 0,
and and substituting Eq. 2.1.1 for ∇ ·D one obtains the continuity equation

∇ · j(r, t) + ∂ρ(r, t)

∂t
= 0. (2.1.5)

In a medium, the electromagnetic properties are most commonly discussed in terms
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2.1. ELECTRODYNAMICS

of the macroscopic polarization P and magnetization M according to

D(r, t) = ϵ0E(r, t) +P(r, t) (2.1.6)

H(r, t) =
1

µ0

B(r, t)−M(r, t) (2.1.7)

where ϵ0 and µ0 are the permittivity and the permeability of vacuum, respectively.
These equations do not impose any conditions on the medium and are therefore
always valid. Substituting these relations in the Maxwells’s Eqs. 2.1.2 and 2.1.4 we
can obtain the inhomogeneous wave equations

∇×∇× E+
1

c2
∂2E

∂t2
= −µ0

∂

∂t

(
j+

∂P

∂t
+∇×M

)
(2.1.8)

∇×∇×H+
1

c2
∂2H

∂t2
= ∇× j+∇× ∂P

∂t
− 1

c2
∂2M

∂t2
(2.1.9)

In a source-free vacuum we will obtain a wave equation for the fields E and H, so
it is straightforward to interpret

c =
1

√
ϵ0µ0

(2.1.10)

as the vacuum speed of light. Equations 2.1.8 and 2.1.9 only dictate the behavior of
the fields and do not impose any conditions on the medium considered, so they are
universally valid. We can separate the current density term according to its origin,
j = js+ jc. The terms js and jc are recognized as the source and induced conduction
current density, respectively. Furthermore, to describe how matter behaves under
these fields we need material equations known as constitutive relations

P(r, t) = ϵ0χeE(r, t), (2.1.11)

M(r, t) = χmH(r, t), (2.1.12)

j(r, t)c = σE(r, t). (2.1.13)

where σ is the electrical conductivity, and χe and χm denote the electric and mag-
netic susceptibility, respectively. Substituting these relations into the Eqs. 2.1.6 and
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CHAPTER 2. THEORETICAL FOUNDATIONS

2.1.7 we can write

D(r, t) = ϵ0ϵrE(r, t) (2.1.14)

B(r, t) = µ0µrH(r, t) (2.1.15)

with ϵr = ϵ/ϵ0 = 1 + χe denoting the relative electric susceptibility, being ϵ the
medium electric susceptibility, and µr = µ/µ0 = 1 + χm the relative magnetic
susceptibility, where µ is the medium magnetic susceptibility.

An important fact to note is that electric and magnetic fields can be written in
terms of a vector potential A and a scalar potential ϕ, defined by

E(r, t) = − ∂

∂t
A(r, t)−∇ϕ(r, t) (2.1.16)

B(r, t) = ∇×A(r, t). (2.1.17)

They satisfy Maxwell’s equations. Nevertheless, the potentials A and ϕ are not
uniquely defined by Eqs. 2.1.16 and 2.1.17. This is caused by the freedom of gauge,
i.e. if the potentials are replaced by new potentials Ã and ϕ̃ according to

A→ Ã+∇χ (2.1.18)

ϕ→ ϕ̃− ∂χ/∂t (2.1.19)

with χ(r, t) being an arbitrary gauge function, then Maxwell’s equations remain
unaffected. This is easily seen by introducing the above substitutions into the def-
initions of A and ϕ, Eqs. 2.1.16 and 2.1.17. This redundancy gives the freedom to
choose a suitable gauge fixing according to what is convenient for each case.

It is generally more interesting to study the spectrum Ê(r, ω) of a time-dependent
field E(r, t), which are related by the Fourier transform

Ê(r, ω) =
1

2π

ˆ ∞

−∞
E(r, t)eiωt dt. (2.1.20)
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2.2. ANGULAR SPECTRUM REPRESENTATION

If we apply the Fourier transform to Maxwell’s equations 2.1.1-2.1.4, we will get

∇ · D̂(r, ω) = ρ̂(r, ω), (2.1.21)

∇× Ê(r, ω) = iωB̂(r, ω), (2.1.22)

∇ · B̂(r, ω) = 0, (2.1.23)

∇× Ĥ(r, ω) = −iωD̂(r, ω) + ĵ(r, ω). (2.1.24)

The general time dependence is obtained from the inverse transform. For the rest
of the text, Ê(r, ω) ≡ E(r) will be used. Applying the operator ∇ × 1

µ
to the Eq.

2.1.22, and using Eqs. 2.1.15, 2.1.14 and 2.1.24, we can write

∇× 1

µ
∇× E(r) =iω∇× 1

µ
B(r) (2.1.25)

=ω2ϵE(r) + iωjc(r) + iωjs(r) (2.1.26)

and finally, from the constitutive relation Eq. 2.1.13 we arrive to

∇× 1

µ
∇× E(r)− ω2

c2
[ϵ+ iσ/ (ωϵ0)]E(r) = iωµ0js(r) (2.1.27)

−→ ∇×∇× E(r)− k2E(r) = iωµ0µjs(r) (2.1.28)

where we replace the expression in brackets on the left-hand side of the first equation
by a complex dielectric constant [ϵ+ iσ/ (ωϵ0)] → ϵ. Furthermore, we define k =

k0
√
µrϵr, where k0 = ω/c and n =

√
µrϵr is the index of refraction.

2.2 Angular spectrum representation

Let’s suppose that we know a scalar field f(x, y, 0), which is a solution of a wave
equation, at position z = 0, a natural question would be: how can we compute the
field f(x, y, z) at position z?

Using the Fourier transformed fields f̂ (kx, ky), we start by decomposing the

7



CHAPTER 2. THEORETICAL FOUNDATIONS

initial field f(x, y, 0) in a plane wave basis

f(x, y, 0) = (2π)−2

ˆ ∞

−∞
ei(kxx+kyy)f̂ (kx, ky) dkxdky (2.2.1)

When moving away from z = 0, we can make the general ansatz

f(x, y, z) = (2π)−3

ˆ ∞

−∞
ei(kxx+kyy+kzz)f̂ (kx, ky, kz) dkxdkydkz. (2.2.2)

However, wave equations like the ones seen in the previous sections impose con-
straints, so one degree of freedom is subtracted. We can thus express kz for instance,
in terms of the others

f(x, y, z) = (2π)−2

ˆ ∞

−∞
exp {i [kxx+ kyy + kz (kx, ky) z]} f̂ (kx, ky) dkxdky (2.2.3)

where we have explicitly indicated the dependence of kz = kz (kx, ky). From this
expression one observes that for z > 0 each plane wave acquires an additional phase

eikzzf̂ (kx, ky) . (2.2.4)

This factor is called the propagator in reciprocal space. On the other hand, if we
consider the dispersion relation

ω(k) = v|k| = v
√
k2x + k2y + k2z , |k| ≡ k (2.2.5)

the kz component has to be computed from

kz = ±
√
k2 − k2x − k2y. (2.2.6)

The positive or negative sign has to be chosen for waves propagating in the positive
or negative z direction. We can now distinguish two cases. For k2x + k2y ≤ k2 the
z-component of the wavevector kz = ±

√
k2 − k2x − k2y is a real number, corre-

sponding to a normal wave propagation. However, for k2x+ k2y ≥ k2 we get

kz = ±
√
k2 − k2x − k2y = ±i

√
k2x + k2y − k2 ≡ ±iκ, (2.2.7)

8



2.2. ANGULAR SPECTRUM REPRESENTATION

which corresponds to evanescent waves. Thus, evanescent waves grow or decay
exponentially when moving away from z. To be physically meaningful, we only keep
the decaying waves, this is e−κz for z > 0 and eκz for z < 0. If we introduce these
notions in Eq. 2.2.3 it is possible to express the fields at larger z values in the form

f(x, y, z) =(2π)−2

ˆ
k2>k2x+k2y

ei(kxx+kyy+
√

k2−k2x−k2yz)f̂ (kx, ky) dkxdky

+ (2π)−2

ˆ
k2<k2x+k2y

ei(kxx+kyy)−
√

k2x+k2y−k2zf̂ (kx, ky) dkxdky (2.2.8)

The same can be applied to a vector entity such as the electric field. Suppose we
know the electric field distribution E0(x, y) at a given plane z = 0, so it is also easy
to find its Fourier decomposition Ê0 (kx, ky). If we want to know the field for z > 0

we obtain, in accordance with the derivation of Eq. 2.2.8, the angular spectrum
representation

E(x, y, z) =

ˆ
k2>k2x+k2y

ei(kxx+kyy+
√

k2−k2x−k2yz) Ê0 (kx, ky) dkxdky

+

ˆ
k2<k2x+k2y

ei(kxx+kyy)−
√

k2x+k2y−k2z Ê0 (kx, ky) dkxdky (2.2.9)

Hence, we find that the angular spectrum is indeed a superposition of plane waves
and evanescent waves, or in other words, the contribution to the electric field can
be separated into real and virtual photons. From this equation one observes that in
order to compute fields away from a given plane we must first decompose E(x, y, 0)

into its Fourier components, and then each Fourier component simply acquires a
phase or decays exponentially when moving away from z = 0.

For this investigation only propagating waves will be used, so we can continue
developing a more suitable expression to represent far-fields in the angular spectrum
representation, i.e. in the evaluation of the field at a point r = r∞ at an infinite
distance from the object plane. To calculate the far-field E∞ we require the limit
kr →∞,

E∞ (nx,ny) = lim
kr→∞

ˆ
(k2x+k2y)≤k2

Ê (kx, ky; 0) e
ikr

[
kx
k
nx+

ky
k
ny± kz

k
nz

]
dkx dky (2.2.10)

9



CHAPTER 2. THEORETICAL FOUNDATIONS

where ni is an unit vector in the ith direction, and nz = nz(nx,ny). Fortunately, the
stationary phase approximation [26] provides a recipe for dealing with such integrals,
which allows us to write

E∞ (nx,ny) = −2πikzÊ (kx, ky; 0)
eikr

r
. (2.2.11)

This equation tells us that the far-fields are entirely defined by the Fourier spectrum
of the fields Ê (kx, ky; 0) which implies that only one plane wave with the wavevector
k = (kx, ky, kz) of the angular spectrum at z = 0 contributes to the far-field at a
point located in the direction of the unit vector n = (nx,ny,nz). The effect of all
other plane waves is cancelled out by destructive interference. This result allows
us to treat the field in the far-zone as a collection of rays with each ray being
characterized by a particular plane wave, similar to what we know from geometrical
optics. After clearing Ê and replacing it into the angular spectrum representation
Eq. 2.2.9, we find

E(x, y, z) =
ire−ikr

2π

ˆ
(k2x+k2y)≤k2

E∞

(
kx
k
,
ky
k

)
ei[kxx+kyy±kzz]

1

kz
dkx dky, (2.2.12)

which is a useful way to express far-fields in the angular spectrum representation.

2.3 Light-Matter

We are usually interested in studying a system from an energy perspective. This is
the framework that gives us the Hamiltonian formalism. It is well known that for a
free charge q with mass m in an external electromagnetic field we have [27]

Hparticle =
1

2m
(p− qA)2 + qϕ. (2.3.1)

where p = mv + qA is the canonical momentum, which is the sum of mechani-
cal momentum mv and field momentum qA. However, this Hamiltonian does not
account for the total energy "charge plus field", since neither the energy of the elec-
tromagnetic field nor the interaction between charges (as in the case of atoms or
molecules) are included. As usual in the study of light-matter interaction, the total

10



2.4. DYADIC GREEN FUNCTIONS

Hamiltonian can be separated into one for the field, one for the particle, and one
for the interaction between them,

Htot = Hparticle +Hrad +Hint.

Using the electromagnetic potentials A and ϕ, defined in the Eqs. 2.1.16 and 2.1.17,
together with its gauge freedom, it is possible to derive [28]

Hint = −
q

m
A (r, t) · p+

q2

2m
A (r, t) ·A (r, t) + qϕ (r, t)]. (2.3.2)

However, this Hamiltonian is not unique, since it is not gauge invariant. To remove
the ambiguity it is necessary to express Hint in terms of the physical fields E and B.
For this it is necessary to write A = A(E,B) and ϕ = ϕ(E,B). Those expansions
have been determined by [29],

ϕ(r) = ϕ(0)−
∞∑
i=0

r[r · ∇]i

(i+ 1)!
· E(0), A(r) =

∞∑
i=0

[r · ∇]i

(i+ 2)i!
B(0)× r.

Plugging them into 2.3.2 we get the so-called Hamiltonian of multipole interaction,

Hint = qtot ϕ(0, t)− p · E(0, t)−m ·B(0, t)− [
↔
Q ∇] · E(0, t)− · · · (2.3.3)

where qtot is the total charge of the system, p and m are their electric and magnetic
dipole moment, and

↔
Q the total electric quadrupole moment. If the system of

charges is neutral, the first term is null. Furthermore, if we focus on the electric
dipole transition that interchange the S → P (see Chapter 5) orbitals, we can
neglect the first-order magnetic contribution and focus only on the −p · E term,
which tells us that we can treat the most elementary radiative neutral object as an
electric dipole, at least to first order.

2.4 Dyadic Green Functions

Suppose there is an inhomogeneous differential equation that determines the re-
sponse of a system, represented by the vector function R, given a source function

11



CHAPTER 2. THEORETICAL FOUNDATIONS

S. This equation could be written as

LR(r) = S(r) (2.4.1)

where L is a linear differential operator. A well-known theorem for linear differential
equations states that the general solution is equal to the sum of the complete ho-
mogeneous solution (S = 0) and a particular inhomogeneous solution. If we assume
that we know the homogeneous solution (R0), thus we need to solve for an arbitrary
particular solution only. A convenient option is to first find a solution with a point
source δ (r), from which an important concept in field theory is derived: the Green
function, the fields due to a point source. But these functions can be separated
into at least two families, depending on whether the vector direction of the source
matches the direction of the generated field. For example, a source current in x-axis
gives rise to a potential vector with just an x-component. Instead, a source current
in x-axis leads to an electric and magnetic field with x-, y-, and z-components. Thus,
in the case of the electric and magnetic fields we need a Green function that relates
all components of the source to all components of the fields, i.e. the Green function
must be a tensor. This type of Green function is called a dyadic Green function,
and is a way to write three differential equations with vectors as source and response
functions in a compact form,

L
↔
G (r, r′) =

↔
I δ

3 (r− r′) (2.4.2)

where the operator L acts on each column of
↔
G separately and

↔
I is the unit dyad.

In general, the vector field
↔
G ·n, where n is a generic unit vector, depends on the

location r′ of the inhomogeneity δ3(r − r′), so the Green’s tensor has as argument
both the place of measurement r and the place of the source r′. Multiplying the Eq.
2.4.2 by S (r′) and integrating in a volume containing the sources, we obtain

ˆ
V

L
↔
G (r, r′)S (r′) dV ′ =

ˆ
V

S (r′) δ3 (r− r′) dV ′ = S (r) = LR (r) . (2.4.3)

12



2.4. DYADIC GREEN FUNCTIONS

If on the right-hand side the operator L is taken out of the integral, the solution of
Eq. 2.4.1 can be expressed as

R(r) =

ˆ
V

↔
G (r, r′)S (r′) dV ′ (2.4.4)

This tells us that the way the function R behaves due to the presence of S is given
by the Green function. For this reason, it is said that

↔
G connects both phenomena.

With this in mind, let us derive the dyadic Green’s function for the electric field.
For this we can consider an arbitrary reference system whose dielectric properties
are represented by a spatially inhomogeneous dielectric constant ϵ(r) = ϵ0ϵr(r).
Commonly, non-magnetic and isotropic materials are used as reference, for which
µr = 1, but we will keep it in the notation to arrive at a more general case with
µ(r) = µ0µr(r). In the previous section we used Maxwell’s equations 2.1.22 and
2.1.24 together with the constitutive relations to derive a wave equation for the
electric field, Eq. 2.1.28, which can be rewritten as[

∇×∇× − ω2

c2
µrϵr

]
E(r) = iωµ0µjs(r). (2.4.5)

To know the solution of this operator whatever the direction of a point source, we
can look for its dyadic Green’s function

↔
G. For this we need to solve[

∇×∇× − ω2

c2
µrϵr(r)

]
↔
G (r, r′) =

←→
I δ3 (r− r′) , (2.4.6)

so, by direct comparison with Eq. 2.4.4, the electric field can be represented as

E(r) = E0(r) +
iω

ϵ0c2
µ

ˆ
V

↔
G (r, r′) js (r

′) dV ′ (2.4.7)

where the volume element dV ′ indicates an integration over the region of the emitting
objects, of position r′. The E0 term denotes the homogeneous solution with js = 0.
The current density of an electric dipole with moment p0 located at r = r′ is

js(r) = −iωp0δ
3 (r− r′) (2.4.8)
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CHAPTER 2. THEORETICAL FOUNDATIONS

If the external excitations are null and the field is produced exclusively by the dipoles,
inserting this current into Eq. 2.4.7 the electromagnetic fields can be expressed in
terms of

↔
G (r, r′) as

E(r) =
ω2

ϵ0c2
µ

↔
G (r, r′)p0 (2.4.9)

Thus, the field produced by an arbitrarily oriented dipole located at r0 is given by
the Green’s function

↔
G (r, r′), which can be separated into two terms

↔
G (r, r′) =

↔
G0 (r, r

′)+
↔
GS (r, r′) , (2.4.10)

where the primary part
↔
G0 determines the direct dipole field and can be expressed

as
↔
G0 (r, r

′) =

[
←→
I +

1

k2
∇∇

]
G0 (r, r

′) . (2.4.11)

in which the scalar Green’s function functionG0 (r, r
′) is the solution for the Helmholtz

operator [
∇2 + k2

]
G0 (r, r

′) = −δ3 (r− r′) (2.4.12)

with a single point source δ3 (r− r′). In free space, the only physical solution of this
equation is [27]

G0 (r, r
′) =

e±ik|r−r′|

4π |r− r′|
, (2.4.13)

which allows us to calculate the free space Green’s function

↔
G0 (r, r

′) =
exp(ikR)

4πR

[(
1 +

ikR− 1

k2R2

)
↔
I +

3− 3ikR− k2R2

k2R2

RR

R2

]
, (2.4.14)

which fulfills the condition
↔
G0 (r, r′, ω) → 0 as |r− r′| → ∞. One can separate

the contributions to the field in terms of the distance between the emitter and the
receiver,

↔
G0=

↔
GNF +

↔
GIF +

↔
GFF (2.4.15)

where the near-field (GNF), intermediate-field (GIF), and far-field (GFF) Green func-

14



2.5. EMISSION RATE

tions are given by

↔
GNF=

exp(ikR)

4πR

1

k2R2

[
−
←→
I + 3RR/R2

]
, (2.4.16)

↔
GIF=

exp(ikR)

4πR

i

kR

[←→
I − 3RR/R2

]
, (2.4.17)

↔
GFF=

exp(ikR)

4πR

[←→
I −RR/R2

]
. (2.4.18)

As expected, the radiative content of the dipole at long distances is given by (GFF),
while the other terms (GNF, GIF) accounts for short-range contributions (or evanes-
cent field).

The secondary electromagnetic field, i.e. the field that is reflected from or trans-
mitted through inhomogeneities in the environment, is given by the scattering part
of the Green’s function

↔
GS. This description [28] indicates that if we want to ac-

count for the field passing through an aplanatic lens, we must look for a scattering
Green’s function.

2.5 Emission Rate

In the middle of the 20th century, the mechanism through which atoms emitted
radiation was unknown, so it was considered an intrinsic characteristic without fur-
ther development. A study of the emission of a nuclear magnetic moment coupled
to a resonant electronic device published by Purcell [30] showed that it is possible
to modify the decay rate by modifying the environmental conditions. Since then,
alterations in the emission rate due to planar interfaces, cavities, photonic crystals
and optical antennas have been verified [31–35].

The first approximation of the rate of decay comes from the Fermi’s golden rule,
usually written as

Γ =
2π

ℏ2
∑
f

∣∣∣〈f ∣∣∣ĤI

∣∣∣ i〉∣∣∣2 δ (ωi − ωf ) (2.5.1)

where ĤI = −d̂ · Ê is the Hamiltonian of interaction between the atom (treated as a
dipole) and the external field. In what follows, only the most relevant facts will be
given to arrive at an expression for the emission rate in terms of the dyadic Green’s

15



CHAPTER 2. THEORETICAL FOUNDATIONS

function.

First, we need to define the initial and final state of the combined system "field
plus atom" as

|i⟩ = |e, {0}⟩ = |e⟩|{0}⟩ (2.5.2)

|f⟩ =
∣∣∣g,{1(r, ω, k̂)}〉 = |g⟩

∣∣∣{1(r, ω, k̂)}〉 (2.5.3)

respectively. Here, |{0}⟩ denotes the zero-photon state, and
∣∣∣{1(r, ω, k̂)}〉 desig-

nates the onephoton state associated with mode and frequency ω = (Ee − Eg) /ℏ.
In a Green-tensor notation, we can express the interaction field as (see Eq. 3.0.12)

HAF =− d̂ · Ê (rA) (2.5.4)

=
∑
λ

ˆ
d3r

ˆ
dωd†·

↔
G (rA, r, ω) · f̂(r, ω) σ̂+

+ f̂ †(r, ω)·
↔
G

†
(rA, r, ω) · d σ̂−, (2.5.5)

where λ = e,m accounts for the elementary electric and magnetic excitations of the
system, its possible to write the transition |i⟩ −→ |f⟩ as〈

g
∣∣∣〈{0} ∣∣∣(−d̂ · Ê (rA)

)∣∣∣ e〉∣∣∣ 1λ(r, ω, k̂)〉 = dge·
↔
G (rA, r, ω) · k̂ (2.5.6)

where we have defined the electric dipole operator as d̂ = deg|e⟩⟨g|+dge|g⟩⟨e|. Now,
using the fluctuation-dissipation relation for a non-magnetic medium µ = µ0 [36],

∑
λ

ˆ
d3r

↔
Gλ (r1, r, ω) ·

↔
G

†
λ (r2, r, ω) =

ℏµ0ω
2

π
Im

↔
G (r1, r2, ω) , (2.5.7)

we can write the Fermi’s golden rule as

Γ(rA, rA, ω) =
2µ0ω

2

ℏ
dge · Im

↔
G (rA, rA, ω) · deg, (2.5.8)

where dge denotes the transition dipole matrix element. A more detailed explanation
can be found in the references [28,36].
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The formalism of the dyadic Green functions allows us to discriminate the nature
of the emission according to the conditions of the environment in which the emitting
object is found. As Eq. 2.4.10, the Green’s tensor can be separated into one for the
free-space

↔
G0 and one for the perturbations of the neighborhood

↔
GS, which can be

of a purely geometric character.

If we make a Taylor approximation of
↔
G0, given by Eq. 2.4.14, in the neighbor-

hood of r = rA, we will obtain

Im
↔
G0 (rA, rA, ω) =

ω

6πc

↔
I , (2.5.9)

so if we introduce it into Eq. 2.5.8 we arrive to the well-known spontaneous emission
rate for an atom in free-space

γ0 =
ω3
0d

2
ge

3πε0ℏc3
(2.5.10)

The inhomogeneities of the environment lead to modifications in the total emission
rate Γtot [30]. If the position rA and the transition frequency of the atom ω0 are
fixed, and only the position of the source is left as a variable,

Γtot(r) = γ0 + Γ′(r), (2.5.11)

being Γ′(r) the position dependent modification of the emission, given by

Γ′(r) =
2µ0ω

2
0

ℏ
|d|2nd · Im

↔
GS (rA, r, ω0) · nd, (2.5.12)

which depends on the orientation of the dipole nd and the dipole moment |d|2 spe-
cific for each atomic transition of a particular atom [37]. Naturally, this opens up
a palette of possibilities. In cases where the atom is driven by circularly polarized
light, i.e. photons with σ+ or σ− polarization, the light transfers its angular momen-
tum to the atom. After a long time compared with γ−1

0 , the atomic population is
transferred to the state with the highest angular momentum, limiting the accessible
states and transforming the atom into an effective two-level system. The case of a
cyclic transitions ⟨J, F,mF ||J ′, F ′,mF ′⟩ with circularly polarized light, the transi-
tion carries with it a degeneracy factor of (2J + 1)/(2J ′ + 1), so the dipole moment

17
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will be given by ∣∣dmF→mF ′

∣∣2 = 2J + 1

2J ′ + 1
|⟨J∥er∥J ′⟩|2 (2.5.13)

Finally, it is important to distinguish between transition rates, decay rates and
scattering rates. The transition rates depend on the respective dipole matrix el-
ements and the imaginary part of Green’s tensor taken at the atomic transitions
frequencies. For simplicity, we will call it just Γtrans.. The total decay rate of an
excited state is obtained by summing the transition rates to all lower lying states,
so you would have to evaluate Eq. 2.5.8 for each of them with its characteristic
|d| and then add them together. If there are n possible transitions involved, then
de decay rate is given by Γdecay =

∑
n Γtrans., n. The scattering rate takes into ac-

count the probability that the atom is excited. Let’s call that probability ρee. Then
Γscatt. = ρeeΓdecay. For a two-level atom there is only one transition allowed, so we
can refer of transition rate and decay rate interchangeably. For example, Eq. 2.5.11
refers only to a cyclic transition for a two-level atom, so Γtrans. = Γtot.
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Chapter 3

Master Equation

While the evolution of the state vector in a closed quantum system is determin-
istic, open quantum systems are stochastic in nature. The environment induces
stochastic transitions between energy levels, and to introduce uncertainty in the
phase difference between states of the system. The state of an open quantum sys-
tem is described by a density matrix ρ̂tot which describes a probability distribution
of quantum states. In a matrix representation, ρ̂tot =

∑
n pn |ψn⟩ ⟨ψn|, where pn is

the classical probability that the system is in the quantum state |ψn⟩. To derive the
equation of motion for an open quantum system we have to expand the scope of
the system to include the environment and convert it into a closed quantum system,
whose evolution is given, in Schrödinger picture, by

∂ρ̂tot
∂t

= − i

ℏ
[H, ρ̂tot] (3.0.1)

When solved for all times, it provides a full characterization of the states of both the
system and the reservoir. Here we consider a generic system S consisting of a sub-
system Sb coupled to a large reservoir R by some interaction I. That decomposition
of the system will be represented by their respective Hamiltonians

Sb −→ HA, (3.0.2)

R −→ HF , (3.0.3)

I −→ HAF , (3.0.4)
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CHAPTER 3. MASTER EQUATION

where HA is the atom Hamiltonian, HF is the field Hamiltonian and HAF is the
interaction Hamiltonian. If we add each part of the whole generic system, we will
have

HS = HA +HF +HAF ≡ H0 +HAF . (3.0.5)

Since we are only interested in the behavior of the subsystem, we can perform a
partial trace over the environmental degrees of freedom in Eq. 3.0.1, and thereby
obtain the dynamics of ρ̂A = TrF [ρ̂tot] which is called the master equation of the
original system density matrix [38],

˙̂ρA = −i[H, ρ̂A] +
∑
m

(
Lmρ̂AL

†
m −

1

2

{
L†
mLm, ρ̂A

})
(3.0.6)

where the Lm are collapse operators through which the environment couples to the
system in HAF , and which will give us the dissipation rate of the open system. This
equation provides us, in the Schördinger picture, a partial and simplified description
that allows us to achieve the limited goal to determine the evolution of the subsystem
only. Assuming that the system and reservoir are brought into contact at time t = t0,
they initially do not exhibit any correlations and thus the initial state of the system
is described by the factorized density operator

ρ̂tot (t0) = ρ̂A (t0)⊗ ρ̂R (HF ) , (3.0.7)

where ρ̂R (HF ) = |{0}⟩⟨{0}| is the initial state of the reservoir. This requirement
will continue to be required when there is a non-zero interaction, which is called the
Born approximation. To do the calculations, we have to specify the way in which
both parts interact and by which the separability condition will be obsolete. But
first, it is constructive to note that the atomic and field Hamiltonians are given
by [36],

HA =
N∑
i=1

ℏω0σ̂
(i)
+ σ̂

(i)
− (3.0.8)

HF =

ˆ
d3r

ˆ
dωℏωf̂ †(r, ω)f̂(r, ω), (3.0.9)
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Where ω0 is the angular frequency associated with the transition between the excited
state and the ground-state of a two-level atom, and where f̂(r, ω) and f̂ †(r, ω) are
bosonic operators which obey the canonical commutation relations[

f̂(r, ω), f̂ (r′, ω′)
]
=

[
f̂ †(r, ω), f̂ † (r′, ω′)

]
= 0 (3.0.10)[

f̂(r, ω), f̂ † (r′, ω′)
]
= δ (r− r′) δ (ω − ω′). (3.0.11)

The interaction between the two-level atom and the external field is given by

HAF =
N∑
i=1

ˆ
d3r

ˆ
dωd†·

↔
Ge (ri, r, ω0) · f̂(r, ω) σ̂(i)

+

+ f̂ †(r, ω)·
↔
G

†
e (ri, r, ω) · d σ̂

(i)
− . (3.0.12)

where, for simplicity and without ambiguity, we will change to the notation deg → d

and dge → d†. Also,
↔
Ge is defined by [39]

↔
Ge (ri, r, ω) = i

ω2

ϵ0c2

√
ℏϵ0
π

Im ϵr (r, ω)
↔
G (ri, r, ω) (3.0.13)

It is important to note that throughout this chapter we will assume a non-magnetic
medium (µr = 1), so Eq. 3.0.12 holds. Although these Hamiltonians are general
for generic atom-field interactions, in the chapter 5 it will be reduced to the specific
case in which HF accounts for the field produced by the atoms, HAF accounts for
the effect of photons emitted by atoms at one end of the lens on atoms at the other
end, and so the energy of the atoms HA will be modified by the presence of an
external drive with detuning δD = ω0−ωD. For this reason of generality, it will not
be imposed the monochromatic condition on HAF throughout the derivation of an
expression for ˙̂ρA. For now, let us continue the general case.

In order to obtain this goal, we change the frame of reference to a rotating frame
with respect to the total free Hamiltonian HA +HF . The interaction Hamiltonian
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at time t can be rewritten then as

HAF (t) =
N∑
i=1

ˆ
d3r

ˆ
dωd†·

↔
Ge (ri, r, ω) · f̂(r, ω)

(
σ̂
(i)
+ e

−iδ−t
)

+ f̂ †(r, ω)·
↔
G

†
e (ri, r, ω) · d

(
σ̂
(i)
− e

iδ−t
)

(3.0.14)

where δ± = (ω ± ω0). We now consider the Born-Markov master equation for the
atom density matrix evolution [40],

dρA
dt

=− 1

ℏ2
TrF

ˆ ∞

0

dτ [HAF (t), [HAF (t− τ), ρA ⊗ |0⟩⟨0|]] . (3.0.15)

Expanding the commutators, we can separate four terms

dρA
dt

=− 1

ℏ2
TrF

ˆ ∞

0

dτHAF (t)HAF (t− τ)ρA ⊗ |0⟩⟨0|︸ ︷︷ ︸
(I)

− 1

ℏ2
TrF

ˆ ∞

0

dτρA ⊗ |0⟩⟨0|HAF (t− τ)HAF (t)︸ ︷︷ ︸
(II)

+
1

ℏ2
TrF

ˆ ∞

0

dτHAF (t)ρA ⊗ |0⟩⟨0|HAF (t− τ)︸ ︷︷ ︸
(III)

+
1

ℏ2
TrF

ˆ ∞

0

dτHAF (t− τ)ρA ⊗ |0⟩⟨0|HAF (t)︸ ︷︷ ︸
(IV)

. (3.0.16)

Those terms are calculated in detail in the appendix 7.1. For clarity, it will suffice
to indicate that by expanding the term (I) we will obtain
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(I) = − 1

ℏ2
TrF

ˆ ∞

0

dτ

[
N∑
i=1

ˆ
d3r

ˆ
dω

(
σ̂
(i)
+ e

−iδ−t
)
d†·

↔
Ge (ri, r, ω) · f̂(r, ω)

+ f̂ †(r, ω)·
↔
G

†
e (ri, r, ω) · d

(
σ̂
(i)
− e

iδ−t
)]
× (3.0.17)[

N∑
j=1

ˆ
d3r′
ˆ

dω
(
σ̂
(j)
+ e−iδ−(t−τ)

)
d†·

↔
Ge (rj, r

′, ω) · f̂(r′, ω)

+f̂ †(r′, ω)·
↔
G

†
e (rj, r

′, ω) · d
(
σ̂
(j)
− eiδ−(t−τ)

)]
ρA ⊗ |{0}⟩⟨{0}|

and that this expression can be reduced keeping in mind (1) the fluctuation-dissipation
relation in Eq. 3.0.18 [36] rewritten here for completeness,

ˆ
d3r

↔
Ge (r1, r, ω) ·

↔
G

†
e (r2, r, ω) =

ℏµ0ω
2

π
Im

↔
G (r1, r2, ω) , (3.0.18)

and (2) the rotating-wave approximation, in which the fast phase δ+ is averaged to
zero

ˆ ∞

0

dτe−iδ+τ = 0 (3.0.19)

and where the slow phase δ− give rise to

ˆ ∞

0

dτe−iδ−τ = πδ(ω − ω0)− iP
1

ω − ω0

(3.0.20)

with P denoting the Cauchy principal value. With these facts we arrive at

(I) =− µ0ω
2
0

ℏ

N∑
i,j

σ̂
(i)
+ σ̂

(j)
− d† · Im

↔
G (ri, rj, ω0) · d ρA

+ i
µ0

ℏπ

N∑
i,j

P
ˆ
dω

ω2

ω − ω0

σ̂
(i)
+ σ̂

(j)
− d† · Im

↔
G (ri, rj, ω0) · d ρA. (3.0.21)

The real and imaginary parts of the Green’s function are not independent, they are
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related via the Kramers-Krong relations [36, 41]:

1

π
P
ˆ ∞

−∞

dω

ω − ω0

ω2 Im
↔
G (rm, rn, ω) = ω2

0 Re
↔
G (rm, rn, ω0) (3.0.22)

so finally,

(I) =− µ0ω
2
0

ℏ

N∑
i,j

σ̂
(i)
+ σ̂

(j)
− d† · Im

↔
G (ri, rj, ω0) · d ρA

+ i
µ0ω

2
0

ℏ

N∑
i,j

σ̂
(i)
+ σ̂

(j)
− d† · Re

↔
G (ri, rj, ω0) · d ρA. (3.0.23)

The remaining terms of Eq. 7.1.1 can be worked in a similar way as exemplified with
(I). Defining the dissipative and dispersive interactions between ith and jth atoms as

Γij = 2

(
µ0ω

2
0

ℏ

)
d† · Im

↔
G (ri, rj, ω0) · d, (3.0.24)

Jij = −
(
µ0ω

2
0

ℏ

)
d† · Re

↔
G (ri, rj, ω0) · d, (3.0.25)

corresponding to the modification to the collective spontaneous emission and the
level shifts respectively. Note that the Eq. 7.1.23 is in complete agreement with
Eq. 2.5.12 in chapter 3. With this, we can finally add each of the four commutator
contributions in Eq. 3.0.15 to obtain our Born-Markov master equation that describe
the dynamics of the atomic internal degrees of freedom

ρ̇A = (I) + (II) + (III) + (IV) = − i
ℏ
[H ′

A, ρA] + L(ρA) (3.0.26)

The modified Hamiltonian H ′
A and the superoperator L(ρA) describe the coherent

and the dissipative dynamics of the collective atomic system, and are given by

H ′
A = ℏ

N∑
i,j

Jijσ̂
(i)
+ σ̂

(j)
− (3.0.27)
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and

L(ρA) =−
1

2

{
N∑
i,j

Γijσ̂
(i)
+ σ̂

(j)
− , ρA

}

+

ˆ
d3k

[
N∑
i

ˆ
d3r

eik·r

2πℏ
σ̂
(i)
− d·

↔
G

†
(ri, r, ω0)

]
ρA (3.0.28)

×

[
N∑
j

ˆ
d3r′

e−ik·r′

2πℏ
σ̂
(j)
+

↔
G (rj, r

′, ω0) · d†

]

respectively. The last term in the RHS has the well-known form LρAL, which is valid
for the case where the jump operator was not space-dependent. The dynamics under
the master equation can analogously be described in the quantum jump formalism
of open systems [38],

ρ̇A = − i
ℏ

(
HeffρA − ρAH†

eff

)
+ L′(ρA) (3.0.29)

where the atomic wave function evolves deterministically under an effective non-
Hermitian Hamiltonian that reads

Heff = −µ0ω
2
0

N∑
i,j

d†·
↔
G (ri, rj) · d σ̂

(i)
+ σ̂

(j)
− . (3.0.30)

and decays according to the term

L′(ρA) = L(ρA) +
1

2

{
N∑
i,j

Γijσ̂
(i)
+ σ̂

(j)
− , ρA

}
. (3.0.31)
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3.1 Lindbland master equation on Heisenberg pic-

ture

The Lindbland equation in the Schrödinger picture Eq. 3.0.26 can be schematized
as a linear superoperator on the density matrices

(L )∗ρ = −i[H, ρ] +
∑
m

(
LmρL

†
m −

1

2

{
L†
mLm, ρ

})
. (3.1.1)

It is possible to derive the Heisenberg picture Lindblad equation, which has the
form [40]

LHX = i[H,X] +
∑
m

(
L†
mXLm −

1

2

{
L†
mLm, X

})
(3.1.2)

where the superoperator LH acts in the operator space. To obtain the dynamics of
the operators X we can modify the expression Eq. 3.0.26 to get

Ẋ =
i

ℏ
[H ′

A, X] + LH(X) (3.1.3)

with the dissipation given by

LH(X) =− 1

2

{
N∑
i,j

Γijσ̂
(i)
+ σ̂

(j)
− , X

}
(3.1.4)

+

ˆ
d3k

[
N∑
i

ˆ
d3r

eik·r

2πℏ
σ̂
(i)
+ d†·

↔
G (ri, r, ω0)

]
X

×

[
N∑
j

ˆ
d3r′

e−ik·r′

2πℏ
σ̂
(j)
−

↔
G

†
(rj, r

′, ω0) · d

]
.

To fit with the expression in Eq.3.1.2, , it is necessary to explicitly clarify the jump
operators

Lm =

ˆ
d3r

e−ik·r

2πℏ
σm
−

↔
G

†
(ri, r, ω0) · d (3.1.5)
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which satisfy

ˆ
d3k

∑
m

L̂†
mL̂m =

N∑
m,n=1

Γmnσ
(m)
+ σ

(n)
− . (3.1.6)

It is important to highlight that the derivation was considering only the resonant
part only, which depends on the direct response of the atom with the electric field at
the frequency ω0, while the off-resonant part depends on the broadband frequency
response of the environment. These effects were neglected since the off-resonant
contributions from virtual photons at second-order scale as ∼ 1/r3, and those at
fourth-order that scale as ∼ 1/r6. The predominant contribution for the lens system
is the resonant dipole-dipole interaction, which scales as ∼ 1/r.
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Chapter 4

A Point Spread Function for the Lens

The framework of Green’s functions allows to modify the geometry of the space in
which the radiation propagates. In this study we want to study the effect of photon
exchange between two widely separated groups of atoms. To highlight the dipole-
dipole interaction as the main responsible for the physical effects of this research, it
will be required a reciprocal interaction of the emitting objects on both sides of the
lens, in such a way that the number of photons captured on both sides of the lens
are the same. So we look for a Green’s function for an aplanatic lens with both focal
length equal. An aplanatic lens is generally composed of two or three lenses such
that spherical and coma aberrations are suppressed [42]. Enderlein [25] proposed a
useful method for obtaining the in-plane image of a small emitting object through
a series of converging lenses in order to relate the resolving power to the aperture
of a microscope [28]. The field strength in the image plane given by an elementary
emitting object, a dipole, is given by Green’s dyadic function due to a point source,
called in this context point spread function. This mechanism can also be used as a
basis for the derivation of a dyadic Green’s function for an aplanatic lens that meets
the requirement of having both focal lengths equal. The treatment used for this
purpose restricts the position of these atoms only in the focal zone of the optical
system.

For the derivation of an appropriate Green’s function, we will follow the propa-
gation numbering in Fig. 4.0.1. In the first step (Fig. 4.0.1(1)) we will assume the
absence of the lens, so the dipole emits virtual and real photons, as shown in Eq.
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Figure 4.0.1: Optical system showing the five stages of propagation. First (1), there
are a dipole emitting near and far fields. At the distance f (2) only far-field is
captured. An aplanatic lens can be modeled with two reference spheres of radius f .
Between both spheres the field propagates collimated (3). Just after the second (4)
reference sphere the field is given by the far-field Green function with the opposite
sign. Using Eq.??, it’s possible to find focal field (5) in cylindrical coordinates
(ρ, φ, z). These coordinates are shown more clearly in following figure.

2.4.14, with all the components (GNF), (GIF) and (GFF), generating an electric field
as seen in Eq. 2.4.9. The distribution of energy radiated by the dipole depends on
the scale in question [43], but for our case of an aplanatic lens focal length much
greater than the wavelength of the emitted photons, f ≫ λ, only the far-field term
will contribute. It is convenient for the course of the chapter to write (GFF) in
cylindrical coordinates:

↔
GFF (r, 0, ω) =

exp(iωr/c)

4πr
× (4.0.1)

1− cos2 ϕ sin2 θ − sinϕ cosϕ sin2 θ − cosϕ sin θ cos θ

− sinϕ cosϕ sin2 θ 1− sin2 ϕ sin2 θ − sinϕ sin θ cos θ

− cosϕ sin θ cos θ − sinϕ sin θ cos θ sin2 θ

 .
Note that the emitter is assumed to be at the origin of coordinates, which in this
case is the left focus of Fig. 4.0.1. The position of the atom at the far right focal
zone of the optical system is given by the vector r, whose coordinate origin is at the
right focus, not the left.

As already said, just before the first reference sphere (Fig. 4.0.1(2)) only the far
field radiation (GFF) will survive, since the others decay faster than 1/r. Assuming
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CHAPTER 4. A POINT SPREAD FUNCTION FOR THE LENS

that the reflection indices of the components of the optical system are negligible,
we can think that all the radiative content is collimated between the two reference
spheres (Fig. 4.0.1 (3)), travelling as plane waves. Therefore, just after the second
reference sphere (Fig. 4.0.1(4)), and for a non-reflective aplanatic lens, the electric
field at position r (to the right of the frame) produced by a dipole (at the focus of
the left side left), can be written as

E(4)(r) = −ω2µ0

↔
GFF (r, 0, ω)p0 (4.0.2)

where ω is the characteristic angular frequency of the atomic transition and a non-
magnetic media is assumed. As seems intuitive, the far field E(4) can be thought
of in the opposite way to that of a dipole emitting divergent radiation. The field is
focused down, in the direction of the focus on the right.

But our goal is to compute the focal fields (4.0.1(5)), that is, the field in the
region near the focus on the right. Our starting point is Eq. 2.2.9 that relates the
electric fields to the Fourier components. For a radiation inwards the focus of the
second reference sphere,

E(x, y, z) =

ˆ
k2x+k2y<k2max

ei[kxx+kyy−kzz]Ê0 (kx, ky) dkxdky (4.0.3)

with cutoff wavenumber kmax determined by the maximum aperture angle θmax. We
can combine this with the expression for far-field Eq. 2.2.11 to get the Eq. 2.2.12,
rewritten here for convenience

E(x, y, z) =
ire−ikr

2π

ˆ
k2x+k2y<k2max

E∞

(
kx
k
,
ky
k

)
ei[kxx+kyy±kzz]

1

kz
dkx dky, (4.0.4)

To proceed further, we perform two coordinate transformations animated by the
geometry of the second reference sphere. These expressions are integrals over k-
space, so we can introduce spherical coordinates with

kx = k sin θ cosϕ, ky = k sin θ sinϕ, kz = k cos θ (4.0.5)

and a two-dimensional Jacobian to transform the integrating factor dkxdky to one
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suitable to the new coordinates,

J =

∣∣∣∣∣ ∂kx
∂θ

∂kx
∂ϕ

∂ky
∂θ

∂ky
∂ϕ

∣∣∣∣∣ =
∣∣∣∣∣ k cos θ cosϕ −k sin θ sinϕ
k cos θ sinϕ k sin θ cosϕ

∣∣∣∣∣ = k2 sin θ cos θ. (4.0.6)

Thus, k−1
z dkxdky = k sin θdθdϕ. For the focus positions, we finally switch to cylinder

coordinates with (x, y, z) = (ρ cosφ, ρ sinφ, z). With this, we can reexpress the term
in the exponential of Eq. 4.0.4 as

kxx+ kyy = k sin θ cosϕρ cosφ+ k sin θ sinϕρ sinφ = kρ sin θ cos(ϕ− φ). (4.0.7)

These coordinate transformations allow us rewriting Eq. 4.0.4 in the form

E(ρ, φ, z) = − ikfe−ikf

2π

ˆ θmax

0

ˆ 2π

0

E∞(θ, ϕ)eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕdθ (4.0.8)

where θmax is the opening angle of the lens. The distance r between the focal point
and the surface of the reference sphere has been replaced by the focal length f of the
lens. This result allows us to calculate the focusing of an arbitrary optical field E∞

by an aplanatic lens with focal length f and numerical aperture NA = n sin θmax,
where (0 < θmax < π/2). For this work, a homogeneous environment is assumed,
so the refractive index outside the lens can be set to n ≈ 1. The final step is to
replace the incoming far fields E∞ with those after crossing the Gaussian reference
sphere, E(4). This task must be carried out meticulously term by term. For clarity,
the expression that results after that replacement can be expanded as

Efo(ρ, φ, z) =
ω2

ε0c2

{
ikfe−ikf

2π

eikf

4πf

ˆ θmax

0

ˆ 2π

0

×
↔
g eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕdθ

}
· p (4.0.9)

where
↔
g is the matrix

↔
g=


1− cos2 ϕ sin2 θ − sinϕ cosϕ sin2 θ − cosϕ sin θ cos θ

− sinϕ cosϕ sin2 θ 1− sin2 ϕ sin2 θ − sinϕ sin θ cos θ

− cosϕ sin θ cos θ − sinϕ sin θ cos θ sin2 θ

 (4.0.10)
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CHAPTER 4. A POINT SPREAD FUNCTION FOR THE LENS

The term in curly brackets will be our new point-spread function of the optical
system,

↔
GPSF=

ik

8π2

ˆ θmax

0

ˆ 2π

0

↔
g eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕdθ (4.0.11)

The integrals over the azimuthal angle ϕ can be performed analytically using the
identities [43]

ˆ 2π

0

{
sinnϕ

cosnϕ

}
eix cos(ϕ−φ)dϕ = 2πinJn(x)

{
sinnφ

cosnφ

}
(4.0.12)

where Jn are the Bessel functions of order n. The remaining integrand, over the
polar angle θ, will have exponentials of the form

eikreikz cos θeikρ sin θ cos(ϕ−φ) (4.0.13)

which are prefactors for the matrix elements gii of Eq. 4.0.10, and that both mul-
tiplied give us the elements of the new point spread function of the system. The
replacements of each element of gii that build

↔
GPSF with their respective integrals

are detailed in the appendices chapter, section 7.2. The point spread function that
gives us the electric field to the right of the system of an aplanatic lens of both focal
lengths due to the emission of real photons by a dipole at the left focus of the system
is given by

↔
GPSF (r, 0) =

ik

8π


I1 + I2 cos(2φ) I2 sin(2φ) −2iI3 cosφ
I2 sin(2φ) I1 − I2 cos(2φ) −2iI3 sinφ
−2iI3 cosφ −2iI3 sinφ 2I4

 (4.0.14)

where the measurement position r = (ρ, φ, z) is in cylindrical coordinates and the
integrals I1-I4 are a specific case of a general one shown in Eqs 4.2.4-4.2.7.
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4.1. GENERALIZING THE GREEN FUNCTION

4.1 Generalizing the Green function

The far-field Green’s function in free space Eq.4.0.1, only account for a dipole in
the origin of the coordinate system, but we can change the term r = |r − r0| in
the argument of the exponential, moving the position of the emitter an amount
r0 = (x0, y0, z0) from the left origin,

r −→ r −
(
x0
x

r
+ y0

y

r
+ z0

z

r

)
. (4.1.1)

This replacement gives us

↔
GPSF (r, r0) =

exp(ikr)

4πr
exp [−ik (x0x/r + y0y/r + z0z/r)] (4.1.2)

×


1− cos2 ϕ sin2 θ − sinϕ cosϕ sin2 θ − cosϕ sin θ cos θ

− sinϕ cosϕ sin2 θ 1− sin2 ϕ sin2 θ − sinϕ sin θ cos θ

− cosϕ sin θ cos θ − sinϕ sin θ cos θ sin2 θ

 .
Writing the factors x/r, y/r and z/r in spherical coordinates, we get an exponential
of the type

exp [−ikr (x0 cosϕ sin θ + y0 sinϕ sin θ + z0 cos θ)] , (4.1.3)

which must multiplying the integrands of the expression Eq. 4.0.11. In compact
notation, the integrals I1-I4 can be written as

Imn(r, 0) =

ˆ θmax

0

eikz cos θ sin θ

ˆ 2π

0

(↔
G0

)
mn

(r, 0) eik sin θρ cos(ϕ−φ) dϕdθ. (4.1.4)

where the subscripts m,n = {1, 2, 3} indicate the element of Green’s function in
free-space Eq. 4.0.1. This expression can be generalized to allow the emitter to be
at any position within the left focal zone by writing

Imn(r, r0) =

ˆ θmax

0

eik cos θ(z−z0) sin θ (4.1.5)

×
ˆ 2π

0

(↔
G0

)
mn

(r, r0) e
ik sin θ{xρ cosϕ+yρ sinϕ}e−ik sin θ{x0 cosϕ+y0 sinϕ} dϕdθ
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CHAPTER 4. A POINT SPREAD FUNCTION FOR THE LENS

where we have used

ρ cos(ϕ− φ) =
ρ

2

[−iφeiϕ + eiφe−iϕ
]

= xρ cosϕ+ yρ sinϕ (4.1.6)

with xρ = ρ cosφ and yρ = ρ sinφ. Thus, in the integral over ϕ we have exponentials
whose arguments can be rewritten as

[xρ cosϕ+ yρ sinϕ]− [x0 cosϕ+ y0 sinϕ] = ρeff cos(ϕ− φeff) (4.1.7)

where

ρeff =
√

(xρ − x0)2 + (yρ − y0)2 φeff =

{
tan−1 yeff

xeff
xeff > 0

tan−1 yeff
xeff

+ π xeff < 0
zeff = z − z0

(4.1.8)
are effective cylindrical coordinates between the atoms at opposite ends of the lens,
and are the input coordinates to obtain the integrals of the matrix elements of

↔
GPSF

for an emitter atom with position r0 and a receiver atom with position r,

Imn(r, r0) =

ˆ θmax

0

eikzeff cos θ sin θ

ˆ 2π

0

(↔
G0

)
mn

(r, r0)e
ik sin θρeff cos(ϕ−φeff) dϕdθ.

(4.1.9)
It is important to highlight that these coordinates indicate that within the focal zones
the intensity of the field only matters the effective distance between the atom on the
right and the one on the left. Absolute coordinates have no role in determining field
strength. This is true in the region where the focal field can be written as Eq.4.0.8.
Beyond that region, the field is not given by integrals like Eq.4.1.9 anymore.

4.2 Final remarks

One last consideration comes from the study of exchanging the position of the emit-
ter and receiver, which changes both the relative distance zeff → −zeff and the
direction of propagation kz → −kz. This shows that under exchange of atoms there
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is no alteration in the arguments of the integral.

I(r, r0) ∝ eikz zeff −→ I(r0, r) ∝ eikz zeff . (4.2.1)

This is equivalent to have the absolute value |zeff | in the argument.

I ∝ eikz |zeff|. (4.2.2)

In this way, we obtain the dyadic point spread function that gives the electric field
felt by jth atom product of the radiation emitted by the ith atom at the other end
of the lens,

↔
GPSF (ri, rj) =

ik

8π


I1 + I2 cos(2φij) I2 sin(2φij) −2iI3 cosφij

I2 sin(2φij) I1 − I2 cos(2φij) −2iI3 sinφij

−2iI3 cosφij −2iI3 sinφij 2I4

 , (4.2.3)

and its matrix elements

I1(ri, rj) =

ˆ θmax

0

sin θ{1 + cos2 θ}eikz |zij |J0(k sin θρij) dθ (4.2.4)

I2(ri, rj) =

ˆ θmax

0

sin θ{1− cos2 θ}eikz |zij |J2(k sin θρij) dθ (4.2.5)

I3(ri, rj) =

ˆ θmax

0

sin2 θ cos θeikz |zij |J1(k sin θρij) dθ (4.2.6)

I4(ri, rj) =

ˆ θmax

0

sin3 θeikz |zij |J0(k sin θρij) dθ (4.2.7)

where the effective coordinates relating the positions ri = (x0, y0, z0) and rj =

(xρ, yρ, zρ) are given in Eq. 4.1.8. The change from absolute to relative perspective
and the symmetry under exchange of atoms is evidenced in the fulfillment of the
Onsager reciprocity for symmetric tensors

↔
GPSF (ri, rj, ω) =

↔
GPSF (rj, ri, ω) , (4.2.8)
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CHAPTER 4. A POINT SPREAD FUNCTION FOR THE LENS

and the Schwarz reflection principle [39],

↔
G

∗
PSF (ri, rj, ω) =

↔
GPSF (ri, rj,−ω∗) . (4.2.9)

Furthermore, as shown in Fig. 5.0.2, the condition
↔
GPSF (ri, rj, ω)→ 0 as |ri−rj| →

∞ is fulfilled.
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Chapter 5

Dipole-Dipole Interaction through a

Lens

For a concise study of the dipole-dipole interaction mediated by an aplanatic lens
we will start by considering a system of two atoms of two levels, A1 and A2, which
will be separated by an aplanatic lens, as shown in Fig. 5.0.1.

In order for atoms to be described as a two-level system, we need a cyclic atomic
transition between hyperfine states of some alkaline element. In particular, let us
consider the 62 S1/2 −→ 62P3/2 transition of 133Cesium atoms. In order to set explicit
ground and excited states for future reference, we can write

|g⟩ = |J = 1/2, F = 4,mF = ±4⟩ −→ |e⟩ = |J = 3/2, F = 5,mF = ±5⟩ (5.0.1)

as the cyclic transition with the matrix transition element ⟨J = 1/2∥er∥J ′ = 3/2⟩ =
3.8×10−29 C ·m, and transition rate γ0 = 2π ·5.23 MHz. By conservation of angular
momentum, this transition emits circularly polarized photons (either σ+ or σ− light)
of wavelength λ0 = 852 nm. As seen in Eq. 2.5.13,

∣∣d(mF=±4→mF ′=±5)

∣∣2 = 2J + 1

2J ′ + 1
|⟨J = 1/2∥ed∥J ′ = 3/2⟩|2 , (5.0.2)

should be considered. Therefore

d(mF=±4→mF ′=±5) = 2.6880(34)× 10−29C ·m. (5.0.3)
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CHAPTER 5. DIPOLE-DIPOLE INTERACTION THROUGH A LENS

Figure 5.0.1: Schematic representation of two two-level atoms, A1 and A2, inter-
acting with each other via an aplanatic lens with f as the focal length. The atoms
are placed at the two focal points of the optical system. Each atom has a resonance
frequency of ω0 and is weakly driven by a laser of frequency ωD.

is the dipole moment for this transition [37].

The atoms A1 and A2 are placed near the focal points on each side of the lens,
so they share photons mediated by

↔
GPSF (r1, r2, ωD). The system exhibits azimuthal

symmetry, that can be broken by the polarization of the atomic dipoles deviating
from the optical axis. A homogeneous environment is assumed, so the refractive
index outside the lens can be set to n ≈ 1. We further assume that the atoms are
weakly driven by a classical field of frequency ωD. As seen in the chapter 4, the field
that is reflected from or transmitted through inhomogeneities in the environment is
given by the scattering Green’s function, so the complete dynamics for an atom in
the focal zone is given by

↔
G

An

tot (r1, r2, ωD) =
↔
G

An

0 (r1, r2, ωD)+
↔
GPSF (r1, r2, ωD) (5.0.4)

where r1 and r1 are inside the focal zone of their respective focus. This means
that for an atom An the transition rate will be the usual one in free-space, plus a
modification product of the resonant dipole-dipole interaction. The enhancement of
emission and collective behavior is due to the scattering term

↔
GS=

↔
GPSF. From Eq.

2.5.12 we can calculate the modified transition rate

Γ12(ωD) = γD
6πc

ωD

|dmF→mF ′ |2n1 · Im
↔
GPSF (r1, r2, ωD) · n2 (5.0.5)

38



where the unit vectors na correspond to the orientation of the atomic dipole a. Also
we have write for simplicity dmF→mF ′ instead of d(mF=±4→mF=±5), and

γD =
|d|2ω3

D

3πℏϵ0c3
(5.0.6)

is the emission rate for a dipole radiating at the drive frequency ωD. When the drive
detuning δD = ω0 − ωD is zero, the free-space transition rate γ0 is recovered. The
modification to the level shifts is given by

J12(ωD) = −γD
3πc

ωD

|dmF→mF ′ |2n1 · Re
↔
GPSF (r1, r2, ωD) · n2. (5.0.7)

Figure 5.0.2 shows the a cross section in the xz−plane of the spatial dependence of
Γ12 (a) and J12 (b) for dipoles with orthogonal and parallel orientation with respect
to the z−axis, evidencing a lensing effect within the focal zone of approximately
10λD in length, for a high NA lens. The fringes correspond to constructive and
destructive interference effects in the collective behaviour, leading to super and sub
radiant dissipation. This evidences the enhancement of the dipole-dipole interactions
due to photons shared between both atoms.

The contribution of the lens to the enhancement of the dipole-dipole interactions
can be better characterized by the modification to the spontaneous emission rate
due to the collective decays Γ12. The enhancement in the emission rate of one atom
A1 at the focus r1 = 01 product of the radiation of the other atom A2 at the
opposite focus r2 = 02 driven by an external field for an aperture NA≈ 0.866 (which
correspond to an aperture of θmax = π/3) will depend on the atomic state in which
they are found, and is given by Γtot = γ0+Γ12(01,02, ωD)χ, where χ is a non trivial
function of the atomic state. In what follows it will not be necessary to write it
explicitly. For an optimal state, the enhancement can be of the order Γtot ≈ 1.55γ0.

Figure 5.0.3 shows the maximum dissipative dipole-dipole coupling Γmax
12 as a

function of the aperture NA for two orthogonal orientations of the atomic dipole.
We see that for a feasibly high NA and the correct atomic dipole alignment, the
dipole-dipole interaction rate can reach near to a 60% of the bare atomic decay rate,
with an approximately lineal dependence on the NA.
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CHAPTER 5. DIPOLE-DIPOLE INTERACTION THROUGH A LENS

(a) Dissipative interaction ΓA1,A2 ≡ Γ12 for orthogonal (left) and parallel
(right) orientation with respect to the z−axis, in units of γ0.

(b) Dispersive interaction −JA1,A2 ≡ −J12 for orthogonal (left) and parallel
(right) orientation with respect to the z−axis, in units of ℏγ0.

Figure 5.0.2: Spatial distribution of the dissipative (a) and dispersive (b) interaction
in the xz− plane. The presence of an atom A1 emitting radiation produces a lens
effect field in the focal zone at the opposite end. A second atom A2 at this end
will be subject to dispersive and dissipative interactions depending on the relative
positions and orientations between them, as is shown in the figures above, which
are longitudinal sections for ρ ∈ [0, 3.5λD] and z ∈ [−6λD, 6λD], evidencing zones
of minimum every ∼ λD for a NA= 0.866 (correspondig to θmax = π/3 for n ≈ 1),
close to the state-of-the-art optical elements.

To position the atoms at the focus, they can be manipulated using red-detuned
optical tweezers. These types of traps with ∆≫ 0 create a negative dipole potential
that attracts the atom into the light field, so the minimum potential are therefore
found at positions with maximum intensity [44]. These optical dipole traps usually
use large detunings and high intensities to keep the scattering rate as low as possi-
ble at a certain potential depth, since dipole potential scales as I/∆, whereas the
scattering rate scales as I/∆2.

Until now, the dynamics and the interaction between the atoms is completely
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Figure 5.0.3: Maximum dissipative dipole-dipole coupling (Γmax
12 ) as a function of the

angular aperture θmax. The red (green) dotted curve represents Γmax
12 for two x(z)-

oriented dipoles, as illustrated in the schematic inset figures. The dashed vertical
line indicates an angular aperture of θmax ≈ π/3, where Γmax

12 ≈ 0.6ΓD.

symmetrical, where each atom is subject to the electric field produced by the other
atom and therefore experiences the modification to the collective spontaneous emis-
sion and the level shifts shown in Figure 5.0.2. Now, if we rotate the system as in
Fig. 5.0.4 such that the gravity is parallel to the optic axis and then turn off the
optical tweezer of the atom at the bottom, we can compare the CP force at distance
with gravity and thus begin the study of a trapping mechanism due only to the well
potential produced by the group of atoms on the top and mediated by the lens.

The total modified interaction Hamiltonian H ′
A,tot, that is, the one that accounts

for the interaction of the atoms at one end due to the radiation emitted at the other
end and vice versa, is given by

H ′
A,tot = ℏ

N∑
i,j

Jij

(
σ̂
(i)
+ σ̂

(j)
− + σ̂

(j)
+ σ̂

(i)
−

)
, (5.0.8)

or from a compact point of view

H ′
A,tot = H ′

A,(i)→(j) +H ′
A,(j)→(i) (5.0.9)

where H ′
A,(i)→(j) accounts for the interaction between the (iith) atom in one end of

the lens and the radiation generated by the (jith) atom at the other end. H ′
A,(j)→(i)
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Figure 5.0.4: Schematic representation of the trap formed from lensed dipole-dipole
forces. N atoms on the top are trapped by a tweezer at one of the focal points of the
aplanatic lens system. The dipole-dipole forces between an atom placed around the
other focal point of the lens and the collection of atoms on the top can be sufficiently
strong to counteract gravity.

is the opposite. The functional form of H ′
A is given by Eq. 3.0.27. In this way, if we

only have one atom on each side (called A1 and A2), the interaction energy will be

H ′
A,tot =ℏJ12σ̂(A1)

+ σ̂
(A2)
− + ℏJ21σ̂(A2)

+ σ̂
(A1)
−

=ℏJ12
[
σ̂
(A1)
+ σ̂

(A2)
− + σ̂

(A2)
+ σ̂

(A1)
−

]
. (5.0.10)

The dipole-dipole trap will be given by the zone of minimum potential of the expec-
tation value 〈

H ′
A,tot

〉
= ℏJ12

〈
σ̂
(A1)
+ σ̂

(A2)
− + σ̂

(A2)
+ σ̂

(A1)
−

〉
. (5.0.11)

In what follows, we will use the notation ⟨σ̂±⟩ ≡ ⟨σ±⟩, σ+σ− = ρee , σ−σ+ = ρgg,
and for convenience we write

ξ =
〈
σ̂
(A1)
+ σ̂

(A2)
− + σ̂

(A2)
+ σ̂

(A1)
−

〉
. (5.0.12)

In addition, we will make the approximation that atomic excitation is low enough
that saturation can be neglected (we treat a factor ρgg−ρee ≈ 1), which also implies

42



that the dipoles are not correlated, i.e.,〈
σ
(A1)
+ σ

(A2)
−

〉
≈

〈
σ
(A1)
+

〉〈
σ
(A2)
−

〉
. (5.0.13)

To find the steady state, we can use the equation of motion for σ(i)
− , given by Eq.

3.1.3 by replacing the Green’s dyadic function found in the previous chapter, Eq.
4.2.3

˙̂σ
(i)
− =

(
iδD −

γ0
2

)
σ̂
(i)
− + iΩ + i

µ0ω
2
D

ℏ
∑
j

d†·
↔
GPSF (ri, rj) · d σ̂

(j)
− . (5.0.14)

For convenience, we will define

G12 ≡ J12 − iΓ12/2. (5.0.15)

For our case of two atoms, we will obtain different steady states for atom A1 (which
is under the effect of an external drive) and for atom A2:

〈
σ
(A1)
−

〉
=
−i

(
Ω−G12

〈
σ
(A2)
−

〉)
−iδD − γ0/2

(5.0.16)〈
σ
(A2)
−

〉
=
−iG12σ

(A1)
−

γ0/2
. (5.0.17)

where the detuning is given by δD = ω0−ωD. Solving the coupled equations we get〈
σ
(A1)
−

〉
=

−iΩ
−iδD − γ0/2− 2/γ0G2

12

(5.0.18)

〈
σ
(A2)
−

〉
=

2ΩG12/γ0
−iδD − γ0/2− 2/γ0G2

12

(5.0.19)

and the expressions for the probabilities

ρ(A1)
ee =

−iΩ
γ0

[〈
σ
(A1)
−

〉
−

〈
σ
(A1)
+

〉]
− i

γ0

[
G12

〈
σ
(A1)
+ σ

(A2)
−

〉
−G∗

12

〈
σ
(A2)
+ σ

(A1)
−

〉]
(5.0.20)

ρ
(A2)
22 =

−i
γ0

[
G12

〈
σ
(A2)
+ σ

(A1)
−

〉
−G∗

12

〈
σ
(A1)
+ σ

(A2)
−

〉]
. (5.0.21)

43
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Figure 5.0.5: A closer look at the spatial dependence of dissipative and dispersive
interactions, where the zone where the atomic trap will operate can be seen more
clearly. Near the potential minimum, a low contribution of Γ12 is observed.

Fig. 5.0.5 shows an area where an atomic trap is expected, near z12 ≈ 0.92λD. As
we will see later, the lensing potential is modified by the gravitational potential,
however there is enough depth to configure an atomic trap. Then, the expectation
value of

〈
H ′

A,tot

〉
coincides with the minimum of ⟨J12⟩ ≡ Jmin

12 . For a lens with
aperture θmax = π/3, we obtain a subradiance given by ⟨Γ12⟩ ≡ Γmin

12 ≈ −0.15γ0 and
a level shift Jmin

12 ≈ 0.4γ0.

We now analyze the effect of detuning on the atomic population and correlations,
that determine the potential seen by A2. Defining s =

〈
σ
(A1)
−

〉
0

as the atomic state
in Eq. 5.0.16 when there is no coupling between both atoms (G12 = 0), we can
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Figure 5.0.6: In violet: probability of finding excited atom A1 as δD varies, with
optical drive only (dashed line) and a dipole-dipole interaction with atom A2 (solid
line). The asymmetry in the peak of the latter is due to the non-zero contribution of
G2

12. In gold: sum of the correlations ξ. As can be seen from the shape of the graphs,
there is a scale factor between ξ and

〈
σ
(2)
+ σ

(2)
−

〉
ss
, independent of the detuning δD.

obtain the saturation parameter for an atom subjected to an external drive,

|s|2 =
〈
σ
(A1)
+

〉
0

〈
σ
(A1)
−

〉
0
=

Ω2

δ2D + γ20/4
. (5.0.22)

To get |s|2 constant, we have to adjust the intensity as δD changes setting the
numerical value of the Rabi frequency

Ω = |s|
√
δ2D + γ20/4. (5.0.23)

Equation 5.0.22 represents the probability of finding the excited atom A1 if we ignore
the presence of A2, as can be seen in Fig. 5.0.6.

We can estimate the average lifetime ttrap of the alleged atomic trap for the non-
driven atom A2 (that is not under the control of the optical tweezer) by comparing
the depth of the potential well ∆Upw = ∆ ⟨H ′

A⟩ss (see Fig. 5.0.7) with the heating
rate of A2 due to spontaneous emission. Assuming that the atom gains recoil energy
after every cycle of spontaneous emission, the heating rate is given by

R
(2)
heat,pw ≈ Er × Γtot

(
zmin
12

)
×

〈
σ
(A2)
+ σ

(A2)
−

〉
ss
, (5.0.24)
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where Er = ℏ2k2D/2m is the recoil energy and Γtot is the total atomic decay rate,
which in our case it will suffice to say that it is slightly less than γ0. The decorrelation
approximation allows one to rewrite

R
(2)
heat,pw ≈ 4ErΓtot |G2|2 γ−2

0

〈
σ
(A1)
+

〉〈
σ
(A1)
−

〉
(5.0.25)

∆Upw ≈ 4∆J12γ
−1
0 Im {G12}

〈
σ
(A1)
+

〉〈
σ
(A1)
−

〉
(5.0.26)

where ∆J12 = J top
12 − Jmin

12 and J top
12 is the value of the energy shift at the top of the

potential well. We obtain the detuning independent rate

∆Upw

R
(2)
heat,pw

=
∆J12
Er

γ0
Γtot

ImG12

|G12|2
, (5.0.27)

Near zmin
12 energy modifications dominate (J2

12 ≫ Γ2
12/4), so the rate can be reduced

to
∆Upw

R
(2)
heat,pw

≈ ℏ
Er

γ

Γtot

ImG12

ReG12

∆J12
J12

. (5.0.28)

We now study the behavior of the trap in a realistic scenario with alkaline
atoms. Let us consider 133Cesium atoms in and their 62 S1/2 −→ 62P3/2 transi-
tion as a two-level system, with dipole moment d = 2.69 × 10−29C ·m, decay rate
γ0 = 2π · 5.23MHz, λ0 = 852nm and m = 1.66 × 10−27Kg [37]. We can benefit
from the detuning-independent relation in Eq. 5.0.27 using the optical tweezer that
controls A1 as the external pump with |δD| ≫ 1, which means an advantage in the
experimental setup. A2 is then confined only due to the resonant interaction with
A1 mediated by an aplanatic lens of NA given by θmax = π/3.

Figure 5.0.7 shows the trapping potential ⟨H ′
A⟩ss+Ug, being Ug the gravitational

potential for the atom with respect to z12 = 0, and heating rate as a function of
the position along the optical axis. The external pump for A1 coincides with its
red-detuned optical tweezer (δD ≪ 1). At position zmin

12 a depression suitable for
an atomic trap can be seen. The life time of the trap will not only depend on
the difference between the bottom and the top of the well, ∆J12 = 0.9ℏΓD for the
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Figure 5.0.7: (b) In blue: comparison of potential energy from gravity and dipole-
dipole interaction through a lens, evaluated in the steady state Eq. ??. The reference
for the gravitational potential energy is fixed at z12 = 0. In gold: scattering rate
from the emission of photons, obtained via Eq. 5.0.24. The inset shows the minimum
potential produced by the lensing field of 0 < N < 200 atoms, which would lead to
a trap powerful enough to control the mean position of an atom at the other end of
the lens for thousands of cycles of spontaneous emission.

present configuration, but also on the comparison with the recoil energy Er,

ttrap =
∆Upw − Er

R
(2)
heat,pw

. (5.0.29)

The shaded area shows the size of Er compared to the potential well

∆Upw = ℏ∆J12ξ. (5.0.30)

Taking into consideration the presented configuration, equation 5.0.29 gives us a
trapping time about

ttrap ≈ 1170γ−1
0 . (5.0.31)

Generalizing the modified interaction Hamiltonian H ′
A to Ni atoms on the top

of the optical system shown in Fig. 5.0.4,

H ′
A = −

Ni∑
i

JR
i,A2

(
σ̂
(i)
+ σ̂

(A2)
− + σ̂

(A2)
+ σ̂

(i)
−

)
, (5.0.32)
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we can consider a larger number of atoms at the upper focal point and thus obtain
a linear increase in well depth with Ni.

ttrap ≈ 1170Niγ
−1
0 .. (5.0.33)

The inset of Fig. 5.0.7 shows this increase. Although such scenario can greatly
improve the effects of dipole-dipole interactions due to its collective nature, one
would have to more carefuly consider Casimir interactions between near ground-
state atoms as they start clumping together. However, the fact that we can neglect
Casimir interactions between ground-state atoms (of the form ρ

(i)
ggρ

(i′)
gg ), is argued

since their spatial decay is very fast (∼ 1/d6 in free space, d being the interatomic
distance) [39].

A reliable and sustainable trap will require an external cooling mechanism before
the heating rate dominates. This can be certainly done with external lasers or
considering the effect in the atomic motion of red-detuned drive lasers. However,
he we present a proof of principle of the mechanism that would make possible to
restrict the mean position of alkali atoms using only the far-field resonant dipole-
dipole interaction mediated by a large aperture aplanatic lens.

48



Chapter 6

Conclusions

In this work, the necessary elements to establish an atomic trap using only the
dipole-dipole resonant interaction between distant atoms mediated by an aplanatic
lens with both equal focal lengths were derived from its foundations.

Specifically, a lens with aperture θmax = π/3 in a medium with refractive index
n ≈ 1 was used to collect part of the radiation emitted from an atomic group (whose
position is controlled by a red-detuning optical tweezer) and focus it towards another
group of atoms to induce control of the second group of atoms.

During the derivation of the expressions necessary to compare these long range
interactions, alkali elements were assumed that under certain conditions can be
treated as a two-level atom. For a specific analysis of the setup for this partic-
ular work, 133 Cesium atoms and their cyclic transition |F = 4,mF = ±4⟩ −→
|F ′ = 5,mF ′ = ±5⟩ were used.

The research allowed us to conclude that it is possible to restrict and know the
average position of a group of atoms for tens of thousands of periods of spontaneous
emission. In addition to the purely intellectual interest that this atomic control of
an indirect nature supposes, this montage opens up new possibilities in the field of
CP interactions. Such a lens-mediated enhancement of the far-field resonant dipole-
dipole interaction could be used to investigate the phenomenon of self-organization
of a chain of atoms in the focal zone (for which the equations of motion of the
quantum centers of mass are already derived and can be seen in the appendix 7.3,
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being an important contribution of this work for future investigations) or the study
of Casimir-Polder forces at a distance, a paradigmatic case of the state-of-the-art of
forces between neutral particles.
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Chapter 7

Appendices

7.1 Master Eq Calculus

In order to obtain the Born-Markov master equation for the atom density matrix
evolution we have to expand each term of the expression

dρA
dt

=− 1

ℏ2
TrF

ˆ ∞

0

dτHAF (t)HAF (t− τ)ρA ⊗ |0⟩⟨0|︸ ︷︷ ︸
(I)

− 1

ℏ2
TrF

ˆ ∞

0

dτρA ⊗ |0⟩⟨0|HAF (t− τ)HAF (t)︸ ︷︷ ︸
(II)

+
1

ℏ2
TrF

ˆ ∞

0

dτHAF (t)ρA ⊗ |0⟩⟨0|HAF (t− τ)︸ ︷︷ ︸
(III)

+
1

ℏ2
TrF

ˆ ∞

0

dτHAF (t− τ)ρA ⊗ |0⟩⟨0|HAF (t)︸ ︷︷ ︸
(IV)

. (7.1.1)

To begin with, let us consider the first of them:
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(I) = − 1

ℏ2
TrF

ˆ ∞

0

dτ

[
N∑
i=1

ˆ
d3r

ˆ
dω

(
σ̂
(i)
+ e

−iδ−t
)
d†·

↔
Ge (ri, r, ω) · f̂(r, ω)

+ f̂ †(r, ω)·
↔
G

†
e (ri, r, ω) · d

(
σ̂
(i)
− eiδ−t

)]
× (7.1.2)[

N∑
j=1

ˆ
d3r′
ˆ

dω′
(
σ̂
(j)
+ e−iδ−(t−τ)

)
d†·

↔
Ge (rj, r

′, ω′) · f̂(r′, ω′)

+f̂ †(r′, ω′)·
↔
G

†
e (rj, r

′, ω′) · d
(
σ̂
(j)
− eiδ−(t−τ)

)]
ρA ⊗ |{0}⟩⟨{0}|

Remembering that TrF A =
∑

k⟨k|A|k⟩, and expanding the square brackets[
↔
G ·f + f †·

↔
G

†
] [

↔
G ·f + f †·

↔
G

†
]
=

↔
G ·f

↔
G ·f+

↔
G ·f f †·

↔
G

†
+f †·

↔
G

† ↔
G ·f+f †·

↔
G

†
f †·

↔
G

†

(7.1.3)

we can realize that, in this case, we keep the term
↔
G ·f f †·

↔
G

†
only. One further

consideration is

⟨{0}|f̂(r, ω)f̂ †(r′, ω′)|{0}⟩ = δ3(r− r′)δ(ω − ω′), (7.1.4)

so the term (I) reads

(I) =− 1

ℏ2
TrF

ˆ ∞

0

dτ
N∑
i,j

ˆ
d3r

ˆ
d3r′
ˆ
ω

ˆ
ω′

(
σ̂
(i)
+ e

−iδ−t
)

d†·
↔
G (ri, r, ω) · f̂(r, ω) · f̂ †(r′, ω′)·

↔
G

†
(rj, r

′, ω) · d(
σ̂
(j)
− eiδ−(t−τ)

)
ρA ⊗ |{0}⟩⟨{0}| (7.1.5)

=− 1

ℏ2

ˆ ∞

0

dτ
N∑
i,j

ˆ
d3r

ˆ
d3r′
ˆ
ω

ˆ
ω′ d†·

↔
G (ri, r, ω) ·

↔
G

†
(ri, r

′, ω′) · d

δ3(r− r′)δ(ω − ω′)
(
σ̂
(i)
+ e

−iδ−t
)(

σ̂
(j)
− eiδ−(t−τ)

)
ρA ⊗ |{0}⟩⟨{0}|

=− 1

ℏ2

ˆ ∞

0

dτ
N∑
i,j

ˆ
d3r

ˆ
ω d†·

↔
G (ri, r, ω) ·

↔
G

†
(rj, r, ω) · d(

σ̂
(i)
+ e

−iδ−t
)(

σ̂
(j)
− eiδ−(t−τ)

)
ρA ⊗ |{0}⟩⟨{0}| (7.1.6)
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Now, using the fluctuation-dissipation relation [36],

ˆ
d3r

↔
Ge (r1, r, ω) ·

↔
G

†
e (r2, r, ω) =

ℏµ0ω
2

π
Im

↔
G (r1, r2, ω) (7.1.7)

and the rotating-wave approximation in which

ˆ ∞

0

dτe−iδ+τ = 0 (7.1.8)
ˆ ∞

0

dτe−iδ−τ = πδ(ω − ω0)− iP
1

ω − ω0

(7.1.9)

where P denotes the Cauchy principal value, we arrive to:

(I) =− 1

ℏ2
ℏµ0

π
π

N∑
i,j

ˆ
dω ω2δ(ω − ω0) σ̂

(i)
+ σ̂

(j)
− d† · Im

↔
G (ri, rj, ω) · d ρA

+ i
µ0

ℏπ

N∑
i,j

P
ˆ

dω
ω2

ω − ω0

σ̂
(i)
+ σ̂

(j)
− d† · Im

↔
G (ri, rj, ω) · d ρA (7.1.10)

which can be rewritten as

⇒ (I) =− µ0ω
2
0

ℏ

N∑
i,j

σ̂
(i)
+ σ̂

(j)
− d† · Im

↔
G (ri, rj, ω) · d ρA

+ i
µ0

ℏπ

N∑
i,j

P
ˆ

dω
ω2

ω − ω0

σ̂
(i)
+ σ̂

(j)
− d† · Im

↔
G (ri, rj, ω) · d ρA (7.1.11)

The imaginary part of the Green’s function is related to the real part via the
Kramers-Kronig relation [36,41]:

1

π
P
ˆ ∞

−∞

dω

ω − ω0

ω2 Im
↔
G (rm, rn, ω) = ω2

0 Re
↔
G (rm, rn, ω) (7.1.12)
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so we finally get a human-readable version of the first term

(I) =− µ0ω
2
0

ℏ

N∑
i,j

σ̂
(i)
+ σ̂

(j)
− d† · Im

↔
G (ri, rj, ω) · d ρA

+ i
µ0ω

2
0

ℏ

N∑
i,j

σ̂
(i)
+ σ̂

(j)
− d† · Re

↔
G (ri, rj, ω) · d ρA. (7.1.13)

This same procedure must be carried out for second factor,

(II) =− 1

ℏ2
TrF

ˆ ∞

0

dτρA ⊗ |{0}⟩⟨{0}|HAF (t− τ)HAF (t)

=− 1

ℏ2
TrF

ˆ ∞

0

dτρA ⊗ |{0}⟩⟨{0}| (7.1.14)[
N∑
i=1

ˆ
d3r

ˆ
dω

(
σ̂
(i)
+ e

−iδ−(t−τ)
)
d†·

↔
G (ri, r, ω) · f̂(r, ω)

+f̂ †(r, ω)·
↔
G

†
(ri, r

′, ω) · d
(
σ̂
(i)
− eiδ−(t−τ)

)]
×[

N∑
j=1

ˆ
d3r

ˆ
dω

(
σ̂
(j)
+ e−iδ−t

)
d†·

↔
G (rj, r, ω) · f̂(r, ω)

+ f̂ †(r, ω)·
↔
G

†
(rj, r, ω) · d

(
σ̂
(j)
− eiδ−t

)]
.

Using the same tools as described above, we get for the second term:

⇒ (II) =− 1

ℏ2
ℏµ0

π
ρA

N∑
i,j

ˆ
dω ω2 d† · Im

↔
G (rj, ri, ω) · d

×
[
σ̂
(i)
+ σ̂

(j)
−

(ˆ ∞

0

dτeiδ−τ

)]
(7.1.15)

=− µ0ω
2
0

ℏ
ρA

N∑
i,j

σ̂
(i)
+ σ̂

(j)
− d† · Im

↔
G (ri, rj, ω) · d

− iµ0ω
2
0

ℏ
ρA

N∑
i,j

σ̂
(i)
+ σ̂

(j)
− d† · Re

↔
G (ri, rj, ω) · d. (7.1.16)
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The third part requires the adoption of a new measure. If we expand it, we see that

(III) =
1

ℏ2
TrF

ˆ ∞

0

dτHAF (t)ρA ⊗ |{0}⟩⟨{0}|HAF (t− τ)

=
1

ℏ2
TrF

ˆ ∞

0

dτ

[
N∑
i=1

ˆ
d3r

ˆ
dω

(
σ̂
(i)
+ e

−iδ−t
)
d†·

↔
G (ri, r, ω) · f̂(r, ω)

+ f̂ †(r, ω)·
↔
G

†
(ri, r, ω) · d

(
σ̂
(i)
− eiδ−t

)]
ρA ⊗ |{0}⟩⟨{0}|

×

[
N∑
j=1

ˆ
d3r′
ˆ

dω′
(
σ̂
(j)
+ e−iδ−(t−τ)

)
d†·

↔
G (rj, r

′, ω′) · f̂(r′, ω′)

+f̂ †(r′, ω′)·
↔
G

†
(rj, r

′, ω′) · d
(
σ̂
(j)
− eiδ−(t−τ)

)]
(7.1.17)

But now, what end of the expansion Eq. 7.1.4 survive after taking the trace over the
field? Although in the previous cases the braket ⟨{0}| |{0}⟩ worked, we see that
now it is null:

⟨{0}| (
↔
G · f︸︷︷︸

0

+
↔
G

†
· f †︸︷︷︸

0

) ρA ⊗ |{0}⟩⟨{0}| (
↔
G ·f+

↔
G

†
·f †) |{0}⟩ = 0 (7.1.18)

but the only non-zero contribution will be given by

⟨{1}| (
↔
G ·f+

↔
G

†
·f †) ρA ⊗ |{0}⟩⟨{0}| (

↔
G ·f+

↔
G

†
·f †) |{1}⟩

=
↔
G

†
ρA

↔
G δ3(r− r′)δ(ω − ω′) (7.1.19)

Then, considering the rotating-wave approximation and rewriting the delta function
in terms of plane waves δ3 (r − r′) =

´
d3k 1

(2π)3
eik·(r−r′), we have:

(III) =
1

ℏ2

ˆ ∞

0

dτ
N∑
i,j

ˆ
d3r

ˆ
d3r′
ˆ
ω

ˆ
ω′ σ̂

(i)
− σ̂

(j)
+ eiδ−τ (7.1.20)

× δ3(r− r′)δ(ω − ω′) d·
↔
G

†
(ri, r, ω) ρA

↔
G (rj, r

′, ω) · d†
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which after expanding reads

(III) =
ˆ

d3k

ˆ
dω

[ˆ ∞

0

dτeiδ−τ

] [ N∑
i

ˆ
d3r

eik·r

ℏ(2π)3/2
σ̂
(i)
− d·

↔
G

†
(ri, r, ω)

]

ρA

[
N∑
j

ˆ
d3r′

eik·r
′

ℏ(2π)3/2
σ̂
(j)
+

↔
G (rj, r

′, ω) · d†

]

=π

ˆ
d3k

[
N∑
i

ˆ
d3r

eik·r

ℏ(2π)3/2
σ̂
(i)
− d·

↔
G

†
(ri, r, ω0)

]
ρA (7.1.21)

×

[
N∑
j

ˆ
d3r′

eik·r
′

ℏ(2π)3/2
σ̂
(j)
+

↔
G (rj, r

′, ω0) · d†

]
+ Principal Value

The last term of the RHS is the principal value that arises from
´∞
0
dτeiδ−τ . Its

explicit expression is dispensable, since the term (IV) can be written as

(IV) =
1

ℏ2
TrF

ˆ ∞

0

dτHAF (t− τ)ρA ⊗ |{0}⟩⟨{0}|HAF (t)

=π

ˆ
d3k

[
N∑
i

ˆ
d3r

eik·r

ℏ(2π)3/2
σ̂
(i)
− d·

↔
G

†
(ri, r, ω0)

]
ρA (7.1.22)

×

[
N∑
j

ˆ
d3r′

e−ik·r′

ℏ(2π)3/2
σ̂
(j)
+

↔
G (rj, r

′, ω0) · d†

]
− Principal Value

with the sign of the principal value opposite to that of the term (III). Adding (I) +
(II) + (III) + (IV) and defining (see Eq. 2.5.8 and Eq. 7.1.24):

Γij = 2

(
µ0ω

2
0

ℏ

)
d† · Im

↔
G (ri, rj, ω0) · d (7.1.23)

Jij = −
(
µ0ω

2
0

ℏ

)
d† · Re

↔
G (ri, rj, ω0) · d (7.1.24)
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we can finally get our master equation

ρ̇A =−
N∑
i,j

Γij

2
σ̂
(i)
+ σ̂

(j)
− ρA − i

N∑
i,j

Jijσ̂
(i)
+ σ̂

(j)
− ρA

− ρA
N∑
i,j

Γij

2
σ̂
(i)
+ σ̂

(j)
− + iρA

N∑
i,j

Jijσ̂
(i)
+ σ̂

(j)
−

+

ˆ
d3k

[
N∑
i

ˆ
d3r

eik·r

2πℏ
σ̂
(i)
− d·

↔
G

†
(ri, r, ω0)

]
ρA (7.1.25)

×

[
N∑
j

ˆ
d3r′

e−ik·r′

2πℏ
σ̂
(j)
+

↔
G (rj, r

′, ω0) · d†

]
.

By ordering this expression we can arrive at the master equation, Eq. 3.0.26, where
the coherent evolution is given by the modified atomic Hamiltonian Eq. 3.0.27 and
where the dissipation of the system as a result of its interaction with the environment
is determined by Eq. 3.0.28. However, an open quantum system can alternatively
be described using the master equation [40]

ρ̇A = − i
ℏ

(
HeffρA − ρAH†

eff

)
+ L′(ρA) (7.1.26)

where we defined the non-Hermitian Hamiltonian

Heff = ℏ
N∑
i,j

Jijσ̂
(i)
+ σ̂

(j)
− − iℏ

N∑
i,j

Γij

2
σ̂
(i)
+ σ̂

(j)
− ,

= −µ0ω
2
0

N∑
i,j

d†·
↔
G (ri, rj) · d σ̂

(i)
+ σ̂

(j)
− , (7.1.27)

and the dissipation due to the reservoir as

L′(ρA) = L(ρA) +
1

2

{
N∑
i,j

Γijσ̂
(i)
+ σ̂

(j)
− , ρA

}
. (7.1.28)

Both approaches in the Schrodinger picture are equivalent, however it is more con-
venient for our purpose to work in the operator space, as developed in the main
text.
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7.2 Green’s Function Calculus

The point spread function which gives us the dyadic Green’s function for the apla-
natic lens it is constructed through the expression in Eq. 4.0.11. In this appendix
we will detail the calculations to obtain

↔
GPSF from the far-field free-space Green

function
↔
GFF, which can be written compactly as

↔
GFF (r, 0) =

exp(ikr)

4πr

↔
g, (7.2.1)

with

↔
g=


1− cos2 ϕ sin2 θ − sinϕ cosϕ sin2 θ − cosϕ sin θ cos θ

− sinϕ cosϕ sin2 θ 1− sin2 ϕ sin2 θ − sinϕ sin θ cos θ

− cosϕ sin θ cos θ − sinϕ sin θ cos θ sin2 θ

 . (7.2.2)

For simplicity, let’s work by components

↔
g=


g11 g12 g13

g21 g22 g23

g31 g32 g33

 . (7.2.3)

In order to obtain a semi-analytical expression for the azimuthal integration, we can
use the identities [43]

ˆ 2π

0

{
sinnϕ

cosnϕ

}
eix cos(ϕ−φ)dϕ = 2πinJn(x)

{
sinnφ

cosnφ

}
. (7.2.4)

From now on, each component will be worked on separately, arriving at sums of
integrals given by Eqs. 4.2.4-4.2.7:
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• g11 :

(↔
GPSF

)
11

=
ik

8π2

ˆ θmax

0

ˆ 2π

0

(
1− cos2 ϕ sin2 θ

)
eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕdθ

=
ik

8π2

[ˆ θmax

0

2πJ0(kρ sin θ) sin θ eikz cos θdθ

−
ˆ θmax

0

πJ0(kρ sin θ) sin
3 θ eikz cos θdθ

+cos(2φ)

ˆ θmax

0

πJ2(kρ sin θ) sin
3 θ eikz cos θdθ

]
=

ik

8π

(
I1 + I2 cos(2φ)

)
(7.2.5)

• g21 :

(↔
GPSF

)
21

=
ik

8π2

ˆ θmax

0

ˆ 2π

0

(
− sinϕ cosϕ sin2 θ

)
eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕdθ

=
ik

8π2

ˆ θmax

0

sin3 θ (πJ2(kρ sin θ) sin(2φ)) eikz cos θdθ

=
ik

8π
I2 sin(2φ) (7.2.6)

• g31 :

(↔
GPSF

)
31

=
ik

8π2

ˆ θmax

0

ˆ 2π

0

(− cosϕ sin θ cos θ) eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕdθ

=
ik

8π2

ˆ θmax

0

(−2πiJ1(kρ sin θ) cos(φ)) sin2 θ cos θ eikz cos θdθ

=
ik

8π

(
− 2iI3 cos(φ)

)
(7.2.7)

• g12 : (↔
GPSF

)
21

=
(↔
GPSF

)
12

(7.2.8)

59



CHAPTER 7. APPENDICES

• g22 :

(↔
GPSF

)
22

=
ik

8π2

ˆ θmax

0

ˆ 2π

0

(
1− sin2 ϕ sin2 θ

)
eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕdθ

=
ik

8π2

[ˆ θmax

0

2πJ0(kρ sin θ) sin θ eikz cos θdθ

−
ˆ θmax

0

πJ0(kρ sin θ) sin
3 θ eikz cos θdθ

− cos(2φ)

ˆ θmax

0

πJ2(kρ sin θ) sin
3 θ eikz cos θdθ

]
=

ik

8π

(
I1 − I2 cos(2φ)

)
(7.2.9)

• g32 :

(↔
GPSF

)
32

=
ik

8π2

ˆ θmax

0

ˆ 2π

0

(− sinϕ sin θ cos θ) eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕdθ

=
ik

8π2

ˆ θmax

0

(−2πiJ1(kρ sin θ) sin(φ)) sin2 θ cos θeikz cos θdθ

=
ik

8π

(
− 2iI3 sin(φ)

)
(7.2.10)

• g13 : (↔
GPSF

)
13

=
(↔
GPSF

)
31

(7.2.11)

• g23 : (↔
GPSF

)
23

=
(↔
GPSF

)
32

(7.2.12)
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• g33 :

(↔
GPSF

)
33

=
ik

8π2

ˆ θmax

0

ˆ 2π

0

(
sin2 θ

)
eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕdθ

=
ik

8π2

ˆ θmax

0

(2πiJ0(kρ sin θ)) sin
3 θeikz cos θdθ

=
ik

8π

(
2I4

)
(7.2.13)

In this way, the matrix
↔
GPSF written in the main text, Eq. 4.0.14. This expression

takes its final form in Eq. 4.2.3, together with the integrals given by Eqs. 4.2.4-4.2.7.

7.3 Quantum Center of Mass Motion

Once the potential trap is effective in constraining the position of the atoms, it is
possible to replace X = px, py, pz into Eq. 3.1.3 (with the point spread function
↔
GPSF as the Green’s function) to get the quantum center of mass motion for each
atom. Without going into the laborious details, these equations of motion are given
by

ṗiz = −ℏkD
Nj∑
j

Γz(ri, rj, ωD) sgn(zi − zj)σ(i)
− σ

(j)
+ (7.3.1)

ṗix = −ℏkD
Nj∑
j

Γx(ri, rj, ωD) sgn(xi − xj)σ(i)
− σ

(j)
+ (7.3.2)

ṗiy = −ℏkD
Nj∑
j

Γy(ri, rj, ωD) sgn(yi − yj)σ(i)
− σ

(j)
+ (7.3.3)

where the Γ-like functions are given by

Γz(ri, rj, ωD) =2
µ0ω

2
0

ℏ
d† · ImGz(ri, rj, ωD) · d (7.3.4)

Γx(ri, rj, ωD) =2
µ0ω

2
0

ℏ
d† · ImGx(ri, rj, ωD) · d (7.3.5)

Γy(ri, rj, ωD) =2
µ0ω

2
0

ℏ
d† · ImGy(ri, rj, ωD) · d (7.3.6)
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and are constructed from the matrices

Gz(ri, rj, ωD) =
ikD
8π


I||1 + I||2 cos(2φij) I||2 sin(2φij) −2iI||3 cosφij

I||2 sin(2φij) I||1 − I||2 cos(2φij) −2iI||3 sinφij

−2iI||3 cosφij −2iI||3 sinφij 2I||4


(7.3.7)

Gx(ri, rj, ωD) =
ikD
8π
× (7.3.8)

Ia⊥1 cos(φij) + Ib⊥2 cos(3φij) −Ia⊥2 sin(φij) + Ib⊥2 sin(3φij) −2iIa⊥3 cos(2φij) + 2iIb⊥3

−Ia⊥2 sin(φij) + Ib⊥2 sin(3φij) Ib⊥1 cos(φij)− Ib⊥2 cos(3φij) −2iIa⊥3 sin(2φij)

−2iIa⊥3 cos(2φij) + 2iIb⊥3 −2iIa⊥3 sin(2φij) 4I⊥4 cos(φij)


(7.3.9)

Gy(ri, rj) =
ik

8π
× (7.3.10)

Ib⊥1 sin(φij) + Ib⊥2 sin(3φij) −Ia⊥2 cos(φij)− Ib⊥2 cos(3φij) −2iIa⊥3 sin(2φij)

−Ia⊥2 cos(φij)− Ib⊥2 cos(3φij) Ia⊥1 sin(φij)− Ib⊥2 sin(3φij) 2iIa⊥3 cos(2φij) + 2iIb⊥3

−2iIa⊥3 sin(2φij) 2iIa⊥3 cos(2φij) + 2iIb⊥3 4I⊥4 sin(φij)


(7.3.11)

whose matrix elements are linear combinations of the integrals

I||1 =

ˆ θmax

0

cos θ sin θ{1 + cos2 θ}eikz |zij |J0(k sin θρij)dθ (7.3.12)

I||2 =

ˆ θmax

0

cos θ sin θ{1− cos2 θ}eikz |zij |J2(k sin θρij)dθ (7.3.13)

I||3 =

ˆ θmax

0

cos θ sin2 θ cos θeikz |zij |J1(k sin θρij)dθ (7.3.14)

I||4 =

ˆ θmax

0

cos θ sin3 θeikz |zij |J0(k sin θρij)dθ (7.3.15)
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Ia⊥1 =

ˆ θmax

0

sin2 θ
{
1 + 3 cos2 θ

}
eikz |zij |J1(k sin θρij)dθ (7.3.16)

Ib⊥1 =

ˆ θmax

0

sin2 θ
{
3 + cos2 θ

}
eikz |zij |J1(k sin θρij)dθ (7.3.17)

Ia⊥2 =

ˆ θmax

0

sin2 θ
{
1− cos2 θ

}
eikz |zij |J1(k sin θρij)dθ (7.3.18)

Ib⊥2 =

ˆ θmax

0

sin2 θ
{
1− cos2 θ

}
eikz |zij |J3(k sin θρij)dθ (7.3.19)

Ia⊥3 =

ˆ θmax

0

sin3 θ cos θeikz |zij |J2(k sin θρij)dθ (7.3.20)

Ib⊥3 =

ˆ θmax

0

sin3 θ cos θeikz |zij |J0(k sin θρij)dθ (7.3.21)

I⊥4 =

ˆ θmax

0

sin4 θeikz |zij |J1(k sin θρij)dθ. (7.3.22)

63



Referencias

[1] P. W. Milonni, The Quantum Vacuum. 1993.

[2] H. B. G. Casimir, “On the Attraction Between Two Perfectly Conducting
Plates,” Indag. Math., vol. 10, pp. 261–263, 1948.

[3] H. B. G. Casimir and D. Polder, “The influence of retardation on the london-van
der waals forces,” Phys. Rev., vol. 73, pp. 360–372, Feb 1948.

[4] D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms
using nanoscale quantum vacuum forces,” Nature Communications, vol. 5, no. 1,
p. 4343, 2014.

[5] D. A. T. Somers and J. N. Munday, “Conditions for repulsive casimir forces
between identical birefringent materials,” Phys. Rev. A, vol. 95, p. 022509, Feb
2017.

[6] F. S. S. Rosa, D. A. R. Dalvit, and P. W. Milonni, “Casimir interactions for
anisotropic magnetodielectric metamaterials,” Phys. Rev. A, vol. 78, p. 032117,
Sep 2008.

[7] J. H. Wilson, A. A. Allocca, and V. Galitski, “Repulsive casimir force between
weyl semimetals,” Phys. Rev. B, vol. 91, p. 235115, Jun 2015.

[8] P. Rodriguez-Lopez and A. G. Grushin, “Repulsive casimir effect with chern
insulators,” Phys. Rev. Lett., vol. 112, p. 056804, Feb 2014.

[9] M. Ishikawa, N. Inui, M. Ichikawa, and K. Miura, “Repulsive casimir force in
liquid,” Journal of the Physical Society of Japan, vol. 80, no. 11, p. 114601,
2011.

64



[10] M. Levin, A. P. McCauley, A. W. Rodriguez, M. T. H. Reid, and S. G. John-
son, “Casimir repulsion between metallic objects in vacuum,” Phys. Rev. Lett.,
vol. 105, p. 090403, Aug 2010.

[11] K. Sinha, “Repulsive vacuum-induced forces on a magnetic particle,” Phys. Rev.
A, vol. 97, p. 032513, Mar 2018.

[12] C. Henkel, K. Joulain, J.-P. Mulet, and J.-J. Greffet, “Radiation forces on small
particles in thermal near fields,” Journal of Optics A: Pure and Applied Optics,
vol. 4, pp. S109–S114, aug 2002.

[13] K. Sinha, B. P. Venkatesh, and P. Meystre, “Collective effects in casimir-polder
forces,” Phys. Rev. Lett., vol. 121, p. 183605, Nov 2018.

[14] E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf, G. D. Bruce, and
S. Kuhr, “Single-atom imaging of fermions in a quantum-gas microscope,” Na-
ture Physics, vol. 11, p. 738, 2015.

[15] A. Kaufman and K.-K. Ni, “Quantum science with optical tweezer arrays of
ultracold atoms and molecules,” Nature Physics, vol. 17, p. 1324, 2021.

[16] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E.
Chang, “Exponential improvement in photon storage fidelities using subradiance
and "selective radiance" in atomic arrays,” Phys. Rev. X, vol. 7, p. 031024, 2017.

[17] Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Nonlinear photon-atom coupling
with 4pi microscopy,” Nature Communications, vol. 8, p. 1200, 2017.

[18] L. C. Bianchet, N. Alves, L. Zarraoa, N. Bruno, and M. W. Mitchell, “Manip-
ulating and measuring single atoms in the maltese cross geometry,” 2021.

[19] S. G. B. O. e. a. Heller, I., “Sted nanoscopy combined with optical tweezers
reveals protein dynamics on densely covered dna,” Nature Methods, vol. 10,
pp. 910–916, 2013.

[20] C. Robens, S. Brakhane, W. Alt, F. Kleißler, D. Meschede, G. Moon,
G. Ramola, and A. Alberti, “High numerical aperture (na=0.92) objective lens

65



CHAPTER 7. REFERENCIAS

for imaging and addressing of cold atoms,” Opt. Lett., vol. 42, pp. 1043–1046,
Mar 2017.

[21] P. Solano, P. Barberis-Blostein, F. K. Fatemi, L. A. Orozco, and S. L. Rolston,
“Super-radiance reveals infinite-range dipole interactions through a nanofiber,”
Nat. Commun., vol. 8, p. 1857, 2017.

[22] K. Sinha, P. Meystre, E. Goldschmidt, F. K. Fatemi, S. L. Rolson, and
P. Solano, “Non-markovian collective emission from macroscopically separated
emitters,” Phys. Rev. Lett., vol. 124, p. 043603, 2020.

[23] K. Sinha, P. Meystre, and P. Solano, “Non-markovian dynamics of collective
atomic states coupled to a waveguide,” Nanophotonic Materials, Devices, and
Systems, vol. 11091, pp. 53 – 59, 2019.

[24] P. Solano, P. Barberis-Blostein, and K. Sinha, “Collective directional emission
from distant emitters in waveguide qed,” 2021.

[25] J. Enderlein, “Theoretical study of detection of a dipole emitter through an
objective with high numerical aperture,” Opt. Lett., vol. 25, pp. 634–636, 2000.

[26] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. Cambridge
University Press, 1995.

[27] J. D. Jackson, Classical Electrodynamics, 2nd edn. Wiley, 1975.

[28] L. Novotny and B. Hecht, Principles of nano-optics. Cambridge University
Press, 2012.

[29] L. Barron and C. G. Gray, “The multipole interaction Hamiltonian for time
dependent fields,” J. Phys. A, vol. 6, pp. 50–61, 1973.

[30] E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys.
Rev., vol. 69, p. 681, 1946.

[31] K. H. Drexhage, M. Fleck, F. P. Schäfer, and W. Sperling, “Beeinflussung
der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges.
Phys. Chem., vol. 20, p. 1176, 1966.

66



[32] P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of
cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett., vol. 50,
p. 1903–1906, 1983.

[33] D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett., vol. 47,
p. 233–236, 1981.

[34] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and
electronics,” Phys. Rev. Lett., vol. 58, p. 2059–2062, 1987.

[35] S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of sin-
gle molecule fluorescence using a gold nanoparticle as an optical nanoantenna,”
Phys. Rev. Lett., vol. 97, p. 017402, 2006.

[36] S. Y. Buhmann, Dispersion Forces II. Springer-Verlag, 2012.

[37] D. A. Steck, Cesium D Line Data. available online at http://steck.us/alkalidata
(revision 2.2.1, 21 November 2019).

[38] P. Meystre and M. Sargent, Elements of Quantum Optics, 4th edn. Springer-
Verlag, 2007.

[39] S. Y. Buhmann, Dispersion Forces I. Springer-Verlag Berlin Heidelberg, 2012.

[40] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Ox-
ford University Press, 2002.

[41] S. Hassani, Mathematical Physics. Springer, 2013.

[42] F. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics. Pearson
Education, 2006.

[43] U. Hohenester, Nano and Quantum Optics. Springer, 2020.

[44] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for
neutral atoms,” vol. 42 of Advances In Atomic, Molecular, and Optical Physics,
pp. 95–170, Academic Press, 2000.

[45] K. Sinha, A. González-Tudela, Y. Lu, and P. Solano, “Collective radiation from
distant emitters,” Phys. Rev. A, vol. 102, p. 043718, Oct 2020.

67


	Agradecimientos
	Resumen
	Introduction
	Theoretical Foundations
	Electrodynamics
	Angular spectrum representation
	Light-Matter
	Dyadic Green Functions
	Emission Rate

	Master Equation
	Lindbland master equation on Heisenberg picture

	A Point Spread Function for the Lens
	Generalizing the Green function
	Final remarks

	Dipole-Dipole Interaction through a Lens
	Conclusions
	Appendices
	Master Eq Calculus
	Green's Function Calculus
	Quantum Center of Mass Motion

	Referencias

