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Resumen

La construccion de un sistema robusto y transparente para la medicion y
monitoreo del carbono almacenado en los cinco reservorios considerados por el
Grupo Intergubernamental de Expertos sobre el Cambio Climético (IPCC)
requiere de la combinacion de informacion proveniente principalmente de dos
fuentes: 1) mediciones en terreno, 2) informacion biofisica derivada de productos
satelitales. En la actualidad, la cuantificacion de la biomasa de los recursos
vegetacionales y el carbono organico del suelo (COS) tienen una gran
importancia de tipo ecoldgico y econémico, ya que tanto los arboles como el suelo

contribuyen significativamente al balance del carbono del planeta Tierra.

Basados en el contexto anterior, en el presente proyecto de investigacion se
implementaron métodos capaces de medir, monitorear y reportar mediante un
mapeo digital del COS y la degradacién de los bosques tropicales aplicando
enfoques analiticos que integran informacion biofisica derivada de sensores
remotos y datos provenientes de mediciones en terreno, los cuales al ser
integrados mediante técnicas de los Sistemas de Informacion Geogréfica (SIG)
son capaces de generar modelos espacialmente explicitos del COS y de la

degradacion del carbono contenido en los bosques.
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El enfoque permite a los paises implementar metodologias para reportar
informacion transparente y consistente sobre las emisiones y absorciones de
carbono en tierras forestales; adicionalmente, estos métodos apoyan a los paises
en sus reportes nacionales ante la Convencién Marco de las Naciones Unidas
sobre el Cambio Climatico (CMNUCC) y facilita su participacion en procesos e
iniciativas para la mitigacion del cambio climatico a través de un mecanismo
financiero para la reduccién de emisiones causadas por la deforestacion y la

degradacion de los bosques (REDD+).

XV



Abstract

The construction of a robust and transparent system for the measurement
and monitoring of the carbon stored in the five reservoirs selected by the
Intergovernmental Group of Experts on Climate Change (IPCC) requires the
combination of information coming mainly from two sources: 1) field
measurements and, 2) biophysical information derived from satellite products. At
present, the quantification of the biomass of vegetation resources and soil organic
carbon (SOC) are of great ecological and economic importance, since both trees

and soil significantly improve the carbon balance of planet Earth.

Based on the above context, we implemented in this research project
methods capable of measuring, monitoring and reporting through a digital
mapping of the SOC and the degradation of tropical forests applying analytical
approaches that integrate biophysical information derived from remote sensors
and data from field measurements, which, when integrated by means of
Geographic Information Systems (GIS) techniques can generate spatially explicit

models of the SOC and the degradation of carbon contained in forests.

The approach allows countries to implement methodologies to report
transparent and consistent information on carbon emissions and removals on

forest lands; additionally, these methods will support countries in their national

XVi



reports to the United Nations Framework Convention on Climate Change
(UNFCCC) and facilitate their participation in processes and initiatives for the
mitigation of climate change through a financial mechanism for the reduction

emissions from deforestation and forest degradation (REDD+).
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I. INTRODUCCION GENERAL



1.1 Introduccién

Las reservas mundiales del carbono que se encuentra en la biomasa de
los bosques y su distribucion geografica estan relativamente bien investigadas
y se han cuantificado con una certeza razonable en comparacion con las
reservas de carbono organico del suelo (COS: el carbono derivado de la
vegetacion en descomposicion, el crecimiento de hongos y bacterias y las
actividades metabdlicas de los organismos vivos) (Baccini et al., 2012; Harris
et al., 2012; Ruesch & Holly K., 2008; Saatchi et al., 2011). La mayor parte de
las politicas nacionales e internacionales para la mitigacibn del cambio
climatico se han centrado en conservar el carbono (C) almacenado en los
bosques; un ejemplo de esto se observa con el mecanismo desarrollado para
proporcionar incentivos financieros denominado REDD+. Sin embargo,
ademas del C de los bosques, el COS es de gran importancia, ya que los
suelos almacenan entre dos a tres veces mas C en forma organica que el C

contenido en la atmdsfera a nivel mundial (Trumbore, 2009).

Tomando en cuenta la gran cantidad de C almacenado como carbono
organico en el suelo y, a pesar de una gran cantidad de investigaciones, en la

actualidad sigue existiendo una gran incertidumbre sobre la cantidad de las

2



reservas mundiales de COS, su distribucion espacial y las emisiones de C
provenientes de los suelos; estas incertidumbres sobre la cantidad de las
reservas del COS se debe en gran medida a la poca atencién otorgada por
parte de los tomadores de decisiones a nivel nacional y a nivel mundial

(Gianelle, Oechel, Miglietta, Rodeghiero, & Sottocornola, 2010).

En la actualidad, se identifica una necesidad constante de monitorear los
bosques y los suelos, y también se identifica una escasez de datos para un
monitoreo eficiente del estado actual de estos recursos (Liang et al., 2016);
sumado a esto, el desafio es mucho mas complejo cuando las necesidades
del monitoreo se trasladan mas alla de la biomasa y carbono aéreo de los
bosques y éstas trascienden al monitoreo de los cinco reservorios del carbono
forestal reconocidos por el IPCC como ser: suelo, raices, madera muerta,

hojarasca y carbono arriba del suelo.

En la actualidad, las tecnologias de teledeteccion estan emergiendo como
una herramienta Util para aplicaciones ambientales debido a la disponibilidad
de datos historicos, la reduccion en el costo de los datos y el aumento de la
resolucion de las plataformas satelitales. Estas tecnologias junto con datos

provenientes de mediciones en terreno seran utilizadas para generar un
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modelo para estimar de manera espacial el COS y la degradacion de los

bosques.

1.1.1 El Carbono Organico del Suelo

Después del carbono almacenado en los océanos, el COS es la segunda
reserva de carbono mas grande en la biosfera. Las estimaciones globales de
las reservas de COS reportadas en varios estudios oscilaron entre 504 y 3.000

Pg C (Scharlemann, Tanner, Hiederer, & Kapos, 2014).

En la actualidad, el conocimiento sobre la linea base de COS todavia es
bastante limitada, existen estimaciones globales de COS, pero hay una gran
variabilidad en los valores informados entre los autores debido a las diferentes
fuentes de datos y metodologias utilizadas para realizar las respectivas
estimaciones (Henry, Valentini, & Bernoux, 2009; Kochy, Hiederer, &

Freibauer, 2015).

La distribucién espacial del COS tiene una gran diferencia con respecto al
carbono almacenado sobre el suelo, la cual varia con la latitud y las regiones

climaticas. La mayor parte del COS se almacena en el hemisferio norte, una



de las regiones mas vulnerables al cambio climatico. En contraste, las
mayores cantidades de carbono forestal (aéreo) se encuentra en los bosques

tropicales humedos y subhimedos cerca del ecuador (U. Mishra et al., 2013).

A nivel global, las reservas de COS (0 a 30 cm) equivalen a 680 Pg C
(Kochy et al., 2015). Con respecto al carbono en las tierras forestales, a nivel
mundial las reservas se estiman en 861 + 66 Pg C, de las cuales 383 + 30 Pg
C (44%) se encuentran en el suelo (hasta 1 m de profundidad), 363 + 28 Pg
C (42%) en la biomasa viva (arriba y abajo del suelo), 73 £ 6 Pg C (8%) en
madera muerta, y 43 £ 3 Pg C (5%) en la hojarasca. Geogréaficamente, 471 +
93 Pg C (55%) se almacenan en bosques tropicales, 272 + 23 Pg C (32%) en
boques boreales, y 119 £ 6 Pg C (14%) en bosques templados (Pan et al.,

2011).

1.1.2 El mapeo del carbono organico del suelo

Las tecnologias de teledeteccion estan en continuo desarrollo y nuevos
sensores satelitales estan surgiendo a un ritmo constante (De Sy et al., 2012).
Varios investigadores discuten acerca de los requisitos técnicos para la
implementacion de sistemas nacionales de monitoreo de suelos y bosques y

concluyen sobre la necesidad de utilizar datos satelitales para la observacion
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de la tierra junto con informacion proveniente de mediciones realizadas en
terreno para construir modelos espacialmente explicitos con altas precisiones

(Achard et al., 2007; Martin Herold and Tracy, 2007; Mayaux et al., 2005).

En términos generales, muchos mapas tematicos como el de COS se
pueden generar utilizando diferentes métodos de interpolacion espacial
utilizando como base datos puntuales. En este sentido, los métodos de
interpolacién espacial proporcionan una herramienta esencial para generar

mapas espacialmente explicitos (Lin & Chen, 2004).

Los métodos para predecir mapas basados en covariables como modelo
de regresion multiple, derivan relaciones entre el elemento geografico objetivo
(por ejemplo COS) y covariables como su medio ambiente (morfologia del

terreno, la vegetacion, entre otros) (Ersahin, 2003).

Meétodos hibridos, como la regresion kriging y co-kriging, emplean auto
correlaciones espaciales y las relacionan entre el elemento geografico y sus
covariables para predecir mapas (Robinson & Metternicht, 2006). En términos
generales, muchos coinciden que las exactitudes de los mapas se pueden

mejorar al usar técnicas hibridas con informacién auxiliar tal como litologia,
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topografia, exposicion solar, pendiente etc. (Lin & Chen, 2004; Minasny &

McBratney, 2007).

Tomando en cuenta la importancia del suelo como reservorio de C y
sumado al auge de los Sistemas de Informacion Geografica (SIG) y la facilidad
de acceso a datos provenientes de sensores remotos de manera gratuita, en
los ultimos afios, la aplicacion de métodos geoespaciales para la construccion
de mapas teméticos de COS es diversa, siendo el método hibrido de la
Regresion Kriging (RK) uno de los mas utilizados (Tabla 1.1). RK: es una
técnica de interpolacidn espacial que combina una regresion de la variable
dependiente en variables auxiliares (como parametros de superficie terrestre,
imagenes de sensores remotos y mapas tematicos) (Hengl, Heuvelink, &

Rossiter, 2007).



Tabla 1.1 Experiencias internacionales sobre el uso de métodos
geoespaciales para la construccién de mapas tematicos de carbono organico

del suelo.

Pais Método utilizado Autor
Etiopia Modelo de regresion multiple (Nyssen et al., 2008)
Italia Regresion y Kriging Ordinario (DAcqui, Santi, & Masell,

Laos, Nigeria

Tanzania

U.S.A.

Kenia

Tropicos

Senegal

Turquia

India

India

Uttar Pradesh,
India

Noreste de
China

Kriging ordinario (OK),
ponderacion de distancia
inversa (IDW), co-kriging (OCK)

Regresion Kriging

Espectroscopia de reflectancia
de infrarrojo cercano (NIRS), y
espectroscopia de reflectancia
infrarroja media (MIRS).

Regresioén Kriging

Funciones de pedotransferencia
(OTF)

Enfoque: Arbol de decision

Regresioén Kriging
Regresion Kriging

Random Forest y Regresion
Kriging

Regresion Kriging

Regresioén Kriging

Fuente: Elaboracion propia

2007)

(Phachomphon, Dlamini, &
Chaplot, 2010)

(Rossi et al., 2009)

(Reeves lii, Follett,
McCarty, & Kimble, 2006)

(Mora-Vallejo, Claessens,
Stoorvogel, & Heuvelink,
2008)

(Minasny & Hartemink,
2011)

(Stoorvogel, Kempen,
Heuvelink, & de Bruin,
2009)

(Sonmez et al., 2017)

(Umakant Mishra et al.,
2009)

(Hinge, Surampalli, &
Goyal, 2018)

(Kumar, Velmurugan,
Hamm, & Dadhwal, 2018)

(Liu et al., 2014)



Identificar las fuentes de incertidumbre asociadas al mapeo de COS es
una tarea muy relevante, en este sentido, se identifica a los diferentes
métodos de mapeo como una de las fuentes de incertidumbre, sin embargo,
no son la fuente principal de inconsistencia, en muchos de los casos, los
mapas producidos con diferentes métodos de mapeo tienen valores
comparables y forman una superficie continua de distribucion de COS con
diferencias aceptables; por lo tanto, se concluye que la fuente principal de
incertidumbre e inconsistencias para el mapeo del COS se encuentra en el
punto de muestro, especialmente en la distribucion y representatividad de las

muestras (Guevara et al., 2018).

Uno de los métodos mas comunes para obtener datos para estimar la
biomasa y el carbono a pequefa o gran escala es mediante un inventario
tradicional basado en un muestreo en campo; este tipo de métodos
tradicionales de medicion en terreno combinado con la teledeteccion permite
obtener informacion relevante para los inventarios de forma mas eficiente; una
de las principales ventajas de esta tecnologia es la capacidad de obtener
datos espacialmente explicitos en grandes areas de manera oportuna y

econdmica (Aguirre-Salado et al., 2014).



Los inventarios estan reconocidos como una fuente de informacion muy
importante, reconoce a los inventarios de carbono como una fotografia del
estado actual de cada componente de carbono o compartimiento (troncos,
ramas, hojarasca, suelos y raices) ya que de estos se obtienen mediciones
desde el sitio, pero tienen la desventaja de su alto costo de implementacion,
especialmente cuando estos inventarios se realizan en tierras con dificil

acceso como son los terrenos forestales (MacDicken, 1997).

1.1.3 Degradacion de los bosques

El mapeo y el monitoreo de la cobertura del suelo han sido ampliamente
reconocidos como un objetivo cientifico importante (Friedl et al., 2002;
Hansen, Defries, Townshend, & Sohlberg, 2000; Wulder et al., 2008); sin
embargo, en la actualidad el mapeo y monitoreo de la degradacion de los
bosques son poco estudiados y conocidos, en gran parte porque no hay una
definicion aceptada internacionalmente sobre degradacion forestal y porque
los programas internacionales de reduccion de emisiones se han centrado en
la deforestacion debido a que esta es mas facil de detectary, por lo tanto, mas

facil de monitorear. (Pearson, Brown, Murray, & Sidman, 2017).
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La degradacion de los bosques se puede definir de muchas maneras; la
Convencion Marco de las Naciones Unidas sobre el Cambio Climatico
(CMNUCC), define la degradacion de los bosques como cualquier pérdida
directa y persistente en la densidad de carbono a lo largo del tiempo en las
tierras forestales que permanecen como tierras forestales (Penman et al.,
2003). La degradacion debe considerarse en forma continua dentro de los
limites de las definiciones de "bosque”; en este sentido, un desafio clave
corresponde en definir primero la reserva de carbono de referencia, contra la

cual se puede monitorear el cambio (Guariguata, Nasi, & Kanninen, 2009).

En comparacion con los bosques intactos, los bosques degradados
suelen ser mucho mas bajos en biomasa, ecolégicamente menos productivos,
fragmentados y con menor cobertura de dosel (Edwards David et al., 2011).
La informacion sobre las estimaciones de las emisiones de Gases de Efecto
Invernadero (GEI) provenientes de la degradacion de los bosques varia
ampliamente y presenta altas incertidumbres como consecuencia de muchos
factores como i) diferencias en las definiciones de degradacién de bosques y
la definicion propiamente de bosques, ii) metodologias de estimacion e iii)
incapacidad de medir y monitorear adecuadamente la degradacion de los

bosques (Bullock, Woodcock, & Olofsson, 2018).
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1.1.4 Medicidon y monitoreo de la degradacién forestal

Las técnicas de deteccion remota ofrecen beneficios para monitorear la
degradacion de los bosques en areas de dificil acceso, como son las regiones
de los trépicos (Herold & Skutsch, 2011). La teledeteccion se ha
implementado con éxito para monitorear el cambio de la cubierta forestal y
para la contabilidad global del carbono (Hansen et al., 2013; Harris et al.,
2012); sin embargo, ninguna metodologia disponible ha demostrado ser capaz
de cartografiar de forma continua la degradacion forestal (Herold et al., 2011).
Particularmente en el mecanismo REDD+, la mayoria de los sistemas de
monitoreo no cuantifican e informan activamente sobre las emisiones

relacionadas con la degradacion de los bosques (Hosonuma et al., 2012).

Para el monitoreo de la degradacion de los bosques, se requiere una
combinacion de: (i) la tasa de cambio en la cubierta forestal y (ii) la cantidad
de carbono almacenado en el bosque. En este sentido, varios satélites miden
la cobertura forestal, la pérdida y alteracion del dosel, y las mediciones de la
estructura del bosque (Chambers et al., 2007), pero ninguna tecnologia
satelital puede medir directamente la densidad del carbono (GOFC-GOLD,

2009).
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Tomando en cuenta que las tecnologias de teledeteccion estan en
continuo desarrollo y nuevos sensores satelitales y aéreos estan surgiendo a
un ritmo constante (De Sy et al., 2012), especialmente con la apertura en el
afio 2008 del archivo de datos Landsat del Servicio Geologico de los Estados
Unidos (USGS), existe la posibilidad de cuantificar espacialmente el cambio
de la superficie terrestre de forma retrospectiva y prospectiva a nivel global
(C. Woodcock, 2008). A partir de esta fecha, se han observado aumentos
sustanciales en las descargas de imagenes Landsat que llevaron a una rapida
expansion de aplicaciones operativas y cientificas, al servicio del gobierno, el

sector privado y la sociedad civil (Zhu et al., 2019).

Debido a su largo registro de mediciones continuas y su resolucién
espacial, las imagenes de la serie de satélites Landsat son una de las fuentes
de datos mas importantes para estudiar diferentes tipos de cambios en la
cobertura del suelo, como son la deforestacion, la expansion e intensificacion
de la agricultura, el crecimiento urbano y la pérdida de humedales (Coppin &

Bauer, 1996; C. E. Woodcock, Macomber, Pax-Lenney, & Cohen, 2001).
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El manejo de una serie de datos derivados de sensores remotos requieren
del uso de tecnologias capaces de procesar y analizar diversa magnitud de
datos; como ejemplo se puede mencionar a la herramienta Google Earth
Engine, la cual es una plataforma basada en la nube para el analisis
geoespacial a escala planetaria que aporta las capacidades computacionales
masivas de Google a una variedad de problemas sociales de alto impacto que
incluyen la deforestacién, la sequia, los desastres naturales, las
enfermedades, la seguridad alimentaria, la gestion del agua, el monitoreo del

clima y proteccion del medio ambiente (Gorelick et al., 2017).

El monitoreo de los recursos forestales requiere de un analisis consistente
para una serie de tiempo, herramientas como TimeSync permiten al intérprete
tener en cuenta el contexto espacial, espectral y temporal, asi como las
imagenes auxiliares de alta resolucion de Google Earth al etiquetar pixeles de
referencia; TimeSync es una herramienta clave para el andlisis de serie de
tiempo Landsat porque es casi imposible encontrar datos de referencia con la
misma frecuencia temporal, profundidad y cobertura espacial de los datos de

Landsat (Kennedy, Yang, & Cohen, 2010).
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Los mapas de cobertura actual e historica de la tierra son los insumos
bésicos para el establecimiento de sistemas de monitoreo eficientes, la
principal fuente de informacion que requiere la confeccion de una mapa
forestal consiste en la obtencién de muestras confiables y representativas de
las areas que se desean mapear; para esto la herramientas como Collect
Earth que son de codigo abierto permiten obtener muestras de cobertura y
uso de la tierra para diferentes series de tiempo; esta herramienta es el
producto de un esfuerzo de colaboracion entre la NASA, la Organizacion de
las Naciones Unidas para la Agricultura y la Alimentacion (FAO), el Servicio

Forestal de los Estados Unidos (USFS) y Google (Saah et al., 2019).

Con base a lo anterior, en la presente investigacion, se busca proponer
un método confiable e innovador para estimar los contenidos de COS
presente en las tierras forestales y la degradacion del carbono contenido en
la biomasa forestal a través de la combinacion de elementos derivados de
productos satelitales junto con datos provenientes de inventarios forestales
multipropésitos a fin de poder proporcionar informacion transparente y

consistente.
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1.2 Hipotesis

Los datos colectados en las unidades de muestreo de los inventarios
nacionales forestales en combinacion con covariables ambientales derivadas
de sensores remotos permiten estimar mediante un enfoque espacial el
carbono orgénico del suelo y el carbono sobre el suelo de los bosques

tropicales.

1.3 Objetivos

1.3.1 Objetivo general
- Estimar el carbono organico del suelo y las pérdidas de carbono por
degradacion de la biomasa forestal a partir de variables ambientales y
fisiograficas obtenidas mediante sensores remotos y variables

provenientes de un inventario forestal nacional multipropésito.

1.3.2 Objetivos especificos

- Generar un mapa digital de COS a partir de variables ambientales
explicativas espacialmente explicitas y datos provenientes de

mediciones realizadas en campo y laboratorio.
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Mapear y estimar la degradacion del carbono contenido en grandes
areas de bosque de coniferas mediante un analisis multitemporal para

el periodo 1990 - 2018.

Generar un mapa digital de C forestal (aéreo) a partir de variables

ambientales explicativas espacialmente explicitas y datos provenientes

de un inventario forestal nacional multipropdsito.
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Capitulo I: Glosario de abreviaturas, siglas y acronimos

COS

CMNUCC

FAO
GEl

IPCC

REDD+

SIG

GEE
GIS
IPCC

REDD+

RK

SOC
UNFCCC
USFS
USGS

ha
PgC

Carbono Organico del Suelo

Convencion Marco de las Naciones Unidas sobre el Cambio
Climatico

Organizacion de las Naciones Unidas para la Agricultura y la
Alimentacion

Gases de Efecto Invernadero

Grupo Intergubernamental de Expertos sobre el Cambio
Climatico

Reduccion de Emisiones causadas por la Deforestacion y la
Degradacion de los bosques

Sistemas de Informacion Geogréfica

Google Earth Engine

Geographic Information Systems

Intergovernmental Group of Experts on Climate Change
Reduction Emissions from Deforestation and Forest
Degradation

Regresion Kriging

Soil Organic Carbon

United Nations Framework Convention on Climate Change
United States Forest Service

United States Geological Survey

Carbono
Hectarea

Petagramos de carbono
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Abstract

Current estimates of CO2 emissions from forest degradation are generally
based on insufficient information and are characterized by high uncertainty,
while a global definition of “forest degradation” is currently being discussed in
the scientific arena. This study proposes an automated approach to monitor
degradation using Landsat time series. The methodology was developed using
Google Earth Engine (GEE) and applied in a pine forest area of the Dominican
Republic. Land cover change mapping was conducted using the Random
Forest (RF) algorithm and resulted in a cumulative overall accuracy of 92.8%.

Forest degradation was mapped with a 70.7% user accuracy and a 91.3%
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producer accuracy. Estimates of the degraded area had a margin of error of
10.8%. A number of 344 Landsat collections, corresponding to the period from
1990 to 2018, were used in the analysis. Additionally, 51 sample plots from a
Forest Inventory were used. The carbon stocks and emissions from forest

degradation were estimated using the RF algorithm with an R? of 0.78.

GEE proved to be an appropriate tool to monitor the degradation of tropical
forests, and the methodology developed herein is a robust, reliable, and
replicable tool that could be used to estimate forest degradation and improve
Monitoring, Reporting, and Verification (MRV) systems under the Reducing

Emissions from Deforestation and Forest Degradation (REDD+) mechanism.

Keywords: Forest Degradation; REDD+; Google Earth Engine; Random

Forest; Dynamic Land Cover Change; Landsat; Carbon; MRV.
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Figure 2.1. Graphical abstract

Fuente: Elaboracion propia

2.1. Introduction

Forest monitoring has been an important scientific objective mainly due to
the large number of ecosystem services that serve humanity. One of the most
efficient methods to monitor them is through geographically explicit and

consistent mapping over time [1,2].

Currently, forest monitoring has been focused on quantifying
deforestation; spatial representation and the monitoring of forest degradation

are poorly studied, mainly because there is no clear, standardized, and
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recognized definition of ‘forest degradation’ globally [3]. Additionally,
international initiatives and programs that finance forest emissions reductions
have focused on estimating deforestation, which is easier to measure and

monitor than forest degradation [4].

The first step in measuring forest degradation is to define key concepts
such as i) the forest and ii) forest degradation. These concepts have been
widely debated [5], and their definitions vary between institutions and
organizations. The Intergovernmental Panel on Climate Change (IPCC)
defines forest degradation as “direct human-induced long-term loss (persisting
for X years or more) of at least Y% of forest carbon stocks [and forest values]
since time T and not qualifying as deforestation or an elected activity under
Article 3.4 of the Kyoto Protocol” [6]. Thus, defining a carbon (C) stock baseline

is the first step to monitor this continual C loss.

Forest degradation, along with deforestation, has been reported as the
second most common source (after fuel combustion) of global anthropogenic
greenhouse gas (GHG) emissions, comprising over 17% of global CO:
emissions [7,8]. The assessment and reporting of CO2 emissions caused by
forest degradation is a crucial step to achieve the goals under international
policies such as the REDD+ mechanism, which mainly aims to reduce the
emissions from deforestation and forest degradation. The REDD+ mechanism
also includes (i) the conservation of forest carbon stocks, (ii) the sustainable

management of forests, and (iii) the enhancement of forest carbon stocks [9].
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To monitor the five REDD+ activities, it is essential to have a robust and
transparent system for Measuring, Reporting, and Verifying (MRV) GHG
emissions alongside with methods that combine terrestrial and satellite
techniques for the measurement and monitoring of emissions and the removal

of C from forest resources [10,11].

To estimate and report the GHG emissions and their removal, the principal
recommendations of the IPCC are to use activity data and emission factors at
a national scale [12]. The most practical method of mapping land-cover
changes at a national scale is to use spatially explicit data through remote

sensing (RS) [13].

RS methods to monitor deforestation have been successfully used for
global C accounting [4,14]. However, unlike deforestation, no available method
has been reliable for monitoring degradation [15], thereby restricting C
accounting [16]. Forest degradation monitoring requires estimating the rate of
change rate for i) the forest cover and ii) the forest C stock. In this sense,
satellite imagery is key to monitoring changes in forest cover (density,
structure, and composition) but fails to monitor the C stock [17]. Therefore, in
addition to using satellite imagery, there is a clear need to employ data from

field measurements to achieve more accurate estimates of CO2 emissions.

Since RS technologies are advancing and new satellite are emerging at a

constant pace [18], particularly since the United States Geological Survey
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(USGS) adopted a free and open Landsat in 2008, it is now possible to spatially
quantify changes in the Earth's surface retrospectively and prospectively at a
global scale [13]. Due to their long record of continuous measurements and
high spatial resolution, Landsat series satellite images are some of the most
important information sources for studying the different classes of land cover
change [19] and has facilitated the characterization of land change using time

series of Landsat images [20].

Applying Landsat time series requires the use of technologies with high
capacity to access, storage and tools to perform analysis of large data sets,
these special technologies are available at no cost to everyone through the
Google Earth Engine (GEE). GEE is a cloud computing platform consisting of
a tool for analyzing geospatial information, through which we can analyze the
land use and land change use by applying highly interactive algorithms on a
global scale with a code editor via the Javascript APl [21]. Cloud-based
Landsat imagery has been widely used for mapping land cover and especially
deforestation [22-26]. However, forest degradation mapping has been rarely

investigated using satellite imagery and data sampling using GEE.

The current study developed a method for automated forest degradation
measuring and monitoring using field data from a National Forest Inventory
and a time series of Landsat images using GGE. The objective of this study
was to provide a dynamic land cover change map (included pine forest

degradation) in the Dominican Republic and to map C stocks of pine forests to
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estimate CO2 emissions from forest degradation for the 1990-2018 time
period. Our processing and mapping algorithm uses Landsat data to
characterize the forest cover’s extension, loss, and degradation. Our approach
aims at determining the magnitude of forest degradation (cover change), the
spatial distribution of C stocks in the forest, and the amount of CO2 emissions

from forest degradation per unit area for a given period of analysis.

2.2 Materials and Methods

2.2.1. Study Area

Our research area is located in the Dominican Republic, mainly in two
thirds of the so-called Hispaniola Island in the east, which is the second largest
island in the Greater Antilles. The territory of the country covers 48,198 km?
(18°28'35"N and 69°53'36"W) (Figure 2.2). The Dominican Republic has
diverse bioclimatic and topographic zones, ranging from dry regions, where
precipitation reaches 450 mm yr?, to humid regions, where precipitation
reaches 2,500 mm yr?, at altitudes over 3,000 m.a.s.. The northwest—
southeast trending mountain range includes the highest peaks in the
Caribbean, Pico Duarte (3,098 m.a.s.l) [27]. This wide variety of geographic
conditions has given rise to diverse ecosystems and habitats, including arid,

semi-arid, humid, and tropical sub-humid zones [28].
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The study was carried out in the pine forests of the Dominican Republic,
which cover 3,287 km?2. Most of this area lies in the Cordillera Central (the
highest elevation mountain range on the island) and comprises four large
protected areas that were declared national parks (NPs): (i) NP Armando
Bermudez, (ii) NP José del Carmen Ramirez, (iii) NP Valle Nuevo, and (iv) NP

Sierra de Bahoruco.

-Study area (pine forests)

Protected areas in study area

T
s900W

Figure 2.2. Study area (a) General location of the Dominican Repubilic, (b)
regional location, and (c) study area including the protected areas.
Fuente: Elaboracion propia
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The water service for human consumption and agricultural use in most of
the country is one of the main environmental services offered by the Central
Cordillera to the Dominican Republic. The vegetation patterns vary mainly due
to large-scale climatic factors, such as the direction of the northeast or
southeast winds. This mountain range features the principal pine forests of the
country. The higher sites of the mountain range include moist broadleaf
forests, while the windward side includes forests of West Indies pine (Pinus
occidentalis Swartz) [29]. This pine is endemic to the island of Hispaniola
(19°N, 71°W), although it has been known to scientists for more than 200 years

and still covers extensive areas of the Dominican Republic and Haiti [30].

Recent studies conducted under the REDD+ program by the Ministry of
the Environment and Natural Resources (MARN) have indicated that the illegal
extraction of wood for firewood and charcoal to be used as fuel, timber, and
weak management are the principal drivers of pine forest degradation in the

Dominican Republic [31].

2.2.2 Forest, deforestation, and degradation definitions

In recent times, the definition of “forest” has taken on particular relevance
due to the challenges of countries to monitor the CO2 emissions from the forest
sector as part of the objectives to establish robust MRV systems for REDD+.
In general, the definitions of ‘forest’ include references to threshold parameters

that include the minimum area of land, minimum tree height, and minimum
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canopy cover. Many countries are aligned with the minimum thresholds
described by the United Nations Food and Agriculture Organization's (FAO)
Global Forest Resource Assessment (FRA). Through the FRA, since 2000, all
countries have aligned themselves to adopt a definition of “forest” with
common parameters, such as (i) a canopy coverage of more than 10%, (ii)
trees of 5 m, and (iii) land of at least 0.5 ha [32]. The present study subscribes
to the definition of ‘forest’ adopted by the Dominican Republic, with a focus on
pine forests in accordance with the Reference Emission Levels/Forest
Reference Levels (FREL/FRL): “land of at least 0.5 ha covered by pine trees
higher than 5 m and with a canopy cover of more than 30%, or by trees able
to reach these thresholds, and predominantly under forest land use, this

excludes land that is mainly under agricultural or urban land uses” [33].

Based on the definition of forest described above, in the current study,
forest degradation is defined as “the loss of carbon content in forest lands that
remain as forest lands with a decrease in canopy cover that does not qualify
as deforestation and that can be caused by anthropogenic activities”. Forest
degradation has a human-induced negative impact on carbon stock changes;
our operational definition for measuring forest degradation is based on
indicators such as forest structure (changes in canopy cover) [34] that affect
the ability of the forest to store carbon under natural conditions [35]. These
definitions demonstrate that deforestation and forest degradation involve
different conditions, processes, and concepts. Deforestation suggests a

change in land use from forest to non-forest land use, altering the original
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structure and environment of the forest, while degradation occurs in forest
lands that are maintained as forest lands but suffer losses in their forest

ecosystem functions (Figure 2.3).

FOREST DEFINITION PARAMETERS

Land with tree
cover
= 0.5 ha

Disturbance event
Selective logging

Height of Canopy cover
trees >5m >30%
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Weak management

Floderate
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Selactive extraction of fuelwood and charcoal
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¥
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Figure 2.3. Main parameters and elements that interact in forest degradation
in the Dominican Republic.
Fuente: Elaboracion propia
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2.2.3. Method

Once the baseline data were collected and the key concepts (forest,
deforestation, and forest degradation) were defined, a method to quantify the
degradation of pine forests in the Dominican Republic was developed. The
overall structure of the method (Figure 2.4) consists of four stages: (i) the
preprocessing and selection of Landsat images, (ii) the computation of the
spectral indices to map land cover for the 1990-2018 period, (iii) changing the
magnitude of mapping, and (iv) mapping the carbon stocks in pine forests. The
entire process was accompanied by an accuracy analysis for each step, in
which a classification, probability, and regression model was applied using the
Smile Random Forest (RF) algorithm. The GEE cloud-based platform was also

used in our research.
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Figure 2.4. Flowchart: Representation of the methodology used in our
research.
Fuente: Elaboracidon propia

Our models were developed using Landsat Thematic Mapper (TM) and
Operational Land Imager (OLI) applying the RF algorithm in GEE to generate
a dynamic land cover change map, degraded forest map, and carbon forest
map. The model was trained and validated using sample plots from the forest

inventory and satellite images
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2.2.4. Reference Data

Landsat TM/OLI Data processing

We used Landsat-5 TM and Landsat 8 OLI surface reflectance data with
16 day and 30 m resolutions (available in the GEE computing platform) [21].
All Landsat-5TM surface reflectance data from year 1990 £ 0.5 (a total of 22
images) and Landsat-8 OLI surface reflectance data from year 2018 = 0.5 (a

total of 322 images) available in GEE were used in this study.

The Landsat surface reflectance data in GEE were atmospherically
corrected using the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) (TM) and Landsat Surface Reflectance Corrected (LaSRC)
(OLI) algorithms [36,37]. The CFmask algorithm was used to mask the clouds
and cloud shadows [38,39]. Landsat 5 TM TOA and OLI TOA collections were

also used [40].

Digital elevation data were obtained from the Shuttle Radar Topography
Mission (SRTM) [41] in GEE. These data have a 30 m spatial resolution. SRTM
data were used to calculate the topographic slope and elevation. In addition,
the empirical Earth rotation model (ERM) was used as a basis to apply a terrain
illumination correction algorithm [42], which allowed us to topographically
correct each image. For reflectance images, we used the medoid method [43]

(Figure 2.5).
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Once the images were pre-processed, a composite mosaic was
developed. This mosaic was formed by combining spatially overlapping
images into a single image based on a function of multiple spectral and
temporal aggregation ranges [44]. This mosaic (multi-band and multi-date)

was built with the images of the years 1990 and 2018.

Figure 2.5. Mosaic of seasonal images for the Dominican Republic in 2018.
(a) Original composite mosaic, (b) Medoid composite (Shortwave Infrared 1
(SWIR1), Near-Infrared (NIR) and Red band).

Fuente: Elaboracion propia
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Field Inventory Data

The reference field data included in this study are based on the National
Forest Inventory (NFI) collected by the Ministry of the Environment and Natural
Resources (MARN) of the Dominican Republic with the support of the
REDD/CCAD-GIZ program and the World Bank’s Forest Carbon Partnership

Facility (FCPF) (https://www.forestcarbonpartnership.org/country/dominican-

republic (ERPD document, September, 2019)) [45]. In 2012, the Dominican
Republic designed its MRV strategy. This strategy proposed two major lines of
monitoring forest resources: (i) satellite monitoring and (i) terrestrial
monitoring. For terrestrial monitoring, the country executed an NFI between
2017 and 2018 with a plan to develop permanent sampling plots to be
measured every 5 years according to the action plan of the country's MRV
System. The NFI of the Dominican Republic contains 404 sampling units
located in the different forest classes, such as moist broadleaf forests (204
plots), subdivided into semi-humid broadleaf forests (117 plots), humid
broadleaf forests (76 plots), and broadleaf cloud forest (11 plots); pine forests
(59 plots), subdivided into high canopy cover density (19 plots) and low canopy

cover density (40 plots); dry forests (71 plots); and mangrove forests (70 plots).

The plot is rectangular with a size of 0.125 hectares (ha) (25 m x 50 m).
Different forest characteristics and topographical factors were measured at all
plots (tree species, height, diameter at breast height (DBH), soil organic

matter, number of trees, geographical coordinates, elevation, and slope). To
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design the NFI, the methodology proposed by the REDD/CCAD-GIZ program
was used [46,47]. For our study, we used the data from 51 plots located in the
pine forest areas. More information about the methodology and the results of
the NFI is available in the FREL/FRL submission of the Dominican Republic
[33] to REDD+ UNFCCC (Figure 2.6) (Appendix D Table 2.10 and Appendix

E Figure 2.15).

Y Legend
'?Lmsm ‘ - Study area (pine forests)
' ® Sample plot: Pine forests high canopy cover density

[l sample plot: Pine forests low canopy cover density

T
1900'N

" 4
+—t—+—+—+
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Figure 2.6. (a) General location of the Dominican Republic; (b) location of
permanent plots in pine forests with low and high canopy cover density.
Fuente: Elaboracion propia
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2.2.5 Classification of dynamic land cover change

One of the most relevant tasks for RS is land cover mapping. Different
spectral indices are used to improve such mapping techniques [49]. For land
cover change mapping, we generated a composite mosaic for the 1990-2018
period, and spectral indices were selected based on the known characteristics
of land cover classes. Landsat time series and spectral analyses were used to

detect deforestation and degradation forests.

Classes that were determined in the dynamic land cover map correspond
to a stable forest, stable non-forest, degradation, deforestation, and restored
forest. Seven different vegetation indices were used to monitor the dynamics
of forest change during the 1990-2018 period. Among the most relevant
indices used are the Enhanced Vegetation Index (EVI), which was designed
to enhance the vegetation signal with improved sensitivity in high biomass
areas [50]; the Soil Adjust Vegetation Index (SAVI) [51]; and the Normalized
Difference Fraction Index (NDFI), which was constructed to highlight degraded
or cleared forest areas. The NDFI values in intact forests are expected to be
high (i.e., approximately 1) due to the combination of high "Green Vegetation
(GV)" and low Non-Photosynthetic Vegetation (NPV) and soil values [52]. The
spectral indices used are closely related to the land cover defined in our

research; Appendix C Table 2.9 details each index used.
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Land cover change samples

Training samples for land cover change classification were derived from a
visual analysis using Landsat from GEE and high spatial resolution images

from Google Earth (GE) (Figure 2.7).

First, we established four cover change classes: stable forest, stable non-
forest, deforestation, and forest restoration. We allocated 97 samples to areas
that appeared to be stable forest or stable non-forest, and the remaining 15
samples were allocated to land cover change. The second step was to detect
forest degradation based on the stable forest class, commonly called the
‘forest mask’, following the criteria established in the definition of a forest in
our study. We focused on two classes: non-degraded forest and degraded
forest. A total of 90 samples were allocated to areas with disturbances
observed in the 1990-2018 period. Reference samples were randomly
distributed over each land cover class in the study area, while a single pixel

was used as the sample unit (Figure 2.8).

The training dataset was used to improve the supervised classification, the
per-band pixel values of the stacked composite images were extracted from
the training samples, and the resulting data were used to train the RF
classifiers [53]. We used the RF algorithm because it is a built-in classifier in
GEE and has been widely demonstrated to improve the accuracy of maps by

combining random subsets of trees to classify the training samples. In GEE,
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the RF algorithm is applied through the following function:
(ee.Classifier.smileRamdomForest). Moreover, the algorithm can be
configured in three ways (ee.setOutputMode) based on the classification mode
(class/type maps), regression mode (maps with continuous values predicted),
and the probability mode (map with rescaled values between 0 and 1). In the
current study, the RF algorithm was applied in the classification mode using
GEE to obtain the land cover, in the regression mode to estimate the carbon

maps, and in the probability mode to estimate the change magnitude maps.

(a) Landsat TM/OLI High resolution imagen (b)
1990 2018 2018 High resolution imagen: Examples pine Forest degradation

Stable forest

Stable non-forest

Deforestation

Degradation

Restored forest

Figure 2.7. Example of the image composites of different land cover dynamic
change classes for pine forests of the Dominican Republic. (a) NIR - SWIR1 -
RED Landsat Thematic Mapper (TM) and Operational Land Imager (OLI)
versus a high-resolution; (b) Example of degraded pine forests observed
using Google Earth Engine (GEE).

Fuente: Elaboracion propia
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Figure 2.8. Training samples of 5 land cover classes in GEE; (a) samples of

land cover change class; (b) dynamics of land cover change classification.
Fuente: Elaboracion propia
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2.2.6. Carbon stock and change magnitude

Estimating the spatial-temporal distributions of forest carbon stocks
subject to land cover changes is critical for estimating and reporting GHG
emissions [54]. To spatially represent explicit forest degradation along with
degraded carbon, we generated a carbon map of pine forests using 51

sampled plots from the NFI data and Landsat 2018.

The size of each parcel is 0.125 hectares (ha) (25 m x 50 m). Because the
size of each plot and the Landsat pixels do not match, we used the geographic
coordinates of the centroid of the plot. Thus, we applied the carbon values in

units per hectare (t ha) to each pixel.

For each plot, four of the five C pools were measured [55]: Aboveground
biomass (AGB), belowground biomass (BGB), deadwood (DW), and leaf litter
(Table 2.1) [47,56,57] (See section: Field Inventory Data; for more details). To
convert the biomass to carbon, the IPCC default carbon factor value (0.47)
was used. Each pool was modeled independently using spectral responses
(vegetation indices) from Landsat applying a regression model with the RF

algorithm in GEE
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(ee.Classifier.randomfForest(30).setOutputMode(‘REGRESSION’).  Through
this process, each spatial pixel acquired an AGB (t C ha!) value, and its related
standard deviation as a measure of uncertainty. The code generated to model

the C stock using the GEE is available in Appendix B.

The change magnitude is assumed to be an approximate indicator of the
amount of tree removal or canopy damage that occurred due to disturbances
[58]. The change magnitude was estimated from the spectral indices for the
stable forest class using the composite mosaic for the 1990-2018 period. We
fitted an RF probability model in GEE to represent the structural forest changes
in each of the spectral indices described previously

(ee.Classifier.randomForest(50).setOutputMode('PROBABILITY").

The disturbance monitoring algorithm used to identify the forest changes
in each pixel location is closely related to the Continuous Change Detection
and Classification algorithm (CCDC) [20,58,59] but was adapted using RF
models to predict the change magnitude probabilities for bi-temporal
observations. Several studies have successfully applied this algorithm to

different sensors and different spectral indices to detect changes [60,61]. This
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change detection algorithm operates on the time series of each pixel in the

study area.

The decrease in a spectral index caused by a disturbance is recognized
by a certain change magnitude. For example, values close to 1 in the NDFI
spectral indices indicate high proportions of green vegetation (GV) or stable
forests, while values close to 0 in the NDFI imply higher proportions of soil
(So). The code generated to estimate the change magnitude using the GEE is

available in Appendix B.

Pixel-based mapping facilitates comparisons and evaluations of changes
with direct algebraic calculations [62]. Once the carbon stored in the four pool
of the forest was estimated for the year 2018 along with the magnitude of
change between 1990-2018, we used Equation 1 to determine the C stocks
in each pixel for the year 1990. Finally, the degraded carbon was estimated as
the difference of the C stored in the pine forests between 1990 and 2018
combined with the change magnitude observed in the same period (Equation
2). To estimate forest degradation, only disturbances occurring in the stable

forest class were considered for the period analyzed:

_ Cta
1-CM

Cer (1)
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where ¢, is the C stock in 1990 (Mg hal), ¢, is the C stock in 2018, and cM is

the change magnitude (value > 0 and < 1).

CD = C¢y - Cpp (2)

where ¢ is the carbon degraded for the 1990-2018 period (Mg hal), ¢, is the

C stock in 1990, and ¢,, is the C stock in 2018.

Finally, to calculate the annual rate of degraded carbon, the stock-
difference method (SDM) was used, where changes in carbon stock (ACarbon)
represent the difference between carbon stocks for a given forest area

estimated at two-time points (Equation 3):

Carbong — Carbon,,
t2 —tl

ACarbon = (3)

where Acarbon is the annual change in C stocks (Mg-C-ha t-yr %), carbon,, is
the C stock in 1990 (Mg-C-ha™), and carbon,, is the C stock in 2018 (Mg

C-ha™).
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Table 2.1 Definitions and variables used to estimate the carbon stored in the
pine forest.

Variable Unit* Definition/explanation

Aboveground biomass: all living and standing dead trees with a diameter at breast height

AGB Mg C ha?

(DBH) equal to or greater than 2 cm.
BGB Mg C ha? Belowground live biomass: roots.

Deadwood: All pieces of wood with a diameter greater than 2 cm lying on the surface of
DW Mg C ha?

the ground or intermixed with dead leaves.

Non-woody biomass is recorded, which includes dead leaves (dead biomass) and
Litter Mg C ha? herbaceous vegetation (living non-woody biomass on the ground). The maximum

diameter for woody material to be considered is 2 cm.
Note: 1 Mg ha™' =1 ton ha™’

Note: To convert biomass to carbon, the IPCC default carbon factor value (0.47) was used.

Fuente: Elaboracion propia

2.2.7. Model evaluation: carbon stock

Cross-validation (CV) is one of the most commonly used techniques to
evaluate the efficiency of a machine learning (ML) technique; this is due to its
wide application in the scientific arena and its efficiency in detecting a model's
overfitting problems [63]. To evaluate the performance of the machine learning
model applied to map the change magnitude and forest carbon, the following
functions were used: coefficient of determination (R?), mean square error
(MSE), root-mean-square error (RMSE), mean absolute deviation (MAD),

cumulated forecast error (CFE), and mean absolute percentage error (MAPE):

(3" 0= -5)

Z (yi — ¥:)? Z:l_ (fi - fL)Z
i=1 =1

R? =

(4)
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(5)

(6)
MAD = M (7)
n
CFE, = Z()’i - 1o (8)
i=1
) Y
MAPE = rfi x 100 ©)

where n (i = 1,2,...,n) is the number of samples used for the machine learning
model, y; is the value observed (C stock), y; is the corresponding mean value,

f; is the predicted value (C stock), and f; is the mean value.

2.2.8. Accuracy assessment and analysis

We used the confusion matrix statistical accuracy assessment method to
evaluate the dynamic land cover change classification. The overall accuracy
(OA), user’s accuracy (UA), and producer’s accuracy (PA) were applied to
each class, and the Kappa coefficient was used to assess the class map and
determine the level of agreement between two raters. The standard deviations

and the confidence intervals (at a 95% significance level) were also estimated.

Since land change classes (degradation, deforestation, and forest
restoration) tend to cover only a small portion of the study objectives compared

to stable areas (stable forest and stable non-forest), it is recommended to
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stratify the study based on a map that represents the classes of principal
interest to ensure an effective statistical sample representation in land change

classes such as degradation, deforestation, and forest restoration [64].

An accuracy assessment of the dynamic land cover change map (for the
1990-2018 period), generated through a sampling-based approach to
estimate the area of forest degradation in the Dominican Republic (Figure 6),
was performed on the following land cover change classes:

Stable forest: Pine forests that remain pine forests without disturbance.
This forest contains over 30% canopy cover.

Stable non-Forest: Other non-forest lands, such as agriculture, wetlands,
grasslands.

Deforestation: Elimination of the forest canopy cover that exceeds 30%.
Results in a land-use change.

Degradation: This entails any disturbance that changes the canopy cover
density between 100% and 30%. Does not result in a land-use change.

Forest restoration: Conversion of non-forested land to forest: This
includes forest restoration with a canopy cover greater than 30% (through

natural and artificial means) on deforested land.

For the accuracy assessment, a total of 1,124 spatial sampling points were
established for the study area using the stratified random sampling approach
following best practices [64] (Equation 10). It was necessary to modify the

minimum sample size to determine the objective standard error of the
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degradation area, rather than the OA of the map, and thereby ensure that
sample size would be large enough to produce sufficiently accurate estimates
[65]. The stratified area estimator-design tools hosted in SEPAL were used to
generate random spatial points (Table 2.2). SEPAL is a cloud-based
computing platform developed by FAO, which uses the GEE and OpenForis

Geospatial Toolkits [66].

EW:s) N (z Wisi) (10)

"o [S(O)]*+@/Nyxw;s? \ SO
where n = number of points in the study area, s(0) is the standard error of the
estimated OA, w; is the mapped proportion of the class area i, and s; is the

standard deviation of land cover classes i.

We performed an analysis following best practices to assess the accuracy
of the map classification, and the area of change was estimated using a
classification error matrix. For details on the matrix nomenclature, refer to

Olofsson et al. (2014) [64].

Table 2.2 Strata area, sample allocation for the stratified random sample,
and weights for the study period (1990-2018).

Stable forest Stable non-Forest Deforestation Restored forest Degradation
Area (ha) 252,408 2,527 2,856 23,452 47,534
Wi (%) 76.77 0.77 0.87 7.13 14.46
Samples 800 50 50 74 150

Fuente: Elaboracion propia
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Collecting reference observations of forest degradation is a complex task,
primarily because degradation is a continuous process that must be observed
over a long period. In this sense, satellite images with high spectral resolutions
have become a key tool, but they are not sufficient to reconstruct the
landscape's historical dynamics. Therefore, this study required the use of
Landsat observation time series supported by very high spatial resolution
(VHRS) imagery. Independent stratified validation samples were visually
interpreted from the VHRS time-series images of Collect Earth (CE). We built
a survey in CE that helped us access multiple satellite images, including
archives including VHSR imagery (Google Earth, Bing Maps) and a set of
satellite images from the GEE catalog, along with their derived spectral indices

[67] (Figure 2.9).

To facilitate the historical collection of reference data, other GEE
assessment tools were adapted and used, such as the Accuracy and Area
Estimation Toolbox (AREA2) developed by Bullock and Olofsson (2018) (see
github.com/bullocke/AREA2). The sample interpretation tool allowed us to
determine reference labels for the 1,124 samples collected. This algorithm
helped estimate the map accuracy and disturbance area and visualize the time
series trends of each sample using a dataset created using the Continuous
Degradation Detection (CODED) methodology in GEE [20] (see Appendix B

for the code developed in this study using the GEE).
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Figure 2.9. Tools used to collect the reference observations of forest
degradation. (a) Collect Earth interface in Google Earth Pro; (b) Collect Earth
survey; (c) time series tools online viewer.

Fuente: Elaboracion propia

To review and assign reference labels to each of the 1,124 selected
special sample units, three trained interpreters were delegated. These
interpreters did not know the classes of the assigned samples. An additional
interpreter reviewed all samples with low or medium confidence. At least three
interpreters reviewed all units labeled as degradation. The decision matrix and
labels assigned to the samples evaluated in the time series are shown in Table

2.
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Table 2.3 The decision matrix for the validation samples interpreted from
high-resolution images and Landsat time series using Collect Earth (CE) and
GEE, respectively.

Land Cover 1990 Land Cover 2018 Reference Class
Non-forest Non-forest Stable non-forest
Pine forest: high canopy cover density Pine forest: low canopy cover density Degradation
Pine forest: high canopy cover density Non-forest Deforestation
Pine forest: low canopy cover density Non-forest Deforestation
Non-forest Pine forest: low canopy cover density Restored forest
Non-forest Pine forest: high canopy cover density Restored forest
Pine forest: high canopy cover density Pine forest: high canopy cover density Stable forest
Pine forest: low canopy cover density Pine forest: high canopy cover density Stable forest
Pine forest: low canopy cover density Pine forest: low canopy cover density Stable forest

Fuente: Elaboracion propia

2.3. Results

2.3.1. Dynamic land cover changes from 1990 to 2018

The total study area corresponded to 328,777 ha of pine forests in the
Dominican Republic. The results showed that degraded forests accounted for
11% + 1.21% (95% confidence interval) of the total study area between 1990
and 2018, while 79% + 1.28% remained stable and did not suffer any
disturbances; further, 2% + 0.61% were deforested. In total, we estimated that

36,808 + 446 ha of pine forests was degraded.

The margin of error of the area estimate for forest degradation was 10.8%

(95% CI). The user's accuracy was 70.7%, and the producer's accuracy for
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forest degradation was 91.3%. The overall accuracy of the dynamic land cover
change map was 92.8%. The main results corresponding to the accuracy

assessment are shown in Table 2.4.
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Table 2.4 Confusion matrix—sample counts, area proportions, area
estimates, and accuracy measures for stable forest, stable non-forest,
deforestation, restored forest, and forest degradation.

Confusion matrix, random sample counts

Reference
Stable Stable Restored
Deforestation Degradation Total Pixels W_i Ha
forest non-forest forest
Stable forest 787 0 2 2 9 800 2,804,538 0.768 252,408
Stable non-
0 48 0 2 0 50 28,074  0.008 2,527
forest
g Deforestation 0 2 47 0 1 50 31,729 0.009 2,856
=
Restored
11 5 0 57 1 74 260,578 0.071 23,452
forest
Degradation 29 6 9 0 106 150 528,158 0.145 47,534
Total 827 61 58 61 117 1,124 3,653,077 1 328,777
Confusion matrix, area proportions
Reference

Stable forest

Stable non-forest

Deforestation

Restored forest

Degradation

Stable forest 0.7552 0.0000 0.0019 0.0019 0.0086
Stable non-forest 0.0000 0.0074 0.0000 0.0003 0.0000
Deforestation 0.0000 0.0003 0.0082 0.0000 0.0002
Restored forest 0.0106 0.0048 0.0000 0.0549 0.0010
Degradation 0.0280 0.0058 0.0087 0.0000 0.1022
Total 0.7938 0.0183 0.0188 0.0572 0.1119
Accuracy and area estimates

Avrea [pix] 2,899,809 66,953 68,526 208,850 408,939
Area [ha] 260,983 6,026 6,167 18,796 36,804
S(Area) 0.0065 0.0031 0.0031 0.0038 0.0062
S(Area) [ha] 2,143 1,034 1,031 1,240 2,033
95% Cl [ha] 4,201 2,026 2,021 2,430 3,985
Margin of error [%)] 1.61 33.62 32.77 12.93 10.83
User's acc (%) 98.38 96.00 94.00 77.03 70.67
Producer's acc (%) 95.14 40.25 43.52 96.11 91.27
Overall 92.8%

Kappa 0.85

Fuente: Elaboracion propia
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We analyzed the dynamics of land cover change as they relate to the country's
protected areas and identified that 71% of the degraded pine forests exist
within the protected area. Among these, the main forest belongs to Sierra de
Bahoruco National Park (NP), with 14,166 ha (30% of the total degraded area),
followed by Valle Nuevo NP and José del Carmen Ramirez NP, with 8,736 ha
(18% of the total degraded area) and 6,462 ha (16% of the total degraded
area), respectively. Table 2.5 shows the locations of the protected areas with
the degraded pine forests from 1990 to 2018. A geographic representation of
the dynamic land cover change map obtained in our study is also provided
(Figure 2.10). Detailed results on land cover change are available via a
dashboard called “Accuracy assessment and analysis tools” available in

Appendix A.

Table 2.5 Dynamics of land cover change associated with the different
classes of protected areas in the Dominican Republic.

Deforestation Degradation Restored Stable forest Stable non-forest
Protected Area Category
(ha) (ha) forest (ha) (ha) (ha)
Natural Monument 0 5 19 337 0
Natural reserve 71 1,800 1,293 12,350 21
National Park 2,151 31,779 9,867 175,081 1,580
Protected Landscape 6 151 48 3,083 3
Strict Protection Area 3 98 30 820 7
Habitat/Species Management Area 0 0 1 16 0
Non-Protected Area 625 13,701 12,193 60,722 916

Fuente: Elaboracion propia
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Figure 2.10. Dynamic land cover change map for the 1990-2018 period.

Fuente: Elaboracion propia

2.3.2. Carbon stock

The total carbon stock in the pine forest area analyzed was composed of
AGB C, BGB C, DW C, and litter C pools. The results for the total carbon
analysis are presented in Table 2.6, Figure 2.11, and Figure 2.12. The
analysis shows that the total carbon stock in 2018 was approximately
19,002,000 Mg C, with an average of 64.4 Mg C ha’. The RMSE of the model

was 13.4MgCha™, the R? was 0.78, the CFE was 0.35, and the MAPE
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reached 21%. Of the total carbon stock stored, 75.8% (14,410,609 Mg C) was

in the National Park, while 18.4% (3,498,042 Mg C) was outside protected

areas, and 4.3% (824,182 Mg C) was stored in natural reserves (Table 2.7).

Detailed results on the carbon stored from the different pools and protected

area categories are available via a dashboard provided in Appendix A.

Table 2.6 Results of the accumulated carbon stock model, carbon stock for
the different pools estimated, and their error measures based on random
forest modeling.

Pool N Mg C Mg Chal R2 (%) MSE  RMSE (Mg Cha?l)  MAD CFE MAPE (%)
Total 51 19,002,000 66.9 78.1%  179.09 13.38 10.85 0.35 21.1%
AGB 51 12,098,753 433 755%  96.99 9.85 8.09 -7.83 24.8%
BGB 51 3,638,370 13.2 75.8% 7.41 2.72 2.08 -1.82 20.9%
DW 42 1,289,859 353 80.1%  12.33 351 1.97 16.11 175.0%
Litter 50 548,420 2.2 79.3% 1.96 1.40 0.90 -10.10 86.0%

Fuente: Elaboracion propia
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Observed, Estimated Values and Associated Estimation Error (Mg C ha-1)

Observed Estimated ------ Estimation error

Statistical summary
75% 9,8 43,33 354,20 166,02 51
Error measures
-7,83 8,09 96,99 24,82%
R

Figure 2.11. Carbon stored in the pine forests in 2018—a statistical summary
and the error measures used to evaluate the performance of the model via
random forest modeling.

Fuente: Elaboracién propia

Table 2.7 Results of the accumulated carbon stocks and carbon stock
models for the different pools in each protected area category.

Protected Area Category Mg C total Litter (Mg C) AGB (Mg C) DW (Mg C) BGB (Mg C)
Natural Monument 22,507 833 14,872 643 4,453
Natural Reserve 824,182 27,840 531,320 38,284 160,987
National Park 14,410,609 395,917 9,182,340 1,022,543 2,754,263
Protected Landscape 180,743 7,942 120,722 6,917 36,218
Strict Protection Area 64,857 2,075 42,030 2,454 12,592
Habitat/Species Management Area 1,058 35 692 24 205
Non-Protected Area 3,498,043 113,777 2,206,776 218,994 669,653

Fuente: Elaboracion propia
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Figure 2.12. Spatial distribution of the average predicted carbon stocks in
pine forests (zoomed in image of the national parks with the highest density
of pine forests) and the carbon prediction graph with a 95% confidence
interval: (a) total carbon; (b) litter C; (c) AGB C; (d) downed dead C; (e) BGB
C (Note: 1 Mgha-1=1 ton ha-1).

Fuente: Elaboracién propia
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2.3.3. Carbon degraded in the 1990-2018 period

The total carbon degraded in the pine forest area analyzed was 3,479,159
Mg C. Converting this degraded carbon into emission- and climate-related
units of COz-equivalent emissions (Metric tons CO2-equivalent units), the
emissions caused by the degradation of the pine forests in the period 1990—
2018 were 12,756,916 tCO2eq, with an annual average of 2.6 Mg C hatyr?
(9.5 tCO2eq hatyr?). Of the total degraded C stock, 73.9% (2,570,081 Mg C)
was found in National Park, while 2.9% (102,401 Mg C) and 22.8% (792,048
Mg C) of C were degraded in natural reserves and non-protected areas,
respectively (Table 2.8). Detailed results on the degraded carbon in pine
forests in the 1990-2018 period for the different pools and protected area

categories are provided in Appendix A.

Table 2.8 Results of degraded carbon for different pools per protected area

category.
Total Carbon Carbon (Mg) Carbon (Mg) Carbon (Mg) Carbon (Mg)
Protected Area Category
(Mg) Litter AGB DW BGB
Natural Monument 242 9 135 43 41
Natural reserve 102,401 2,584 55,559 18,834 17,320
National Park 2,570,081 61,449 1,404,486 595,785 423,726
Protected Landscape 8,512 297 4,743 1,440 1,482
Strict Protection Area 5,873 141 3,167 1,152 970
Habitat/Species Management
2 0 1 0 0
Area
Non-Protected Area 792,048 20,407 431,030 162,352 132,047

Fuente: Elaboracion propia
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Figure 2.13. Spatial distribution of degraded carbon (zoomed-in image of the
Sierra de Bahoruco National Park protected area with the highest
degradation): (a) total carbon; (b) AGB C; (c) BGB C; (d) DW C; (e) and litter
C in the pine forests of the Dominican Republic.

Fuente: Elaboracion propia
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2.4. Discussion

2.4.1. Validation of dynamic land cover change map from the 1990-2018

period.

Most of the countries that are part of the REDD+ mechanism do not
quantify or report their emissions caused by forest degradation [16]. Efforts to
find such a method have been great, and the challenge of obtaining accurate
estimates remains under investigation and debate in the scientific arena. One
of the main agreements in the measurement and monitoring of forest
degradation is that a long series of temporal and spatio—temporal observations
are required to detect disturbances in forest cover, which is why satellite
images like those from Landsat are key inputs to establish more robust MRV

systems for REDD+.

Using Landsat data in GEE, we developed a methodology to monitor pine
forest degradation in the tropics. This approach was determined to be precise,
with an overall 92.9% and 91% producer's accuracy in the degraded forest
class of the dynamic land use change map of pine forests in the Dominican
Republic. Our estimates of forest degradation are compatible with those of
other studies on a sub-national scale. For example, the OA obtained in
degradation and deforestation mapping in Rondénia, Brazil, was 91%, while
the producer's accuracy reached 68% in the forest degradation class [58]. In

the forests of the Brazilian Amazon, the OA in degradation and deforestation
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mapping was 92%, while the producer's accuracy was 80% in the forest
degradation class [68]. Another study on forest degradation estimation in
southeast Asia reported an OA of 78% using high-resolution satellite images
[80], while a study using SPOT images with spectral mixing models in the
eastern Amazon showed results that also indicated good agreement (86% OA)

[69].

The dynamic mapping analysis determined an efficient stratification in the
study area and allowed for an impartial estimation. Margins of error of 10.8%
were obtained when mapping forest degradation at a 95% confidence level.
Although the mapping of forest degradation in tropical forests is scarce in the
literature, we observed some consistency between our results and those of
other studies in the temporal scale, spatial and spectral resolution of the
images used, accuracy, and the use of vegetation index analysis as a method

to evaluate and map tropical forest disturbances.

Historical data collection on forest changes is a challenging task because
such data are not readily available everywhere, and temporal change data are
not detailed enough for the validation of time series maps. The current study
used the AREA2 algorithm developed by Bullock and Olofsson (2018) by
applying the Time Series Viewer. This is a sample interpretation tool used to
determine the reference labels derived from a mapped dataset. However, a

new challenge involved assessing the changes detected by the model. For this
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process, independent datasets were selected and assessed using CE [70].

The combination of these tools proved to be efficient in our study.

Using spectral index measures to validate the dynamic land cover change
map in our study allowed us to extend tele-interpretation techniques and
facilitated the visual detection of historical change processes, especially for
degraded forest detection. In other research, the NDFI was used to map
degradation; ultimately, the NDFI was found to be more sensitive to
disturbances from tropical forests than other spectral indices [71]. We use
different spectral indices to improve our estimates of forest degradation and
performed a regression analysis with random forest to determine the
importance of the indices in the constructed model. We found that the NDFI
and EVI were the main variables able to explain the model and thereby classify
areas with forest degradation for the 1990-2018 period (Figure 2.14a and

2.14b).
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Figure 2.14. Scatterplot of two spectral indices (EVI and NDFI); the points
represent the values of the most important variables used for land cover
change classification; (b) spectral index importance analysis used for
dynamic land cover change classification.

Fuente: Elaboracién propia

While the Dominican Republic has experienced a decrease in
deforestation in recent times, forest degradation has been on the rise. In our
study, we found that an area equivalent to 14% of pine forests of the Dominican
Republic was degraded between 1990 and 2018. This is a critical element that
must be considered for the development of a REDD+ program in the country.
The Dominican Republic established a FREL/FRL to obtain results-based
payments under the REDD+ mechanism supported by the FCPF. This includes
emissions and removal in the remaining forest land (emissions from forest
degradation) for the 2005—-2015 period [45]. In this sense, the methodology
proposed, and the results obtained in the current study, contribute directly to

monitoring and quantifying CO2, emissions and removal. Furthermore, this
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methodology is a valuable tool that can be used in other tropical countries to

monitor forest degradation.

2.4.2 Carbon model assessment

Forest inventory is an important source of information for a variety of
strategic purposes in forest management. Based on 51 carbon samples
obtained in pine forests, we generated a predictive regression model of the
carbon stored in AGB, BGB, DW, and litter. Satisfactory results were obtained
when applying the RF algorithm to estimate the total carbon stock in the study
area, obtaining an R? of 78.1% and an RMSE of 13.38 Mg C ha. It was
determined that 19,002,000 Mg C is stored in the pine forests, of which
3,479,159 Mg C was degraded (18% of C stock), which is equivalent to

124,255 Mg C yr! for the 1990-2018 study period.

We found some differences between our results and previous estimates;
for example, the MARN of the Dominican Republic estimated the local
emissions from forest degradation at a level of 182,937 Mg C yr%, including alll
forest classes, and at a level of 46,591 Mg C yr? specifically for pine forests
for the 2005-2015 reference period [48]. The differences between both
estimates are mainly due to the scale of monitoring (sub-national vs. national),
the methodology, the reference period, the algorithms used for image
processing and classification, and especially the differences in the accuracy

obtained between both estimates.
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These differences also suggest that between 1990 and 2005, the
degradation rate in the pine forest was much higher compared than that during
the period 2005-2015. This provides a new research opportunity to
understand the drivers of degradation that have decreased in the country.
However, we believe that the degradation estimates found in both studies differ
from each other due to the previously mentioned technical and methodological

factors.

A robust and transparent national forest monitoring system to monitor and
reporting five REDD+ activities is required [9]. Often, capabilities and national
circumstances prevent the monitoring and reporting of COzeq emissions and
their removal under the five REDD+ activities. In our study, the forest carbon
stock increases in forest lands that remain forest lands were not estimated for
the reference period due to the absence of information on the average annual
increase in biomass in the studied forest. This offers a new research
opportunity for a "step-wise" approach that will allow estimate net COzeq
emissions as part of one of the five REDD+ activities called “enhancement of

forest carbon stocks”.

2.4.3 Google Earth Engine Platform

The processing and analysis of the data from our study was accomplished

using the JavaScript API via the code editor of the GEE platform. Using GEE,
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the processing time efficiency increased, and satisfactory results were
obtained (see the GEE code developed for this study in Appendix B). GEE is
considered a multidisciplinary tool; since 2017, its application has increased
notably, especially in land-use mapping and water resources. Landsat images
(82%), the RF algorithm (52%), and the NDVI spectral indices are the most

frequently used methods in recent studies related to vegetation [72].

In our study, we faced a series of complexities in the detection of forest
degradation, especially since a very detailed approach is required. This
approach involves detecting the reduction or modifications in the forest
structure that are not considered a total loss over an extended period of time
and at a large scale. Using the characteristics of the GEE platform by
extracting spectral characteristics from satellite images, it was possible to

satisfactorily solve the main challenges we encountered.

The methodology proposed here was able to detect the dynamics of
change in land use and forest degradation. While there is room to improve the
methodology, the use of GEE with its computing capacity and the availability
of free satellite images provide powerful support for mapping forest
degradation. Additionally, GEE allowed us to quantify the carbon stored until
2018 and the degraded carbon in four pine forest pools. Thus, this method
could become a key monitoring tool (at the sub-national and national levels).
Moreover, this tool will allow authorities to monitor forest degradation

according to indicator 15.3.1 of the Sustainable Development Goals (SDGSs),
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which defines the area of degraded land and will serve as an essential element
for developing national MRV systems for REDD+ strategy implementation and
supporting the report on GHG emissions of the United Nations Framework
Convention on Climate Change (UNFCCC) in an efficient, robust, and

transparent manner.

2.5. Conclusions

The current study developed and applied a methodology for forest
degradation mapping based on available data from the Open Access Landsat
and the GEE platforms. Additionally, GEE was used in combination with tools
such as SEPAL and CE by the FAO. The main objective was to estimate the
degraded pine forest area and quantify the degraded carbon for a period of 28
years (1990-2018) by applying machine learning models such as Random

Forest.

The methodology applied in this study shows new possibilities for forest
degradation monitoring and estimating CO2 emissions from forest degradation
using spectral information derived from Landsat archives and data from the
forest inventory; combining both sources of information can also help improve

the MRV systems for the REDD+ mechanism.

The model assessment revealed a dynamic land change map with a

cumulative overall accuracy of 92%, in relevant classes (such as forest
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degradation) with a UA of 70.7%, and a PA of 91.2%. A carbon stock model
was also developed with an R? of 79% to estimate degradation in terms of the
Mg C ha?l. The applied models were built, trained, and validated to
demonstrate the efficiency of the methodology. The results obtained indicate
that this methodology can be an especially useful tool for time series

processing to map forest degradation by applying technologies such as GEE.

GEE has excellent potential for the "wall to wall* forest degradation
mapping of tropical pine forest ecosystems. More research is still required to
assess the ability of GEE to map degradation in broadleaf forests and dry
forest ecosystems by applying Machine Learning techniques combined with
spatial data and field measurements. The approaches presented herein could
become a key tool for measuring and monitoring emissions from forest

degradation in the tropics.
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Appendix A

A consolidation of the results obtained is available on a dashboard with free
online access called "Accuracy assessment and analysis tools". This
dashboard presents assessments of the dynamic land cover change, the
spectral mixture analyses from Landsat, the error matrix, the carbon model,
and all the results obtained. The dashboard allows users to pose questions
and filter graphic and alphanumeric data with a geographic viewer. The

dashboard is available at the following link: Accuracy assessment and analysis

tools
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Appendix B

The codes developed in this study using the GEE cloud-based computing

platform are available at the following link: Degradation code

Appendix C

Table 2.9 Spectral indices used for forest degradation mapping.

Spectral Indices Equation
' . : NIR — Red
Normalized Difference Vegetation Index NDVI = ( ) 4)
(NDVI) [73] (NIR + Red)
npsvy, =2 =5
Normalized Difference Spectral Vector U Bi + Bj 15
(NDSV) [74] (15)
Where B; and B; are two generic bands.
Enh d Vegetation Index (EVI) [50] EVI G (NIR + Red) (16)
nhanced Vegetation Index =Gx
(NIR + C1 x Red — C2 x Blue + L)
Soil Adjust Vegetation Index (SAVI) [51] SAVI (NIR — Red) a+Ln 17)
oi ust Vegetation Index = %
st ves (NIR + Red + L)
NDBI = (MIR — NIR)
" (MIR + NIR)
Index-Based built-up Index (IB) [52] SAVI (NIR = Red)(1 + 1) (18)
ndex-Based built-up Index =
P (NIR + Red + 1)
MNDWI = (Green — MIR)
" (Green + MIR)
Near-infrared reflectance of vegetation NIRv = (NDVImedian monthly — 0-08) x NIRmedian monthly 9
(NIRv) [75] )
NDEI = GVshage — (NPV + Soil)
Normalized Difference Fraction Index GVsanae + NPV + Soil 20
(NDFI) [52] (20)
GV
Where: GVspade = T00—Shade

Fuente: Elaboracion propia
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Appendix D

Table 2.10 Reference field: National Forest Inventory (NFI) collected by the
Ministry of the Environment and Natural Resources (MARN) of the
Dominican Republic.
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AGB BGB Litter DW Total accumulated
ID Class Long Lat
(Mg C ha?) (Mg C ha?) (Mg C ha') (Mg C ha'?) (Mg C ha?)
1 Pine forest: low canopy cover density 18.6 7.9 0.4 0.0 375 -71.363 19.371
2 Pine forest: high canopy cover density 26.2 7.2 1.3 0.0 35.2 -71.642 19.321
3 Pine forest: low canopy cover density 12.4 4.6 0.5 0.3 22.2 -71.743 19.321
4 Pine forest: low canopy cover density 17.4 5.3 0.6 1.2 26.8 -71.354 19.330
5 Pine forest: low canopy cover density 34.8 11.3 0.6 2.2 56.1 -71.647 19.277
6 Pine forest: low canopy cover density 85.7 25.0 3.3 2.9 123.6 -71.158 19.272
7 Pine forest: low canopy cover density 56.4 15.3 2.6 2.7 77.4 -71.055 19.268
8 Pine forest: low canopy cover density 49.8 15.6 1.8 2.2 775 -71.122 19.284
9 Pine forest: low canopy cover density 41.8 12.0 0.9 7.7 65.2 -71.252 19.270
10 Pine forest: high canopy cover density 43.0 13.2 4.6 25 69.3 -70.589 19.212
11 Pine forest: low canopy cover density 29.6 10.3 0.4 0.1 49.1 -71.001 19.191
12 Pine forest: high canopy cover density 58.4 17.5 4.1 0.5 86.8 -71.054 19.107
13 Pine forest: high canopy cover density 27.3 8.5 34 0.8 43.7 -70.936 19.146
14 Pine forest: high canopy cover density 64.1 20.2 3.8 0.8 99.8 -70.881 19.134
15 Pine forest: high canopy cover density 68.4 20.6 1.4 4.4 102.8 -71.033 19.119
16 Pine forest: low canopy cover density 60.3 17.9 5.0 3.7 92.7 -70.478 19.124
17 Pine forest: low canopy cover density 59.8 17.3 .2 2.4 84.8 -70.488 19.134
18 Pine forest: low canopy cover density 234 9.2 0.9 4.0 48.3 -71.073 19.131
19 Pine forest: low canopy cover density 45.4 12.3 1.3 27.4 86.4 -70.717 19.125
20 Pine forest: low canopy cover density 29.9 8.1 0.3 0.0 38.2 -71.550 19.143
21 Pine forest: low canopy cover density 52.1 15.9 1.1 4.4 80.2 -71.017 19.154
22 Pine forest: high canopy cover density 53.5 15.2 1.3 4.9 77.9 -71.159 19.055
23 Pine forest: high canopy cover density 45.1 14.9 1.6 2.8 74.5 -70.679 19.046
24 Pine forest: low canopy cover density 39.6 12.6 0.8 0.0 60.1 -71.067 19.022
25 Pine forest: low canopy cover density 32.0 9.2 5.6 0.7 49.5 -70.706 19.066
26 Pine forest: low canopy cover density 78.7 22.2 3.0 2.9 110.2 -70.824 19.079
27 Pine forest: low canopy cover density 26.3 7.3 3.2 5.8 43.4 -70.941 19.039
28 Pine forest: low canopy cover density 35.9 11.0 2.6 29.3 83.4 -70.933 19.046
29 Pine forest: low canopy cover density 20.3 5.9 5.4 0.8 33.7 -70.775 19.061
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43.8
43.1
61.5
21.2
69.6
56.9
28.8
64.5
62.5
66.8
23.8
22.7
36.3
67.1
53.1
26.4
65.5
14.4
12.8
26.1
54.7
44.4

13.7
11.9
17.1
6.1
18.8
15.8
9.9
17.4
18.6
18.8
7.9
6.5
12.5
19.0
17.6
8.6
19.6
6.0
4.2
13.5
19.4
13.9

17.9
0.9
0.6
0.6
0.7
0.7
0.4
0.2
0.7
0.0
0.3
1.0
1.0
1.2
3.0
1.0
0.8
0.6
0.3
11
13
0.8

0.1
0.3
8.2
1.6
4.4
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0.1
0.0
0.9
0.2
0.0
0.0
13
11.0
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1.0
1.0
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0.9
1.7
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57.3
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30.8
93.6
86.5
47.2
82.1
89.3
88.5
37.3
31.8
60.9

101.6
86.7
42.4
94.1
29.1
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65.7
9.5
66.1

-70.769
-71.073
-71.167
-70.925
-70.975
-70.929
-71.148
-71.126
-70.738
-70.992
-70.770
-70.581
-70.590
-71.709
-71.662
-71.568
-71.625
-71.493
-71.584
-71.631
-71.534
-71.581

18.994
19.013
18.967
18.952
18.902
18.926
18.927
18.913
18.836
18.855
18.861
18.726
18.639
18.263
18.263
18.265
18.256
18.238
18.197
18.239
18.105
18.104

Fuente: Elaboracion propia
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Appendix E

Legend
Land Cover National Forest Inventory Plots
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Figure 2.15. Reference map of the National Forest Inventory (NFI) collected by
the Ministry of the Environment and Natural Resources (MARN) of the
Dominican Republic.

Fuente: Elaboracion propia
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Capitulo II: Glosario de abreviaturas, siglas y acronimos

AGB Aboveground biomass

BGB Belowground biomass

CCDC Continuous Change Detection and Classification algorithm
CE Collect Earth

CFE Cumulated Forecast Error

CODED Continuous Degradation Detection

CO2 Carbon dioxide

CVv Cross-validation

DBH Diameter at Breast Height

DW Deadwood

ERPD Emission Reduction Program Document

EVI Enhanced Vegetation Index

FAO United Nations Food and Agriculture Organization
FCPF Forest Carbon Partnership Facility

FRA Global Forest Resource Assessment

FREL/FRL Reference Emission Levels/Forest Reference Levels

GE Google Earth

GEE Google Earth Engine

GHG Greenhouse Gas Emissions

GV Green Vegetation

IPCC Intergovernmental Panel on Climate Change

LEDAPS Landsat Ecosystem Disturbance Adaptive Processing System

RF Random Forest

MAD Mean Absolute Deviation

MAPE Mean Absolute Percentage Error

MARN Ministry of the Environment and Natural Resources
m.a.s.| Meters Above Sea Level

Mg C Megagramme Carbon



ML
MRV
MSE
NDFI
NFI
NPs
NPV
OA
OLlI
PA
REDD+
RMSE
RS
SAVI
SDM
SRTM
SOC
™
UA
USGS

Machine Learning

Monitoring, Reporting, and Verification
Mean Square Error

Normalized Difference Fraction Index
National Forest Inventory

National Parks

INon-Photosynthetic Vegetation
Overall Accuracy

Operational Land Imager

Producer’s Accuracy

Reducing Emissions from Deforestation and Forest Degradation
Root-Mean-Square Error

Remote Sensing

Soil Adjust Vegetation Index
Stock-difference method

Shuttle Radar Topography Mission
Soil Organic Carbon

Thematic Mapper

User’s Accuracy

United States Geological Survey

86



2.6 References

10.

Friedl MA, Mclver DK, Hodges JCF, et al. Global land cover mapping from
MODIS: algorithms and early results. Remote Sensing of Environment.
2002 2002/11/01/;83(1):287-302.

Wulder MA, White JC, Goward SN, et al. Landsat continuity: Issues and
opportunities for land cover monitoring. Remote Sensing of Environment.
2008 2008/03/18/;112(3):955-969.

Pearson TRH, Brown S, Murray L, et al. Greenhouse gas emissions from
tropical forest degradation: an underestimated source. Carbon Balance
and Management. 2017 2017/02/14;12(1):3.

Harris NL, Brown S, Hagen SC, et al. Baseline Map of Carbon Emissions
from Deforestation in Tropical Regions. Science. 2012;336(6088):1573.

Chazdon RL, Brancalion PHS, Laestadius L, et al. When is a forest a
forest? Forest concepts and definitions in the era of forest and landscape
restoration. Ambio. 2016 2016/09/01;45(5):538-550.

Arana Pardo JI, Birdsey R, Boehm M, et al. IPCC Report on Definitions
and Methodological Options to Inventory Emissions from Direct Human-
induced Degradation of Forests and Devegetation of Other Vegetation
Types. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K ed.
Kanagawa, Japan: Institute for Global Environmental Strategies (IGES);
2003.

van der Werf GR, Morton DC, DeFries RS, et al. CO2 emissions from forest
loss. Nature Geoscience. 2009 11/01/online;2:737.

Metz B, Davidson R, Bosch R, et al. Climate Change 2007: Mitigation.
Contribution of Working Group Il to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. (Cambridge: Cambridge
University Press); 2007.

UNFCCC. Report of the Conference of the Parties on Its Sixteenth
Session, Held in Cancun From 29 November to 10 December 2010,
Addendum Part Two: Action Taken by the Conference of the Parties at Its
Sixteenth Session. 2011; Cancun, México.

Ochieng RM, Visseren-Hamakers 1J, Arts B, et al. Institutional
effectiveness of REDD+ MRV: Countries progress in implementing

87



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

technical guidelines and good governance requirements. Environmental
Science & Policy. 2016 2016/07/01/;61:42-52.

Goetz SJ, Hansen M, Houghton RA, et al. Measurement and monitoring
needs, capabilities and potential for addressing reduced emissions from
deforestation and forest degradation under REDD+. Environmental
Research Letters. 2015 2015/12/01;10(12):123001.

Milne R, Jallow P. Basis for Consistent Representation of Land Areas.
IPCC Good Practice Guidance for LULUCF2005.

Woodcock C. Free Access to Landsat Imagery Teach by the Book Science
Education. Science. 2008;80(320):1011-1012.

Hansen MC, Potapov PV, Moore R, et al. High-Resolution Global Maps of
21st-Century Forest Cover Change. Science. 2013;342(6160):850.

Herold M, Hirata Y, Laake PV, et al. A review of methods to measure and
monitor historical forest degradation. Unasylva. 2011;62:1-31.

Hosonuma N, Herold M, De Sy V, et al. An assessment of deforestation
and forest degradation drivers in developing countries. Environmental
Research Letters. 2012 2012/10/08;7(4):0440009.

Chambers JQ, Asner GP, Morton DC, et al. Regional ecosystem structure
and function: ecological insights from remote sensing of tropical forests.
Trends in Ecology & Evolution. 2007;22(8):414-423.

De Sy V, Herold M, Achard F, et al. Synergies of multiple remote sensing
data sources for REDD+ monitoring. Current Opinion in Environmental
Sustainability. 2012 2012/12/01/;4(6):696-706.

Woodcock CE, Macomber SA, Pax-Lenney M, et al. Monitoring large areas
for forest change using Landsat: Generalization across space, time and
Landsat sensors. Remote Sensing of Environment. 2001
2001/10/01/;78(1):194-203.

Zhu Z, Woodcock CE. Continuous change detection and classification of
land cover using all available Landsat data. Remote Sensing of
Environment. 2014 2014/03/25/;144:152-171.

Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-

scale geospatial analysis for everyone. Remote Sensing of Environment.
2017 2017/12/01/;202:18-27.

88



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Azzari G, Lobell DB. Landsat-based classification in the cloud: An
opportunity for a paradigm shift in land cover monitoring. Remote Sensing
of Environment. 2017 2017/12/01/;202:64-74.

Chen B, Xiao X, Li X, et al. A mangrove forest map of China in 2015:
Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google
Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry
and Remote Sensing. 2017 2017/09/01/;131:104-120.

Dong J, Xiao X, Menarguez MA, et al. Mapping paddy rice planting area in
northeastern Asia with Landsat 8 images, phenology-based algorithm and
Google Earth Engine. Remote Sensing of Environment. 2016
2016/11/01/;185:142-154.

Goldblatt R, Stuhlmacher MF, Tellman B, et al. Using Landsat and
nighttime lights for supervised pixel-based image classification of urban
land cover. Remote Sensing of Environment. 2018 2018/02/01/;205:253-
275.

Huang H, Chen Y, Clinton N, et al. Mapping major land cover dynamics in
Beijing using all Landsat images in Google Earth Engine. Remote Sensing
of Environment. 2017 2017/12/01/;202:166-176.

Orvis KH. The highest mountain in the Caribbean: Controversy and
resolution via GPS [Article]. Caribbean Journal of Science.
2003;39(3):378-380.

SEMARENA. Perfil nacional para evaluar las capacidades nacionales de
implementacion del Principio 10 de la Declaraciéon de Rio. Santo Domingo,
Republica Dominicana2008. p. 119.

Kennedy LM, Horn SP, Orvis KH. Modern pollen spectra from the
highlands of the Cordillera Central, Dominican Republic. Review of
Palaeobotany and Palynology. 2005 2005/11/01/;137(1):51-68.

Darrow WK, Zanoni T. HISPANIOLAN PINE (PINUS OCCIDENTALIS
SWARTZ) A LITTLE KNOWN SUB-TROPICAL PINE OF ECONOMIC
POTENTIAL. The Commonwealth Forestry Review. 1990;69(2 (219)):133-
146.

MARN. Analysis of the Direct and Indirect Drivers of Deforestation and

Forest Degradation (DD) in the Dominican Republic. Santo Domingo,
Dominican Republic2018. p. 161.

89



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

FAO. Global Forest Resources Assessment 2015. Rome: UN Food and
Agriculture Organization; 2015.

MARN, Feliz K, Rodriguez L, et al. Dominican Republic Reference
Emissions Levels/Forest Reference Levels Dominican Republic 2019. p.
71.

Romero-Sanchez ME, Ponce-Hernandez R. Assessing and Monitoring
Forest Degradation in a Deciduous Tropical Forest in Mexico via Remote
Sensing Indicators. Forests. 2017;8(9).

Thompson ID, Guariguata MR, Okabe K, et al. An Operational Framework
for Defining and Monitoring Forest Degradation. Ecology and Society.
2013;18(2).

Masek JG, Vermote EF, Saleous N, et al. LEDAPS Calibration,
Reflectance, Atmospheric Correction Preprocessing Code, Version 2.
ORNL Distributed Active Archive Center; 2013.

Vermote E, Justice C, Claverie M, et al. Preliminary analysis of the
performance of the Landsat 8/OLI land surface reflectance product.
Remote Sensing of Environment. 2016 2016/11/01/;185:46-56.

Zhu Z, Woodcock CE. Object-based cloud and cloud shadow detection in
Landsat imagery. Remote Sensing of Environment. 2012
2012/03/15/;118:83-94.

Foga S, Scaramuzza PL, Guo S, et al. Cloud detection algorithm
comparison and validation for operational Landsat data products. Remote
Sensing of Environment. 2017 2017/06/01/;194:379-390.

Goldblatt R, Rivera Ballesteros A, Burney J. High Spatial Resolution Visual
Band Imagery Outperforms Medium Resolution Spectral Imagery for
Ecosystem Assessment in the Semi-Arid Brazilian Sertdo. Remote
Sensing. 2017;9(12).

Farr TG, Rosen PA, Caro E, et al. The Shuttle Radar Topography Mission.
Reviews of Geophysics. 2007 2007/06/01;45(2).

Tan B, Masek JG, Wolfe R, et al. Improved forest change detection with
terrain illumination corrected Landsat images. Remote Sensing of
Environment. 2013 2013/09/01/;136:469-483.

Flood N. Seasonal Composite Landsat TM/ETM+ Images Using the
Medoid (a Multi-Dimensional Median). Remote Sensing. 2013;5(12).

90



44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

4.

55.

developers G. Compositing and Mosaicking | Google Earth Engine |
Google Developers. 2019.

MARN. Emission Reductions Program Document (ER-PD), Dominican
Republic. Santo Domingo, Dominican Republic2019. p. 368.

Milla F, Diaz R, Emanuelli P. National Multipurpose Forest Inventory of the
Dominican Republic 2014-2015. Planning and protocol elements for

measurement operations. Available
. http://lwww.reddccadgiz.org/documentos/doc 1313366786.pdf. El
Salvador2014.

Emanuelli P, Gonzales J, Nufiez J, et al. National Forest Inventory of the
Dominican Republic 2018. Final report (ESP). Available
. http://www.reddccadgiz.org/documentos/doc_1984105887.pdf. = Santo
Domingo, Dominican Republic2018. p. 389.

MARN, Vargas O. Dominican Republic Reference Emissions
Levels/Forest Reference Levels Dominican Republic 2018. p. 71.

Hansen MC, Defries RS, Townshend JRG, et al. Global land cover
classification at 1 km spatial resolution using a classification tree approach.
International Journal of Remote Sensing. 2000 2000/01/01;21(6-7):1331-
1364.

Huete AR, Liu HQ, Batchily K, et al. A comparison of vegetation indices
over a global set of TM images for EOS-MODIS [Article]. Remote Sensing
of Environment. 1997;59(3):440-451.

Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sensing of
Environment. 1988 1988/08/01/;25(3):295-309.

Souza CM, Roberts DA, Cochrane MA. Combining spectral and spatial
information to map canopy damage from selective logging and forest fires.
Remote Sensing of Environment. 2005 2005/10/15/;98(2):329-343.

Breiman L. Random Forests. Machine Learning. 2001 2001/10/01;45(1):5-
32.

Ma W, Domke GM, Woodall CW, et al. Contemporary forest carbon
dynamics in the northern U.S. associated with land cover changes.
Ecological Indicators. 2020 2020/03/01/;110:105901.

Swingland IR, Bettelheim EC, Grace J, et al. Measuring, monitoring, and
verification of carbon benefits for forest—based projects. Philosophical

91


http://www.reddccadgiz.org/documentos/doc_1313366786.pdf
http://www.reddccadgiz.org/documentos/doc_1984105887.pdf

56.

S57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Transactions of the Royal Society of London Series A: Mathematical,
Physical and Engineering Sciences. 2002 2002/08/15;360(1797):1669-
1683.

MARN. Manual de Campo Inventario de Biomasa y Carbono en Sistemas
No Bosque. Santo Domingo, Dominican Republic2017.

Feliz K, Rodriguez L, Galan M, et al. Dominican Republic Reference
Emissions Levels/Forest Reference Levels Dominican Republic 2019. p.
71.

Bullock EL, Woodcock CE, Olofsson P. Monitoring tropical forest
degradation using spectral unmixing and Landsat time series analysis.
Remote Sensing of Environment. 2018 2018/11/28/:110968.

Zhu Z, Woodcock CE, Olofsson P. Continuous monitoring of forest
disturbance using all available Landsat imagery. Remote Sensing of
Environment. 2012 2012/07/01/;122:75-91.

Pasquarella VJ, Bradley BA, Woodcock CE. Near-Real-Time Monitoring of
Insect Defoliation Using Landsat Time Series. Forests. 2017;8(8).

Tang X, Bullock EL, Olofsson P, et al. Near real-time monitoring of tropical
forest disturbance: New algorithms and assessment framework. Remote
Sensing of Environment. 2019 2019/04/01/;224:202-218.

GOmez C, White JC, Wulder MA, et al. Historical forest biomass dynamics
modelled with Landsat spectral trajectories. ISPRS Journal of
Photogrammetry and Remote Sensing. 2014 2014/07/01/;93:14-28.

Arlot S, Celisse A. A survey of cross-validation procedures for model
selection. Statist Surv. 2010 2010;4:40-79.

Olofsson P, Foody GM, Herold M, et al. Good practices for estimating area
and assessing accuracy of land change. Remote Sensing of Environment.
2014 2014/05/25/;148:42-57.

GFOI. Integration of remote-sensing and ground-based observations for
estimation of emissions and removals of greenhouse gases in forests:
Methods and Guidance from the Global Forest Observations Initiative.
Edition 2.0 ed. Rome: Food and Agriculture Organization; 2016. p. 226.

Tondapu G, Markert K, Lindquist EJ, et al. A SERVIR FAO Open Source
Partnership: Co-development of Open Source Web Technologies using

92



67.

68.

69.

70.

71.

72.

73.

74.

75.

Earth Observation for Land Cover Mapping. AGU Fall Meeting Abstracts;
December 01, 20182018. p. IN21B-27.

Bey A, Sanchez-Paus Diaz A, Maniatis D, et al. Collect Earth: Land Use
and Land Cover Assessment through Augmented Visual Interpretation.
Remote Sensing. 2016;8(10).

Souza C, Siqueira VJ, Sales HM, et al. Ten-Year Landsat Classification of
Deforestation and Forest Degradation in the Brazilian Amazon. Remote
Sensing. 2013;5(11).

Souza C, Firestone L, Silva LM, et al. Mapping forest degradation in the
Eastern Amazon from SPOT 4 through spectral mixture models. Remote
Sensing of Environment. 2003 2003/11/15/;87(4):494-506.

Saah D, Johnson G, Ashmall B, et al. Collect Earth: An online tool for
systematic reference data collection in land cover and use applications.
Environmental Modelling & Software. 2019 2019/08/01/;118:166-171.

Schultz M, Clevers JGPW, Carter S, et al. Performance of vegetation
indices from Landsat time series in deforestation monitoring. International
Journal of Applied Earth Observation and Geoinformation. 2016
2016/10/01/;52:318-327.

Tamiminia H, Salehi B, Mahdianpari M, et al. Google Earth Engine for geo-
big data applications: A meta-analysis and systematic review. ISPRS
Journal of Photogrammetry and Remote Sensing. 2020
2020/06/01/;164:152-170.

Sobrino JA, Raissouni N. Toward remote sensing methods for land cover
dynamic monitoring: Application to Morocco. International Journal of
Remote Sensing. 2000 2000/01/01;21(2):353-366.

Trianni G, Lisini G, Angiuli E, et al. Scaling up to National/Regional Urban
Extent Mapping Using Landsat Data. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing. 2015;8(7):3710-3719.

Badgley G, Field CB, Berry JA. Canopy near-infrared reflectance and
terrestrial photosynthesis. Science Advances. 2017;3(3):e1602244.

93



lll. DIGITAL MAPPING OF SOIL ORGANIC CARBON STOCKS IN THE
FOREST LANDS OF DOMINICAN REPUBLIC

Enviado para publicacion (junio 2021) en: European Journal of Remote Sensing
ISSN: 2279-7254

94



Digital mapping of Soil Organic Carbon Stocks in the forest lands of
Dominican Republic

Efrain Duarte 2°, Erick Zagal 2*, Juan A. Barrera 2, Francis Dube ¢, Fabio Casco
d and Alexander J. Hernandez ©.

a Department of Soils and Natural Resources, Faculty of Agronomy, University of Concepcion,
Vicente Méndez 595, Casilla 537, Chillan 3812120, Chile; efrainduarte@udec.cl (E.D.);
jbarrera@udec.cl (J.A.B.).

b Faculty of Agronomy, University of Concepcion, Vicente Méndez 595, Casilla 537, Chillan
3812120, Chile.

¢ Department of Silviculture, Faculty of Forest Sciences, University of Concepcion, Victoria 631,
Casilla 160-C, Concepcion 4030000, Chile; fdube@udec.cl

d Food and Agriculture Organization (FAO) of the United Nations, Tegucigalpa, Honduras;
fabio.cascogutierrez@fao.org

¢ United States Department of Agriculture, Agricultural Research Service, Utah State University,
Logan, UT 84322-6300, USA, alexander.hernandez@usda.gov

* Correspondence: ezagal@udec.cl; Phone.: +569-42-2208853.

Abstract

Mapping the spatial distribution of soil organic carbon (SOC) in lands covered
by tropical forests is important to understand the relationship and dynamics of
SOC in this type of ecosystem. In this study, the Random Forest (RF) algorithm
was used to map SOC stocks of topsoil (0-15 cm) in forest lands of the Dominican
Republic. The methodology was developed using geospatial datasets available
in the Google Earth Engine (GEE) platform combined with a set of 268 soil
samples. Twenty environmental covariates were analyzed, including climate,
topography, and vegetation. The results indicate that Model A (combining all 20
covariates) was only marginally better than Model B (combining topographic and
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climatic covariates), and Model C (only combining multispectral remote sensing
data derived from Landsat 8 OLI images). Model A and Model B yielded SOC
mean values of 110.35 and 110.87 Mg C ha™l, respectively. Model A reported the
lowest prediction error and uncertainty with an R? of 0.83, an RMSE of 35.02 Mg
C hal. There was a strong dependence of SOC stocks on multispectral remote
sensing data. Therefore, multispectral remote sensing proved accurate to map

SOC stocks in forest ecosystems in the region.

Keywords: Random Forest; Landsat; Machine Learning; Tropical Forest;

Environmental Covariates, Google Earth Engine.
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Fuente: Elaboracion propia

3.1 Introduction

Soils hold the largest carbon (C) pool on Earth after the oceans, with an
estimated total of 1,500-2,400 Pg C up to 1 m depth (Scharlemann et al., 2014;
Tifafi et al., 2018). Soil organic carbon (SOC) directly influences the
physicochemical properties nutrient retention capacity and infiltration rate of the
soil (Scholten et al., 2017; Viscarra Rossel et al., 2016). In addition, SOC has the
potential to mitigate the adverse impacts of current and future climate change
(Edenhofer et al., 2014) and help improve the primary productivity of the

biosphere (Grinand et al., 2017).
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The Global Climate Observing System (GCOS) has identified 54 Essential
Climate Variables (ECVs), including components of the cryosphere, biosphere,
and hydrosphere that are “needed to understand and predict the evolution of
climate, to guide mitigation and adaptation measures, to assess risks and enable
attribution of climate events to underlying causes, and to underpin climate
services” (WMO, 2020). The present work focuses on one of these ECVs, SOC

stocks, particularly those stored in lands covered by tropical forests.

The global C stocks in forest biomass and their spatial distribution are
relatively well documented and have been estimated with reasonable accuracy
compared to SOC stocks (Baccini et al., 2012; Harris et al., 2012; Ruesch, A.,
Gibbs, 2008; Saatchi et al., 2011). Most local and international policies for climate
change mitigation have focused on conserving and studying the C stored in
forests. In addition to this, SOC is of great importance because the Earth’s soils
store two-to-three times as much carbon in organic form as there is C in the
atmosphere globally (Trumbore, 2009). In this sense, the construction of a robust
and transparent system to measure, report and verify (MRV) SOC changes
represents a key tool to support compliance with the Sustainable Development
Goals (SDG), specifically the SDG indicator 15.3.1 “Proportion of land that is

degraded over the total land area” (FAO, 2020a; Jan & Jeffrey, 2018).
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At present, there is still uncertainty about the amount of global SOC stocks
and their spatial distribution, mainly due to the little attention given by decision
makers at the local, national and international levels (Gianelle et al., 2010). In an
analysis and review of 27 studies that estimated SOC globally, it was found that
the SOC mean value is approximately 1,460.5 Pg C, ranging from 504 to 3,000
Pg C (Scharlemann et al., 2014). One of the main reasons for the uncertainties
found in these estimates is the large number of factors that interfere in SOC
dynamics combined with all the uncertainties leading to error propagation
associated with the difficulty in assessing C and soil bulk density (Kochy et al.,

2015).

Even though there is scientific interest in monitoring forests and soils, there
is a lack of data to carry out efficient monitoring and determine the current state
of these resources (Liang et al., 2016). In 2017, the Food and Agriculture
Organization (FAO), the Intergovernmental Technical Panel on Soils (ITPS), the
Intergovernmental Panel on Climate Change (IPCC), the Global Soil Partnership
(GSP), the Science-Policy Interface of the United Nations Convention to Combat
Desertification (UNCCD-SPI), and the World Meteorological Organization (WMO)
jointly organized a Global Symposium on Soil Organic Carbon. This symposium
provided guidelines for developing efficient systems and protocols for measuring
SOC with higher accuracy (FAO, 2020a). In the last decade, digital soil mapping

(DSM) approaches have focused on mapping SOC using remote sensing
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techniques as the main emerging tool to improve spatial estimates of SOC

(Mahmoudzadeh et al., 2020; Padarian et al., 2019).

DSM allows quantifying the spatial variation of SOC stocks using
environmental covariates (Zhang et al., 2017), which describe the relationship of
a soil attribute and its spatially implicit forming factors (Jenny, 1941). The
environmental auxiliary variables of SOC can be obtained from digital elevation
models (DEM) (Farr et al., 2007; B. Wang et al., 2018), remote sensing data
(Duarte et al., 2020; Wulder et al., 2016; Xiao et al., 2019) and climatic data
(Ermida et al., 2020; Veronesi & Schillaci, 2019). The easy accessibility of satellite
images combined with Machine Learning (ML) techniques has significantly
improved the accuracy of SOC mapping. In a review of 120 studies on SOC
mapping, in which different ML techniques were applied, it was found that the
Random Forest (RF) algorithm has optimum performance in the selection of
environmental covariates for SOC mapping. At the same time, it also behaves
better than other ML techniques and Multiple Linear Regression (MLR)

(Lamichhane et al., 2019).

There are few studies on SOC mapping of Dominican Republic lands. The
main report comes from the Global Soil Organic Carbon Map (GSOCmap)
launched by FAO. In fact, GSOCmap represents the first global estimation of SOC

content carried out with a participatory approach to compile all the available data
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on soils at the national level (FAO & ITPS, 2020). With regard to the tropics, SOC
estimates are very limited on forest lands since most of the research has focused

on estimating SOC from agricultural lands.

The objective of this study was to estimate SOC content in forest lands of
the Dominican Republic and their spatial distribution by applying ML techniques,
a dataset of environmental covariates obtained from remote sensing (RS) and
field data. We compared the influence of three groups of predictive variables for
SOC mapping: (1) multispectral remote sensing variables, (2) topographic
variables, and (3) climatic variables. The performance of the ML model was also
evaluated. Our model was implemented in the Google Earth Engine (GEE) cloud-

based computing platform (Gorelick et al., 2017).

3.2. Materials and methods

The overall structure of the method (Figure 3) consisted of five stages such
as: (i) selection of a geospatial dataset; (ii) data pre-processing; (iii) model
building/development; (iv) evaluation of the model performance; and (v) mapping

of SOC.
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3.2.1. Study area

The study was carried out in the island of Hispaniola (central region of the
Caribbean), Dominican Republic. It corresponds to forest lands located between
17°36' and 19°58' latitude north, and 68°19" and 72°01' longitude west, belonging

to the Greater Antilles. The territory of the country covers 48,198 km? (Figure 3.2).

The Dominican Republic has a tropical climate, which is altered only by the
Alyssian winds of the Atlantic and topographical factors of the island. The average
annual temperature is 25° C, with August being the hottest month and January
the coldest. Precipitation is distributed in two seasons: a rainy season, which goes
from April to June and from September to November, with precipitation of 2,500
mm yrt; and a dry season, which goes from December to March, with precipitation
of 450 mm yr1. On the island, the areas with the highest humidity are in the north
because they are influenced by the Atlantic Ocean, while the driest areas are

found to the south, along the Caribbean coast (Cano-Ortiz et al., 2015).
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Fuente: Elaboracién propia

The country’s native forests (Figure 3.3) include pine, broadleaf, dry and
mangrove forests. Pine forests are primarily made up of Pinus occidentalis, a
species endemic to the island (Kennedy et al., 2005). The composition of the
broadleaf forests is diverse, with species such as Swietenia mahagoni, Ocotea
spp., Sloanea berteriana, Didymopanax tremulus, and Clusia rosea. Dry forests
include various species such as Guaiacum officinale, Phylostilum braziliensis, and
Prosopis julifora, while mangrove forests are composed of Avicennia germinans,
Laguncularia racemosa, Conocarpus erectus and Rizophora mangle (MARN,
2019). Shrubland and herbaceous vegetation can also be found (Martin & Fahey,

2006).
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The soils are divided into 10 classes based on characteristics such as
depth, slope, and drainage. Soil classes correspond to savannah, non-calcareous
clay and calcareous soils as well as soils derived from igneous rocks, soils of
volcanic and metamorphic origins, recent alluvial soils, organic soils, wetlands,
coastal beaches and dunes (MARN, 2012). Our study focused on soils covered

by pine, broadleaf, dry and mangrove forests, covering an area of 14,499 km?.

3.2.2. Reference data

3.2.2.1. Forest mask

To estimate SOC stocks, the study area was defined with a forest mask. For
this, we used the land cover map prepared in 2015 by the Ministry of the
Environment and Natural Resources (MARN) of the Dominican Republic. On this
map, the concept of forest was applied in accordance with the FAO Forest
Resources Assessment (FRA-FAO) defined by the country as “Natural or planted
ecosystem of at least 0.5 hectares covered by trees higher than 5 meters and with
a canopy cover of more than 40%” (FAO, 2020b). Forest types (Figure 3.3) that
are part of this study are defined as follows (MARN, 2012):

Broadleaf forests: represented by trees where the combination of broad-
leaved species predominates; it comprises plant communities from semi-humid in
transition to cloudy. It is the type of forest with the largest existence in the country.

It is classified as cloudy broadleaf forest, located in areas with elevations from
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600 to 2,300 m above sea level (m.a.s.l.); moist broadleaf forest in areas with
elevations from 300 to 1,500 m.a.s.l. and semi-humid broadleaf forest located in
areas with elevations up to 900 meters above sea level, or m.a.s.l.

Dry forests: mostly secondary forest; they are composed of semi-
deciduous trees that develop at elevations below 500 m.a.s.l. The greatest
presence of these forests is located in the lowlands, both south-southwest and
northwest of the country.

Pine Forests: composed of pine species. The authentic Dominican pine
forest is located especially in the highlands and the dominant species is Pinus
occidentalis, which is found in the large mountain ranges with elevations above
2,000 m.a.s.l. The pine forest has two types of cover: high and low canopy cover
density.

Mangrove forests: Coastal and wet ecosystems found in swampy and
flooded regions; they mainly belong to the Rhizophoraceae family, with exposed

supporting roots. This forest is located at elevations below 20 m.a.s.l.
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Figure 3.3 Map of soil sample location and forest types of the Dominican
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3.2.2.2 Soil organic carbon database

In this study, 268 soil samples from the National Forest Inventory (NFI) were
used. The NFI was collected in 2018 by the MARN of the Dominican Republic
with the support of the REDD/CCAD-GIZ program and the World Bank’s Forest
Carbon Partnership Facility (FCPF) (available in:

https://www.sica.int/documentos/inventario-forestal-nacional-de-republica-

dominicana_1 126744.html) (MARN, 2021). The sampling design adopted by the

NFI corresponds to stratified sampling for each forest stratum. For building the
NFI, the methodology proposed by the REDD/CCAD-GIZ program was used

(Feliz et al., 2019; MARN, 2021).
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Data used were taken from 268 plots located in the different forest types
(Figure 2) (Table 1). Each soil sample was collected from the NFI at a depth of 0
to 15 cm and their geographic coordinates were recorded with a global positioning
system device (GPS). In the NFI, SOC data were reported with an extrapolation
from depth of 0 to 15 cm. The samples were numbered, bagged, and brought
back to the Laboratory of Soils and Water of the Dominican Institute of Agricultural
and Forestry Research Agricultural Technology Center (CENTA) and the
Dominican Agribusiness Laboratory (LAD). After drying, the samples were
weighed and passed through a 2-mm sieve. The determination of SOC content
(Mg C ha) is based on the Walkley & Black chromic acid wet oxidation method

(Walkley & Black, 1934).

Bulk density (BD) was determined on subsamples dried at 105 °C as
described by (Dane Topp G. Clarke. Campbell Gaylon S., 2002). Results were
reported as g cm-3 on an oven-dry basis and SOC was reported as g (100 g).
Soil organic carbon stock (SOCS) was computed as the product of three
variables, organic carbon content (C), bulk density (BD), and thickness (D). SOCS
was calculated according to equation 1:

_ gravel [%]) )

SOCyppex = C X BD X D X (1 00
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Where C is the concentration of soil carbon (g C (100g)-1); BD is bulk
density (g cm-3), D is the thickness of the layer (cm), gravel [%] is the percentage

of gravel in the soil sample.

Table 3.1 shows the descriptive statistics of SOC (0 — 15 cm depth)
samples collected from the NFI. SOC contents ranged from 15.95 to 282.38, with
a mean value of 110.35 and a median of 101.34 Mg C ha™. The coefficient of
skewness is -0.46 Mg C ha'. The sampling point’s standard deviation (SD) is

63.78 Mg C ha! and is lower than the mean value.

Table 3.1 Descriptive statistics of soil organic carbon (SOC) stocks (Mg C hat)
(0—15 cm depth) collected from the National Forest Inventory (NFI).

SOC (Mg C ha')

Description n Mean Median Min Max SD Skewness Kurtosis
Dry forest 52 126.47 124.97 18.88 282.38 64.02 0.49 -0.12
Pine forest 43 69.68 57.64 19.78 187.81 41.53 1.03 0.34
Broadleaf forest 129 105.57 94.64 15.95 274.49 61.93 0.65 -0.30
Mangrove forest 44 145.06 140.53 27.92 261.87 63.43 -0.07 -0.88
Total forest 268 110.35 101.34 15.95 282.38 63.78 0.57 -0.46

Note: Min: minimum; Max: maximum; SD: standard deviation

Fuente: Elaboracion propia

Once the forest mask and environmental variables was defined, a method to

estimate SOC content in forest soils with a geospatial dataset was developed,

108



they were combined with the

soil samples collected in the field, and a regression

model was applied for each of the three models; the covariates were divided using

the RF algorithm in the GEE

platform; finally, the models were evaluated and the

spatial distributions and SOC stock map was built (Figure 3.4).
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3.2.2.3 Environmental predictors

For the digital mapping of SOC, we selected 20 accessible and commonly
used predictive environmental dataset covariates, which represent key factors for
the spatial distribution and formation of SOC content such as: vegetation, soll,
topography, and climate (McBratney et al., 2003). These covariates represent
factors of soil formation according to (Jenny, 1941). Further spectral vegetation
indices (SVIs) were calculated using Landsat-8 images (Table 2). From the
combination of these dataset covariates with data soil samples, three models with
different combinations of predictive variables were built, using the RF algorithm
for the digital mapping of SOC. The models were as follows:

e Model A: Multispectral remote sensing variables + topographic variables

+ climatic variables.

e Model B: Topographic and climatic variables.

e Model C: Multispectral remote sensing variables.

For each of the models, the RF algorithm was applied, and its accuracy
was evaluated. The relative importance of the variables in the model was also
assessed. All the datasets were obtained and processed in the GEE cloud-based

platform.
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3.2.2.3.1 Multispectral imagery

We used Landsat 8 collection 1 Tier 1 Operational Land Imager (OLI) surface
reflectance data with 16 days and 30 m resolutions, available in the GEE platform,
using the Landsat Digital Number (DN) values, representing scaled, calibrated at-
sensor radiance; GEE collection snippet:

ee.ImageCollection("LANDSAT/LO08/C01/T1_RT").

All Landsat-8 OLI surface reflectance data from the year 2018 £ 0.5 (available
in the GEE platform) were used in this study: a total of 92 images from path 123
and row 32; 89 images from path 125; and row 34 and 94 images from path 125
and row 33. Landsat surface reflectance data were atmospherically corrected
using the Landsat Surface Reflectance Corrected (LaSRC) (OLI) algorithms
(Masek et al., 2013); We used methods provided by Earth Engine for filtering
image collections using the code "imageCollection.filterDate()" and we built a
composite mosaic multiband and multi-date formed by combining spatially
overlapping images into a single image based on a function of multiple spectral
and temporal aggregation ranges; compositing in GEE refers to the process of
combining spatially overlapping images into a single image based on an
aggregation function, and mosaicking refers to the process of spatially assembling
image datasets to produce a spatially continuous image (GEE Developers, 2021).

(For more details see GEE codes developed in this study available in Appendix A
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or visit https://developers.google.com/earth-

engine/quides/ic composite mosaic)

The CFmask algorithm was used to mask cloud and shadow produced, as
well as a per-pixel saturation mask (Zhu & Woodcock, 2012). In addition, the
empirical Earth rotation model (ERM) was used as a basis to perform a terrain
illumination correction algorithm (Tan et al., 2013), which allowed conducting the
topographic correction for each image. For reflectance images, we used the

medoid method (Flood, 2013).

Following radiometric, geometric, and atmospheric corrections, digital
numbers for the blue (B1), green (B2), red (B3), near-infrared (B4), and shortwave
IR-2 bands (B6) were extracted. Several spectral indices were then calculated:
The Bare Soil Index (BSI), the Normalized Difference Vegetation Index (NDVI),
the Soil-Adjusted Vegetation Index (SAVI), the Index-Based built-up Index (IBI),
the Enhanced Vegetation Index (EVI) and the Green Normalized Difference
Vegetation Index (GNDVI) with a spatial resolution of 30 m. (Table 3.2) and

(Figure 3.5).
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Table 3.2 Predictive covariates derived from Landsat 8 OLI.

Dataset (Covariates) Abbr. Formula References
Remote Sensing-derived
covariates
Normalized Difference NDVI I (NIR — Red) (Sobrino &
Vegetation Index (NIR + Red) Raissouni, 2000)
Enhanced Vegetation £V Vi 25 (NIR + Red) (Huete et al.,
=25 %
Index (NIR+6 * Red —7.5 = Blue + L) 1997)
SollAdjusted Vegetation SAVI SAVI (NIR ~ Red) (1+1L) (Huete, 1988)
- % ,
Index (NIR + Red + L)
Index-Based built: Ind 1BI IBl = NDBI = (SAVI + MNDWI)/2 Xu, 2008
ndex-based buit-up Index " NDBI + (SAVI + MNDWI)/2 xu, )
. (SWIR1 + Red) — (NIR + Blue) (Piyoosh & Ghosh,
Bare Soil Index BSI =
(SWIR1 + Red) + (NIR + Blue) 2018)
Green Normalized
. . (NIR — Green)
Difference Vegetation GNDVI GNDVI] = —F— Alba et al., 2017
9 (NIR + Green) ( )
Index
Near-infrared reflectance NIRv = (NDVlyeqian monthiy (Badgley et al.,
NIRv
of vegetation —0.08) x NIRmegian monthiy 2017)
Band 2 Blue BgLue Wavelength of 0.450-0.515 ym
Band 3 Green Bereen Wavelength of 0.525-0.600 um
Band 4 Red Bren Wavelength of 0.630—0.680 um
Band 5 Near Infrared NIR Wavelength of 0.845-0.885 uym
Band 6 Shortwave
SWIR1 Wavelength of 1.560-1.660 ym
Infrared-1
Band 7 Shortwave
SWIR2 Wavelength of 2.100-2.300 ym

Infrared-2

Fuente: Elaboracion propia
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Figure 3.5 Example of the geospatial dataset used and computed on the
Google Earth Engine platform. A) slope; B) precipitation; C) Normalized

Difference Vegetation Index (NDVI); D) Soil-Adjusted Vegetation Index (SAVI).
Fuente: Elaboracion propia

3.2.2.3.2 Climatic variables

We used the climatic datasets available in the GEE platform closest to the
date soil sampling, such as Moderate Resolution Imaging Spectroradiometer
(MODIS) MOD11A1 V6 product, which provides daily land surface temperature

(LST) and emissivity Daily Global 1 km. GEE collection snippet:
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ee.ImageCollection("MODIS/006/MOD11A1"). The temperature value is derived

from the MOD11_L2 swath product (Wan, 2014).

Relative humidity data (2 m above ground) were obtained from the Global
Forecast System (GFS). This is a weather forecast model produced by the
National Centers for Environmental Prediction (NCEP) and National Aeronautics
and Space Administration (NASA). The GFS is a coupled model, composed of an
atmosphere model, an ocean model, a land/soil model, and a sea ice model,
which work together to provide an accurate picture of weather conditions (Saha

et al., n.d.). GEE Collection snippet: ee.ImageCollection ("NOAA/GFS0P25").

For the precipitation data, we used the Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) dataset, which builds on previous
approaches to “smart” interpolation techniques and high resolution, long period of
record precipitation estimates based on infrared Cold Cloud Duration (CCD)
observations (Funk et al, 2015). GEE collection shippet:

ee.lmageCollection("UCSB-CHG/CHIRPS/DAILY").

3.2.2.3.3 Topographic variables

Terrain analysis is crucial for modeling environmental systems. Specifically,

the topography is considered as a variable that can largely explain SOC changes.
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In fact, models that take topographic attributes into account can provide better

estimates of SOC stocks (McBratney et al., 2003).

We used the digital elevation model (DEM) derived from NASA’s Shuttle

Radar Topography Mission (SRTM DEM) (Farr et al., 2007). We calculated the

topographic slope, aspect and elevation from this SRTM V3 product (SRTM Plus)

at a resolution of 1 arc-second (approximately 30 m). GEE collection Snippet:

ee.Image("USGS/SRTMGL1 _003"). The number of terrain and climate-based

covariates used within each dataset is shown in Table 3.3, and an example of its

geographical representation is shown in Figure 3.5.

Table 3.3 Terrain and climate-based covariates

Dataset (Covariates)

Abbreviation

Definition

Terrain-based covariates
1. Elevation
2. Slope
3. Aspect
4. Topographic Wetness index
Climatic-based covariates
1. Temperature

2. Precipitation

3. Relative Humidity

Elev
Slo
Asp

TWI

Temp

Prec

RH

Height above sea level (m)
Average gradient above flow path
The compass direction of the maximum rate of change

Combined local upslope contributing area and slope

It is derived from the daily temperature values
It is derived from the daily precipitation values
Water vapor in the air, compared to how much it could

hold a specific temperature

Fuente: Elaboracion propia
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3.2.3. Data Processing

3.2.3.1 Google Earth Engine (GEE) platform

The model for mapping SOC stocks in forests developed in the present study
was built in the GEE cloud-based computing platform. GEE is a platform designed
for scientific analysis at the petabyte (PB) scale and has an extensive public data
catalog for earth observation (Gorelick et al., 2017). One way to use this platform
is using an online tool called The Code Editor, which lets the user access the

platform using a scripting language (JavaScript).

GEE has hosted historical images of the Earth for more than forty years.
The images collected daily are made available to the public for data mining on a
global scale. GEE allows processing massive data of a raster format for large
areas and with high volumes of information. In our case, topographic, climatic and
vegetational variables were analyzed (Table 2 and Table 3) with high
performance and minimum user involvement in the processing. The algorithm
used in GEE to estimate SOC contents was the Random Forest (RF). The codes
developed in this study using the GEE cloud-based computing platform are

available in Appendix A.
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3.2.4 Random Forest (RF) modelling

In this study, the RF algorithm was selected to predict the SOC stocks in the
forest ecosystem of the Dominican Republic. RF is one of the most popular and
most powerful supervised ML algorithms that can perform both regression and
classification tasks. As the name suggests, this algorithm builds a set of
regression trees. Each of the trees predicts the result in each pixel, while the final
prediction is obtained averaging these values (Breiman, 2001). We used the RF

to estimate the relative importance of the predictive variables.

For the prediction accuracy, the 268 SOC samples were randomly divided
into 2 sets: 70% of the total samples were used as model training data (n = 188),
and the remaining 30% for model validation and accuracy assessment (n = 80).
RF modelling was performed using the GEE cloud computing platform applying
the following line of code:
ee.Classifier.smileRandomForest.setOutputMode('REGRESSION?). The
principal parameters of the algorithm were: number of decision trees= 100 and
default values to min leaf population (1), variables per split (square root of the
number of variables), bag fraction (0.5), max nodes (defaults to no limit), seed (0)

and set output mode= regression.
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3.2.5. Model validation

To evaluate the performance of the SOC model, five indexes were calculated
using the following formulas: coefficient of determination (R?), Lin’s concordance
correlation coefficient (LCCC) (Lin, 1989), root-mean-square error (RMSE), mean

absolute percentage error (MAPE), and mean absolute deviation (MAD).

(S G- - 7))
" n _\2 (2)
z i —y:)? zi:l(fi _fi)

210,0,

R? =

LCCC = — 3
3 +0¢ + (¥ +F) (3)
1 n

RMSE = ;Z(yi - f)? (4)

7l

)Ry
MAPE = + % 100 (5)
MAD = Z|}’1_ﬁ| (6)

n

where n(i = 1,2, ...,n) is the number of samples used for the ML model, y;
is the value observed (Mg C ha?), y; is the corresponding mean value, f; is the
predicted value (Mg C ha'), f; is mean value. dx and dy are the variances of the
predicted and measured values; r is the correlation coefficient between the

predicted value and the measured value.
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The prediction algorithm with the lowest MAD, MAPE and RMSE, and
highest R? and LCCC values are determined as the best model for SOC

prediction.

3.3 Results

3.3.1 Exploratory data analysis
3.3.1.1 Geospatial environmental predictive datasets

The summary statistics for each of the 20 environmental covariates at each
sampling site used in the present study are shown in Table 3.4. To describe the
environmental covariates, they were divided into three groups that fit different
models in our study: (i) imagery remote sensing data set, (i) terrain-based

covariate data set, and (iii) climatic-based covariates.
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Table 3.4 Descriptive statistics of remote sensing-derived environmental
variables at sample sites.

Dataset
Unit Mean Median Min Max SD Skewness Kurtosis
(Covariates)

Remote Sensing imagery

NDVI digital number 0.79 0.80 0.43 0.93 0.08 -1.02 1.22
EVI digital number 2.36 2.35 0.90 3.56 0.44 -0.20 0.09
SAVI digital number 1.18 1.21 0.65 1.40 0.13 -1.02 1.22
1BI digital number -0.27 -0.28 -0.54 0.02 0.10 0.00 -0.06
BSI digital number -0.29 -0.30 -0.58 0.07 0.12 0.28 -0.19
GNDVI digital number 0.72 0.73 0.49 0.85 0.07 -0.76 0.40
NIRv digital number  2,195.10 2,131.65 788.13 4,209.52 623.93 0.28 -0.29
BeLue digital number 303.68 301.00 125.00 600.00 8157 0.55 0.65
Bereen digital number 497.71 488.00 245.00 1,007.00 114.20 0.63 1.22
Breo digital number 351.11 327.00 115.00 1,048.00 131.60 1.52 4.17
NIR digital number ~ 3,057.91 2,987.00 1,445.00 5,235.00 624.17 0.28 0.08
SWIR1 digital number ~ 1,510.44 1,537.00 583.00 2,698.00 404.05 0.11 0.16
SWIR2 digital number 648.53 609.00 178.00 1,606.00 256.88 0.93 1.45

Terrain-based covariates

Elevation m 438.60 279.75 -1.17 2,359.85 499.42 1.65 2.43
Slope degree 10.51 8.90 0.00 45.32 9.38 0.84 0.14
Aspect degree 187.18 185.99 0.09 359.61 116.74 -0.07 -1.29
TWI digital number 9.35 8.99 0.00 19.19 2.56 0.37 3.29

Climatic-based covariates

Temperature

degree Celsius
means 26.66 27.85 0.00 33.88 5.79 -3.31 12.76
Precipitation

mm/day
means 3.70 3.58 0.00 7.41 1.45 0.37 -0.62
Relative humidity

% 77.15 76.36 62.47 86.69 5.66 0.06 -1.06

Means

Note: NDVI, Normalized Difference Vegetation Index; EVI, Enhanced Vegetation Index; SAVI, Soil Adjust Vegetation

Index; IBI, Index-Based built-up Index; BSI, Bare Soil Index; GNDVI, Green Normalized Difference Vegetation Index;
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NIRv, Near-infrared reflectance of vegetation; Bg ue, Landsat 8 blue band reflectance; Bgreen, Landsat 8 green band
reflectance; Brep, Landsat 8 red band reflectance; NIR, Landsat 8 band 5 near-infrared; SWIR1, Landsat 8 band 6

Shortwave infrared-1; SWIR2, Landsat 8 band 7 Shortwave infrared-2; TWI, Topographic Wetness Index.

Fuente: Elaboracion propia

3.3.1.2 Soil organic carbon models

SOC content in forest-covered soils of the Dominican Republic were
estimated using three different models that grouped a series of geospatial
datasets. Table 3.5 shows the descriptive statistics of soil organic carbon (values
in Mg C ha) for each model. Model A recorded the highest mean value of SOC
(110.35 Mg C ha'). The analysis of variance applied showed no significant
differences (p <0.05) between the three models evaluated. The use of climatic
and topographic covariates helped improve the model, but not significantly. Using
only multispectral imaging can produce good results in digital mapping of SOC at

a depth of 0-15 cm.
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Table 3.5 Descriptive statistics of predicted soil organic carbon (Mg C hat)

models.
Skewnes  Kurtosi
Model Mean Median Min Max SD SE Lower Upper
s s

Model A: Multispectral
remote sensing
variables + topographic ~ 110.35 107.74 46.46 191.33 36.10 2.21 105.78 114.92 0.31 -0.85
variables + climatic
variables
Model B: Topographic

110.87 108.86 49.54 200.33 33.53 2.05 106.47 115.27 0.30 -0.59
and climatic variables
Model C: Multispectral
remote sensing 110.45 108.04 51.76 198.28 35.96 2.20 106.23 114.67 0.36 -0.73

variables

Note: Min: minimum; Max: maximum; SD: standard deviation; SE: standard error; Lower and Upper: the lower and upper

limits of the mean at 95% probability.

Fuente: Elaboracion propia

3.3.2. Spatial model performance

Comparisons of the performance for the three dataset models by cross-

validation is shown in Table 3.6, Figure 3.6 and Figure 3.7. We found that Model

A is the model with the best performance, explaining 83% of the spatial variation

of SOC. In general, the more predictors, the better the model. This model groups

20 predictive variables in a dataset: multispectral remote sensing variables +

topographic variables + climatic variables. Model B (topographic and climatic

variables) yielded an R? = 0.77 and an RMSE = 38.57 Mg C ha™'. Interestingly,
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Model C (only multispectral remote sensing-derived variables) yielded an R? =
0.79 and an RMSE = 35.69 Mg C ha. These results are consistent with the

significant correlations between covariates and SOC (see Figure 3.8).

Table 3.6 Comparison and evaluation of predicted model performance by cross-

validation.
Model Mg C ha? R? RMSE (Mg C ha') MAD MAPE LCCC

Model A: Multispectral remote
sensing variables + topographic 110.35 0.83 35.02 27.90 40.18 0.78
variables + climatic variables
Model B: Topographic and

110.87 0.77 38.57 30.00 4413 0.72
climatic variables
Model C: Multispectral remote

110.45 0.79 35.69 28.76 41.00 0.76

sensing variables

Note: R?: coefficient of determination; RMSE: root mean square error; MAD: mean absolute deviation; MAPE: mean

absolute percentage error and, LCCC: Lin’s concordance correlation coefficient.

Fuente: Elaboracion propia
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Figure 3.6 Scatter plot of observed vs. predicted values (Mg C hat) for SOC
content (0—15 cm) using the Random Forest Algorithm. A) The predicted data
are derived from Model A: Multispectral remote sensing variables + topographic
variables + climatic variables; B) Model B: Topographic and climatic variables

and C) Model C: Multispectral remote sensing variables.
Fuente: Elaboracion propia

We iterated the model A, B, and C and calculated the average standard
deviation (SDs) to analyze the uncertainty of each model in predicting topsoil SOC
(Figure 3.7). We found the highest SD in Model C for all forest types and Model

A with the lower uncertainty compared to models B and C.
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Figure 3.7 Standard deviation (SD) of SOC stock at 0-15 cm predicted from the

random forest (RF) model
Fuente: Elaboracion propia

The relationships between SOC content and each predictive covariate is
of great importance to know information about the contribution of each covariate

in the model. Pearson’s correlation analysis between SOC and predictive
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covariates was derived as shown in Figure 3.8. SOC stock was positively
correlated with temperature, TWI, Boiue, Breda and Bgreen band, but negatively
correlated with precipitation, relative humidity, elevation, and slope. Interestingly,
the correlations with the images were the most significant. Finally, we found that
there was multicollinearity between the vegetation indexes derived from remote

sensing and SOC.
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Figure 3.8 Pearson's correlation coefficient analysis between observed SOC

stocks and all environmental variables based on 268 sample sites.
Fuente: Elaboracion propia
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3.3.3 Covariates relative importance

The average relative importance of each covariate derived from the
geospatial dataset to estimate SOC was calculated. To facilitate the analysis for
each model, we combined the relative importance of all environmental covariates
to 100% (Figure 3.9). For the dataset grouped in Model A, the 3 most important
covariates were slope, temperature and NDVI (34% of the total relative
importance). The vegetation indices were ranked at different levels. In Model B,
which groups climatic and topographic covariates, the covariates of elevation and
precipitation recorded the highest relative importance (48% of the total relative

importance).

For model C, which only groups covariates derived from Landsat 8 satellite
images, the Index-Based built-up Index (IBI) was the covariate with the highest
relative importance in the model. For the IBI index, three thematic indices were
used: the Modified Normalized Difference Water Index (MNDWI), the Soil
Adjusted Vegetation Index (SAVI), and the Normalized Difference Built-up Index
(NDBI) (Xu, 2008). Table 3.2 provides further details of the indices used and

Figure 3.10 provides further details of the indices per each type of forest.
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Figure 3.9 Relative importance in the Random Forest (RF) models trained for

different geospatial datasets.
Fuente: Elaboracion propia
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Figure 3.10 Distribution of the spectral indices for each type of forest derived

from Landsat 8.
Fuente: Elaboracion propia

3.3.4 SOC stock spatial distribution

A spatially explicit SOC map was created using the GEE cloud computing
platform. The results obtained with the three spatial distribution models to predict

SOC content in forest-covered areas of the Dominican Republic are shown in
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Figure 3.11. Non-forest areas were excluded from the analysis and are shown

without color on the map.

Analyzing the best model obtained in our study (Model A), identified that
the spatial patterns of SOC are closely related to the type of forest. The highest
SOC (0-15 cm depth) contents are found in the mangrove forests that are located
in the coastal areas of the country, with average estimates of 131.87 Mg C ha™,
and maximum and minimum values of 193.09 Mg C ha! and 63.91 Mg C ha’l,
respectively (Table 3.7). The lowest SOC content is found in the soils covered by
pine forests, especially those located in the elevated and steep slopes, in the
central and southern region of the country. These soils have a SOC mean value
of 89.06 Mg C ha! and a minimum value of 44.76 Mg C ha’. Most of these soils
are dominated by degraded forests with low productivity and dry shrub vegetation.
Their low SOC content is attributed to steeper slopes, which make soils more

susceptible to erosion and greater water discharge.

We found that in the soils covered by forests in the Dominican Republic, a
total of 144,051,831 Mg C is stored in the topsoil (0-15 cm depth), with 52.1%
corresponding to soils covered by broadleaf forests, 31.2% covered by dry forests,
14.3% covered by pine forests, and 2.4% covered by mangrove forests. Table
3.7 shows more details of the results of SOC obtained in the three models for

forest type.
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Figure 3.11 Distribution maps of soil organic carbon (Mg C ha'') derived with
the Random Forest Algorithm. Maps are shown with a masking layer of non-
forest land. A1) Model A included all predictive covariates (Multispectral remote
sensing variables + topographic variables + climatic variables); A2) zoomed-in
image to SOC map derived from Model A. B1). Model B included topographic
and climatic variables; B2) zoomed-in image to SOC map derived from Model B.
C1) Model C included only multispectral remote sensing variables, C2) zoomed-

in image to SOC map derived from Model C.
Fuente: Elaboracidon propia
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Table 3.7 Descriptive statistics of soil organic carbon (Mg C ha?) by forest type
using different models

Model A: Multispectral remote sensing variables + topographic variables + climatic variables

Forest type Mean Max Min SD Total (Mg C) % of SOC
Mangrove forest 131.87 193.09 63.95 25.88 3,451,749 2.4%
Dry forest 120.77 185.90 54.32 19.36 44,909,164 31.2%
Broadleaf forest 100.13 180.39 45.00 22.86 75,065,227 52.1%
Pine forest 89.06 167.88 44.76 19.29 20,625,691 14.3%
Total 144,051,831 100.0%

Model B: Topographic variables + climatic variables

Forest type Mean Max Min SD Total (Mg C) % of SOC
Mangrove forest 129.42 201.51 64.75 18.04 3,387,413 2.3%
Dry forest 126.95 193.30 67.07 15.28 47,208,022 32.6%
Broadleaf forest 99.98 191.38 45.61 23.86 74,947,851 51.7%
Pine forest 83.73 171.13 45.63 14.62 19,392,685 13.4%
Total 144,935,971 100.0%

Model C: Multispectral remote sensing variables

Forest type Mean Max Min SD Total (Mg C) % of SOC
Mangrove forest 130.86 199.48 48.58 33.62 3,277,858 2.4%
Dry forest 111.82 199.54 44.72 24.68 39,552,568 29.3%
Broadleaf forest 102.26 196.56 41.58 24.84 70,913,089 52.6%
Pine forest 94.72 189.15 41.99 22.87 21,150,587 15.7%
Total 134,894,102 100.0%

Note: Min: minimum; Max: maximum; SD: standard deviation.

Fuente: Elaboracion propia
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3.4. Discussion

3.4.1 Method for measuring and monitoring SOC stocks: a contribution to

regional and global initiatives

SOC stocks have acquired great relevance due to the role they play in climate
regulation and as an important indicator of soil quality. International organizations
such as The United Nations Framework Convention on Climate Change
(UNFCCC), the United Nations Convention to Combat Desertification (UNCCD)
and the Convention on Biodiversity (CBD) have widely recognized the importance
of SOC in the international framework of climate change mitigation. In this sense,
there have been emerging regional initiatives aiming at the sustained production
of soil information, such as the Soil Information System for Latin America and the
Caribbean (SISLAC), or global initiatives such as ISRIC - World Soil Information,
legally registered as the International Soil Reference and Information Center,
which has the mission to serve the international community as custodian of global

soil information.

Similarly, the Group of Earth Observation (GEO) has established a Global
Soil Information System (GLOSIS) as part of the Global Earth Observation
System of Systems (GEOSS). All of these initiatives have encouraged countries

to establish national systems for monitoring and measuring SOC. Therefore, there
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is a need to develop accurate, replicable and low-cost methods to quantify and

monitor SOC stock changes.

In the present study, we performed a digital mapping of SOC stocks (in the
area under study), using a combination of freely accessible geospatial datasets
provided in the GEE cloud computing platform, and field data using the RF
algorithm to predict the distribution of SOC in forest soils of the Dominican
Republic. To our knowledge, this is the first attempt to map the SOC stocks using
this type of technique, in the country and the tropical region of Central America
and the Caribbean. The results obtained are encouraging because the three
models used had a good performance, even with variables derived only from

Landsat 8 OLI images (Model C).

Compared with other methods used to map SOC stocks in tropical regions
(Guevara et al., 2018; Ramesh et al., 2015; Rossi et al., 2009; Vasques et al.,
2016), our method eliminated excessive soil sampling, which can result in a high
cost, particularly in those territories covered by forests where access is very

difficult.

3.4.2 Importance of variables in the SOC prediction model

The CLORPT model (CL: Climate; O: Organism, vegetation; R: Relief; P: Parent

material; and T: time) (Jenny, 1941) and the SCORPAN model (S: property or soil
135



class; C: climate; O: organisms; R: topography; P: parent material; A: age or time
factor; and N: space, spatial position) (McBratney et al., 2003) are conceptual
models commonly used for digital soil mapping since they relate environmental
covariates to soil properties. However, these relationships between covariates
and properties differ depending on the geographical area of the soil being
analyzed. A review conducted by (McBratney et al., 2003) indicated that the key
environmental covariates to infer soil properties were relief (80% of studies),
followed by soil class (S) (35%), vegetation (O) and parent material (P) (both

25%), spatial position (N) (20%) and climate (C) (5%).

Several studies have indicated that topographic factors such as elevation
and slope have a higher correlation with SOC changes (J.L. Boettinger et al.,
2010; Hinge et al., 2018). The NDVI allowed us to understand the importance of
the amount of biomass and vegetation cover to predict SOC stocks. Other studies
have also reported that SOC can be estimated only by the presence of vegetation
(Yang et al., 2008; Zhao & Shi, 2010). Therefore, the NDVI can be used as an
approximation to determine SOC. The BSI allowed us to understand the
importance of analyzing bare soil, especially in highly fragmented secondary
forests such as the forests of the Dominican Republic and many tropical forests.
This type of forest structure indicated that vegetation and bare soil combine to
generate a forest with a low canopy density (mainly fragmented forests due to

human intervention). Our results show that the IBI can significantly enhance the
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model to predict SOC in fragmented forests with a low canopy density effectively
suppressing background noise caused for bare soil. Xu, (2008) found that the IBI
possesses a positive correlation with land surface temperature and negative

correlations with the NDVI.

In terms of the climatic covariates used in our study, temperature was the
second most important variable, which explains the SOC changes in Model A. In
this sense, previous research has indicated that temperature is a direct predictor
of SOC since it has a major influence on determining the type of vegetation, its

growth and the microbial decomposition of organic matter (M. Wang et al., 2014).

3.4.3 Comparative analysis of other SOC measurements and mapping

initiatives in the region

There have been different local initiatives for the measurement of SOC in the
Central American Region in recent years. These have focused on collecting soil
C data as part of a multipurpose methodology of local forest inventories, including
the 5 pools of carbon defined by the IPCC. However, a wall-to-wall mapping of
SOC has not been generated yet. Our study is the first report in which soil C data
is used in combination with ML techniques and open-access dataset and available
in the GEE cloud computing platform for geographically explicit mapping of the

SOC.
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ML techniques are widely used in digital SOC mapping as they combine
complex and non-linear relationships between different soil attributes and
predictive environmental covariates (Drake et al.,, 2006). Although various
prediction algorithms have different capabilities, size of the training sample affects
more than the selection of models to improve the prediction accuracy of SOC

(Somarathna et al., 2017).

By using the RF algorithm, Model A yielded a SOC mean value (0 -15 cm)
of 110.35 Mg C ha™! (Table 3.5). This value is higher than the mean value of 81.04
Mg C ha reported in the Global Soil Organic Carbon Map (GSOCmap V1.5)
prepared by the Food and Agricultural Organization (FAO). The global soil carbon
map consists of national SOC maps, developed as 1 km soil grids, at a depth of
0-30 cm (FAO & ITPS, 2020); this is the main and most recent SOC mapping
initiative existing in the region with which we can compare the results obtained
herein. Another comparison with actual SOC mapping, shows that the SOC mean
value obtained in the present study is lower than that of 128.80 Mg C ha™! reported
in SoilGrids - global gridded soil information; this is a system for digital soil
mapping based on a global compilation of soil profile data (WoSIS) and
environmental layers, which uses state-of-the-art ML methods to map SOC

contents at a depth of 0-15 cm and 250 m resolution (Hengl et al., 2017).

138



We believe that, due to the source of the data, depth of the soil sample,
spatial resolution, scale of the map and the technique used to predict SOC
contents, our results are slightly different from the results reported by these two
global initiatives for the Dominican Republic. Figure 3.12 shows a comparative

analysis of the three maps described.
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Figure 3.12 Comparative map of soil organic carbon (Mg C ha) obtained with
Model A versus Global Soil Organic Carbon Map (GSOCmap V1.5) and SoilGrid
map 2.0. Al). Model A included all predictive covariates (Multispectral remote
sensing variables + topographic variables + climatic variables); A2) zoomed-in
image to SOC map derived from Model A. B1). Global Soil Organic Carbon Map
(GSOCmap V1.5); B2) zoomed-in image to GSOCmap V1.5. C1). SoilGrids map

V2.0); C2) zoomed-in image to SoilGrids map V2.0.
Fuente: Elaboracion propia
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Other reports on SOC in Central America are found in El Salvador and
Costa Rica, where soil C was measured at 0-20 cm and 0-30 cm depths,
respectively. Both measurements were part of the report of the National
Multipurpose Forest Inventory, which was built to quantify the SOC stocks of those
countries in order to report Forest Reference Emission Levels (FREL/REDD+) to
the UNFCCC. However, geographically explicit maps of SOC stocks were not
developed. In El Salvador, the mean SOC value in soils covered by forests was
137.45 Mg C hat at 0-20 cm depth (MARN & Garcia, 2018), and Costa Rica, the
mean value was 108.81 Mg C ha at 0-30 cm depth (Emanuelli et al., 2015); both
reports are close to those obtained in our study (110.35 Mg C ha!). As mentioned
above, these are the most recent reports for the region, and they provide evidence
of the potential that our methodology has as it can be replicated in other countries
in the future, and thus contribute to SOC mapping at the regional and global

levels.

3.5. Conclusions

The present study developed and applied a methodology for SOC mapping in
forest lands, using geospatial datasets available in the GEE platform. This
approach opens new possibilities for applying ML techniques that will allow
countries to develop robust, transparent, consistent, and replicable systems for
measuring and monitoring C in soils. In our study, we found a better coefficient of

determination in Model A (topographic, climatic, and Landsat 8 OLI imagery
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datasets), and determined that the SOC content is mostly related to slope,

temperature, and NDVI.

This study shows that freely accessible multispectral optical imagery
available in the GEE platform, such as Landsat 8 OLI, can by itself estimate SOC
with adequate accuracy in the tropical forests of the Dominican Republic. Adding
climatic and topographic covariates improved the model, but not significantly. The
results obtained allow indicating that multispectral images are a good tool for SOC

digital mapping at 0-15 cm depth.

ML helps simplify model adjustments. This is a great advantage because
ML allows mapping SOC content using many predictive variables of climatic,
topographic, or vegetation type with minimum human interaction; however, using
soil samples distributed and stratified by forest type was crucial to improve model

prediction of SOC content with an R? of 83%.

We found that the GEE platform has excellent potential in "wall-to-wall"
SOC mapping in forest lands. Further research is required on the use of these
tools for SOC mapping in different land uses (e.g., agricultural and livestock soils),
different ecosystems beyond the tropics, and at further depths. We can conclude
that the methodology developed may encourage new research that favors the

fulfillment of the Pillar 4 Implementation Plan towards a Global Soil Information
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System within the framework of the Global Soil Alliance, and especially the

support of Indicator 15.3.1 of the Objectives of Sustainable Development.

Future research is needed to evaluate; i) new spatial datasets available
such as SoilGrid database, Sentinel-1 Synthetic Aperture Radar (SAR) data, and
other satellite images like MODIS, Sentinel - 2 MultiSpectral Instrument (MSI), or
Planet. ii) other algorithms such as deep learning (neural network), iii) perform
hyperparameter estimation and optimization of the RF model to ensure maximum
model accuracy, iv) increase the number of SOC stock samples to improve model
performance, and v) assessing the land use and land cover change effect on soil
organic carbon from landscape to national scale are some outlooks for future

studies.
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Appendix A

The codes developed in this study using the GEE cloud-based computing platform

are available at the following link: https://github.com/EDuarteCode/SOC Code.qgit
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Capitulo Ill: Glosario de abreviaturas, siglas y acronimos

BSI
CCD

CENTA

CHIRPS
DEM
DN
DSM
ECVs
ERM
EVI
FAO
FCPF
FRA
FREL/FRL
GEE
GEO
GCOS
GFS
GSOCmap
GNDVI
GSP
IBI
IPCC
ITPS
LAD
LaSRC
LCCC

Bare Solil Index

Cold Cloud Duration

Agricultural and Forestry Research Agricultural Technology
Center

Climate Hazards Group InfraRed Precipitation with Stations
Digital Elevation Models

Digital Number

Digital Soil Mapping

Essential Climate Variables

Earth rotation model

Enhanced Vegetation Index

United Nations Food and Agriculture Organization
Forest Carbon Partnership Facility

Global Forest Resource Assessment

Reference Emission Levels/Forest Reference Levels
Google Earth Engine

Group of Earth Observation

Global Climate Observing System

Global Forecast System

Global Soil Organic Carbon Map

Green Normalized Difference Vegetation Index
Global Soil Partnership

Index-Based built-up Index

Intergovernmental Panel on Climate Change
Intergovernmental Technical Panel on Soils
Dominican Agribusiness Laboratory

Landsat Surface Reflectance Corrected

Lin’s concordance correlation coefficient
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LST Land Surface Temperature

MAD Mean Absolute Deviation

MAPE Mean Absolute Percentage Error

MARN Ministry of the Environment and Natural Resources
m.a.s.! Meters Above Sea Level

MODIS Moderate Resolution Imaging Spectroradiometer
Mg C Megagramme Carbon

MNDWI Modified Normalized Difference Water Index
NDBI Normalized Difference Built-up Index

ML Machine Learning

MLR Multiple Linear Regression

MRV Monitoring, Reporting, and Verification

NASA National Aeronautics and Space Administration
NCEP National Centers for Environmental Prediction
NDVI Normalized Difference Vegetation Index

NFI National Forest Inventory

OLlI Operational Land Imager

PB Petabyte

PgC Petagram of carbon

REDD+ Reducing Emissions from Deforestation and Forest Degradation
RF Random Forest

RMSE Root-Mean-Square Error

RS Remote Sensing

SAVI Soil Adjust Vegetation Index

SOC Soil Organic Carbon

SOCS Soil organic carbon stock

SISLAC System for Latin America and the Caribbean

SD Standard Deviation

SVis spectral vegetation indices
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SRTM
UNFCCC
UNCCD
UNCCD-
SPI
WMO

Shuttle Radar Topography Mission

United Nations Framework Convention on Climate Change
United Nations Convention to Combat Desertification
Science-Policy Interface of the United Nations Convention to
Combat Desertification

World Meteorological Organization
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Mediante la presente investigacion se destacan herramientas y enfoques de
la teledeteccion aplicados a la medicién y monitoreo de las emisiones de CO:
causadas por la degradacion de los bosques tropicales y se proponen técnicas
para la medicion del carbono organico del suelo; basados en los aspectos

anteriores, en esta tesis se concluye:

En la actualidad se identifican muchas formas para definir conceptualmente
la degradacion de los bosques; esta diversidad de conceptos provoca
interpretaciones y desafios que en la actualidad se debaten en la arena cientifica.
El enfoque para medir y monitorear la degradacion del bosque utilizado en este
estudio, parte de la aplicacion de indicadores cuantitativos como ser la estructura
del bosque, la cual se mide con la aplicacion de tecnologias de percepcién remota
espacialmente explicita como ser las imagenes satelitales; el uso de estas
imagenes permite medir la magnitud del cambio de un pixel para un periodo de
tiempo (1990 — 2018) y lo relaciona con la disminucién o aumento del carbono

(Mg C ha'!) almacenado en la biomasa viva de los bosques.

La aplicacion de las tecnologias de teledeteccién permite realizar analisis de
grandes areas como son los bosques tropicales que frecuentemente tienen
condiciones de acceso muy dificiles; sin embargo, se identificé que en la
actualidad la degradacion de los bosques tropicales tiene muy poco estudio, en

especial los bosques tropicales del continente americano que tienen una alta
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amenaza de origen antrépico debido a la tala ilegal, los incendios forestales y las
actividades agricolas; basado en lo anterior, en el presente estudio se propone e
implementa una serie de herramientas y tecnologias basadas en datos de libre
acceso, con computo en la nube y de escala planetaria que permiten medir y
monitorear indicadores claves como ser las emisiones de CO2eq causadas por la

degradacion forestal o las reservas de carbono organico del suelo.

La integracidon de datos satelitales con datos de campo y el uso de técnicas
de maquinas de aprendizaje e inteligencia artificial aplicados en este estudio
permitieron cuantificar satisfactoriamente el carbono organico del suelo en los
bosques tropicales de la Republica Dominicana. Con la combinacion de
covariables predictivas de carbono relacionadas con la vegetacion, el clima y la
topografia se calibré un modelo con el cual se estimé el carbono organico del
suelo para una escala espacial de 30 metros y una escala temporal del afio 2018

para la Republica Dominicana.

El Sexto Informe del Grupo de Trabajo | (AR6) del Panel Intergubernamental
sobre Cambio Climético (IPCC) presenta evidencia clara de que el diéxido de
carbono (CO2) es el principal impulsor del cambio climético, incluso cuando otros
gases de efecto invernadero (GEI) y contaminantes del aire también afectan el
clima; en este sentido, se identifican al suelo y a los bosques como los principales

sumideros de carbono de nuestro planeta; basado en lo anterior, a través de la
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presente investigacion se proponen y aplican innovadores enfoques para la
medicidon y monitoreo del carbono en estos dos grandes reservorios de carbono

de manera espacialmente explicita.
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