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Resumen

Los campos magnéticos son omnipresentes en el Universo. Así como el Sol,

otras estrellas también tienen fuertes campos magnéticos. Las estrellas enanas

M son completamente convectivas con masas inferiores a 0.35 masas solares.

Estas estrellas son de interés primordial en la comunidad de investigación

del dínano estelar, ya que el funcionamiento de sus campos magnéticos

no son completamente entendidos y su estructura interna es diferente a

la del Sol porque no tienen zona radiativa, entonces, permiten probar si

esto tiene un impacto significativo para el dínamo. En esta tesis, utilicé

simulaciones magneto-hidrodinámicas en tres dimensiones para estudiar los

campos magnéticos a gran escala de estrellas completamente convectivas en

función del número magnético de Prandtl, un parámetro adimensional que

describe la relación entre la viscosidad y la resistividad. Estas simulaciones se

realizaron con diferentes períodos de rotación en el régimen de rotación lento

a intermedio, con períodos de rotación de 43 a 90 días. Encontré diferentes

soluciones para el campo magnético a gran escala, ciclos cuasi-periódicos

similares a los del Sol, e inversiones irregulares también. Este estudio ha

ampliado de manera muy significativa el rango de parámetros investigado

para las estrellas enanas M, con número magnético de Prandtl que va desde

0.1 hasta 10.

Las enanas M se encuentran usualmente en binarias con post envoltura comun

(PCEBs), que muestran variaciones en sus tiempos de eclipse (ETVs). La

viabilidad de que el campo magnético afecte al sistema binario se explora en el

contexto del modelo de Appelegate. Sin embargo, la tasa de rotación utilizada

aquí no es realista para apuntar a tales sistemas. Las enanas M en PCEBs

tienen periodos de rotación que van desde horas hasta unos pocos días. El

próximo paso obvio será investigar este proceso utilizando simulaciones con

tasas de rotación más rápida.

Keywords – Campos magnéticos estelares, Enanas M, Número magnético de

Prandtl, Post-Common Envelope Binaries.
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Abstract

Magnetic fields are ubiquitous in the universe. As the Sun, other stars also have

strong magnetic fields. M dwarf stars are fully convective when having masses

below 0.35 solar masses. These stars are of prime interest in the stellar dynamo

community, since their magnetic fields are not yet fully understood and they

are quite different than the Sun because they do not have a radiative zone, so

they allow to probe if this makes a significant difference for the dynamo. In

this thesis, using three-dimensional magneto-hydrodynamical simulations I

studied the large-scale magnetic structures of fully convective M dwarf stars

as a function of the magnetic Prandtl number; an important dimensionless

parameter describing the ratio of viscosity and resistivity. These simulations

were performed at different rotation periods in the slowly to intermediate

rotation regime, with rotation periods from 43 to 90 days. I have found different

solutions for the large-scale magnetic field, quasi-periodic cycles similar to

those of the Sun, and irregular reversals as well. This study overall has very

significantly extended the parameter space probed for M-dwarf stars, with

magnetic Prandtl numbers from 0.1 to 10.

M dwarfs are usually found in Post Common Envelope Binaries (PCEBs),

which commonly show Eclipsing Time Variations (ETVs). The feasibility of

the magnetic field affecting the binary system is explored in the context of

the Applegate model. However, the rotation rate used here is not realistic for

targeting such systems. M dwarfs in PCEBs have rotation periods that range

from hours to a few days. I believe that a logical next step will be to probe this

mechanism with rapidly rotating simulations.

Keywords – Stellar magnetic fields, M dwarf stas, Magnetic Prandtl number,

Post-Common Envelope Binares
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Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Context

Starspots are the most visible manifestations of magnetic fields in the outermost

layers of stars. In the case of the Sun, the sunspots have an 11-year cycle and it

takes twice as long for the polarity of the spots to revert to the same. Today

it is known that all solar activity is caused by an underlying magnetic field.

The mechanism responsible for generating and sustaining magnetic fields

in late-type stars is a self-excited dynamo (Brandenburg and Subramanian,

2005; Charbonneau, 2013, 2020). In the case of the Sun, it sustains the large-

scale magnetic field by converting the poloidal magnetic field into a toroidal

magnetic field primarily by shearing of the field lines via differential rotation.

The physical mechanism by which the poloidal field is regenerated remains

unclear. A proposed mechanism is from helical convective motions (α-effect)

(Parker, 1955; Steenbeck et al., 1966). Additionally, some dynamo models

assume a high importance of the tachocline (Spiegel and Zahn, 1992), which is

the shear layer between the radiative core and the convection zone in solar-like

stars.

In the present day, stars different from the Sun are known for exhibiting surface

activity (Baliunas et al., 1995). Typical examples are the late-type M dwarfs

(Kochukhov, 2021), which are low-mass main-sequence stars and the most

numerous type of star in the solar neighbourhood. These stars are of prime

interest for the dynamo scientific community, since M dwarfs with masses up
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to 0.35 M⊙ are fully convective and do not posses a tachocline, and at the same

time show large-scale magnetic fields. For instance, Proxima Centauri is a

known fully convective star with an activity cycle of 7 years (Klein et al., 2021).

The investigation of magnetic fields of M dwarfs is not only a matter of interest

for the dynamo scientific community, but also for the search of exoplanets

orbiting M dwarf stars. Since magnetic fields may interfere with the detection

of exoplanets because of the presence of large-scale structures, it is crucial

to distinguish them from signatures of planets. Further, magnetic fields of

M dwarfs can impact planets that orbit the habitable zone (Andersen and

Korhonen, 2015).

1.2 Previous works with simulations

Three-dimensional numerical simulations of stars are performed with the

aim of achieving a better understanding of their magnetic fields, dynamos,

and convection as a function of stellar parameters (mass, age, rotation) and

dimensionless numbers, e.g., the magnetic Prandtl number, that describe

the physics in the stellar interiors. Some authors have performed numerical

simulations of fully convective stars in spherical shells. For instance, Browning

(2008) modeled a 0.3M⊙ star with a domain extending from 0.08 to 0.96 times

the stellar radius, finding that the star can generate magnetic field strengths

of the order of kG. Gastine, T. et al. (2013) focused on the importance of the

Rossby number, which is a measure of the influence of the Coriolis force on

convective flows, for large-scale dynamos of M dwarfs with models in spherical

shells. Brown et al. (2020) performed simulations of fully convective M dwarfs

in spherical coordinates, finding a hemispherical dynamo solution for every

computed case. Most recently, Käpylä (2021) presented an updated version

of the “star-in-a-box” model in Cartesian coordinates of fully convective stars,

which was first presented by Dobler et al. (2006). In that work, Käpylä (2021)

presented simulations with and without magnetic fields, varying the rotation

rate of the star, considering rotation periods ranging from 4.3 to 433 days,

finding different solutions for the large-scale magnetic field and the differential

rotation of the star. For slow rotation, predominantly axisymmetric large-

scale magnetic fields were obtained. For intermediate rotation, large-scale
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magnetic fields are predominantly axisymmetric and cyclic. For rapid rotation,

large scale magnetic fields are mostly non-axisymmetric and the models show

azimuthal dynamo waves (Cole et al., 2013).

1.3 This work

This thesis presents three-dimensional magneto-hydrodynamic simulations

of fully convective stars using the “star-in-a-box” model (Käpylä, 2021). This

model is described by the non-ideal equations of magneto-hydrodynamics that

are solved with the Pencil Code (Pencil Code Collaboration et al., 2021). Using

a cartesian box is beneficial because it includes the whole star, and the areas

outside the star may be viewed as free boundaries for magnetic fields and

flows, which can be advantageous when compared to spherical shell models.

1.3.1 Magnetism in intermediate to slowly rotating M dwarfs

The focus of this thesis is to explore the large-scale magnetic field solutions and

flow properties of a fully convective M dwarf star with intermediate rotation

periods of 43, 61 and 90 days, the last being the rotation period of the fully

convective M dwarf, Proxima Centauri, a nearby star that exhibits an activity

cycle of 7 years (Klein et al., 2021). In addition to varying the rotation period,

we varied the magnetic Prandtl number, PrM, with values ranging from 0.1

to 10, which is a wide range for this type of simulations. PrM is an intrinsic

property of the fluid defined as the ratio of viscosity to magnetic diffusivity,

and it is a crucial ingredient for dynamos. Dynamos in stars with low PrM and

large PrM have very different properties, and the effect on the dynamo has been

shown for simulations of spherical shells by Käpylä et al. (2017). While here

we pursue such a study for the first time modeling the star in full. The stellar

parameters used here are the typical values for an M5 star and verified using

simulations with Modules for Experiments in Stellar Astrophysics (MESA)

(Paxton et al., 2010).

In addition to the large-scale dynamo, the feasibility of small-scale dynamo

operation is also examined in the simulations presented here.
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1.3.2 Influence of large-scale magnetic fields on binary systems

Close binaries like Post-Common-Envelope-Binaries (PCEBs) show eclipsing

time variations (ETVs) in their O - C (observed minus calculated) diagram.

PCEBs consist of a magnetically active main-sequence star, like an M dwarf

and a White Dwarf. Zorotovic and Schreiber (2013) have found that ∼ 90% of

the PCEBs show eclipsing time variations. These variations can be explained

by the presence of a third body, like a planet, or due to the magnetic activity

of one of the stars. This is possible due the Applegate mechanism (Applegate,

1992), where a time-dependent gravitational quadrupole moment (i.e., related

to the shape of the star) is modulated by the stellar magnetic activity, and this

in turn produces changes on the binary separation that can be noted in the O -

C diagram. Low-mass post-common-envelope binaries with secondary masses

of 0.30 to 0.33 M⊙ are found to be the most promising candidates for the

Applegate mechanism (Völschow et al., 2018). Navarrete et al. (2018) explored

the feasibility of this mechanism under the framework presented by Völschow

et al. (2016), suggesting that rotation plays an important role. Most recently,

Navarrete et al. (2020) presented magneto-hydrodynamical simulations of

spherical shells with different rotation rates, finding that for slow rotation, the

quadrupole moment and magnetic field change in a quasi-periodic manner,

while for rapid rotation, the quadrupole moment and magnetic field change in

a more complex manner. Further, Lanza (2020) presented a model to explain

the orbital period modulations in binary systems based on a permanent non-

axisymmetric gravitational quadrupole moment, which is produced by a

non-axisymmetric magnetic field.

An analysis of whether the changes of the quadrupole moment are important

to influence the variation of periods of binary systems is also included in this

thesis.

This thesis is presented as follows: an overview of stellar magnetic fields

regarding the Sun and M dwarf stars is given in Chapter 2. Additionally,

the most important concepts about magneto-hydrodynamics and dynamo

mechanism are given, together with the flow properties which are important

for large-scale magnetic fields. Chapter 3 presents the computational methods

used, as well as the codes and model utilised to perform the simulations. In
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Chapters 4 and 5 the results are given. The main conclusions and a discussion

is presented in Chapter 6.
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Chapter 2

Magnetic fields

This chapter provides an overview of stellar magnetic fields, including the most

well-known, the Sun’s magnetic field, as well as information on M dwarfs, the

type of star covered in this thesis. An explanation of magneto-hydrodynamics

and its equations, as well as an outline of the dynamo process, are given to

comprehend how magnetic fields in stars evolve. Large-scale flows within

stars are also discussed, which are important for large-scale magnetic fields.

2.1 Stellar magnetism

Stellar magnetism started to be a field of study when George Hale realised

the magnetic origin of the sunspots a little more than a century ago, with

measurements of Zeeman splitting in spectral lines in sunspots (Hale, 1908).

However, he was not the first person to notice the spots; ancient records of

observations of star spots in the Sun have existed long ago, such as those of

Galileo Galilei in the early 16th century (Reeves et al., 2012) and even records

dating back to 165 BC (Yau and Stephenson, 1988).

Magnetic fields have been observed in several types of stars along the

Hertzprung-Russel diagram, such as T Tauri stars from the pre-main-sequence,

with authors reporting strengths of the order of kG (Johns-Krull et al., 1999;

Johns-Krull, 2007). Solar-like (with radiative core and convective envelope)

stars other than the Sun were also found to host magnetic fields, see e.g. the

magnetic activity cycles reported for several stars by Baliunas et al. (1995);
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or the reconstructed large-scale magnetic field of the star HN Pegasi using

Zeeman-Doppler imaging by Boro Saikia, S. et al. (2015). Furthermore, stars

beyond the main-sequence have been found to present surface magnetic fields,

as presented by Sabin et al. (2014) for the AGB stars U Monocerotis and R

Scuti. In this section, I will provide an overview of the magnetic fields of the

Sun, the first star discovered to have magnetic fields and also the most studied

example up to this point, as well as a description of magnetic fields in M dwarf

stars, which are the primary objects of this study.

2.1.1 The Sun

The Sun is a common star in its main-sequence stage, converting hydrogen to

helium in its core. The Sun’s interior structure is typically divided into three

zones: the core, the radiative zone, which is hydrodynamically stable and

reaches up to 0.7R⊙, and the outer envelope, which is known as the convection

zone because it carries heat to the surface via fluid motions. Figure 2.1.1 is

an illustration of the internal structure of the radiative and convective zone of

main-sequence stars.

Figure 2.1.1: Internal structures of main-sequence stars. Dark gray color
indicates convection zone while light gray indicates radiative zone. Sizes of
stars are not to scale. Adapted from Charbonneau (2013).

The magnetic activity is one of the most researched characteristics of the

Sun. As previously said, the most visible indication of the existence of

magnetic fields on the surface of the Sun are the sunspots, which have been

systematically recorded throughout the years. Sunspots, as the name implies,

are darker spots in comparison to the surrounding areas because the darker

areas have a lower temperature than the brighter ones. This temperature

contrast is caused by the presence of strong magnetic fields, which obstruct

convective heat transport from below the surface. The spots consist of the

darker area called umbra which is generally surrounded by a less dark area

named penumbra, as shown in Figure 2.1.2 together with the convection cells.
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In addition, also other surface manifestations such as coronal loops, flares,

eruptions, among others are recognised to be the result of an underlying

magnetic field. Using existing records of the history of sunspots, Hale and

collaborators (Hale et al., 1919) realized that sunspots appear in pairs of

opposite magnetic polarities, with the polarity of the leading (in the direction

of solar rotation) spot being the same for all pairs in one hemisphere while

those in the opposite hemisphere have the opposite leading polarity. This

behaviour of sunspots lasts roughly 11 years and their polarity is inverted

from one cycle to the next. This is known as the Hale’s polarity law.

Figure 2.1.2: Sunspot image taken on January 28, 2020 by DKIST. Credit:
NSO/NSF/AURA.

At the beginning of the cycle, the sunspots start to appear at mid latitudes

(∼ 40◦) in each hemisphere, and while the cycle progresses they appear closer

and closer to the equator. As this is a cyclic process a butterfly diagram (due to

its wingly shape) of sunspots is formed, as presented in Figure 2.1.3. It shows

the longitudinally averaged magnetic field at the surface of the Sun for the

last four sunspot cycles, where the change of the polarity from one cycle to

the next is clearly seen. The solar magnetic cycle then lasts 22 years, which is

twice the length of the sunspot cycle.
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Figure 2.1.3: Longitudinally averaged magnetic field at the surface of the Sun
for the four last sunspots cycles. Courtesy of D. Hathaway, Solar Cycle Science.

2.1.2 M dwarf stars

M dwarfs, also referred to as red dwarfs, are low-mass late-type main-sequence

stars which are the most common type of stars in the Galaxy (Winters et al.,

2019). They are known to exhibit abundant evidence of surface magnetic

activity (Johns-Krull and Valenti, 1996; Kochukhov, 2021). These stars have

masses between 0.08-0.55M⊙ and effective temperatures of 2450-3850 K. Their

luminosities are much lower that of the Sun. An important property of

these stars is that they undergo a change in their stellar structure at 0.35 M⊙

(Chabrier and Baraffe, 1997). Above this mass they are partially convective,

like the Sun, while with masses below that limit they are fully convective

(see the rightmost illustration in figure 2.1.1). The minimum mass of M-

dwarfs corresponds to 0.08M⊙; objects below that mass are considered to be

brown dwarfs. Since fully convective M dwarfs do not possess a tachocline,

they are of particular interest for dynamo investigations because the role of

this shear layer for dynamo operation is debated with authors that support

the role of the tachocline for the dynamo operation in solar-like stars (e.g.

Charbonneau, 2014) and authors who do not, such as Brandenburg (2005).

In this sense, X-ray emission of late-type partially and fully convective stars

show a similar trend with the Rossby number (rmRo) (Wright and Drake, 2016)

(an important dimensionaless number that is defined in 2.2.2) such that X-ray

emission increases with decreasing Ro until Ro ∼ 0.1 after wich the X-ray

luminosity saturates. This suggests that dynamos operating in partially and

fully convective stars are similar and the tachocline is unimportant.
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2.2 Magneto-hydrodynamics

Magneto-hydrodynamics (MHD) is the field that studies the interaction of

plasmas as fluids with magnetic fields. It describes the macroscopic dynamics

of a plasma. MHD is controlled by a combination of the Maxwell and Navier-

Stokes equations, taking the Lorentz force into account. The set of equations is

given below, first the continuity equation, which describes the conservation of

mass,
D ln ρ

Dt
= −∇ ·U , (2.2.1)

where D/Dt = ∂/∂t +U · ∇ is the advective derivarive, ρ is the density and

U is the velocity. The momentum equation is given by

DU

Dt
= g − 1

ρ
∇p +Fvisc +Fcent +FCor +FLor, (2.2.2)

where p is pressure, g is the gravitational acceleration, Fvisc = 1/ρ∇ · (2νρS)

is for the viscous forces, Fcent = −Ω × (Ω × r) is for the centrifugal forces,

FCor = −2Ω ×U is for the Coriolis force, and FLor = 1/ρJ ×B is for the

Lorentz force, where Ω is the rotation rate, r is the distance from the rotation

axis, ν is the kinematic viscosity, S is the rate-of-strain tensor, J is the current

density, and B is the magnetic field.

The equation for conservation of energy is given by

ρT
Ds
Dt

= −∇ ·Frad + 2νS2 + ην0J
2 + Γ, (2.2.3)

where s is the specific entropy, Frad = −K∇T is the radiative flux, where K is

the heat conductivity and Γ correspond to another sources of energy.

Finally, the induction equation describes the evolution of the magnetic field, it

is given by
∂B

∂t
= ∇× (U ×B) + η∇2B, (2.2.4)

where η is the magnetic diffusivity. The set of MHD equations is supplemented

with the solenoidality condition for the magnetic field:

∇ ·B = 0, (2.2.5)
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and an equation of state is needed to be consistent thermodynamically. For an

ideal gas it is given by

p = γρT = RρT, (2.2.6)

where R is the universal gas constant, ρ is density and T is the temperature of

the system.

2.2.1 Dimensionless parameters

Dimensionless parameters in fluids and plasmas allow for a quantitative

characterization of many physical and astrophysical systems. These numbers

usually compare the ratio of two terms in the MHD equations. The following

are a few of them:

(a) The Reynolds number, Re, is the ratio of the inertial to viscous forces

from the momentum equation. Re determines if a flow is laminar or

turbulent. It is given by Re = vl/ν, where v is the typical amplitude

of the velocity, l is a characteristic length scale of the motion and ν

is the kinematic viscosity.

(b) The magnetic Reynolds number, ReM = ul/η, is the ratio of

advection to diffusion of B in the induction equation. If ReM ≪ 1

the second term in equation 2.2.4 dominates, so the magnetic field

obeys a diffusion equation. The energy is lost via Ohmic dissipation.

If ReM ≫ 1 the first term in equation 2.2.4 dominates and the

magnetic field is frozen in the flow. In this case, the magnetic field

is elastic and oscillates at a frequency proportional to the Alfvén

velocity.

(c) The Prandtl number, Pr, is the ratio of two molecular transport

properties, momentum diffusivity to thermal diffusitivity. It is given

by Pr = ν/α, where α is the thermal diffusivity.

(d) The Magnetic Prandtl number, PrM = ReM/Re = ν/η, characterizes

the ratio of momentum diffusivity (ν) to magnetic diffusivity (η).
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2.2.2 Convection

Magneto-hydrodynamical processes take place mainly in the convection zone

of stars. Convection is a process of energy transport that occurs through the

movement of fluids. This process takes place when the temperature gradient

of an atmosphere exceeds a threshold, causing the atmosphere to become

unstable. In stars with convective envelopes like the Sun, convection can be

seen in the photosphere, where convective cells called granules lead to the

rise of elements hotter than their surroundings, depositing the energy in the

surrounding medium. In Fig. 2.1.2 granules around the sunspot can be seen.

The condition under which an atmosphere or a part of a star is unstable to

convection is known as the Schwarzschild criterion that is given by

d ln T
ln P

∣∣∣∣
ad

>
d ln T
ln P

, (2.2.7)

where T is the temperature, P is the pressure, the suscript ad refers to

the adiabatic gradient. If the condition is fulfilled, the medium is stable;

otherwise, convection (instability) occurs if the temperature gradient in the

stellar atmosphere is greater than the adiabatic gradient.

An important dimensionless number that measures the influence of the Coriolis

force on convective flows is the Rossby number (Rossby, 1939) that is defined by

Ro =
Prot

τ
, (2.2.8)

where Prot is the rotation period and τ is the convective turnover time, which

is the typical time connected with convection, e.g. l/u.

2.2.3 Mixing length theory

The mixing length theory is a standard tool for modeling convection zones,

proposed by Taylor (1915), Schmidt (1917) and Prandtl (1925). The main idea

behind the theory is as follows: take a gas or fluid that is thought to be

composed of parcels or elements that advect fluid properties such as heat or

momentum. A parcel that comes up as a result of instability has the same

properties as its former surrounding. It travels with a characteristic velocity
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v with a length l, known as the mixing length, and finally breaks up, and

merges with its surroundings. The mixing length is the characteristic length

over which a parcel will conserve its properties. This idea was applied to

stellar convection by Biermann (1943).

2.3 Dynamo mechanism

A dynamo is a mechanism that maintains a magnetic field in a conducting

fluid. The dynamo process converts kinetic into magnetic energy; this process

must be efficient enough to compensate for Ohmic dissipation losses. Dynamos

can be found to operate at small and large scales. The first correspond to

those operating in scales comparable or smaller than the typical scale of the

convective eddies, while large scale dynamos operate at the system scale. This

thesis focuses on the large scale dynamos responsible for maintaining large

scale magnetic fields in stars; a good example is the Solar dynamo.

2.3.1 Solar dynamo

As mentioned before, the Sun shows variation of the large scale magnetic

field with a periodicity of 22 years that suggests that a dynamo is responsible

for maintaining the field. The Solar dynamo has been described by several

authors, e.g., Brandenburg and Subramanian (2005); Charbonneau (2014, 2020).

The dynamo sustains the large-scale magnetic field and converts the poloidal

magnetic field to a toroidal magnetic field and vice versa. The main ingredients

by which this is explained are given below.

Ω effect

The Ω effect refers to the amplification of the toroidal field by shearing the

poloidal field lines via differential rotation. In the Sun the rotation is faster at

the equator than at the poles, which is known as solar-like differential rotation

(see figure 2.3.1).

Consider an axisymmetric system in cylindrical coordinates (R, φ, z), and an

axisymmetric vector field B as follows:

B = ∇× (χφ̂/R) + Rψφ̂, (2.3.1)
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where χ(R, z, t) is a poloidal flux function and Rψ is the toroidal magnetic

field. In the same way, with U axisymmetric with respect to the same axis of

symmetry as B, we can write

U = Upol + RΩφ̂, (2.3.2)

where Upol(R, z, t) is an axisymmetric poloidal velocity field and Ω(R, z, t)φ̂

describes an axisymmetric toroidal differential rotation. Additionally, the

poloidal and toroidal components of the induction equation, respectively, are:

∂χ

∂t
+Upol ·∇χ = η

(
∇2χ − 2

R
∂χ

∂R

)
, (2.3.3)

∂ψ

∂t
+Upol ·∇ψ = Bpol ·∇Ω + η

(
∇2ψ +

2
R

∂ψ

∂R

)
, (2.3.4)

where Bpol ·∇Ω in equation 2.3.4 describes the Ω effect, i.e. the stretching of

poloidal into toroidal fields by differential rotation. Since there is no relation

between ψ and χ in equation 2.3.3, there is no way to generate a toroidal field

from a poloidal field. This is known as Cowling’s theorem, it basically says that

a purely axisymmetric magnetic field cannot be sustained by dynamo action

(Cowling, 1933); then non-axysimmetric mechanisms are needed to explain

how the poloidal field is maintained.

Figure 2.3.1: Schematic representation of the Sun differential rotation and the
Ω effect. The poloidal field lines are stretched due to the latitudinal shear
near the equator, producing a toroidal field. Figure from the review by Rincon
(2019).
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α effect

The physical mechanism by which the poloidal field is regenerated remains

unclear. One of the proposed mechanisms includes turbulence, postulated first

by Parker (1955); in this mechanism turbulence has helicity in the presence of

rotation, and the helicity twists the toroidal field generating a perpendicular

component to the field, the poloidal one. Furthermore, Steenbeck et al. (1966)

presented the actual α−effect with the mean-field dynamo theory, a mathematical

theory of large-scale dynamos that is briefly presented below.

Flux transport dynamos

The Babcock-Leighton mechanism proposed by Babcock (1961) and Leighton

(1969) inspired the flux transport dynamo models, in which the tachocline, the

shear layer at the bottom of the convection zone, is critical in maintaining the

Sun’s large-scale magnetic field. The toroidal magnetic field is generated by

shearing in the tacholine, whereas the poloidal magnetic field is created by

buoyant unstable flux tubes that rise from the tachocline and tilt due to Coriolis

force. The meridional circulation (described in 2.4.2) transports the poloidal

field to the poles and back to the tacholine in order for the cycle to restart.

However, in models of distributed dynamos, the tachocline is unimportant (e.g.

Käpylä et al., 2006).

Mean-field dynamo theory

The idea behind mean-field dynamo theory or mean-field electrodynamics (Krause

and Rädler, 1980) is to separate the magnetic and velocity field into a mean

and a fluctuating part, considering a two-scale decomposition of the dynamics,

using ensembles or averages. That is, the velocity and magnetic fields can be

written as follows:

U = U + u, (2.3.5)

B = B + b, (2.3.6)

where U and B are the mean parts (large-scale) of the velocity and magnetic

fields, while u and b the fluctuating parts. These averages satisfy the Reynolds

rules,

U1 +U2 = U1 +U2, (2.3.7)
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U = U , (2.3.8)

Uu = 0, (2.3.9)

U1U2 = U1U2, (2.3.10)

∂U

∂t
=

∂U

∂t
, (2.3.11)

∂U

∂xi
=

∂U

∂xi
. (2.3.12)

These averages are valid if the averaging length is much larger than the eddy

scale. Applying these averages to the induction equation (2.2.4), it takes the

form:
∂B

∂t
= ∇× (U ×B + u× b− ηµ0J), (2.3.13)

where E = u× b is the mean electromotive force (EMF). Finding an expression

for E is known as a clossure problem, which is solved by writing E in terms of

B and its gradients. An expression of E in terms of the large-scale quantities

is needed to solve Equation 2.3.13, this is

E i(x, t) = aijBj + bijk
∂Bk
∂xj

, (2.3.14)

where aij and bijk are second and third-order tensors that are solely dependent

on the properties of the flow.

There is a linear relation between the mean field B and the fluctuations b, the

mean EMF can be expanded as follows:

E i = αijBj + (γ ×B)i − βij(∇×B)j − [δ × (∇×B)]i −
κijk

2
(∇jBk +∇kBj),

(2.3.15)

where α and β are symmetric second-order tensors, the prior one is related to

Parker’s mechanism mentioned above and can generate a poloidal field from

a toroidal field, while the latter is a turbulent magnetic difussion term, γ and

δ are vectors, and κ is a third-order tensor. They are given by

αij =
1
2
(aij + aji), (2.3.16)

βij =
1
4
(εiklbjkl + ε jklbikl), (2.3.17)
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γi = −1
2

εijkajk, (2.3.18)

δi =
1
4
(bjji − bjij), (2.3.19)

κijk = −1
2
(bijk + bikj), (2.3.20)

where εijk is the antysimmetric Levi-Cevita tensor.

2.4 Flow properties

As mentioned previously, large-scale flows and flow properties contribute to

the dynamo operation in the convection zone of stars, such as differential

rotation, meridional circulation and kinetic helicity, that are briefly described

below.

2.4.1 Differential rotation

Differential rotation (DR) refers to a non-uniform angular velocity of the

convection zone that is mainly produced by the action of the Reynolds stresses,

which are correlations of the turbulent (fluctuating) velocity components.

The Coriolis force operates on turbulence, which then reacts to redistribute

angular momentum, modifying the global rotation behaviour, and producing

differential rotation. Thus, the interplay of rotation and convection explains

DR (e.g. Rüdiger, 1989).

As demonstrated in the work of Schou et al. (1998), helioseismology and

Doppler imaging data allowed researchers to investigate the inner angular

velocity of the Sun. Since the angular velocity varies not only with latitude but

also with depth, the amplitude of the differential rotation can be measured

radially and latitudinally, as shown in the work of Käpylä et al. (2013). This

is the situation with the Sun, where the convection zone rotates faster near

the equator than at the poles, as illustrated in Figure 2.4.1, which depicts the

rotation rate of the Sun as a function of latitude and radius.
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2.4.2 Meridional circulation

Meridional circulation is a large-scale flow that transports angular momentum

and contributes to the energy transport inside stars. It has longitudinally

averaged north-south and radial velocity components. Meridional circulation

is driven by thermal wind and Reynolds stress. Meridional circulation has

been shown to have a significant impact on solar dynamo models (Choudhuri

et al., 1995), such as flux transport models, where meridional circulation causes

magnetic activity to migrate equatorward throughout the duration of the solar

cycle.

Meridional circulation in the Sun moves matter poleward at the surface and

equatorward at some unknown depth. (reviewed in Choudhuri, 2021).

2.4.3 Kinetic helicity

Kinetic helicity is a measure of the winding and linking of vortex lines in

fluids. It is produced in rotating fluids such as stars. For the α-effect to work,

an underlying velocity field with lack of reflectional symmetry associated with

a non-zero kinetic helicity is needed Krause and Rädler (1980). The kinetic

helicity is given by

H =
∫

V
ω · u dV, (2.4.1)

where ω is the vorticity.

For stars, the sign of H is important. For example, a poleward-propagating

dynamo wave is expected when a negative kinetic helicity on the northern

hemisphere is found. This is known as the Parker-Yoshimura rule after Parker

(1955) and Yoshimura (1975).
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Figure 2.4.1: Rotation rate of the sun at different latitudes as a function
of depth. The error bars are shown by the thickness of the curves.
Credits: GONG/NSO/AURA/NSF.
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Chapter 3

Computational methods

A description of the codes used, Modules for Experiments in Stellar

Astrophysics and the Pencil Code is given in this chapter. The numerical

model, stellar parameters, and relations between code and physical units are

also discussed.

3.1 MESA

Modules for Experiments in Stellar Astrophysics (MESA1; Paxton et al. 2010) is

an open source library with a variety of modules. It employs adaptive mesh

refinement and time step controls, as well as OpenMP-based shared memory

parallelism. The one-dimensional stellar evolution module star was used in

this work with the aim of obtaining the stellar parameters for an M5 star.

Once MESA is installed it is possible to run simulations. First thing to do is

setup the configuration files which are in the run directory.

3.1.1 Files to set in the run directory

There are three configuration files. ‘inlist’ tells MESA whether it can find

its configuration information elsewhere. ‘inlist_project’ is the file that

contains the parameters that control the simulation. For example, one may

select whether or not the simulation should begin with a pre-main sequence

model and when to stop it, as well as the initial mass, rotation rate, and

1https://github.com/MESAHub/mesa/releases
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energy conservation options, among other control functions. inlist_pgstar

is for setting options for plotting a Hertzprung-Russell diagram and a

temperature/density profile while the simulation is running.

To compile and run a simulation one has to use the shell scripts ‘mk’ and ‘rn’.

3.1.2 Output files

The output files are stored in the ‘LOG’ directory. The history of the run

is kept in the file ‘history.data’, one line per recorded model. Column

numbers appear on the first line of history.data, column names appear on the

second line, and the values appear on the following lines. ‘profiles.index’

sets the number of profiles to be saved, since saving every profile would

require too much disk space. ‘profile#.data’ (# indicate the profile number)

saves information about the selected models. Temperature, density, pressure,

mass percentage of hydrogen, helium, and metals, among other variables, are

all contained in these profiles, which span the stellar radius. The variables

contained in ‘history.data’ and ‘profile#.data’ can be set in

$MESA_DIR/star/defaults/history_columns.list,

$MESA_DIR/star/defaults/profile_columns.list.

3.1.3 Structure and composition equations

The stellar structure is divided into cells (k), which are numbered from the

surface to the center of the star. MESA star solves both the structure and

composition equations simultaneously, from top to bottom (see section 6.2 of

Paxton et al. 2010). The mass conservation equation is given in a finite volume

form as follows:

ρk =
dmk

(4/3)π(r3
k − r3

k+1)
, (3.1.1)

where ρk, mk and rk are boundary variables for density, mass and radius,

respectively. The momentum conservation at the interior of the cell boundaries

is given by

Pk−1 − Pk = dmk

[
−Gmk

4πr4
k
− ak

4πr2
k

]
, (3.1.2)
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where Pk is the pressure, dmk = 0.5(dmk−1 + dmk) and ak is the Lagrangian

acceleration. The energy transport through the cell boundaries is given by

Tk−1 − Tk = dmk

[
∇T,k

(
dP
dm

)
Tk

Pk

]
, (3.1.3)

where ∇T,k = d ln T/d ln P, Tk and Pk are temperature and pressure

interpolated by mass, respectively. The energy conservation equation is

Lk − Lk−1 = dmk(ϵnuc − ϵv,thermal + ϵgrav), (3.1.4)

where ϵnuc is the total nuclear reaction specific energy generation rate minus

the nuclear reaction neutrino-loss rate, ϵv,thermal is the specific thermal neutrino

loss rate, and ϵgrav is the specific rate at which gravitational energy changes.

3.2 The Pencil code

The simulations were run with the Pencil Code
2 (Pencil Code Collaboration

et al., 2021), which is a high-order finite-difference code for solving

differential equations with primary applications in compressible astrophysical

magnetohydrodynamics. The code works efficiently under the Message Passing

Interface (MPI) on massively parallel computers with shared or distributed

memory. MPI is a message-passing library that is built specifically for parallel

computing systems. The equations that Pencil solves are the non-ideal MHD

equations, which are given in the description of the model, in section 3.3.

3.2.1 Starting

The code is stored in Github and can be downloaded in Linux with the

command

git clone https://github.com/pencil-code/pencil-code.git

In order to use the code, one has to take into account its systems requirements:

• F95 and C compiler,

• a Unix/Linux-type system with make and csh,

2https://github.com/pencil-code

https://github.com/pencil-code
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• Perl,

• an MPI (Message Passing Interface) for parallelization on multiprocessor

systems (for the use of more than one CPU),

• IDL or Python for visualization of the results.

Once the code is installed the environment must be set in the pencil-code

directory as follows (for csh or tcsh users):

sh > cd pencil-code

sh > ./sourceme.sh

Files in the run directory

Then, the folders to work in must be configured. This is done by the

script ‘pc_setupsrc’ which is in the folder ‘pencil-code/bin’. In the run

directory one can find files, such as: ‘start.in’, ‘run.in’, ‘phiaver.in’,

‘print.in’, ‘run.csh’, ‘start.csh’, the sub-directory ‘src’ with the files

‘Makefile.local’ and ‘cparam.local’. These files we need to set up

according to our simulations. Also, a sub-directory called ‘data’ is needed to

store the output data.

The files with the extension ‘.in’ specify the startup, runtime and output

parameters in the time series and averages over ϕ, respectively. The files ending

with ‘.csh’ are links to the ‘pencil-code/bin’ directory to initialize the code.

‘Makefile.local’ allows to chose individual physical and technical modules,

which are described in 3.2.2, and ‘cparam.local’ allows to set the grid size

and the number of processors for each direction. The sub-directory ‘data’ has

the following output files:

• ‘dim.dat’: Stores the global array dimensions.

• ‘legend.dat’: The header line specifying the names of the diagnostic

variables in ‘time_series.dat’.

• ‘time_series.dat’: Time series of diagnostic variables.

• ‘tsnap.dat’: Time when the next snapshot ‘VARN’ should be written.

• ‘params.log’: Keeps a log of all the parameters.
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• ‘param.nml’: Set of startup parameters.

• ‘param2.nml’: Set of runtime parameters.

• ‘proc0’, ‘proc1’, ... : Directories with data from the individual

processors. Each of the directories can contain the following files:

– ‘var.dat’: binary file storing the latest snapshot,

– ‘VARN’: binary file storing individual snapshot number N,

– ‘dim.dat’: file storing the array dimensions,

– ‘time.dat’: file storing the time corresponding to ‘dim.dat’,

– ‘grid.dat’: binary file storing the part of the grid seen by the given

processor.

Compiling and running

To compile with the usage of multi-processor with GNU/MPI one has to use:

unix > pc_build -GNU-GCC_MPI

This command is dependent on the system users are working on. A helpful

command for removing produced files in the event of a e.g. typo is:

unix > pc_build –cleanall

For running the code one has to use the pc_run command.

Running Pencil Code simulations using SLURM

Simple Linux Utility for Resource Management (SLURM) is a system for job

management and job scheduling for Linux clusters. This work was mainly

developed running simulations on clusters.

The main functions of SLURM are to grant access to computing nodes for

predetermined amounts of time in order for them to complete tasks. It offers a

framework for launching, executing, and monitoring work across the set of

assigned nodes. Furthermore, it resolves resource contention by maintaining a

queue of pending tasks.
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3.2.2 Modularity

The Pencil Code is highly modular, which means it has modules that may be

turned on and off in the ‘src/Makefile.local’ file based on the needs of the

user. For example, the settings for the simulations with the star-in-a-box setup,

which is described in 3.3, are:

MPICOMM = mpicomm

IO = io_dist

FILE_IO = file_io_f2003

HYDRO = hydro

DENSITY = density

ENTROPY = entropy

MAGNETIC = magnetic

RADIATION = noradiation

PSCALAR = nopscalar

EOS = eos_idealgas

GRAVITY = gravity_r

FORCING = noforcing

SHEAR = noshear

TIMEAVG = timeavg

REAL_PRECISION = double

The first three modules are technical, the MPI (for multiprocessor use) which is

activated, with input/output distributed over processors. The subsequent ones

are physics modules, such as hydro which is activated and it deals with things

related to the velocity, the density module (activated), the entropy module

(activated) that solves the entropy equation, magnetic fields are activated,

while radiation and pscalar for additional passive scalar field are switched off.

The EOS (equation of state) implements the ideal gas equation, the gravity

module sets the gravity field (activated), the forcing and shear modules are

switched off. The last option specifies the precision, which in this case is

double precision (8-byte floating point numbers).
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3.2.3 Output files

Time series

The time series are written every nt time step in ‘dat/time_series.dat’. The

user can choose which parameters to save in ‘print.in’. Part of the output

can contain the following diagnostic quantities:

1. it indicates the current time step,

2. the time, t,

3. dt indicates the length of the time step,

4. urms, indicates the rms velocity,
√
⟨u2⟩,

5. umax indicates the maximum velocity, max|u|,

6. the rms vorticity, orms,
√
⟨ω2⟩,

7. the kinetic helicity, oum, ⟨ω · u⟩,

8. the mean density, rhom = ⟨ρ⟩,

9. brms indicates the rms magnetic field,
√
⟨b2⟩,

10. inertiaxx_car, inertiayy_car, inertiazz_car are the xx, yy and zz components

of the inertia tensor.

Snapshot, video, slice files and averages

Snapshot files include full information about primary variables. There are

two sorts of snapshot files: current and permanent snapshots, both of which

are stored in a ‘data/procN’ directory. These files can be used to restart a

simulation from a certain point according to the needs of the user, such as

changing the resolution or an input variable.

Slice files contain information of variables in a given plane, which can be

configured in ‘run.in’, respectively. The video files can be read using

the program ‘src/read_all_videofiles.x’, whereas slices are found in

‘data/proc*/’ and they are written in the each processor.

The averages can be in one or two dimensions. They are listed in the

files ‘xyaver.in’, ‘xzaver.in’ and ‘yzaver.in’, where the first two letters
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indicate the averaging directions.

3.3 The star-in-a-box model with the Pencil Code

We use the star-in-a-box model described by Käpylä (2021), which is based on

the set-up by Dobler et al. (2006). The model allows dynamo simulations

of fully convective stars. In the current case we employ a sphere of

radius R embedded in a cubic box with a length of 2.2 R. We solve the

magnetohydrodynamic equations of induction, continuity, motion and energy

conservation given as

∂A

∂t
= u×B − ηµ0J , (3.3.1)

D ln ρ

Dt
= −∇ ·u, (3.3.2)

Du

Dt
= −∇Φ − 1

ρ
(∇p −∇·2νρS+J ×B)−2Ω × u+fd, (3.3.3)

T
Ds
Dt

= −1
ρ
[∇ · (Frad+FSGS) +H− C] + 2νS2 + µ0ηJ2, (3.3.4)

where A is the magnetic vector potential, u is the velocity field, B = ∇×A

is the magnetic field, µ0 is the magnetic permeability of the vacuum, η is

the magnetic diffusivity, ρ is the density of the fluid, D/Dt = ∂/∂t + u · ∇
is the convective derivative, T is the temperature, p is the pressure, ν is the

kinematic viscosity, s is the specific entropy, J = ∇×B/µ0 is the current

density, Ω = Ω0ẑ is the rotation vector, with Ω0 being the rotation rate of

the star and ẑ the vertical unit vector. Φ is the gravitational potential that

corresponds to an isentropic hydrostatic state of the star which is given by

Φ(r) = −GM
R

a0 + a2r′2 + a3r′3

1 + b2r′2 + b3r′3 + a3r′4
, (3.3.5)

where G is the gravitational constant, M is the mass of the star, a0 = 2.34,

a2 = 0.44, a3 = 2.60, b2 = 1.60, b3 = 0.21 and r′ = r/R.

S is the traceless rate-of-strain tensor,

Sij =
1
2
(ui,j + uj,i)−

1
3

δij∇ · u, (3.3.6)
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where the commas denote differentiation and δij is the Kronocker delta.

fd describes the damping of flows outside the star which is given by

fd = − U

τdamp
fe(r), (3.3.7)

where τdamp ≈ 1 is a damping timescale, and fe(r) is described by

fe(r) =
1
2

(
1 + tanh

r − rdamp

ωdamp

)
, (3.3.8)

where rdamp = 1.03R and ωdamp = 0.03R.

H and C describe heating and cooling, respectively. H is given by a normalised

Gaussian profile:

H(r) =
Lsim

(2πω2
L)

3/2
exp

(
− r2

2ω2
L

)
, (3.3.9)

where Lsim correspond to the luminosity in the simulation and ωL is the width

of the Gaussian. C models stellar surface radiative losses and it is given by

C = ρcp
T(x)− Tsurf

τcool
fe(r), (3.3.10)

where τcool = τdamp is a cooling timescale.

Frad is the radiative flux given by

Frad = −K∇T, (3.3.11)

where

K(ρ, T) = K0(ρ/ρ0)
a−1(T/T0)

b+3, (3.3.12)

where a = −1 and b = 7/2 corresponds to the Kramers’ opacity law.

FSGS is the subgrid-scale (SGS) entropy flux that does not contribute to the net

energy transport, but it damps fluctuations near grid scale, and it is given by

FSGS = −χSGSρ∇s′, (3.3.13)
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where χSGS is the SGS diffusion coefficient, s′ = s− s̄t is the entropy fluctuation

and s̄t is a running temporal mean of entropy.

3.3.1 Control parameters and physical units

The parameters that define the model are the dimensionless luminosity L
which was defined by Dobler et al. (2006) as

L =
Lsim√

G3M5/R5
. (3.3.14)

The density stratification is determined by the dimensionless pressure scale

height at the surface

ξ0 =
RTsurf

GM/R
, (3.3.15)

where Tsurf = T(r = R). For our simulations we have L = 5.5 · 10−5 and

ξ0 = 0.062.

Stellar parameters

We used the stellar paramenters for an M5 dwarf which were the same as those

used by Käpylä (2021), i.e. stellar mass M⋆ = 0.21M⊙, radius R⋆ = 0.27R⊙,

and luminosity L⋆ = 0.008L⊙. We used an effective temperature Teff = 4000

K and a central density ρ⋆c ≈ 1.5 · 105 kg m−3. These are typical values for

an M5 dwarf and they were verified using simulations with the MESA code

(Paxton et al., 2010). Hence, for a real M5 star we have ξ⋆ = 2.2 · 10−4 and

L⋆ = 2.4 · 10−14.

The surface gravity for the star is given by

g⋆ =
GM⋆

R2
⋆

=
0.21

(0.27)2
GM⊙

R2
⊙

≈ 2.9g⊙ ≈ 750
m
s2 , (3.3.16)

where g⊙ = 260 m s−2.

Enhanced luminosity approach

We use here the enhanced luminosity approach described by Käpylä et al.

(2020), where the gap between the shortest (acoustic timestep) and longest

(Kelvin-Helmholtz time) timescales is compressed such that the latter can be
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resolved in the simulations. The luminosity ratio between the simulated star

and a real M5 star is Lratio = L/L⋆ ≈ 2.1 · 109. Since the enhanced luminosity

leads to an increase of the convective velocity as uconv ∝ L1/3
ratio, the velocities

are greater by a factor of L1/3
ratio ≈ 1280. These scaling relations have been

established in various previous studies (Käpylä et al., 2020; Navarrete et al.,

2021), and allow us to relate our numerical results to astrophysical stars.

Relations between code units and physical units

Working with numerical simulations does not automatically give values in

physical units; therefore, we must convert from simulations to physical units

in order to better understand the results.

The conversion factor for the rotation rate is given by

Ωsim = L1/3
ratio

(
gsim

g⋆
R⋆

Rsim

)1/2

Ω⋆, (3.3.17)

where gsim = gsim(r = R) = 1 and R = 1 and Ω⋆ is the rotation rate of the star.

The conversion factor for length is given by

x [m] =

(
R⋆

Rsim

)
x [sim. units] . (3.3.18)

The conversion factor for time is

t [s] =
(

Ωsim

Ω⋆

)
t [sim. units] . (3.3.19)

The factor for the velocity conversion is the ratio of the factors of length and

time

U [m s−1] =

(
Ω⋆R⋆

ΩsimRsim

)
U [sim. units] . (3.3.20)

For the conversion factor of the magnetic field we need a reference density in

physical units. We used the central density of the star, which for an M5 star is

ρ⋆c ≈ 1.5 · 105 kg m−3. The conversion factor is

B [T] =
[

µ0ρ⋆c (Ω⋆R⋆)2

µsimρsim
c (ΩsimRsim)2

]
B [sim. units] , (3.3.21)

where µ0 = 4π · 107 H m−1 is the magnetic permeability of vacuum, with
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µsim
0 = 1 and ρsim

c = 1.
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Chapter 4

Three-dimensional MHD

simulations with varying magnetic

Prandtl number and rotation period

In this chapter, the results of the simulations, which include large-scale

magnetic fields, large-scale flows, and flow properties, are presented in detail,

along with the results of the thesis. The viability of a small-scale dynamo is

also explored.

4.1 Simulations

As mentioned in 2.1.2, large-scale magnetic fields have been observed on the

surfaces of fully convective M dwarfs. Numerical simulations are an important

way to understand the physics that operate in this environment. This section

contains a description of the simulations performed in this thesis.

The simulations are divided into two groups: there are simulations with

varying magnetic Prandtl number, a dimensionless number which is briefly

introduced in 2.2.1, and simulations with varying rotation period. The

magnetic Prandtl number is important for dynamo activity, as established

before in many contexts, such as in works with simulations of the turbulent

dynamo by Federrath et al. (2014), or the work by Schekochihin et al. (2007)

with numerical simulations of forced turbulence. The magnetic Prandtl number
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is given by the ratio of kinematic viscosity, ν, to magnetic diffusivity, η, which

for hydrogen plasma is (Brandenburg and Subramanian, 2005)

PrM =
ν

η
= 1.1 × 10−4

(
T

106 K

)4( ρ

0.1 g cm−3

)−1 ( ln Λ
20

)−2

, (4.1.1)

with ln Λ the Coulomb logarithm. It is clear from this that PrM is strongly

affected by temperature and density. Cool astronomical bodies with high

densities have low PrM, which is the case for the solar convection zone, where

the values of PrM range from 10−7 to 10−4. However, reaching very low values

of the magnetic Prandtl number is numerically unfeasible since simulations

can only be performed with a finite numerical resolution, i.e., the smallest

scale (grid spacing) which the simulation can resolve, which is determined by

the computer resources available. The smallest scale in simulations is not even

near the smallest scale in real systems. This limitation has an impact on other

dimensionless parameters as well, such as the fluid Prandtl number and the

Reynolds numbers. It is therefore quite helpful to be able to work with as high

a resolution as possible in order to get more realistic outcomes. In the case of

this work, it has been possible to perform simulations with magnetic Prandtl

numbers between 0.1 to 10, which is a wide explored range if we consider the

state of art, like the simulations of spherical shells with 0.25 ≤ PrM ≤ 5 (Käpylä

et al., 2017). Regarding the grid resolution, simulations were performed with

2003, 2883 and 5763.

On the other hand, the rotation period of the star has also been varied,

considering Prot of 43, 61 and 90 days. In this regime, stars are considered

to be slow to intermediate rotators. Rotation periods of fully convective M

dwarfs have been reported in a wide range, with values from a few hours for

the rapid rotators, to rotation periods of 90 days, as in the case of Proxima

Centauri. Table 4.1.1 contains a summary of the simulations performed here,

which are divided into three sets. Set A is for simulations with Prot = 43 days,

set B for Prot = 61 days and set C is for Prot = 90 days. In addition to the

dimensionless parameters described before (the fluid and magnetic Reynolds

number given in 2.2.1) other ones are also given, such as the subgrid-scale

Prandtl number,

PrSGS =
ν

χSGS
, (4.1.2)
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where χSGS is the subgrid-scale entropy diffusion. The parameter that gives

the ratio of Coriolis forces to viscous forces is the Taylor number

Ta =
4Ω2

0R4

ν2 , (4.1.3)

where Ω0 = 2π/Prot. Additionally, the ratio of advection of temperature or

entropy by the flow to the diffusion of the same physical quantity is given by

the Péclet number. If the Péclet number is large, heat transfer is dominated by

advection; when it is small, diffusion dominates. The Péclet number is given

by

Pe =
urms

χSGSkR
, (4.1.4)

where urms is the volume averaged root-main-square velocity within a spherical

radius r < R, and kR = 2π/R is the scale of the largest convective eddies. The

rotational influence on the flow ins measured by the Coriolis number

Co =
2Ω0

urmskR
. (4.1.5)

4.2 Results

This section presents the results of this thesis, regarding large-scale magnetic

fields under the different scenarios explored here.

4.2.1 Large-scale magnetic fields at different PrM

Magnetic fields that are coherent over large spatial scales are known as

large-scale magnetic fields. In most of the presented simulations, large-scale

magnetic fields are similar to the large structures of the Sun. Prior to the

formation of large-scale magnetic fields, a seed magnetic field is amplified in

the kinematic regime where the field grows exponentially. The seed field in the

case of the simulations presented here is a random small-scale field of about

∼ 1 G. The kinematic stage lasts until the magnetic forces are comparable

to the turbulent forces, at which point the magnetic field growth enters a

saturated and non-linear stage. This last stage is of interest to the study of the

effects of magnetic fields in stars. Figure 4.2.1 shows the evolution of Brms for
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Sim urms[m/s] Brms[kG] PrM PrSGS ReM Re Co Ta Pe Grid
A1 10.1 12.0 0.1 0.04 54 548 10 4.6 · 1010 21.9 2003

A2 10.1 12.3 0.1 0.04 78 784 10 9 · 1010 31.8 2883

A3 10.1 11.8 0.2 0.08 54 271 10 1.1 · 1010 21.7 2003

A4 10.1 10.5 0.5 0.20 54 108 10 1.8 · 109 21.7 2003

A5 10.1 9.1 0.7 0.28 55 78 10 9.5 · 108 21.9 2003

A6 9.6 11.3 0.7 0.28 74 106 10 1.9 · 109 29.8 2003

A7 9.9 10.6 0.9 0.20 53 107 10 1.8 · 109 21.5 2003

A8* 14.0 2 · 10−4 0.2 0.28 21 108 7 9.5 · 108 30.3 2003

A9 10.0 9.5 0.5 0.28 39 77 10 9.5 · 108 21.8 2003

A10 10.5 11.0 1 0.20 104 104 10 1.8 · 109 20.9 2003

A11 9.4 10.7 1 0.28 72 72 11 9.5 · 108 20.3 2003

A12* 13.0 2 · 10−3 1 0.40 69 69 8 4.6 · 108 27.8 2003

A13 9.2 9.7 2 0.40 98 49 11 4.6 · 108 19.9 2003

A14 7.7 12.3 5 0.40 208 41 13 4.6 · 108 16.6 2003

A15 7.7 11.5 7 0.40 298 41 13 4.6 · 108 16.7 2003

A16 7.3 11.7 10 0.40 388 39 14 4.6 · 108 15.6 2003

B1 11.1 9.8 0.5 0.40 83 166 6 1.7 · 109 67.5 2003

B2 11.2 10.7 1 0.40 167 167 6 1.7 · 109 67.8 5763

B3 10.5 12.0 2 0.40 314 157 7 1.7 · 109 63.7 5763

B4 9.8 12.4 5 0.40 735 147 7 1.7 · 109 58.4 5763

B5 9.1 11.9 10 0.40 1367 136 8 1.7 · 109 55.2 5763

C1 11.9 12.3 1 0.20 256 256 4 1.8 · 109 55.2 2883

C2* 15.0 6 · 10−5 0.5 0.4 40 80 3 1.1 · 108 32.4 2003

C3 12.3 8.4 1 0.40 66 66 4 1.1 · 108 26.6 2003

C4 11.3 12.3 2 0.40 336 168 4 9 · 108 68.0 5763

C5 10.0 15.1 5 0.40 749 150 5 9 · 108 60.6 5763

C6 9.5 12.0 10 0.40 1423 142 5 9 · 108 57.5 5763

Table 4.1.1: Summary of the simulations. From left to right the columns
correspond to the simulation name, root-main-square velocity, root-main-
square magnetic field stregth, magnetic and sub-grid-scale Prandtl number,
magnetic and fluid Reynolds number, Coriolis number which is Co = Ro−1,
Taylor and Peclet numbers. The last column indicates the grid resolution that
was used. Asterisks indicate runs with no dynamo.
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different simulations.

Figure 4.2.1: Time evolution of volume averaged rms magnetic field
of simulations A5, A13 and A15. The kinematic stage is shorter for
increasing magnetic Prandtl number.

4.2.1.1 Toroidal magnetic field

Some of the simulations show cycles of the large-scale magnetic field with

periods ranging from 7 to 10 years. These cycles can be seen in Figures

4.2.2 and 4.2.3 that show the azimuthally averaged toroidal magnetic field,

Bϕ(R, θ, t), near the surface. The cycles were confirmed by applying the FFT

(Fast Fourier Transform) to the signal, which in this case is Bϕ(R, θ, t) near the

surface for both the northern and southern hemispheres at mid latitudes.

Set A consists of simulations with Prot = 43 days. This set can be mainly

divided into the low-PrM simulations, for values ≤ 2 and high-PrM, for values

> 2. For low-PrM, the simulations present cycles near the surface, which

increase their periods with increasing magnetic Prandtl number. Recalling that

PrM is defined as the ratio of ν to η, this behaviour of the large-scale dynamo

is sensitive to the changes of the diffusivities. As the magnetic diffusion

decreases, the magnetic diffusion timescale increases, and it is expected that

the dynamo period will increase as well. This has been reported before by

Käpylä et al. (2017). Table 4.2.1 is complementary, indicating cycle periods,

momentum and magnetic diffusivities, and maximum and minimum values of

the azimuthally averaged toroidal magnetic field (Bϕ).
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In the low-PrM regime, simulations A1-A13 show cycles and the azimuthally

averaged magnetic field propagates predominantly in the poleward direction,

as can be seen in Figures 4.2.2, 4.2.3 and in the first figure of 4.2.4. It is easy

to see from the last image that at PrM = 2, the simulation presents fewer

obvious cycles, which begin to disappear in the last 70 years of the simulation.

One of the simulations, A5 (bottom in Figure 4.2.2), shows longer cycles

predominantly at the northern hemisphere. In this magnetic Prandtl number

regime, simulations A8 and A12 do not present large-scale magnetic fields

because their magnetic Reynolds number is subcritical. The critical magnetic

Reynolds number is the value that ReM must surpass in order for the dynamo

to work. Based on the values of ReM given in Table 4.1.1, the critical number for

simulation A8 is estimated to be between values greater than 21, and around

54. In the case A12, the critical value is somewhat higher.

The simulations with the higher PrM in set A (A14 - A16) do no longer show

cycles and the dynamo solution is irregular, showing random magnetic field

sign reversals. Simulation A14 shows irregular reversals in both hemispheres

up to ∼ 130 years, then for more than 100 years it does not change its

polarity and shows reversals again after that. Simulation A15 also shows

irregular reversals on both hemispheres throughout the entire simulation.

Finally, simulation A16 presents irregular reversals, too, and its field is more

concentrated at the equator (see bottom panel of Figure 4.2.4). This is different

in the low-PrM simulations, where the structures spans nearly all latitudes,

from the equator to near the poles.
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Sim ν [m2/s] η [m2/s] PrM Cycles [yrs] Bmax
ϕ ; Bmin

ϕ [kG]
A1 5.6 · 105 5.6 · 106 0.1 8.4 13.6; -16.0
A2 3.9 · 106 3.9 · 107 0.1 7.3 17.6; -16.0
A3 1.1 · 106 5.6 · 106 0.2 7.7 15.8; -13.9
A4 2.8 · 106 5.6 · 106 0.5 8.5 12.7; -14.9
A5 3.9 · 106 5.6 · 106 0.7 8.6 14.1; -14.0
A6 2.7 · 106 3.9 · 106 0.7 8.7 13.9; -15.6
A7 5.0 · 106 5.6 · 106 0.9 8.2 14.3; -14.6
A8* 3.9 · 106 1.9 · 107 0.2 - -
A9 3.9 · 106 7.8 · 106 0.5 9 14.5; -13.3

A10 2.8 · 106 2.8 · 106 1 9.8 14.4; -14.9
A11 3.9 · 106 3.9 · 106 1 9 15.2; -14.3
A12* 5.6 · 106 5.6 · 106 1 - -
A13 5.6 · 106 2.8 · 106 2 11.3 13.8; -14.3
A14 5.6 · 106 1.1 · 106 5 - 10.7; -13.5
A15 5.6 · 106 7.8 · 105 7 - 11.9; -11.3
A16 5.6 · 106 5.6 · 105 10 - 10.4; -10.4
B1 2.0 · 106 4.0 · 106 0.5 7.3 16.3; -16.5
B2 2.0 · 106 2.0 · 106 1 - 16.2; -18.4
B3 2.0 · 106 1.0 · 106 2 - 14.8; -15.2
B4 2.0 · 106 4.0 · 105 5 - 11,2; -14.9
B5 2.0 · 106 2.0 · 105 10 - 10.1; -10.1
C1 1.4 · 106 1.4 · 106 1 - 16.6; -17.0
C2* 5.6 · 106 1.1 · 107 0.5 - -
C3 5.6 · 106 5.6 · 106 1 - 16.6; -16.9
C4 2.0 · 106 1.0 · 106 2 - 15.1; -14.9
C5 2.0 · 106 4 · 105 5 - 17.0; -17.1
C6 2.0 · 106 2.0 · 105 10 - 13.5; -7.9

Table 4.2.1: Complementary table. Columns from left to right indicate the
momentum diffusitivity, magnetic diffusivity, cycle periods if applicable, and
the maximum and minimum of Bϕ. Asterisks indicate runs with no dynamo.
Part of this table is in Ortiz-Rodríguez et al. Submitted
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Figure 4.2.2: Time evolution of the azimuthally averaged toroidal
magnetic field Bϕ near the surface of the star for simulations A1-A5.
The colorbar is cut at ±8 kG. Figure for simulation A3 is presented as
simulation A2 in Ortiz-Rodríguez et al. Submitted
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Figure 4.2.3: Time evolution of the azimuthally averaged toroidal
magnetic field Bϕ near the surface of the star for simulations A6-A11.
The colorbar is cut at ±8 kG.
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Figure 4.2.4: Time evolution of the azimuthally averaged toroidal
magnetic field Bϕ near the surface of the star for simulations A13-A16.
The colorbar is cut at ±8 kG. Figure for simulation A16 is presented as
simulation A8 in Ortiz-Rodríguez et al. Submitted.

4.2.1.2 Large-scale magnetic fields at different Prot

Even in the low-PrM regime, cycles do not exist in simulations with longer

rotation periods. This is shown in sets B and C. Figures of the magnetic

field component Bϕ of set B are presented in Figure 4.2.5. Simulation B1
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shows cyclic reversals at the start of the simulation, but random reversals

begins to dominate after 400 years. A dipole field is found in simulation

B2; in this case it seems to dominate since the beginning of the simulation,

but still showing random reversals. In the case of B3, the simulation with

PrM = 2, the dipole is visible, but still there are some random reversals. For

instance, in year 70 of the simulation there is a reversal in both hemispheres

and four reversals more between 125 to 175 years. Apart from that, the polarity

of the magnetic field is predominantly negative (positive) at the northern

(southern) hemisphere. Simulation B4 with PrM = 5 shows random reversals

that last significantly longer than in the previous simulations, with different

polarities in both hemispheres, besides its large structures are concentrated

from the equator to nearly ±70 degrees. In the case of B5 with PrM = 10, Bϕ

is predominantly irregular or quasi-stationary. Simulations with Prot = 90

days do not present random reversals in the low-PrM. From Figure 4.2.6 it can

be seen that simulations C1, C3 and C4 and C5 show a dipolar Bϕ, while C6

shows irregular sign reversals with less clear large-scale structures as in B5.

Besides, C2 is subcritical, so it does not show large-scale magnetic fields.

For all of the above-mentioned scenarios, ReM increases with PrM, as expected

since they are related, but also the former increases as the rotation rate

decreases (see Table 4.1.1). As described before, the dynamo solution is

affected not only by PrM, but also by the rotation period, even when the

explored range is small, considering mid and low rotation periods. The

importance of the rotation period for magnetic fields in stars is well known,

as it was also demonstrated by Käpylä (2021), finding mainly three different

dynamo-generated large-scale magnetic fields for slowly, intermediate and

rapid rotation, as described in Section 1.2. The transition of axisymmetry at

slow rotation to non-axisymmetry at rapid rotation has also been reported

by Viviani et al. (2018) for simulations of spherical wedges. In addition to

the numerical studies, the relation between stellar rotation rate and magnetic

activity (chromospheric emission) was first suggested by Kraft (1967), and

demonstrated with observations, e.g., see the work by Noyes et al. (1984);

Pizzolato et al. (2003); Astudillo-Defru et al. (2017).



4.2. Results 43

Figure 4.2.5: Time evolution of the azimuthally averaged toroidal
magnetic field Bϕ near the surface of the star for simulations B1-B5.
The colorbar is cut at ±8 kG.
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Figure 4.2.6: Time evolution of the azimuthally averaged toroidal
magnetic field Bϕ near the surface of the star for simulations C1-C6.
The colorbar is cut at ±8 kG.
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Figure 4.2.7: Time evolution of the azimuthally averaged toroidal magnetic
field for simulations A1 (left) and A16 (right) at r = R (top), r = 0.7R (middle)
and r = 0.5R (bottom).

4.2.1.3 The magnetic field at different stellar radii (depth)

Large scale structures of the magnetic field change with depth. Besides of

measuring the field near the surface, it was also analysed at r = 0.5R and

r = 0.7R. In the case of simulations which show cycles, these cycles are visible

at different depth, though the polarity shifts from the surface to the interior

of the star. That is, the polarity changes from the surface to 70% of the stellar

radius, while subsequently it remains similar in the interior of the star. For

the cases with the highest magnetic Prandtl number (PrM > 2), the polarity of

the azimuthally averaged toroidal magnetic field also changes, and it shows a

quasi-stationary dynamo solution in the deeper layers. Figure 4.2.7 shows two

representative cases at r = 0.5R, r = 0.7R and near the durface, simulation A1

with PrM = 0.1 and A16 with PrM = 10, respectively.
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4.2.1.4 Radial magnetic field

The radial magnetic field at the surface is presented for some of the simulations.

Figure 4.2.8 shows Mollweide projections of the radial magnetic field for

simulations of set A (A4, A14 and A16). Run A4 with PrM = 0.5 and ReM = 54

presents defined large-scale structures of the magnetic field. As the magnetic

Prandtl number and hence the magnetic Reynolds number grow, the large

structures become smaller, as shown in the middle panel of Figure 4.2.8 for

simulation A14. This simulation has PrM = 5 and ReM = 208, and besides

having thinner structures, they also become more intense. The bottom panel

of Figure 4.2.8 shows the radial magnetic field for simulation A16. Here, the

structures become even smaller, spanning longitudes of around 15◦. Figures

4.2.9 and 4.2.10 are the projections of the radial magnetic field for simulations

of sets B and C, respectively. In the three sets of simulations the behavior is the

same, with the structures becoming smaller with increasing PrM. Additionally,

in the three sets, the structures concentrate more and more at the equator and

less at the poles as the Prandtl magnetic number increases.

4.2.1.5 The Proxima Centauri case

The simulations of set C are inspired by Proxima Centauri, a fully convective

M 5.5 star with Prot ≈ 90 days. With the star-in-a-box model we were able to

adopt that rotation period; nevertheless, in the explored parameter space of the

magnetic and fluid Prandtl number, the large-scale magnetic fields do not show

an activity cycle as was found with observations by Suárez Mascareño et al.

(2016), Wargelin et al. (2017) and Klein et al. (2021). These studies reported

an activity cycle of 7 years. However, the simulations of set A present similar

activity cycles as shown in Table 4.2.1. We note that Yadav et al. (2016) found

an activity cycle of 9 years for a simulation of a fully convective star with the

rotation period of Proxima Centauri using a sphericall shell that excludes the

stellar center. The parameter range used in that work does not fully overlap

with the one of this work, for instance, they have PrM = 0.1, the density

stratification is higher in that work, and we used a model for the entire star.

In view of the results of Yadav et al. (2016), it seems clear that the dynamo is

sensitive to one or more of the different parameters.
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Figure 4.2.8: Mollweide projection of the radial magnetic field at the
surface for simulations A4, A14 and A16, with Prot = 43 days. The
colorbar is cut at ±12 kG.
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Figure 4.2.9: Mollweide projection of the radial magnetic field at the
surface for simulations B1, B4 and B5, with Prot = 61 days. The colorbar
is cut at ±12 kG.
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Figure 4.2.10: Mollweide projection of the radial magnetic field at the
surface for simulations C3, C5 and C6, with Prot = 90. The colorbar is
cut at ±12 kG.
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4.2.2 Large scale flows

As mentioned in chapter 3, differential rotation is a crucial ingredient for

large-scale magnetic fields; it is solar-like (the angular velocity is faster at the

equator than at the poles) for all the simulations presented in this work. The

averaged rotation rate in cylindrical coordinates can be written as

Ω(ϖ, z) = Ω0 + Uϕ(ϖ, z)/ϖ. (4.2.1)

The averaged meridional flow is given as

Umer(ϖ, z) = (Uϖ, 0, Uz). (4.2.2)

The angular velocity varies with depth as well as with latitude. This can be

quantified with the amplitude of the radial ∆(r)
Ω and latitudinal differential

rotation ∆(θ)
Ω , which are given as

∆(r)
Ω =

Ωtop,eq − Ωbot,eq

Ωtop,eq
, (4.2.3)

∆(θ)
Ω =

Ωtop,eq − Ωtop,θ

Ωtop,eq
, (4.2.4)

where the subscripts indicate depth and latitude, respectively, "top"

corresponding to 0.9 R, "bot" corresponding to 0.1 R, eq stands for the equator

(θ = 0◦) and θ stands for an average of Ω for latitudes +θ and −θ. Note that

∆(r)
Ω and ∆(θ)

Ω are in spherical coordinates.

Table 4.2.2 lists the values of ∆(r)
Ω and ∆(θ)

Ω for the three sets of simulations.

The solar-like differential rotation is indicated by the positive values of the

amplitudes of the differential rotation. The amplitude of the radial differential

rotation decreases with increasing magnetic Prandtl number in set A (see

second column of Table 4.2.2.) This can also be seen from Figure 4.2.11 that

shows the rotation profiles for simulations A1, A13, A14 and A16 with magnetic

Prandtl numbers of 0.1, 2, 5 and 10, respectively. Simulations A1, A13 and A14

have positive amplitudes of both the radial and latitudinal differential rotation,

which is evident in the rotation profiles of Figure 4.2.11. Simulation A16

exhibits positive values for the amplitude of the latitudinal differential rotation
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and negative values for the amplitude of the radial differential rotation, as

illustrated in the bottom left panel of Figure 4.2.11 where the angular velocity

does not change significantly with depth.

Sim ∆(r)
Ω ∆(θ)

Ω (60◦) ∆(θ)
Ω (75◦) Urms

mer[m/s]
A1 0.13 0.038 0.044 0.54
A2 0.13 0.035 0.044 0.35
A3 0.13 0.039 0.046 0.56
A4 0.15 0.044 0.054 0.58
A5 0.17 0.052 0.063 0.61
A6 0.12 0.037 0.049 0.34
A7 0.14 0.041 0.052 0.58
A8* 0.28 0.100 0.100 0.75
A9 0.18 0.060 0.069 0.60

A10 0.14 0.036 0.048 0.57
A11 0.12 0.036 0.046 0.55
A12* 0.23 0.092 0.091 0.70
A13 0.11 0.037 0.046 0.34
A14 0.020 0.018 0.019 0.38
A15 0.015 0.023 0.025 0.39
A16 -0.006 0.019 0.017 0.33
B1 0.067 -0.006 -0.020 0.40
B2 0.062 -0.009 -0.023 0.70
B3 -0.029 0.041 0.043 0.52
B4 0.100 0.062 0.076 0.47
B5 -0.029 0.041 0.043 0.32
C1 0.12 0.10 0.12 0.52
C2 0.087 0.067 0.060 0.20
C3 0.008 -0.043 -0.069 0.42
C4 0.052 0.095 0.101 0.50
C5 -0.013 0.086 0.078 0.46
C6 -0.058 0.064 0.063 0.36

Table 4.2.2: Amplitude of the temporally and azimuthally averaged angular
velocity Ω(r, θ). From left to right the columns indicate the name of the
simulation, the amplitude of the radial differential rotation, the amplitude of
the latitudinal differential rotation at 60◦ and 75◦, and the rms value of the
meridional flow speed.

The simulations presented here have Coriolis numbers ranging from 3 to 14.

Therefore it is consistent to obtain solar-like differential rotation as in the

first simulations presented with this version of the setup by Käpylä (2021),
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where the transition from antisolar to solar-like differential rotation takes place

for Coriolis numbers between 0.7 and 2. This is also in agreement with the

simulations of spherical shell convection by Viviani et al. (2018), where the

transition takes place around Co = 3. Simulation C2 has the lowest Coriolis

number of the three sets; it has no dynamo, though it might be used to

compare with simulations that have. In this regard, Figure 4.2.12 shows the

rotation profiles for simulations A8 and C2. They show that a faster angular

velocity spans broader latitudinal range and smaller radial one compared to

the simulations with dynamo. This shows the effect of magnetic fields on the

differential rotation.

The streamlines in Figures 4.2.11 and 4.2.12 indicate the mass flux due

to meridional circulation, a mechanism that is partly responsible for re-

distributing the angular momentum within the convection zone. In the low-

PrM(PrM < 2) regime in our simulations, the streamlines are composed of

multiple small cell, while in the highest PrM the pattern is composed of 2 to

3 large cells, which are symmetric with respect to the equator (see bottom

panels of Figure 4.2.11). For simulations of sets B and C the flow cells are

similar to those of set A. The amplitude of the meridional flow velocity (Umax
mer )

is indicated in the lower right corner of each panel in that Figure, as well as for

Figure 4.2.12. Umax
mer is 2.7, 3.7, 2.2 and 1.5 m/s, for simulations A1, A13, A14

and A16, respectively. The values of Umax
mer are very large, corresponding to 20

(A16) to 40% (A13) of the overall rms velocity. The rms value of the meridional

velocity is given in the fifth column of Table 4.2.2. In the case of simulations

A8, A12 and C2, the meridional circulation also has multiple cell patterns.
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Figure 4.2.11: Temporally and azimuthally averaged angular velocity Ω(ϖ, z)
for simulations A1 (top left), A13 (top right), A14 (bottom left) and A16 (bottom
right). The streamlines show the meridional flow and its amplitude is indicated
in the lower right corner. The surface is indicated by the gray line while the
equator is indicated by the gray dotted line.
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Figure 4.2.12: Temporally and azimuthally averaged angular velocity Ω(ϖ, z)
for simulations A8 and C2, which do not have dynamo. The streamlines show
the meridional flow and its amplitude it is indicated in the lower right corner.
The surface is indicated by the gray line while the equator is indicated by the
gray dotted line.

For the three sets of simulations, the kinetic helicity, H = ω ·U , is negative

(positive) in the northern (southern) hemisphere, as shown in Figure 4.2.13 for

simulations A13, B3 and C4 with PrM = 2. This, with ∂Ω
∂r > 0, is associated

with a poleward propagating dynamo wave (Parker, 1955; Yoshimura, 1975),

which is most noticeable for the simulations of set A.
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Figure 4.2.13: Azimuthally averaged normalised kinetic helicity H̃ =
H(ϖ, z)/urmsωrms for simulations A13 (top left) with Prot = 43 days,
B3 (top right) with Prot = 61 days, and C4 (bottom) with Prot = 90
days, one for each rotation period with PrM = 2.
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4.2.3 Energies as function of PrM

The energies of the simulations are summarized in table 4.2.3. The magnetic

energy Emag in the three sets of simulations are of the order of 105 [J m−3].

One might anticipate that Emag rises with increasing ReM (PrM), as observed in

the work by Käpylä et al. (2017) using simulations of spherical shells. However,

the magnetic energy in the saturated regime should also be determined by

the inertial and Lorentz force balance. In that sense, there is no apparent

pattern in the simulations provided here in terms of the variation of Emag. For

the kinetic energy Ekin it is more obvious, as it decreases as ReM increases.

This can be explained because at large PrM the kinetic energy is turned into

magnetic energy more efficiently. Then, the ratio Emag/Ekin grows as the

magnetic Prandtl number increases. The energy density of the differential

rotation, EDR
kin , also decreases with increasing PrM. Furthermore, as the rotation

period increases, EDR
kin decreases sharply for high-PrM (see the third column of

table 4.2.3).

In the simulations A8, A12 and C2 where there is no dynamo the magnetic

fields are negligibly small, while their kinetic energy is of the same order of

magnitude as some of the simulations where there is dynamo. This is due to

the magnetic field not being strong enough to back react and damp the flow

through the Lorentz force. This is analogous to what happens in the kinematic

regime of simulations that have dynamos. The top panels of Figures 4.2.14 and

4.2.15 show the evolution of the magnetic and kinetic energy densities in both

the kinematic and saturated regime for simulation A4. The kinematic regime

in which the magnetic energy grows exponentially lasted around 80 years

in this simulation. From Figure 4.2.14 it can be seen that the kinetic energy

density is about 6 orders of magnitude larger than the magnetic energy at the

beginning of the simulation, a gap that decreases with time. In the saturated

regime, the kinetic and magnetic energy densities become comparable (see top

panel of Figure 4.2.15), with the kinetic energy density being approximately

1.5 times the magnetic energy density.

In addition to the changes of the large-scale magnetic field with changing PrM,

the kinematic regime also experiences changes, i.e., the growth of the magnetic

field is faster with increasing magnetic Prandtl number, implying that the
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kinematic regime is shorter. The bottom panels of Figures 4.2.14 and 4.2.15

show the kinematic and saturated regime of simulation A16, respectively. The

kinematic regime in this simulation lasts about 7 years. In the saturated regime,

the kinetic energy density is slightly reduced, and the magnetic energy density

is higher by a factor of ∼ 1.8. This transition where the magnetic energy

density is higher than the kinetic energy density in the saturated regime occurs

at PrM ∼ 2 for sets A and B, and at PrM ∼ 5 for set C. Browning (2008)

reported a similar behaviour of the magnetic and kinetic energy densities in

simulation of fully convective stars with solar rotation rate. Simulation Cm of

that work with PrM = 8 presents a Emag of about 1.2 times Ekin, while in Cm2

with PrM = 5, Emag does not overcome Ekin. In all simulations of the present

work, the energy densities show fluctuations, but no systematic variation is

observed.

The azimuthally averaged toroidal and poloidal magnetic fields are also

analysed. The energy density of the toroidal magnetic field in general decreases

with increasing magnetic Prandtl number, being up to 30% of the total magnetic

energy density, Emag. On the other hand, the poloidal field is less than 10%

of the total magnetic energy density for all simulations. Just in one case,

simulation B1, its Epol
mag is twice the corresponding Etor

mag.

The energy densities for differential rotation EDR
kin and meridional circulation

EMC
kin are also calculated for all simulations. It is clear from Table 4.2.3 that the

ratio of EDR
kin to Ekin decreases with increasing magnetic Prandtl number. In

simulations A8, A12 and C2, where there is no dynamo, the magnetic field is

weak, EDR
kin is almost 0.6 times Ekin. Furthermore, EDR

kin is approximately 5 times

greater in the simulations with no dynamo than in cases with dynamos. Then,

in the parameter range investigated in this study, magnetic fields contribute to

the quenching of the differential rotation. This is in agreement with the work

of Browning (2008).

The energy density of the meridional circulation varies little amongst the three

sets, being roughly 1-3% of its respective Ekin. Simulation C2 is an outlier, with

EMC
kin being 12% of its Ekin, and up to ∼ 30 times greater than in the other cases.
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Sim Emag Etor
mag/Emag Epol

mag/Emag Ekin EDR
kin/Ekin EMC

kin /Ekin
A1 7.3 0.23 0.07 8.47 0.23 0.01
A2 7.6 0.20 0.06 8.49 0.27 0.02
A3 7.06 0.24 0.06 8.24 0.24 0.06
A4 5.59 0.20 0.06 8.66 0.31 0.02
A5 4.2 0.24 0.06 10.23 0.34 0.02
A6 6.46 0.21 0.05 7.62 0.31 0.02
A7 5.72 0.25 0.06 8.36 0.31 0.02
A8* - - - 20.16 0.55 0.01
A9 4.58 0.28 0.07 11.62 0.32 0.02
A10 6.26 0.16 0.04 8.08 0.32 0.02
A11 5.78 0.20 0.05 7.35 0.30 0.02
A12* - - - 16.27 0.54 0.02
A13 6.5 0.15 0.04 4.5 0.32 0.02
A14 7.21 0.07 0.03 4.28 0.16 0.02
A15 6.65 0.14 0.02 4.54 0.14 0.02
A16 6.86 0.03 0.02 3.93 0.10 0.01
B1 4.94 0.02 0.04 10.81 0.33 0.02
B2 5.82 0.16 0.03 10.79 0.38 0.02
B3 7.22 0.11 0.03 8.95 0.30 0.02
B4 8.45 0.06 0.02 6.95 0.22 0.02
B5 7.24 0.03 0.02 6.36 0.014 0.01
C1 7.67 0.17 0.03 11.43 0.31 0.03
C2* - - - 19.87 0.14 0.12
C3 3.64 0.34 0.03 12.68 0.44 0.02
C4 7.73 0.12 0.03 9.54 0.25 0.03
C5 11.9 0.10 0.03 6.88 0.19 0.03
C6 7.38 0.04 0.02 6.90 0.16 0.02

Table 4.2.3: The energies are given in units of 105 J m−3. From left to right
the columns indicate: the magnetic energy density is Emag = ⟨B2/2µ0⟩, the
brackets indicate volume average within the radius of the star. The kinetic
energy density is Ekin = 1

2⟨ρU 2⟩. The energy density for the azimuthally

averaged toroidal and poloidal field are given by Etor
mag = B2

ϕ/2µ0, and

Epol
mag = (⟨B2

ϖ + B2
z⟩)/2µ0, respectively. The energy density for the differential

rotation and meridional circulation are given by are given by EDR
kin = 1

2⟨ρU2
ϕ⟩,

and EMC
kin = (⟨U2

ϖ + U2
z⟩)/2µ0, respectively. Asterisks indicate runs with no

dynamo.
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Figure 4.2.14: Time evolution of the kinetic and magnetic energy
densities in the kinematic regime for simulations A4 (top) and A16
(bottom).



60 4.2. Results

Figure 4.2.15: Time evolution of the kinetic and magnetic energy
densities in the saturated regime for simulations A4 (top) and A16
(bottom).
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4.2.4 Spherical harmonic decomposition

As mentioned in Section 2.3, dynamos are found to operate at large scales

and at small scales as well. Small-scale dynamos produce magnetic fields that

are of the order of the typical scale of the energy-containing eddies or even

smaller. Small-scale magnetic fields are found in many astrophysical systems.

In the case of the Sun, small-scale magnetic fields are thought to be produced

by the small-scale dynamo (Solanki, 1993; Martínez Pillet, 2013; Borrero et al.,

2017). In the case of M dwarfs, small-scale magnetic fields have been studied

observationally, e.g., by Kochukhov and Lavail (2017), where they found that

most most of the magnetic energy is concentrated on small scales, and also

numerically (Yadav et al., 2015). Some works with numerical simulations have

not been able to reproduce both large scale and small scale magnetic fields

simultaneously, because they were not able to resolve small-scale motions

(Browning, 2008).

In order to study whether we may have small structures of the magnetic field

in the simulations presented here, a good instrument to use is the Spherical

Harmonic decomposition, since it can represent magnetic fields in term of

different modes. Spherical harmonics originate from solving Laplace’s equation

in spherical coordinates. The spherical harmonic decomposition used here was

for the radial magnetic field, Br.

We consider a function f = f (θ, ϕ) that can be written as

f (θ, ϕ) =
lmax

∑
l=0

l

∑
m=−l

f̃ m
l (θ, ϕ)Ym

l (θ, ϕ), (4.2.5)

where

f̃ m
l =

∫ 2π

0

∫ π

0
f (θ, ϕ)Ym∗

l sin θdθdϕ. (4.2.6)

For the radial magnetic field Br(θ, ϕ), we consider the condition (see Krause

and Rädler 1980)

B−m
r,l = (−1)mBm∗

r,l . (4.2.7)

Then, the spherical harmonics is given as

Br(θ, ϕ) =
lmax

∑
l=1

B0
l,rY

0
l + 2Re

(
lmax

∑
l=1

l

∑
m=1

Bm
l,rY

r
l

)
. (4.2.8)
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Because of the solenoidality of the magnetic field there is no contribution to

the magnetic field for l = 0, therefore this term has been dropped.

With this method we are able to measure the energy contained in these modes.

Low-order modes represent large-scale structures of the magnetic field, and the

higher modes correspond to the smaller structures. The total radial magnetic

energy density near the surface and the radial magnetic energy density for

specific modes m = 0, 1, 2, as well as the energy density contained in the higher

modes, which are considered small-scale fields, are given in Table 4.2.4. The

energy contained in the non-axisymmetric modes m = 3, 4, 5, ..., 10 are not

listed there. The mode m = 0 corresponds to the axisymmetric part of the

radial magnetic field, the modes m = 1 and m = 2 correspond to the first and

the second non-axisymmetric modes, respectively. Additionally, l, m ≥ 10 were

considered as the small-scale fields. This was done for selected simulations

of each set. For all the cases, the m = 0 mode is dominant, while the non-

axisymmetric modes m = 1 and m = 2 are subdominant. This was reported

before by Viviani et al. (2018), where their slowly rotating simulations were

the ones with non-axisymmetric magnetic field being subdominant. As shown

in the last column of Table 4.2.4, the magnetic energy density contained in

l, m > 10, corresponding to the non-axisymmetric small-scale magnetic field,

is 2 to 3 orders of magnitudes lower than the dominant mode m = 0.

The top left panel of Figure 4.2.16 presents a reconstruction of the radial

magnetic field near the surface of simulation B4 using the first 10 (0 < l ≤ 10)

spherical harmonics with the aim to show that large-scale structures are

concentrated at low spherical harmonics. The top right panel shows a

reconstruction of Br considering 0 < l ≤ 100, and the bottom panel shows

the radial magnetic field from the original data (same as in Figure 4.2.9).

This shows that the spherical harmonic decomposition works well. The

reconstruction of the magnetic field via spherical harmonic decomposition has

been done for the three sets of simulations.
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Figure 4.2.16: Radial magnetic field near the surface of the star
reconstructed via spherical harmonic decomposition and real data.
The top left figure is the reconstruction of the radial magnetic field
using 0 < l ≤ 10, the top right panel is the reconstruction of the radial
magnetic field using 0 < l ≤ 100, and the bottom panel shows the
radial magnetic field using the real data.

Sim Etot
mag Em=0

mag Em=1
mag Em=2

mag El,m>10
mag

A4 5.0(-1) 5.2(-2) 4.7(-4) 3.3(-4) 1.2(-3)
A14 1.41 2.7(-1) 5.4(-4) 1.1(-3) 2.7(-3)
A16 5.1(-1) 2.2(-2) 2.7(-4) 2.6(-4) 2.5(-3)
B1 2.3(-1) 3.0(-2) 1.9(-4) 1.1(-4) 5.9(-4)
B4 2.19 1.4(-1) 1.6(-3) 1.0(-3) 8.8(-3)
B5 4.6(-1) 2.3(-2) 2.6(-4) 2.1(-4) 2.2(-3)
C3 3.1(-1) 5.0(-2) 1.7(-4) 2.9(-4) 5.5(-4)
C5 2.65 1.2(-1) 3.0(-3) 2.2(-3) 8.5(-3)
C6 9.2(-1) 2.5(-2) 4.6(-4) 1.1(-3) 4.9(-3)

Table 4.2.4: From left to right the columns indicate the total magnetic
energy density Etot

mag, the magnetic energy density of the modes m =
0, 1, 2, and the magnetic energy density considering l, m > 10.
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Chapter 5

Possible impact of large scale

magnetic field on binary systems

This chapter presents an exploration of the feasibility of the Applegate

mechanism as a possible origin of the eclipsing time variations in Post-

Common Envelope Binaries (PCEBs).

5.1 Eclipsing Time Variations

As described on the introduction, PCEBs often consist of a magnetically active

M dwarf and a White Dwarf. This type of binary system often presents

eclipsing times variations (ETVs) in the Observed minus Calculated diagram

(O - C). An O - C diagram compares the actual timing of an eclipse with the

moment we expect the event to occur in case of a constant period.

PCEBs are the result of the common envelope phase of a binary system

(Paczynski et al., 1976). The common envelope phase starts with two main-

sequence stars, stars 1 and 2 in Figure 5.1.1. One of them expands into its

red-giant phase filling its Roche lobe and encompasses the binary companion.

The expansion results in a common envelope around the two stars, and star

2 starts spiralling into star 1. Eventually, the envelope disappears, leaving a

close system consisting of the core of star 1 in the orbit of star 2.

90% of the PCEBs present eclipsing time variations (Zorotovic and Schreiber,

2013). The variation of the binary period may be related to the presence
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of a third body, e.g., a planet, causing changes in the light travel time, e.g.,

Beuermann et al. (2013). There are two scenarios in which those planets might

have formed. The first-generation scenario explains how the planet formed

with the binary system and survived the Common envelope phase, although

this is unlikely since protoplanetary disk lifetimes around main-sequence

binaries are often too brief to generate big planets in most cases (Kraus et al.,

2011). Furthermore, the planets must have survived the common-envelope

evolution. The second-generation scenario is that the planet forms from the

Common envelope material that is expelled from the system (Schleicher and

Dreizler, 2014). Alternatively, the ETVs may be produced by the changes of

the gravitational quadrupole moment of the magnetically active star, which

in turn is produced by an underlying magnetic field within it. This was first

proposed by Applegate (1992), and it is analyzed here.

Figure 5.1.1: Common envelope phase illustration. This Figure
was taken from Bulik (2007).

5.2 The Applegate mechanism

The Applegate mechanism proposed by Applegate (1992) attributes the

eclipsing time variations to the magnetic activity of the active star, by coupling

the magnetic activity to the variations of the gravitational quadrupole moment
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of the star. In this model, the binary system is composed of the magnetically

active star and a companion star, which is treated as a point mass. The

gravitational potential outside the active star is given by

ϕ(x) = −GM
r

− 3
2

GQik
xixk
r5 , (5.2.1)

where xi and xj are Cartesian coordiantes measured from the center of mass

of the star, Qik is the quadrupole tensor defined by

Qik = Iik −
1
3

δikTrI, (5.2.2)

where TrI is the trace of the inertia tensor, which is defined by

Iik =
∫

xixkdm =
∫

ρ(x)xixkd3x. (5.2.3)

Assuming that the system has synchronized spin and orbit, the orbit is

circularized, and the rotational and orbital angular momenta are aligned.

Taking the ẑ-axis to lie in the direction of the angular momentum, the x̂-axis

pointing at the companion, and the coordinate system rotating about the ẑ-axis,

the total quadrupole moment in this coordinate system is only affected by the

Qxx term. Then, Equation 5.2.1 gives

ϕ(x) = −GM
r

− 3
2

GQxx

r3 . (5.2.4)

Further, according to Applegate (1992) the variations of the quadrupole

moment and the variations of the period of the binary system are related

via
∆P
P

= −9
(

R
a

)2 ∆Qxx

MR2 , (5.2.5)

where R is the radius of the active star and a is the separation between the

stars.

The angular momentum in the star’s outer layers determines the quadrupole

moment to a substantial degree. The outer layers of the star will spin up and

become more oblate if angular momentum is transferred to them. According to

Applegate (1992), a torque provided by a subsurface magnetic field is needed

for angular momentum transfer to take place. The required strength of the
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magnetic field is given as

B2 ∼ GM2

R4

( a
R

)2 ∆P
Pmod

, (5.2.6)

where Pmod is the orbital period modulation timescale. The amplitude of

orbital period modulation ∆P/P, and the amplitude of the oscillation in the O

- C diagram is given by
∆P
P

= 2π
O − C
Pmod

. (5.2.7)

5.2.1 Quadrupole moment

In order to obtain Qxx in the simulations presented here, it is necessary to take

into account the enhanced luminosity described in 3.3.1. Then, the ratio of

luminosities Lratio is given by

Lratio =
L

LM5
, (5.2.8)

where LM5 is the dimensionless luminosity for an M5 star (see below) and L
is the dimensionless luminosity in the simulations (Dobler et al., 2006; Käpylä,

2021) which is

L =
Lsim√

G3M5/R5
= 5.5 · 10−5. (5.2.9)

The dimensionless luminosity for an M5 star is calculated as follows

LM5 =
LM5√

G3M5
M5/R5

M5

, (5.2.10)

where G is the gravitational constant, LM5, MM5 and RM5 are the luminosity,

mass and radius for the star. The parameters were obtained with the MESA

code (see 3.3.1). Then, Lratio = 2.1 · 109. One could also use the flux ratio Fratio

and obtain the same number as using Lratio, since the radius does not change.

The fluctuation of the pressure is given as

∆p =

(
∂p
∂ρ

)
s

∆ρ ≡ c2
s ∆ρ, (5.2.11)
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where cs is the sound speed and the subscript s indicates constant entropy

variations. On the other hand, the pressure scales as

∆P ∼ ρu2. (5.2.12)

Equating 5.2.11 and 5.2.12 we get

∆ρ

ρ
∼ u2

c2
s
= Ma2, (5.2.13)

where Ma is the Mach number, which scales as (see Käpylä et al. 2020;

Navarrete et al. 2020)

Ma ∼ L1/3
ratio, (5.2.14)

and thereby,

∆ρ ∼ L2/3
ratio. (5.2.15)

Then, the scaling for Qxx needs a factor of Lratio
−2/3 = (2.1 · 109)−2/3, which

in kg m2 is

Qxx = 2.2 · 1040Qsim
xx , (5.2.16)

where the subscript "sim" denotes the quadrupole moment obtained from

simulations.

5.2.1.1 Evolution of Qxx

The evolution of Qxx together with Emag is presented for some of the

simulations. Figure 5.2.4 shows the time evolution of Qxx for simulations

A4, A14 and A16, with magnetic Prandtl numbers of 0.5, 5 and 10, respectively.

In simulation A4, Qxx evolves in a quasi-periodic manner, it presents three

minima, the first at t = 125 years, the second at t = 175 years and the third

at t = 230 years. Qxx in A14 also shows peaks and troughs, but it has more

fluctuations. In A16, the quadrupole moment has one important minimum

at t = 110 years, then it increases until t = 170 years and increases again

presenting various maxima and minima. In the three sets, at PrM < 5 Qxx

evolves correlated with Emag, while at higher PrM (5 and 10), Qxx appears less

correlated with Emag, and it seems anti-correlated at PrM = 10. Figures 5.2.5

and 5.2.6 show the evolution of both for simulations of set B (B1, B4 and B5)

and set C (C3, C5 and C6), respectively. In this regime, they evolve in a similar
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manner as in set A. From the figures it is possible to see (by eye) a correlation

at low-PrM and an anti-correlation at high-PrM.

To determine if there is a correlation or anti-correlation, the Pearson (linear)

correlation was utilized, with the coefficient ranging from [-1,1], with 1 (-1)

representing perfect correlation (anti-correlation). The correlation coefficient is

calculated as follows:

x|y =
∑(x − mx)(y − my)√

(∑(x − mx)2 ∑(y − my)2)
, (5.2.17)

where mx and my are the sample mean and x|y is the coefficient.

Table 5.2.1 provides the amplitude of Qxx for the simulations presented here,

and the correlation coefficients between the quadrupole moment and the total

magnetic energy. From the table it is clear that a correlation (anti-correlation)

exists for simulations with PrM ≤ 2 (PrM ≥ 5). Besides that, the amplitude

of the variation of Qxx (see Table 5.2.1) decreases with increasing PrM, and

it decreases further with decreasing rotation rate, e.g. simulations A10, B2

and C1 have PrM = 1 with ∆Qxx = 3.7 · 1037, 2.6 · 1037 and 2.0 · 1037 [kg m2],

respectively. Figure 5.2.1 provides a scatter plot for better visualization.

Figures 5.2.2 and 5.2.3 show how ∆Qxx is related to the toroidal and poloidal

magnetic energy densities, respectively. The bottom panel of that figure shows

that ∆Qxx has larger values when the poloidal magnetic energy density is

larger. When comparing with the toroidal magnetic energy, there is a trend

but it is less clear.
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Figure 5.2.1: Scatter plot of ∆Qxx as a function of the magnetic Prandtl
number.

Figure 5.2.2: Scatter plot of ∆Qxx as a function of the toroidal magnetic
energy density.
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Figure 5.2.3: Scatter plot of ∆Qxx as a function of the poloidal magnetic
energy density.
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Figure 5.2.4: Time evolution of Qxx together with Emag for simulations
A4, A14 and A16.
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Figure 5.2.5: Time evolution of Qxx together with Emag for simulations
B1, B4 and B5.
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Figure 5.2.6: Time evolution of Qxx together with Emag for simulations
C3, C5 and C6.
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Sim ∆Qxx Qxx|Etotal
mag

A1 3.9(37) 0.89
A2 3.6(37) 0.45
A3 3.8(37) -0.01
A4 3.4(37) 0.49
A5 3.4(37) 0.48
A6 3.2(37) 0.43
A7 3.6(37) 0.32
A9 3.2(37) 0.43

A10 3.7(37) 0.33
A11 3.2(37) 0.33
A13 2.9(37) 0.44
A14 2.5(37) -0.57
A15 1.5(37) -0.02
A16 1.2(37) -0.46
B1 2.5(37) 0.45
B2 2.6(37) 0.11
B3 2.2(37) 0.56
B4 2.2(37) -0.57
B5 1.4(37) -0.47
C1 2.0(37) 0.27
C3 1.9(37) 0.33
C4 1.5(37) 0.44
C5 1.6(37) -0.79
C6 1.9(37) -0.80

Table 5.2.1: The second column gives the amplitude of the variations of Qxx
and the third column provides the correlation coefficient between Qxx and
Emag.

5.2.2 Period variations and O - C

The period variations and the expected O - C variations are calculated

considering the stellar parameters for an M5 star. For this purpose, we will

consider various values for the binary separation a of the PCEBs. According to

Table 2 of the work by Völschow et al. (2016), the binary separation for those

systems with low-mass secondary star ranges from 0.6 to 1.7 R⊙. We will use

four binary separations, a1 = 0.6, a2 = 0.8, a3 = 1.4 and a4 = 1.7, in units of

the solar radius, R⊙. The modulation period Pmod corresponds to the period

of Qxx, which was calculated via Fast Fourier Transform. The calculations are

for a subset of the simulations using Equations 5.2.5 and 5.2.7. Table 5.2.2
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gives variations of the orbital period during one cycle of the binary,
(

∆P
P

)
ai

for

the binary separations ai, with i = 1, 2, 3, 4 already defined before. Table 5.2.3

gives the modulation period Pmod and the O - C values for the different binary

separations, also denoted with the subscript ai. The obtained values of ∆P/P

range from 1.84 · 10−10 to 4.82 · 10−9, while the O - C values range from 1.44 to

0.04 seconds.

Sim
(

∆P
P

)
a1

(
∆P
P

)
a2

(
∆P
P

)
a3

(
∆P
P

)
a4

A1 4.82(-9) 2.71(-9) 8.85(-10) 6.00(-10)
A3 4.45(-9) 2.50(-9) 8.17(-10) 5.54(-10)
A4 4.20(-9) 2.36(-9) 7.72(-10) 5.23(-10)

A14 3.09(-9) 1.7(-9) 5.67(-10) 3.85(-10)
A16 1.48(-9) 8.34(-10) 2.72(-10) 1.84(-10)
B1 3.09(-9) 1.73(-10) 5.67(-10) 3.85(-10)
B5 1.73(-9) 9.73(-10) 3.17(-10) 2.15(-10)
C3 2.34(-9) 1.32(-9) 4.31(-10) 2.92(-10)
C6 2.34(-9) 1.32(-9) 4.31(-10) 2.92(-10)

Table 5.2.2: Variation of the orbital period during a cycle of the binary for the
different binary periods a1 = 0.6, a2 = 0.8, a3 = 1.4 and a1 = 1.7 R⊙.

Sim Pmod O - Ca1 O - Ca2 O - Ca3 O - Ca4
A1 50 1.21 0.68 0.22 0.15
A3 29 0.64 0.36 0.11 0.08
A4 67 1.41 0.79 0.25 0.17

A14 56 0.86 0.49 0.15 0.10
A16 49 0.36 0.20 0.06 0.04
B1 93 1.44 0.811 0.26 0.17
B5 63 0.54 0.30 0.10 0.06
C3 63 0.74 0.41 0.13 0.09
C6 80 0.94 0.53 0.17 0.11

Table 5.2.3: From left to right the columns indicate the modulation period Pmod
(in years), and the O - C values (in seconds) for a1 = 0.6, a2 = 0.8, a3 = 1.4 and
a1 = 1.7 R⊙.

5.2.3 Comparison to a real system: HU Aquarii

HU Aquarii is a PCEB system with a white dwarf and an M4 star that has a

mass of 0.18 M⊙, a radius of 0.22 R⊙ and rotation period of a few hours. This
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star has a similar mass and radius to the M5 star used in this thesis, so it is a

good comparison example.

HU Aquarii has been a candidate for hosting planets due to the time variations.

However, Wittenmyer et al. (2012) suggested that the planetary hypothesis is

not the right mechanism to explain the eclipsing time variations. Navarrete

et al. (2018) found the Applegate mechanism to be feasible in this system.

The observed ∆P
P of this system is 1.8 · 10−6 (Völschow et al., 2016), whilst in the

simulations presented here the relative period change is three to four orders

of magnitude lower. Bours et al. (2016) reported O - C values for 67 close

binaries, with most of the secondaries being M dwarfs, including HU Aquarii.

Assuming that the O - C diagrams of Figure 1 of that work are for a cycle, the

amplitude of the O - C for HU Aquarii is 155 seconds. The difference between

the results provided here and those reported may be due to the difference in

the rotation rates used here, which are lower than the rotation rates of actual

M dwarfs in PCEBs. Furthermore, the model of Lanza (2020), in which the star

is not tidally locked and where the different components of the quadrupole

tensor contribute, could provide an alternative explanation without requiring

large fluctuations of Qxx.
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Chapter 6

Summary and discussion

In this thesis three-dimensional MHD simulations of fully convective M dwarf

stars were performed using the "star-in-a-box" model by Käpylä (2021).

We obtained different dynamo solutions in the parameter regime explored

here, namely the magnetic Prandtl number with values between 0.1 to 10 and

the rotation period between 43 to 90 days. This is the largest parameter space

studied so far in simulations modeling the entire star.

The set of simulations with the rotation period of 43 days presents mainly

two solutions of the toroidal mangnetic field. At PrM ≤ 2, the magnetic field

presents quasi-periodic cycles, where cycles become longer with increasing

the magnetic Prandtl number. At PrM ≥ 5 the cycle no longer exist and the

toroidal magnetic field shows irregular reversals.

In simulations with lower rotation the toroidal magnetic fields do not show

cyclic reversals. At Prot=61 days the reversals are mainly irregular with no

clear pattern. In the case with Prot = 90 days, the toroidal magnetic field is

mainly dipolar for PrM ≤ 5. In the higher PrM case, the structures of the

toroidal magnetic field are less ordered and smaller than in the lower-PrM

cases. Besides, the toroidal magnetic field shows a quasi-stationary solution

from mid-latitudes to the poles.

We found that the large-scale structures of the toroidal magnetic field also

change with depth. At PrM ≤ 2 the change is more subtle, keeping the main

features, while at PrM ≥ 5, the large-scale structures disappear from the
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surface to 70% of the stellar radius. In a similar way, the radial magnetic

field near the surface shows smaller and more intense structures with larger

magnetic Prandtl numbers than in the lower ones. Additionally, the field is

more concentrated near the equator with increasing PrM.

The large-scale flows were also studied. For all the simulations presented here,

the rotation rate is solar-like, which was analysed radially and latitudinally. The

amplitude of the radial differential rotation decreases with increasing PrM. The

decrease or slight quenching of differential rotation at high magnetic Reynolds

numbers (magnetic Prandtl numbers) was shown earlier via simulations, e.g.,

Käpylä et al. (2017) and Schrinner et al. (2012). The latter showed that the

quenching was associated with a transition from an oscillatory multipolar

large-scale field configurations to quasi-stationary dipole-dominated dynamos

as a function of the magnetic Reynolds number. A mainly dipolar large-scale

field is present in simulations of set C, which have a reduced ammount of

radial differential rotation. Furthermore, the strong decrease of the differential

rotation frequently coincides with the appearance of a small-scale dynamo

(Käpylä et al., 2017).

The kinetic helicity is negative (positive) in the northern (southern) hemisphere,

together with a positive gradient of Ω, is associated with a poleward

propagating dynamo wave (Parker, 1955; Yoshimura, 1975).

In terms of the energy density, there is no systematic change in the total

magnetic energy density in the parameter regime explored here. Nevertheless,

the toroidal magnetic energy decreases with increasing magnetic Prandtl

number, and the kinetic energy density also decrease with decreasing PrM. A

spherical harmonic decomposition (Viviani et al., 2018; Navarrete et al., 2021)

was performed to measure the magnetic energy density present in each mode.

The m = 0 mode is dominant in all the simulations presented here, this means

that the axisymmetric component dominates. The energy contained in the

higher modes, which correspond to the energy of the smaller structures, are

one or two orders of magnitude lower than the energy of the m = 0 mode.

We have studied the nature of Qxx with 3-dimensional magneto-

hydrodynamical simulations to probe the feasibility of the Applegate

mechanism (Applegate, 1992) to explain the ETVs in PCEBs. This mechanisms
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assumes that the axisymmetric part of the magnetic field is the one that

contributes to the variations of the quadrupole moment. In the simulations

presented here, the axisymetric part or the m = 0 mode of the magnetic

field contributes the most according to the spherical harmonic decomposition

performed.

Since the quadrupole moment depends on the density, it also changes with

the magnetic Prandtl number, showing a decrease with increasing PrM, and a

further decrease at lower rotation rates. The strong dependence of ∆Qxx on

stellar rotation has been demonstrated by Navarrete (2019).

Furthermore, using the Pearson correlation coefficient, correlation between

Qxx and the total magnetic energy was found for magnetic Prandtl numbers

smaller than 5, while for higher values of PrM an anticorrelation was found.

∆P/P and the O - C values were calculated on basis of the Applegate model

(Applegate, 1992) from our simulations considering four different binary

separations. Since ∆P/P depends inverse square of the binary separation, its

values are larger for smaller binary separation, and vice versa.

When comparing with real PCEBs, the difference in the amplitude of the orbital

period modulation from simulations and observations is mainly explained

because the rotation rate in our simulations is significantly lower than in real

systems. Völschow et al. (2016) reported amplitudes of the period variations

for PCEBs with secondary fully convective stars that present values of the

order of 10−6 and 10−7. If the variations of the quadrupole moment from

simulations of fully convective stars reach 1040 [kg m2], the O - C diagram

could be explained with this mechanism. To reach variations of Qxx of that

order, a logical next step will be to perform simulations with higher rotation

rates.

More complex models have been proposed by some authors to explain the

eclipsing time variations in PCEBs through the variation of the quadrupole

moment. The most recent one is the model by Lanza (2020). In that model the

star is not tidally locked like in the Applegate mechanism (Applegate, 1992)

and the different components of the quadrupole tensor contribute, not only

Qxx. This model has been already applied to simulations of solar-like stars by

Navarrete et al. (2021).
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The star-in-a-box setup (Käpylä, 2021) used here can also be used in the future

to study magnetic fields in partially convective stars and giant stars.
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