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Summary  

The physical and chemical properties of the terrestrial environment were 

important for plant land colonization and later diversification, promoting 

physiological, morphological, and metabolic adaptations to deal with 

changes in energy input, gravity, and humidity. From a primitive 

thalloid-like shape, the photosynthetic organ evolved into the appearance 

of a large variety of leaf forms and stomata allowing increases of the 

efficiency of water transport and thermoregulation for the benefit of plant 

gas exchange. Besides, the replacement of an inefficient rudimentary 

rhizoid system in water and nutrient absorption, by an early symbiosis 

with soil microorganisms, allowed plant roots to adapt to poor nutrient 

soils. Along with these aboveground and belowground adaptations, the 

progressive evolution of an aerobic cell metabolism, involving oxygen 

consumption in mitochondria, increased both the efficiency of oxidative 

phosphorylation and energy homeostasis for the benefit of plant carbon 

metabolism. In the present thesis, I studied the relationship between 

energy homeostasis and carbon metabolism in plants along three chapters 

that explore different scenarios of plant adaptations to terrestrial 
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environments: (1) In chapter one, this relationship is explored through 

comparisons between terrestrial and palustrine plants. (2) In the second 

chapter, this relationship is studied during drought by exploring the 

importance of leaf shape for both photosynthetic capacity and energy 

dissipation as convective heat. (3) Finally, in the third chapter, this 

relationship is analyzed by reviewing the role of root respiration during 

symbiosis with soil microorganisms. 

From photosynthetic and respiratory characterizations in vascular plants 

and crop species, the results of this thesis suggest that: (1) terrestrial 

plants display higher rates of photosynthesis and redox balance because 

they are exposed to higher reducing conditions in their environments; (2) 

leaf shape controls the energy input by a physical mechanism that benefit 

carbon assimilation and optimal temperature range; (3) root respiration 

may regulate the energy balance in plants under nutrient deficiency and 

during symbioses with soil microorganisms. Overall, these results 

contribute to understand the coordination between several biochemical 

and physiological mechanisms important for energy assimilation and 

later conversion into carbon compounds and plant growth, being of 
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interest for agricultural improvement and community development 

programs.  
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INTRODUCTION 

Photosynthesis from carbon assimilation to the biochemical 

limitations  

Carbon assimilation (AN) in C3 plants 

Photosynthesis provides carbon skeletons required for growth, plant 

maintenance, and the metabolic precursors of other physiological 

processes like respiration and nutrient assimilation (Van Oijen et al. 

2010; Sweetlove et al. 2010; Tcherkez et al. 2012; Krishnamurthy & 

Rathinasabapathi, 2013). From the appearance of photosynthesis in 

cyanobacterial algae about 3.5 billion years ago in an anoxygenic 

atmosphere (Olson & Blankenship, 2005), six pathways for carbon 

assimilation are recognized, being Calvin cycle pathway the most 

widespread in cyanobacteria and plant kingdom (Thauer, 2007; 

Buchanan et al. 2015). In plants, the Calvin cycle or photosynthesis is 

limited by several factors like CO2, light, nutrients, optimal temperature, 

and water (Wright et al. 2004; Körner et al. 2015). These factors are 

expected to be altered due to global change, which predicts increases in 

drought events, temperature oscillation, and nutrient deprivation in some 
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areas (IPCC, 2017). To deal with this, several studies highlighted the 

importance of increasing carbon assimilation for the benefit of crop 

productivity through improvements of the photosynthetic limitations and 

the importance of the integration of these limitations into models for crop 

improvements (Evans et al. 2013; Flexas et al. 2016; Kubis & Van-Eben, 

2019).  

Light reactions 

Photosynthesis is divided into two major stages: the first called “light 

reactions” involves the photon trap by chlorophyll antennas and 

subsequent liberation of O2 by the photosystem II (Figure 1), the 

production of NADPH and creation of H+ gradient in thylakoid lumen 

(Renger et al. 2010; Kramer et al. 2004; Lambers et al. 2019). From this 

H+ gradient, the second stage involves the ATP synthesis by an ATPase 

located in chloroplast thylakoid membrane. ATP, NADPH and RuBP 

(ribulose biphosphate) are required for carbon assimilation by the action 

of RuBisCO (Tcherkez, 2013) in the so-called biosynthetic pathway or 

Calvin Cycle (Figure 2) (Kramer et al. 2004; Buchanan et al. 2015; 

Lambers et al. 2019). The RuBisCO is the most abundant protein on 
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Earth, and its biochemical properties, together with irradiance and CO2 

concentration, govern CO2 fixation. RuBisCO possesses a dual activity, 

capable of fixing carbon for photosynthesis or fixing oxygen in 

photorespiration. Photorespiration takes place in mitochondria and 

peroxisomes (Bauwe et al. 2010; Erb & Zarzycki, 2018) and it was 

originally thought to be a wasted cycle. However, among other functions, 

photorespiration promotes energy balance during stress response, 

decreasing the accumulation of ROS (Peterhansen & Maurino, 2010; 

Ellsworth et al. 2015; Sunil et al. 2019).  
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Figure 1. Reactions occurring in the light reactions inside chloroplast. Light is absorbed by 

the antenna complexes (not shown) and then passed through photosystem II in which the 

photolysis of water occurs. Electrons from PSII are delivered by plastoquinone, a 

transmembrane molecule which together with two H+ from stroma space, deliver the 

electrons to cytochrome b6f and translocate the H+ to lumen space. From, Cytochrome b6f, 

electrons flow to photosystem I, where reduction of NADP+ occurs thanks to ferredoxin 

reactions -Fdx, FNR-. With the H+ accumulated in the photolysis of water and plastoquinone, 

a proton motive force is achieved and used by the ATPase for ATP synthesis. A side reaction 

occurs in PSI, in which one electron from PSI is delivered by plastocyanin to cyt b6f and 

plastoquinone is reduced, allowing the translocation of H+ and the Q cycle. This cycle is 

preferred when plants need more ATP than NADPH by increasing the H+ translocation. 

Figure obtained from Buchanan et al. 2015.  
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Dark reactions 

The C3 biochemical model of photosynthesis establishes that the 

diffusion of CO2 from air to inside the leaves through stomata (gs) and 

the biochemical limitations are the two main limiting factors (Farquhar 

1980; Farquhar 1982). Biochemical limitations rely on the biosynthetic 

reactions or “dark reactions” involving several enzymatic steps for CO2 

assimilation (Figure 2). Briefly, the first stage named “carboxylation” 

involves the assimilation of CO2 by a Ribulose 1,5 biphosphate (RuBP) 

by RuBisCO, forming a compound of six carbon. In the second stage, 

from NADHP and ATP obtained during the light reactions, the six-

carbon molecule is reduced and broken into two three-carbon molecules 

named phosphoglycerate or PGA (Figure 2). This molecule is exported to 

cytosol in exchange of inorganic phosphate -Pi- 

for sucrose synthesis. The last reaction involves the regeneration of 

RuBP to maintain the continuity of the cycle (Buchannan et al. 2015; 

Lambers et al. 2019). 
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Figure 2. Simplified version of the “dark reactions”, explanation in the text. Figure obtained 

from Buchanan et al. 2015. 

 

 

 

 

Modelling in vivo C3 carbon assimilation   

Based on the above, the limitations of photosynthesis are related to the 

carboxylation velocity of RuBisCO (Vcmax) governed by CO2 

concentration and its specificity for this gas. The maximum electron 



10 
 

transport (Jmax) limits the RuBP regeneration and is strongly related to 

irradiance. The limitation of triose phosphate (TPU) is related to Pi 

regeneration during sucrose synthesis (Farquhar et al. 1980; Farquhar and 

Sharkley, 1982; Ethier et al. 2004). Mesophyll conductance (gm) is 

considered an additional important constraint to carbon assimilation in 

plants (Figure 3 & 4) (Ethier et al. 2004; Flexas et al. 2008; Niinemets et 

al. 2009a). The gm has an anatomical component related to the shape, 

arrangement, and thickness of mesophyll cells being able to restrict 

photosynthesis by 70 % (Bernacchi et al. 2002; Flexas et al. 2008; 

Warren et al. 2008; Terashima, 2011; Tomas et al. 2013). Related to this, 

both the anatomy and the shape of the leaves can determine the 

maximum rates of carbon assimilation in plants by affecting the 

photosynthetic limitations (Tomas et al. 2013; Onoda et al. 2017). 
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Figure 3. Representation of mesophyll structure. Mesophyll conductance is obtained by 

measuring the chlorophyll fluorescence in mesophyll cell during carbon assimilation with 

fluorescent values, and the electrons used for CO2 assimilation are calculated. Then, 

chloroplastic CO2 or Cc is obtained and a in vivo modeling of photosynthesis can be 

performed. Figure obtained from Flexas et al.  2012.  
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The vast knowledge about C3 photosynthesis made possible to model 

accurately the rate of carbon assimilation. Gas exchange measurements 

are achieved based on the fluorescence of chlorophyll and the 

biochemical model of C3 photosynthesis proposed by Farquhar et al. 

(1980). Fluorescence measurements are related to the light reaction of 

photosynthesis (Figure 1). During the transition of dark to light, 

chlorophylls of PSII absorb photons. Then, a protein located in the 

thylakoid membrane, with an electron carrier function named 

plastoquinone, delivers electrons of sunlight for: 1) light reactions or 

photochemistry, 2) heat dissipation by the non-photochemical quenching 

(NPQ); and 3) dissipation by emission of a low energy electron or 

fluorescence (Figure 4) (Maxwell, 2000; Piechulla, 2021; Buchanann 

2015). Briefly, non-photochemical quenching or NPQ corresponds to a 

dissipation mechanism in which excited chlorophyll decays their 

energetic state as heat. This pathway is activated by the proton gradient 

occurring inside of chloroplast stroma when excessive input of energy 

occurs as under high light conditions (Figure 4) (Müller et al. 2001). As 

NPQ competes with fluorescence and photochemistry, by using 
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chlorophyll fluorescence, we can infer in vivo the electrons used in 

photochemistry (Maxwell, 2000; Flexas et al. 2012; Lambers et al. 2019). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Representation of different states of chlorophyll. When chlorophyll absorbs 

photons from light, the energy can be converted to fluorescence by emitting a longer 

wavelength, can be used for photosynthesis in light reactions, or can be dissipated as heat. A 

triple chlorophyll state presents a higher energy status in which near an oxygen molecule 

forms a molecule of ROS. Figure from Mûller et al. 2001 

 

Regard biochemical limitations, commercial IRGAs, are equipped with 

fluorescence cuvettes and regulation of CO2 concentrations, light 

intensity, and temperature. By controlling these variables, we can obtain 

rates of photosynthesis versus increasing concentrations of CO2 -AN/Ci 
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curves-, allowing the quantification of the biochemical limitations 

(Figure 5). With this information and fluorescence values we can model 

the mesophyll conductance (Figure 3) obtaining the in vivo 

photosynthetic activity (Figure 5). 

 

 

 

Figure 5. A/Ci or photosynthesis versus increments in CO2 concentrations. Photosynthetic 

limitations are modelled based on data obtained in the curve. The Ac region corresponds to 

the limited region dominated by the RuBisCO carboxylation properties where CO2 is the 

limiting source. The Aj region is related to the rate of ATP synthesis in the light reactions for 

reduction of PGA, in this region Pi and RuBP regeneration are the limiting factors. The Ap 
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region occurs commonly together with the Aj region due to the limited Pi release during 

regeneration phase of photosynthesis. Figure obtained from Flexas et al. 2012. 

 

Ecophysiology of Photosynthesis: Drought and foliar traits  

Physical components of thermoregulation in leaves 

Leaves represent the organ involved in the transformation of sun energy 

into ATP through photochemical processes. Leaf energy balance is 

affected by temperature and drought causing perturbations in respiration 

and photosynthesis (Michaletz et al. 2015). As high foliar temperatures 

provoke the inactivation of several enzymes related to primary 

metabolism (Yamori et al. 2014), only an 8% of total solar input is used 

in biochemical reactions related to growth, while the remaining is lost as 

heat (Kume et a. 2017). Plants develop a physical mechanism to avoid 

thermal stress by evaporative cooling and evaporation through stomata, 

and convective cooling, a process directly associated with leaf size and 

shape (Gates, 1968; Nobel, 2020). Reductions in leaf size allows more 

surface exposed for convective cooling by mass heat exchange with the 

surrounding air. In dry areas, compound leaves were proposed as 
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dominant due to their tiny leaflets capable of more convective cooling 

and hence, less water loss through stomata (Givinish, 1989). In simple 

leaves, leaf size reductions are commonly related to lower gm values and 

hence lower AN (see later) (Flexas et al. 2008). In this sense, simple 

leaves could rely on more stomatal cooling than compound leaves. 

However, the effect of drought during the energy balance in both types of 

leaves is still unknown and may be conditioned to a trade-off existing 

between leaf area and leaf mass important for carbon assimilation and 

leaf temperature (Niinemets, 1998; Michaletz et al. 2015).  

One of the threats of global change is the increase in water scarcity and 

extended drought events. Plants growing in dry areas develop several 

strategies to cope with seasonal droughts such as shrub or semi tree habit, 

sclerophyllous leaves, low leaf areas, increased efficiency in photosystem 

II, increases in the water use efficiency, RuBisCO specificity, and 

increases in leaf mass area -LMA- (Delfine et al. 2001; Galmés et al. 

2005, 2007; Medrano et al. 2009; Galle et al. 2011; De Micco & Aronne, 

2012; Flexas et al. 2014). Precisely, LMA represents the quantity of mass 

per area of foliar tissue, and the values may vary with growth forms and 
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environment (Niinemets, 1999; Wright et al. 2004; Poorter et al. 2009). 

Increases in LMA reflect a mechanism to tolerate drought, by packing 

the same photosynthetic tissue in a less projected area and decreasing 

transpiration losses and incoming radiation (Figure 6) (Nogués & Baker, 

2000; Grassi & Magnani 2005; Pickup et al. 2005; Galmés et al. 2005; 

Tomás et al. 2013). Reductions in air spaces in the mesophyll decrease 

CO2 conductance and increase the length for the CO2 to reach the 

carboxylation sites (Figure 6) (Poorter et al. 2009; Hassiotou et al. 2010; 

Terashima 2011; Niinemets et al. 2011; Tholen et al. 2012; Tosens et al. 

2012). For example, several functional groups like herbs, shrubs, and 

trees subjected to drought conditions show LMA increases together with 

decreases in gm and AN (Niinemets et al. 2009b; Tosens et al. 2012). In 

other studies, LMA increased with no change in AN, as occurs in some 

Banksia spp. species (Hassioutou et al. 2010; Peguero-Pina et al. 2017). 

These changes reflect the dependence of AN to leaf temperature during 

drought stress. Despite the above, relationships between photosynthesis, 

gm and LMA in different leaf shapes such as simple, and compound 

leaves has not been studied so far. For example, Mediterranean simple 
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leaves species present the high LMA values with no photosynthetic 

decreases. Compared with compound species, which show three times 

less LMA, simple leaves present a 40% decrease in photosynthesis 

(Flexas et al. 2008; Niinemets et al. 2009b; Hassioutou et al. 2009, 2010). 

Simple leaves may achieve this compensation by exposing more 

mesophyll surface to CO2 favoring access to the chloroplast (Hassiotou et 

al. 2010b). In contrast, compound leaves present low LMA, leaflets with 

lower size which promotes more photosynthetic area and heat convection 

during stomatal close. In this sense, LMA relates to leaf size, energy 

management and leaf temperature, and differences in the photosynthetic 

performance between compound and simple leaves can exist. Thus, 

research about leaf type adaptations and heat dissipation during stomatal 

close in dry areas may help to improve crop production and water use 

efficiency by selection of suitable leaf traits (Turner et al. 2005; Katerji et 

al. 2008; Michaletz et al. 2015; Flexas et al. 2016).  
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Figure 6. Representation of drought effects on leaf size and leaf mass area (LMA). Leaves 

with high specific leaf areas, or SLA, present a loose mesophyll structure, allowing faster 

CO2 diffusion through carboxylation sites in chloroplast. In contrast, during drought, 

decreases in leaf size allow a more packing mesophyll structure, this adaptation compensates 

for a decrease in the photosynthetic area by increasing the mesophyll area. However, more 

mesophyll package decreases mesophyll conductance compared to species with lower LMA.  

 

Respiration: from energy production to carbon balance 

Respiration process 

Both respiration in mitochondria, and photosynthesis in chloroplast, 

regulate plant growth and yield crop. In mitochondria, sugars that came 

from photosynthesis are respired and transformed into carbon skeletons 

used for biomass production and maintenance of plant metabolism. 
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Several works stated the importance of improving respiration, by 

increasing the ATP produced by sucrose consumed (Figure 7), allowing 

biomass increases in crops (Amthor, 2010). Before the oxygenation of 

earth, respiration was performed by chemolithotrophic microorganisms, 

which used the inorganic minerals as electron acceptors. (Broda 1975; 

Gomez & Amils, 2002). With increasing oxygen levels and the use of O2, 

mitochondria achieved a highly exergonic reaction and greater efficiency 

in energy production. This makes oxygenic respiration a more energetic 

reaction compared to other electrons acceptors. However, due to the 

reactivity of oxygen with organic molecules, several mechanisms 

avoiding ROS were developed (Turrens et al. 2003; Landis & Tower, 

2005; Krumova & Cosa, 2016). In this sense, mitochondria regulate the 

energy state of the cell, developing mechanisms including interaction 

with other organelles and metabolites levels derived from primary 

metabolism for redox homeostasis maintenance.  

Glycolysis and TCA cycle: the producers of reducing power 

In plants as in animals, cellular respiration occurs in mitochondria. The 

process begins with the oxidation of sucrose, and a three-carbon 
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molecule named pyruvate is produced with gain of two ATP and NADH 

molecules (Figure 7). In plants, malate is produced mostly instead of 

pyruvate, with no net gain of ATP or NADH (Lambers et al. 2019). 

These malate and pyruvate enter mitochondria in the TCA or 

tricarboxylic cycle (Figure 8). The function of TCA is to take advantage 

of all the energy contained in C3 carbon bonds, and to transfer this 

energy to the donor electrons molecules such as NADH and FADH2 

(Noguchi & Yoshida, 2007). During the TCA cycle, several 

decarboxylation reactions occur, releasing CO2 that can be measured by 

IRGAs. The net ATP and NADPH generated during glycolysis and TCA 

depend on the substrate obtained from sucrose oxidation. When malate is 

the principal product, glycolysis and TCA produced 16 NADH, 4 

FADH2, and 4 ATP molecules (Sweetlove et al. 2010; Buchanan et al. 

2015). Pyruvate produces 4 additional NADH and ATP molecules 

(Figure 7). The purpose of NADH and FADH2 produced in these 

reactions is to generate the H+ gradient required for ATP synthesis. At 

the same time, the mitochondrial electron transport chain, located in the 
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inner membrane of this organelle, uses the electrons of NADH and 

FADH2 to reduce the O2 to water (Figure 8). 

 

 

 

Figure 7. Reactions of glycolysis. In the cytosol, sucrose coming from another source or 

hexose phosphate coming from photosynthesis are subsequently transformed onto Pyruvate 

or Malate. When malate is synthetized no NADH is produced in glycolysis due to the use in 

the oxaloacetate reduction. Precursor of malate, the phosphoenol-pyruvate can enter to 

chloroplast and being part of shikimate pathway for secondary metabolism. Pyruvate also can 

enter to chloroplast for lipid synthesis or produce the aminoacid alanine. Figure from 

O`Leary & Plaxton, 2016 
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Mitochondrial electron transport chain, mETC 

Once inside the mitochondrial inner membrane, NADH and FADH2 

deliver their electrons to several complexes to generate a proton motive 

force for ATP synthesis (Finnegan et al. 2004; Noguchi & Yoshida, 

2007). The proton motive is created by complexes named from I to IV, 

using electron transport to move H+ from the mitochondrial matrix to the 

intermembrane space. Ubiquinone -UQ- is a mobile protein that 

transports the electrons from complex I to complex III. During this 

electron transport, ubiquinone is reduced -UQH2- accepting two H+ from 

the mitochondrial matrix and releasing them in intermembrane space 

when electrons are passed to complex III. Finally, in the Complex IV or 

COX -for cytochrome oxidase-, the electrons from complex III are used 

for O2 reduction to H2O (Figure 8) (Del Saz & Ribas-Carbó, 2018; 

Lambers et al. 2019). Thus, ATP synthesis is dependent of the proton 

motive-force created by the flow of electrons through complexes I, II, III, 

and IV. 
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Figure 8. Mitochondrial electron chain reactions. Located in the intermembrane space the 

complexes received the electrons coming from NADH and FADH2. The ubiquinone 

transports the electrons of complex I and II to the complex III. Complex I and II translocated 

H+ from mitochondrial matrix to intermembrane space. As occurs in chloroplast, in 

mitochondria ubiquinol can operate a Q cycle in which electrons are transferred from UQ to 

complex III where proton extrusion into the intermembrane space takes place. The reduction 

of oxygen to water occurs in the cyanide sensitive complex IV or cytochrome oxidase. 

Complex V is an ATPase which create ATP from the H+ concentration gradient. Note that 

due to its location, complex II does not translocate protons, but transfers electrons to 

ubiquinone. Figure from O`Leary & Plaxton, 2016 

 

Besides COX, alternative oxidase (AOX) is activated in mitochondria 

when misbalances in cell energy status occur during biotic or abiotic 

stress. Alternative respiration delivers NADH electrons directly to the 

reduction of O2 to water, lowering ATP production and hence, the energy 

efficiency of respiration (Gandin et al. 2014; Florez-Sarasa et al. 2016; 
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Del Saz et al. 2018; Vanlerberghe, 2020). AOX is a di-iron protein 

located in the inner membrane of mitochondria, and present in several 

phyla such as plants, animals, and proteobacteria (Finnegan et al. 2004; 

McDonald & Vanlerbergue, 2006). Due to its importance for energy 

status, AOX activity is regulated by four factors, 1) the status of UQ 

reduction; 2) the quantity of protein available; 3) the redox status of the 

cysteine residues, which activates or deactivates the enzyme; 4) 

concentrations of organic acid from TCA cycle such as pyruvate (Figure 

8 and 9) (Finnegan et al. 2004; Vanlerbergue, 2013). The ancestral 

function of this pathway probably appeared in anaerobic bacteria and 

related to the avoidance of reactive oxygen species from O2 metabolism 

during transition from anaerobic to oxygenic respiration (Gomes et al. 

2001; Finnegan et al. 2004). This hypothesis is supported by the 

insensitivity of AOX -unlike COX- to sulfide, which was the primitive 

electron acceptor before oxygen. In this sense, AOX would allow the 

continuity of respiration during the transition of aerobic respiration in a 

still high sulfide atmosphere where COX was prone to be inhibited 

(Azcon-Bieto, 1986). With this in mind, AOX's presence in an 
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anoxygenic atmosphere probably helped with the transition of plants 

from water to land. In contrast to the aquatic environment, terrestrial 

plants are subject to higher energy input due to high light and conditions 

that promote stomatal close (Maberly et al. 2014). In this situation, the 

NAD(P)H/NAD(P) ratio increases while the respiratory demand 

decreases, leading to a cellular redox imbalance. It can be thought that 

during evolutive time AOX pathway could maintain the electron 

transport by dissipating excess of reducing equivalents and this could be 

especially relevant during land colonization (Yoshida et al. 2006; Vries 

& Achibald, 2017; Vanlerbergue et al. 2020). Thus, it seems that 

mitochondrial oxidases play a crucial role in cellular redox status 

regulation together with chloroplast signaling to promote higher CO2 

assimilation in a high reductant world (Gomes et al. 2001). 
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Figure 9. Synthesis of reactions which produced NADH and activates AOX. In conditions of 

high energy input such as drought, high light, or nutrient deprivation, the energy produced in 

the chloroplast in the NADPH form can enter mitochondria by malate valve, converted to 

NADH, and oxidized in AOX. Moreover, photorespiration, glycolysis, and TCA products are 

converted to NADH and oxidized via alternative respiration. Organic acid from TCA such as 

malate, fumarate, or citrate also can activate AOX and regulate the energy status. The GABA 

metabolism also relates to alternative respiration via amino acid metabolism. This picture 

shows the metabolic flexibility of respiration during stress and its coordination with 

chloroplast. Figure obtained from Del Saz et al. 2017.  
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As occurs with photosynthesis, and due to the importance of respiration 

on plant growth, several approaches are available for respiration 

measurements. One of the most accurate approaches is the IRMS, or the 

isotope ratio mass spectrophotometry (Ribas-Carbo et al. 1995, 2005; 

Muccio & Jackson, 2009; Kaklamanos et a. 2020). When operating as 

continuous flow (CF-IRMS) or dual inlet (DI-IRMS), the discrimination 

against heavier isotopes of several elements such as C, O, H, and N in 

different materials can be obtained (Tomaszek, 2005; Benson et al. 

2006). These elements have a lighter version that is preferred in some 

biological reactions, such as the fixation of CO2 by RuBisCO and the 

consumption of O2 by the two terminal oxidases in mitochondria 

(O´Leary, 1981; Ribas-Carbo et al. 1995). The oxygen isotope 

fractionation technique is based in the differential discrimination of both 

oxidases against the heavy oxygen isotope 18O. Due to the energy 

required to break the bond of a heavy 18O isotope, being higher than for 

the light 16O isotope, both oxidases prefer to react with the light isotope, 

but AOX discriminates more against the heavier oxygen isotope than 

COX (Ribas-Carbo et al. 1995; Henricksson et al. 2018). Because each 
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oxidase competes for electrons during respiration, the use of DI-IRMS 

allows estimations of the rate of electron flow to the alternative pathway 

in the absence of inhibitors, obtaining real contribution (or ) of this 

oxidase to total respiration (Del Saz & Ribas-Carbó, 2018). Currently, 

metabolite profiling is another mass spectrophotometry technique, 

extensively used for elucidating the levels of primary metabolites during 

biotic or abiotic stress (Roessner et al. 2001; Trethewey et al. 2004; 

Broeckling et al 2005; Sweetlove et al. 2014). When observations 

obtained with DI-IRMS and metabolite profiling are combined, we can 

infer relationships between respiratory parameters and primary 

metabolites (Florez-Sarasa et al. 2016; Del Saz et al. 2016).  

Ecophysiology of AOX respiration 

Studies evaluating the impact of elevated atmospheric CO2 on nutrient 

cycling report plant growth and root metabolism are the main source of 

carbon sequestration (de Graaff et al. 2006). In soil, root respiration 

accounts for 80% of the total soil respiration, with the microbial CO2 

release accounts for the resting 20% (Melillo et al. 2002; Davidson & 
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Janssens, 2006). Roots are a sink for carbohydrates due to energetics 

requirements for ion transport, nutrient assimilation, growth, and 

maintenance (Atkins et al. 2000; Nunes-Nesi et al. 2010; Foyer et al. 

2011; Del Saz et al. 2017). Global warming can increase soil respiration 

and hence, acting as positive feedback for raising CO2 concentrations 

(Amundson, 2001; Bergner et al. 2004; Chen et al. 2018). Increases in 

respiration can affect the productivity in some crops due to the linear 

relationship between respiration and temperature (Atkins et al. 2000; 

Atkin & Tjoelker, 2003; Del Saz et al. 2017). In this sense, agricultural 

production is challenged by an increase in demand for food by the 

growing human population (Vance et al. 2003). Climate change also 

affects the plant nutrient status by decreasing the nitrogen (N) and 

phosphorus (P) content in some biomes (Djikstra et al. 2012; Yuan & 

Chen, 2015). Global warming and the increase in CO2 can influence the 

distribution of N: P in plant tissue, and this imbalance can affect the 

stoichiometry for correct growth and plant productivity (Yuan & Chen, 

2015). Almost all nitrogen available for the plant is present in the 

reduced form of nitrate (NO3
-), ammonia (NH4

+), organic compounds, 



31 
 

and molecular nitrogen (N2) in the air (Miller & Cramer, 2005, Lea & 

Miflin 2011). For Pi, the largest source of this element comes from the 

phosphate rock, monopolized by a few countries, and probably depleted 

by 2050, a date coinciding with an increase in food demand for humans 

(Cordell et al. 2009; Sattari et al. 2012). Several works showed the 

positive effect of AOX in abiotic stress such as nutrient deprivation, 

elevated CO2 and drought (Gandin et al. 2009; Del Saz et al. 2017; Shane 

et al. 2014; Lambers et al. 2015). In this sense, the negative effects on 

ATP production are compensate by the role of AOX in carbon balance 

during nutrient stress allowing better plant performance and yield 

(Gandin et al. 2009; Dahal et al. 2015; Florez-Sarasa et al. 2020).  

Another possible solution to deal with nutrient deprivation is the 

ecological fertilization process that occurs in nature by various 

microorganisms in soil (Vance & Lamb, 2001; Lambers et al. 2015). 

However, the roles of AOX activity during plant symbioses with 

mycorrhiza and rhizobia are unknown. With this goal in mind, 

understanding the physiological process that regulates metabolic 
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requirements and physiological aspects of N and P nutrition in plants can 

improve agricultural practices. 

Role of AOX activity during N deficiency 

N is linearly related to photosynthesis and respiration, due to its 

importance for enzyme synthesis (Evans, 1989). Assimilation of N 

requires the integration of photosynthesis, photorespiration, and 

respiration in different tissues organs, and cells (Atkin et al. 2000; 

Bykova et al. 2014; Igamberdiev & Kleckowski,2018). The preferred 

form N absorbed in roots is nitrate (Betti et al. 2012). To be integrated 

into amino acids, nitrate must be reduced by the nitrate and nitrite 

reductase (NR, NiR) in the ammonium -NH4
+- form which uses 

NAD(P)H, which comes from photosynthesis or mitochondria when the 

assimilation occurs in leaves or roots, respectively (Foyer et al. 2011; 

Betti et al. 2021; Buchannan et al. 2015). Photorespiration is also another 

regulator of N metabolism by recycling the NH4
+ that is released during 

the decarboxylation of glycine to serine, with lethal consequences when 

imbalances in these reactions occur (Oliver et al. 1990; Matt et al. 2001). 

In addition, respiration allows N assimilation by providing carbon 
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skeletons which added to NH4
+, give rise to amino acids (Foyer et al. 

2011). Thus, the availability of nitrogen determines the amount of carbon 

that must be assimilated by photosynthesis and oxidized in the TCA. 

With this in mind, components of respiratory chain are essential in 

regulate the redox status on cell, promoting flexibility for energy usage 

when N is scarce (Foyer et al. 2011). 

In the case of low N supply, respiration decreases faster than 

photosynthesis promoting a high carbon environment (Richard-Molard et 

al. 2008; Körner, 2015). The latter occurs due to the reduction of electron 

requirements for nitrate reductase activity and lower requirements of 

carbon skeletons for amino acid synthesis, promoting carbon and NADH 

accumulation (Noctor & Foyer, 1999; Nunes-Nesi et al. 2010). This high 

energetic environment increases the carbon respired via AOX, and hence, 

this is not used for growth, but it is used to maintain the metabolism 

(Sieger et al. 2005). Regardless of the knowledge about AOX 

contribution in energy management during nutrient deprivation (Sieger et 

al. 2005; Gandin et al. 2014; Lambers & Plaxton, 2015), the in vivo 

activity of these pathways was not addressed so far, especially the 
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signaling which regulates AOX activity and its relationship with carbon 

metabolism. In this sense, during the lack of activity of nitrate reductase 

and hence, an increase of NADH not used for nitrogen assimilation, 

AOX is activated in order to avoid redox imbalance (Gandin et al. 2014). 

Thus, during nitrogen starvation, AOX probably reduces the NADH pool 

allowing the continuity of light reactions in the chloroplast.  

Role of AOX during Pi deficiency 

Phosphorous (P) or inorganic phosphate (Pi) is the limiting factor in the 

formation and accumulation of triose phosphate, sugars, and starch, as 

well as ATP synthesis during oxidative phosphorylation (Farquhar et al. 

1980; Evans, 1989; Sieger et al. 2005; Vanlerbergue et al. 2019). As 

stated above, Pi has a marked effect in photosynthesis due to its 

regeneration from PGA for further carboxylation cycles. When Pi is 

scarce, an increase in sucrose contents occurs due to the low sink force 

exerted by plants organs due to the decrease in ATP produced in the 

mitochondria. Later, photosynthesis is downregulated by the higher 

sucrose contents and starch inside chloroplast (Huang et al. 2008; 

Hernandez et al. 2009; Obata et al. 2012). Photorespiration is also part of 
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the recycling process of Pi. During the phosphoglycerate export from 

chloroplast to mitochondria, a Pi is released in exchange for glycolate, 

and being decarboxylated and releases NH4
+ inside mitochondria 

(Ellsworth & Lambers et al. 2014). In this case, the role of AOX is to 

regulate the carbon metabolism, by acting as a sink for energy, probably 

oxidating the NADH coming from TCA during sugar accumulation and 

avoiding its overaccumulation (Gandin et al. 2009; Vanlerbergue et al. 

2019). This is observed when AOX is knocked out, and sugar 

phosphates, starch, and sucrose are accumulated (Vanlerbergue et al. 

2019). 

In roots, AOX provides a different role during Pi deficiency. A 

mechanism used by roots to explore and solubilize Pi involves lateral 

root growth, exudation of organic acids –carboxylates-, and Pi transporter 

synthesis, allowing exploration, solubilization, and Pi absorption, 

respectively (Florez-Sarasa et al. 2014; Lambers et al. 2015; Malhotra et 

al. 2019). The majority of P in soil is unable to be absorbed by plants 

because is immobilized by other metals, being part of cations or organic 

forms (Hao et al. 2002). Carboxylate exudation involves the release of 
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organic acids, such as malate or citrate in the soil adjacent to roots. 

Carboxylate possesses a negative charge, its exudation lowers the pH in 

soils, makes P accessible for remobilization and assimilation by plants 

(Otieno et al. 2015; Israr et al. 2016). During carboxylate exudation, 

respiration via AOX increases (Shane et al. 2004). This is due to both 

high level of organic acids and NADH in the TCA cycle (Florez-Sarasa 

et al. 2014). However, the role of AOX during plant symbioses with soil 

microorganisms that fix nitrogen or solubilize Pi in exchange for sugar 

coming from photosynthesis is today very blurry, but this role could be 

related to the synthesis of different primary metabolites important for the 

maintenance of the symbioses.  

Respiration during symbiosis with nitrogen fixing bacteria and 

mycorrhiza: An in vivo role of AOX 

Another way to cope with nutrient starvation includes the establishment 

of positive symbiotic associations with positive microorganisms living in 

soil (Lagunas et al. 2015). In this sense, two major symbioses exist, 

mycorrhizal (fungi) –ecto and endomycorrhizas- and Rhizobium-Legume, 

a plant-bacteria symbiosis (Paracer & Ahmadjian, 2000; Poole et al. 
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2018). The presence of rhizobium and mycorrhiza in roots imposes a 

carbon cost for the fertilizer effects in N and Pi (Kaschuk et al. 2009; 

2012; Lagunas et al. 2015). Mycorrhizas were the first symbionts on 

Earth promoting the land transition of early vascular plants due to their 

positive effects on nutrient foraging (Selosse et al. 1998, 2004; Barman et 

al. 2016). One of the most recognized effects is the nutrient fertilizer 

effect, improved water content, protection by pathogen attack, and toxic 

metals (Selosse et al. 2004; Fritz et al. 2006; Pozo et al. 2007; Mitra et al. 

2021). The fungus association with roots occurs as a controlled infection 

depending on the Pi concentration in soil medium (Smith et al. 2008; 

Barman et al. 2016). Roots release several metabolites such as 

strigolactones that are recognized by a specific fungus strain (Figure 9) 

(Smith et al. 2008). The fungi also release several chemical factors which 

interact with the root surface, allowing hyphae penetration within root 

cells. Once inside, mycorrhiza hyphae extent into the cytoplasm of root 

cells forming an arbuscular structure (Lagunas et al. 2015; Barman et al. 

2016). Once established in roots, mycorrhiza acts as a new organ and 

hence, another sink for sugar (Figure 9) (Herold et al. 1980; Kaschuk et 
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al. 2010). The uptake and extension of hyphae beyond the deprivation 

zone of nutrients such as N and Pi require nearly 4-16% of the 

photoassimilates. These carbon requirements impact carbon metabolism 

in plants, by increasing AN and respiration in leaves and roots, 

respectively (Hughes et al. 2008; Kaschuk et al. 2009; Romero-Munar et 

al. 2014). In return, thanks to the extension of hyphae, mycorrhiza can 

uptake Pi to sustain plant metabolism (Lagunas et al. 2015; Andrino et al. 

2021).  
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Figure 10. Steps in the controlled infection of arbuscular mycorrhiza. A) After the chemical 

communication and recognition, the fungus penetrates in the root cells. Hyphae penetrate 

inside the cortex of roots and stablish arbuscules inside cells, where the exchange of nutrients 

and carbon takes place. In B) the hyphae can extend beyond of the deprivation zone and 

explore soil for water and nutrients such as inorganic phosphate. Figure from Lambers et al. 

2019. 

 

A 
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The positive effects of mycorrhiza on plant growth depend on the fungus 

species and the carbon requirements, and they may include incremented 

energy efficiency of respiration (Lendenmann et al. 2011; Andrino et al. 

2021). Mycorrhiza requires sucrose or TCA intermediates for energy 

production. The COX or AOX activity inside hyphae determines the rates 

of ATP used for Pi absorption and hence, the quantity of sugars needed 

for this task (Hughes et al. 2008). The positive effects in growth occur 

due to improvement in ATP synthesis in plants despite the carbon cost 

for the maintenance of mycorrhiza. For example, in Nicotiana tobacco 

roots, the presence of mycorrhizae decreases AOX activity and carbon 

exudation. By preventing carbon loss and enhancing COX, mycorrhiza 

promotes the accumulation of plant biomass (Del Saz et al. 2017). 

Moreover, both ATP concentration and COX expression increase 

probably due an increment in the efficiency in energy production. For 

example, the mycorrhizal roots of Arundo donax showed a decrease in 

total respiration due to a low COX activity. This suggested a lower ATP 

demand for nutrient uptake in mycorrhizal roots. With this in mind, 

changes in total respiration -contribution of COX and AOX- in 
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mycorrhizal roots are important for plant growth (Hodghes et al. 2008; 

Romero-Munar et al. 2014; Liu et al. 2014; Del Saz et al. 2017).  

Insights into AOX activity and the Legume-Rhizobium symbiosis  

The Fabaceae or Leguminosae is the third largest family of flowering 

plants and the second family most used for agricultural purposes 

(Graham & Vance, 2003). Legumes possess high amounts of vitamins, 

insoluble and soluble fiber contents, minerals, and secondary metabolites 

used for medicinal purposes (Gulewiez et al. 2014; Wanda et al. 2015). 

The high nitrogen content in leaves makes the leguminous plant a good 

forage for animals and sustainable agricultural purposes (Mckey, 1994; 

Crews, 1999; Vance, 2001; Dwivedi et al. 2015). Besides their nutritional 

properties, legumes establish symbiotic associations with nitrogen-fixing 

bacteria that enhance soil quality. Bacteria can fix atmospheric nitrogen 

and provide it to the plant in return for plant photoassimilates (Heath, 

2010; Laranjo et al. 2014). Nitrogen-fixing bacteria belong to several 

genera and strains, generally called rhizobia, which form a mutualistic 

interaction with plant roots (Figure 10) (McKey, 1994; Masson-Boivin et 

al. 2009; Heath, 2010; Giraud & Fleichman, 2004 Laranjo et al. 2014). 
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This association requires 14% of plant photoassimilates to fuel 

nitrogenase reactions. By fixing molecular nitrogen (N2) to organic form 

(NH3), nodules exert a fertilizer effect in plants (Figure 10) (Minchin & 

Witt, 2005; Kaschuk et al. 2009; Piechulla & Heldt, 2011). Despite this 

cost, it has benefits such as tolerance to abiotic stress and enhanced plant 

growth (Barka et al. 2006; Heath & Lau, 2011; Laranjo et al. 2014). In 

this sense, understanding the importance of the links between nitrogenase 

activity, photosynthesis, and respiration is important to improve and 

understand nodule functioning in legumes and the physiological process 

regulating nitrogen fixation. 
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Figure 11. Representation of the presence of rhizobia and mycorrhiza in roots. The two types 

of symbiosis require carbon from photosynthesis to sustain their fertilizing effects. Rhizobia 

exchange organic forms of nitrogen for organic acids from TCA. On the other hand, 

mycorrhiza exchanges phosphate against a gradient for sucrose or organic acids. Note that the 

image is only representative because few species can maintain the two kinds of symbiosis. 

 

The symbiosis of rhizobia enhanced photosynthesis and respiration. The 

above occurs by a decrease in limitations of photosynthesis to satisfy the 

carbon demand of the nodules (Figure 11) (Kaschuk et al. 2009). As 
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respiration and photosynthesis metabolism remain in equilibrium to 

sustain carbon balance (Noguchi & Yoshida, 2008), an increase in the 

rate of photosynthesis must increase respiration in growing organs such 

as stems, fruits, and roots due to sink strength of nodules (Pitelka, 1977; 

Herold, 1980; Dinakar et al. 2010; Ainsworth & Bush, 2011; Dietze et al. 

2014). Thus, if increases in photosynthesis are not accompanied with the 

demand for the end products (ATP, carbon skeletons), the sugar can 

accumulate and alter carbon balance and growth in the plant (Sieger et al. 

2005; Gandin et al. 2009). The strictly use of organic acid by nodules 

involves the activity of several enzymes of the TCA cycle inside root 

cells (Rosendahl et al. 1990; Poole et al. 2018). As nodules use malate 

for the nitrogenase activity, the NADH pool increases, and oxaloacetate 

cannot be regenerated. During this situation, activation of anaplerotic 

routes for de novo synthesis of oxalacetate allows the TCA continuity. 

With this in mind, increases in the respiratory components (COX and 

AOX) to balance this high input/demand of energy required by the 

nodule for nitrogen assimilation can be expected (Lambers et al. 1980; 

Green et al. 2000; Schulze et al. 2000; Sieger et al. 2005). In this line, 
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various reports showed that nodulated roots have more respiration rates 

than non-inoculated roots (Rao & Ito, 1988; Schulze et al. 2000; 

Mortimer et al. 2008). However, few studies have focused on the 

contribution of both oxidases in the total respiration of the inoculated 

plants. 

Nodulated plants present higher biomass accumulation due to efficiency 

in bacteroid respiration per unit of fixed N2, despite the carbon needs 

(Schulze et al. 2000; Esfahani et al. 2004). However, if rhizobia 

symbiosis imposes a similar effect on respiration as mycorrhizal 

symbiosis is unknown. In this sense, based on mycorrhizal effects on 

respiration, rhizobium probably promotes efficiency in ATP synthesis 

avoids excessive carbon respired, promoting biomass accumulation. The 

photosynthetic increase and the reduction of carbon loss by respiration 

are the cornerstones to improving yield programs (Amthor et al. 2019). 

With this in mind, the effect of the metabolite signaling and AOX 

activity during symbiosis in the two mitochondrial oxidases is worthy of 

evaluation in order to understand how maximize increases in plant yield 

during sustainable agriculture programs. 
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Problem statement  

Photosynthesis was a major evolutionary event that allowed the 

oxygenation of the atmosphere and the diversification of diverse forms of 

life on earth (Van Oijen et al. 2010; Sweetlove et al. 2010; Tcherkez et 

al. 2012). However, plants being sessile organisms, cannot escape from 

excess radiation. Several studies show the origin of various protective 

molecules and morphological characteristics against light excess (Weng 

& Chapple, 2010; Bowman et al., 2017). However, few studies relate the 

respiratory capacity as a strategy that allows the management of solar 

energy, and therefore a greater capacity for energy utilization. As 

mentioned above, respiration is responsible for using the substrates from 

photosynthesis for growth and maintenance. The terrestrial habitat is 

characterized by high solar radiation and a dry atmosphere, factors that 

promote high reductive environment inside cells (Asada et al. 2006; 

Takagi et al., 2017; Zandalinas et al., 2021). However, the capacity and 

activity of mitochondrial oxidases, and thus, the partitioning of electrons 

in the two oxidases which determines the energy efficiency of 

respiration, has not been studied in detail. Based on the above, the first 
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part of this thesis attempted to determine how the transition to the 

terrestrial environment determined a greater capacity of electrons to the 

alternative oxidase, allowing the establishment and colonization of plants 

by higher metabolic management of electrons. In addition, the leaf was 

an evolutionary adaptation that allowed an improvement in 

photosynthetic capacity and the development of the hydraulic system in 

plants (Brodibb et al. 2010). However, by maximizing the photosynthetic 

area, a greater area of access to CO2 is achieved, but in turn, more area is 

prompted to absorb solar radiation and hence prone to overheat 

(Givinish, 1989). This is of great importance in places where access to 

water decreases periods and added to stomatal closure, increases the 

probability of plants suffering from high temperatures (Michaletz et al. 

2015). It has been established that a smaller leaf size would allow the 

correct regulation of energy due to its convective exchange with the 

environment (Gates, 1968). However, reductions in leaf size have 

consequences on the biochemical limitations of photosynthesis (Flexas et 

al. 2009; Tomas et al. 2013). Therefore, it is proposed that leaf shape 
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regulates the energy dissipation by physical mechanisms and controls 

photosynthesis by regulate leaf temperature. 

Climate change predicts water and nutrient deficit (IPCC 2019). In this 

sense, both crop and native species face the same problem being capable 

of developing is an entire life cycle in a changing world. As the human 

population grows, all efforts are put into decreasing the high use of 

artificial fertilizers and their negative effects (Djikstra et al. 2012; Yuan 

& Chen, 2015). In this sense, understanding the metabolic reorganization 

occurring in plants during nutrient deficit is a new target for crop 

production programs. Nitrogen and Phosphorous deficiency also produce 

a high reductive environment in plants (Shane et al. 2004; Nunes-Nesi et 

al. 2010; Obata et al. 2012). As proposed in chapter one, changes in the 

activities of both mitochondrial oxidases could improve our 

understanding of the energy balance occurring during a nutrient deficit. 

Moreover, the role of the alternative oxidase during this stress probably 

helps plants cope with the high reductive environment by reprogramming 

the metabolism and metabolite signaling, which promotes plant viability.  
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Another role of respiration during nutrient deficit is the effects in plant 

metabolism the presence of symbiosis with rhizobia and mycorrhiza 

(Laranjo et al. 2014). Symbiosis exerts a different energy imbalance by 

promoting higher photosynthetic rates to cover the symbiont needs. In 

return, rhizobia and mycorrhiza give N and Pi, respectively (Hughes et 

al. 2008; Kaschuk et al. 2010). However, based on the results found 

during mycorrhiza symbiosis (Romero-Munar et al. 2018), the metabolic 

signaling leading to increases in the carbon needs and changes in AOX 

activity is not fully understood. Legumes is a perfect case of study to test 

this role of respiration during symbiosis due to high AOX transcripts and 

the recognition of symbiosis with rhizobia -a soil bacteria-. Several 

studies show the positive effects of rhizobia in growth and respiration 

rates (Barka et al. 2006; Heath & Lau, 2011; Hungria et al. 2014; Laranjo 

et al. 2014). However, the metabolite signaling and the role of the two 

mitochondrial oxidases in the energy balance during symbiosis are not 

studied so far.  

 

 



50 
 

Hypothesis 

¿How does respiration influence photosynthetic and metabolic 

capacity in the terrestrial environment? 

Due to terrestrial conditions generate a higher reducing environment for 

plants biochemistry reactions, the alternative oxidase would allow plants 

to increase their capacity to deal with incoming solar energy during the 

transition between land and water. 

¿There are differences in the management of solar energy by simple 

and compound leaves? 

Because the compound leaves present a smaller leaf area, they would 

present high values of mesophyll conductance and, therefore, higher 

photosynthetic capacity. In addition, under drought conditions, the 

compound leaves would have greater convective cooling.  

¿Which is the in vivo role of alternative oxidase during nutrient 

deficit in plants? 

Nutrient limitation causes energy misbalances, which promotes 

metabolic changes and differences in mitochondrial oxidases 
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contribution, in this sense, alternative oxidase regulates the redox 

homeostasis by respiring substrates allowing the TCA continuity and 

avoiding overreduction of respiratory chain.  

¿How symbiosis with soil microorganism change the metabolic 

routes involved with respiration in plants? 

The establishment of symbiosis with soil microorganism promotes higher 

photosynthetic capacity by sink force, hence, changes in both COX and 

AOX in plants are expected in order to maintain C/N status and to 

decrease ROS generation during symbiosis.  
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Thesis outline 

This thesis consists of three articles. Each of the articles is represented in 

a chapter, being three chapters in total.  

Chapter 1 corresponds to Article 1, where I tested the role of respiration 

in managing the high flow of energy under terrestrial conditions. This 

was tested by using palustrine species from semi-aquatic environments of 

different families and comparing them with terrestrial plant species 

belonging to the same families. Photosynthetic capacity and oxygen-

isotope fractionation were quantified and its relationship with energy 

management was tested. In addition, a metabolite profiling was 

performed to determine which metabolic pathways were related to the 

homeostasis redox in both types of environments. 

Chapter 2 is based on a trade-off between leaf type to photosynthetic 

limitations and energy management under control and water stress. In 

article 2, the role of leaf shape was established by comparing the 

photosynthetic limitations between compound leaves and simple leaves 

of the Chilean matorral. By exposing both types of leaf species to 

extreme drought, which is recurrent in the Chilean Mediterranean 
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climate, leaf temperature, the net rate of photosynthesis, stomatal 

conductance, and mesophyll were obtained. In addition, a logarithm 

response ratio (LnRR) was performed to determine if the drought affects 

negatively more in compound or simple leaves. Based on the 

photosynthetic data and leaf temperature, the role of leaf type in the leaf 

energy balance from dry areas such as the Mediterranean was assessed, 

with attention to the effects of climate change. 

Finally, in chapter 3, the possible role of alternative oxidase in plant 

carbon metabolism during nutrient deficiency and in symbiosis with soil 

microorganisms is reviewed. First, article 3 shows several metabolic 

rearrangements occurring in plants subjected to N and Pi deficiency. The 

possible mechanism of metabolite signaling in both oxidases activity and 

its effects on carbon balance and energy status is discussed. In the second 

part, symbiosis's effects on plant carbon metabolism and changes in the 

mitochondrial metabolism adjustments are also discussed. Moreover, the 

role of metabolite signaling in the integration and flexibility of primary 

metabolism is addressed. The data obtained links the mitochondrial 

oxidases with carbon balance during plant-microorganism interaction. 
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Understanding the metabolic processes that increase crop yield has vital 

importance for sustainable agriculture programs. 

General aim 

The general aim of this thesis is to determine the changes occurring on 

the primary metabolism in leaves and roots of vascular species including 

crops, when are subjected to a misbalance in the energy status caused by 

the physical, chemical, and biotic conditions of the terrestrial life such as 

desiccation, nutrient scarcity, and symbiosis with soil microorganism.  

The specific objectives that emerge from each chapter are the following:  

-Chapter 1: Respiration: as an energy producer to a master 

regulator of nutrient and carbon metabolism in leaves.  

Objective 1: Determine if land environment triggers respiratory 

differences between the aerial leaves of palustrine and terrestrial plants 

species. 

Objective 2: Identify which metabolic routes are related to the AOX 

pathway in leaves of palustrine and land plants species. 
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The article covering these objectives is:  

Article 1: “Different Metabolic Roles for Alternative Oxidase in 

Leaves of Palustrine and Terrestrial Species”  

-Chapter 2: Photosynthesis: leaf shape as a key player in the 

energy management and biochemical limitations  

Objective 1: Investigate if compound leaves and simple present 

differences in biochemical limitations based on AN, gs and gm values. 

Objective 2: To determine if heat dissipation is a mechanism that exists 

in both types of leaves to face the recurrent droughts that occur in the 

Central Chile matorral. 

The article covering these objectives is: 

Article 2: “Chilean matorral compound and simple leaf woody 

species are equally affected by extreme drought” 

-Chapter 3: Ecophysiology of AOX respiration: role in nutrient 

deficit and during symbiosis 
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Objective 1: To assess the energy and carbon regulation during N and Pi 

deficiency in leaves and roots of plants 

Objective 2: To identify metabolites involve in the in vivo AOX activity 

during N and Pi deficiency. 

Objective 3: Study the metabolic regulation of AOX during symbiosis 

with mycorrhiza and rhizobium and its importance for crop programs.  

The article covering these objectives is:  

Article 3: “In vivo Metabolic Regulation of Alternative Oxidase 

under Nutrient Deficiency. Interaction with Arbuscular Mycorrhizal 

Fungi and Rhizobium Bacteria” 
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CHAPTER 1: 
 

Respiration: energy producer and master regulator of 

nutrient and carbon metabolism in leaves. 
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Summary  

• The alternative oxidase pathway (AOP) is associated with excess 

energy dissipation in leaves of terrestrial plants. To address 

whether this association is less important in palustrine plants, we 

compared the role of AOP in balancing energy and carbon 

metabolism in palustrine and terrestrial environments by 

identifying metabolic relationships between primary carbon 

metabolites and AOP in each habitat. 

• We measured oxygen isotope discrimination during respiration, 

gas exchange, and metabolite profiles in aerial leaves of ten fern 

and angiosperm species belonging to five families organized as 

pairs of palustrine and terrestrial species. We performed a partial 

least square model combined with variable importance for 

projection to reveal relationships between the electron partitioning 

to the AOP (τa) and metabolite levels. 

• Terrestrial plants showed higher values of net photosynthesis (AN) 

and τa, together with stronger metabolic relationships between τa 

and sugars, important for water conservation. Palustrine plants 
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showed relationships between τa and metabolites related to the 

shikimate pathway and the GABA shunt, to be important for 

heterophylly.  

• Excess energy dissipation via AOX is less crucial in palustrine 

environments than on land. The basis of this difference resides in 

the contrasting photosynthetic performance observed in each 

environment, thus reinforcing the importance of AOP for 

photosynthesis. 

 

Keywords: Alternative Oxidase Pathway (AOP); Cytochrome Oxidase 

Pathway (COP); electron partitioning to the AOP (τa); primary 

metabolism; terrestrial species; palustrine species; heterophylly 
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Introduction 

Current life on Earth would not be possible without the evolution of 

biochemical processes that maintained energy entry in plants during land 

colonization (Delwiche & Cooper, 2015; de Vries et al., 2016; de Vries 

& Archibald, 2018; Gago et al., 2019). The earliest terrestrial plant 

ancestor, a charophycean alga, emerged from water approximately 500 

million years ago (Bhattacharya & Medlin, 1998; Yoon et al., 2004; 

Harholt et al., 2016; Reski, 2018; Morris et al., 2018), undergoing 

physiological, structural, and biochemical changes to cope with the 

transition from an aqueous to a gaseous medium (Kenrick & Crane, 

1997; Pires & Dolan, 2012; Vermeij, 2016). Among physiological and 

structural modifications from the first colonizing vascular land plants, 

specialized sexual organs, different kinds of leaves and roots, stomata, 

vascular and structural tissues allowed increases in plant size and water 

use efficiency (Kenrick et al., 2012; Assouline & Or, 2013; Proctor et al., 

2014; Arteaga-Vazquez, 2016; Brodribb et al., 2020). At the biochemical 

level, changes in metabolic pathways favored the synthesis of phenolic 

compounds, lignin, plant hormones, isoprenes, heat shock proteins or 
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superoxide dismutase to favor photosynthetic performance and plant 

growth under a highly-stressful terrestrial environment (Lowry et al., 

1980; Kenrick & Crane, 1997; Waters, 2003; Weng & Chapple, 2010; 

Bowman et al., 2017). As oxygenic photosynthesis requires water, 

survival in the dry atmosphere required that plants overcame desiccation 

forcing the first colonizing terrestrial plants to be close to sources of 

water, until new adaptations allowed their spread into the dry atmosphere 

of terrestrial habitats (Brodribb et al., 2020). In the meantime, a co-

evolution of the antioxidant system and oxygenic photosynthesis allowed 

land plants to survive several deleterious types of environmental stressors 

worldwide that induce oxidative stress and damage to the photosynthetic 

apparatus (Asada et al., 2006; Thomas et al., 2008; Gill & Tuteja, 2010; 

Takagi et al., 2017; Zandalinas et al., 2021). 

Currently, several metabolic pathways are identified as major energy-

dissipating systems conferring metabolic adaptation in response to a large 

entry of sunlight energy in leaves (Niyogi, 1999; Raghavendra & 

Padmasree, 2003; Scheibe, 2004; Noguchi & Yoshida, 2008). Among 

these pathways, mitochondrial metabolism stands out for its interaction 
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with photosynthesis, photorespiration and nitrogen assimilation 

(Raghavendra & Padmasree, 2003; Florez-Sarasa et al., 2016; O'Leary et 

al., 2020). In the mitochondrial electron transport system, oxygen 

consumption takes place simultaneously through the activities of 

cytochrome oxidase (COX) and alternative oxidase (AOX). Several 

studies in genetically engineered AOX-modified terrestrial model plants 

have suggested a role of AOX activity in optimizing photosynthesis 

under stress (Dahal & Vanlerberghe, 2018; Del-Saz et al., 2018a) by 

favoring the dissipation of excess energy and thus balancing cellular 

redox metabolism (Raghavendra & Padmasree, 2003; Del-Saz et al., 

2018a; Vanlerberghe, 2020). In fact, there is in vivo evidence of a fine 

tuning of respiratory metabolism via AOX activity in leaves of crops and 

model terrestrial plant species exposed to abiotic stress as a mechanism 

to dissipate excess energy (Florez-Sarasa et al., 2012, 2016; Del-Saz et 

al., 2018a,b). Indeed, across the divergence of the plant kingdom, AOX 

is widespread and conserved, and it is of vital importance for plants 

(McDonald et al., 2006; Del-Saz et al., 2018a; Selinski et al., 2018). 

Notably, AOX is hypothesized to have originated among anaerobic 
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bacteria in an anoxic atmosphere, being important for redox homeostasis 

during the transition to an oxygen-rich atmosphere 2.45 billion years ago 

during the Great Oxidation Event (Moore et al., 2002; Finnegan et al., 

2003; Catling & Claire, 2005).  

Several clades that appeared during the diversification of terrestrial 

plants, which include bryophytes, ferns and angiosperms, returned to 

aquatic environments, necessitating physiological, structural and 

biochemical modifications (Robe & Griffiths, 2000; Rascio, 2002; 

Maberly et al., 2014). This transition from terrestrial to aquatic habitats 

occurred gradually with dynamic environmental changes that provided 

habitats in the palustrine wetland system and emergent heterophyllous 

amphibious plants, which are characterized by submerged and aerial 

leaves, and are precursors of the fully submerged habit (Maberly & 

Spence, 1989; Maberly et al., 2014). The fully submerged habit led many 

aquatic leaves to display metabolic adaptations to enhance carbon gain 

(Bowes & Salvucci, 1989; Keeley & Santamaria, 1992; Maberly & 

Madsen, 2002; Huang et al. 2020) and the aeration status to allow 

oxidative phosphorylation (Gibbs & Greenway, 2003). It is unknown 
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whether the transition from land to the amphibious condition, involved 

respiratory and metabolic adjustments when oxygen was not a limiting 

factor. Such adjustments could have happened due to the different redox 

conditions that characterize both environments, with terrestrial habitats 

being less often inundated and more influenced by rain and ground water 

than palustrine habitats, resulting in vegetation adapted to different soil 

water conditions. Although palustrine habitats can be found within 

terrestrial environments in different biomes across the globe, a 

predominance of terrestrial plants in arid biomes may support the idea of 

water losses acting as the driving force for survival on land (Raven et al., 

2002; Berry et al., 2010), where variation in vegetation type is more 

affected by climate than in palustrine habitats (Schlesinger & Bernhardt, 

2020). Under this scenario marked by higher potential risks for both 

water conservation and redox balance in terrestrial environments, 

comparisons of respiratory metabolism in terrestrial vascular plants and 

their close amphibian relatives could provide clues to different metabolic 

routes important for the leaf biochemistry in each ecosystem under 

aerobic conditions. These comparisons could be performed in leaves of 
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amphibious plants because part of their foliage photosynthesizes and 

respires in the same gaseous medium as leaves of terrestrial plants. In this 

sense, the combination of "omics" technologies together with 

measurements of photosynthesis and respiration is optimal for further 

understanding of the metabolic regulation of plant physiological 

processes under different environmental conditions (Del-Saz et al., 2016; 

Florez-Sarasa et al., 2012, 2016, 2019; Flexas & Gago, 2018; Clemente-

Moreno et al., 2019). 

No previous study has evaluated the in vivo respiratory activities in ferns 

and palustrine angiosperms. In the present study, we compared ten 

species of ferns and angiosperms organized as pairs of palustrine and 

terrestrial species (from the same family). The in vivo respiratory 

activities, photosynthesis, and metabolite profiling of aerial leaves were 

determined using the oxygen isotope discrimination technique, leaf gas 

exchange and gas chromatography coupled to mass spectrometry (GC-

MS), respectively. Further, to outline the climatic space occupied by 

these species, we overlapped values of mean annual temperature and 

annual precipitation with Whittaker’s biomes classification (Whittaker, 
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1970; Wright et al., 2004). The main objective was to assess respiratory 

differences between terrestrial and palustrine plant species. In addition, 

relationships between metabolic routes and the AOX pathway were 

identified given their importance for leaf biochemistry in terrestrial and 

palustrine environments. We hypothesize that in terrestrial plants, these 

relationships could be important for the regulation of water conservation 

and redox state; whilst in palustrine plants, these relationships could be 

important for non-stress roles related to the adaptation to intermediate 

habitats between land and water (e.g. heterophylly). 

 

Material and methods 

Plant material and experimental design 

We selected five families of vascular plants, which consisted of one 

terrestrial species and its palustrine counterpart: (1) Acanthus mollis L. 

and Hygrophila stricta (Vahl) L. in Acanthaceae (angiosperm); (2) Arum 

italicum Mill. and Anubias heterophylla Engl. in Araceae (angiosperm); 

(3) Trachelium caeruleum L. and Lobelia cardinalis L. in 
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Campanulaceae (angiosperm); (4) Polypodium cambricum L. and 

Leptochilus pteropus (Blume) Fraser-Jenk, in Polypodiaceae (fern); and 

(5) Pteris vittata L. and Ceratopteris thalictroides L. (Brongn) in 

Pteridaceae (fern) (Table 1). In the middle of autumn, terrestrial plant 

species were collected in the field with their underlying substrate (soil) at 

various coordinates in Mallorca (Spain; Table 1), and placed in plastic 

bags to be immediately transported to the University of Balearic Islands 

(Mallorca) where they were transplanted into plastic pots, using a sterile 

soil–peat mixture (3 : 1 v/v). Then, the pots were maintained in a growth 

chamber under controlled conditions of 25°C, moderate light intensity of 

350 μmol m-2 s-1 of photosynthetic photon flux density (PPFD), relative 

humidity above 40%, 12 h photoperiod, and watered to full soil capacity 

every 3-4 days (fertilized once a week). At the same time, commercial 

amphibious plants were distributed inside the same growth chamber as 

the terrestrial plants in different 34 x 45 cm water-tanks containing 20 ± 

5 cm water-level, rooted in gravel/ substrate for aquarium plants, and 

maintained under a moderate irradiance of 100 μmol m-2 s-1, according to 

the low light demand required for growing aquarium species as described 
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in previous studies (Mommer et al., 2005; Koga et al., 2020). Four to six 

plants per terrestrial and palustrine species were maintained under 

different availability of light energy and water in each habitat. By doing 

this, we generated contrasting redox environments according to their 

different predominance in biomes with contrasting canopy openness and 

water availability as outlined in next subsection. All plants developed 

aerial leaves under growth chamber conditions until the beginning of 

experiments in the middle of winter. The upper-most fully expanded 

aerial leaves of all species were used for gas exchange, in 

vivo respiration, and metabolic profiling analyses. 

Species spatial distribution 

In order to assess the abundance of both terrestrial and palustrine plant 

species in locations and biomes with different environmental conditions, 

we studied the spatial distribution of these species considering data of 

MAT and mean annual precipitation (MAP) from the years 1980 to 2010. 

Different numbers of records among species were obtained from GBIF 

(Global Biodiversity Information Facility1): A. italicum (32875), P. 

cambricum (17980), L. cardinalis (5375), P. vittata (3906), A. 

https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#footnote1
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mollis (2628), T. caeruleum (2559), C. thalictroides (2037), L. 

pteropus (196), A. heterophylla (55), and H. stricta (7). For greater 

accuracy, we increased the number of records of palustrine plants in 

Araceae and Acanthaceae, by substituting Higrophylla stricta (7) 

for Higrophylla ringens (1264) and Anubias heterophylla (55) 

for Anubias spp. Schott. (617) because of their similar distribution 

records (Supplementary Figure 1). Then, a random selection of records 

equalized the number of samples in each family and habitat; 2000 in 

Campanulaceae; 1500 in Pteridaceae; 1000 in Acanthaceae; 600 in 

Araceae, and 150 in Polypodiaceae. Finally, the spatial distribution of 

records randomly selected was studied with QGIS, a GIS software that 

combines species occurrences from GBIF with climate layers from 

WorldClim2. QGIS rasterized species occurrences and extracted MAT 

and MAP data across all grid cells of the species occurrence region, at a 

spatial resolution of 30 arc-seconds (∼1 km). Then, species classification 

into biomes was performed from a Whittaker diagram of MAT and MAP 

(Wright et al. 2004). 

Leaf gas exchange measurements 

https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#S11
https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#footnote2
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Leaf gas exchange with Chla fluorescence measurements were recorded 

every day from 10 am to 2 pm during the last 2 weeks of the experiment 

with an open infrared gas-exchange analyzer system (Li-6400; Li-Cor 

Inc., Lincoln, NE, United States) equipped with a leaf chamber 

fluorometer (Li-6400-40, Li-Cor Inc.) using aerial leaves of terrestrial 

and amphibious plants under light-saturating photosynthetic photon flux 

density (PPFD) of 1000 and 400 μmol m–2 s–1, respectively (to avoid 

photodamage as a consequence of a high PPFD), with 10% blue light, a 

vapor pressure deficit (VPD) of 1.35 ± 0.32 kPa, a CO2 concentration 

(Ca) of 400 μmol CO2 mol–1, and 25°C air temperature. Net 

photosynthesis (AN) and stomatal conductance (gs) were determined after 

a steady state was reached (after c. 20 min). Once the gas exchange 

stabilized, five readings were taken in four to six plants per species and 

averaged to be considered as the mean of the measured plant. Intrinsic 

WUEi was calculated as the ratio between AN and gs. After a minimum 

30 min under dark conditions, leaf dark respiration (Rdark) was measured 

in three to five plants per species with at least five readings per plant, and 
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estimations of leaf carbon balance were obtained from the ratio of Rdark to 

AN. 

The quantum efficiency of the photosystem II (PSII)-driven electron 

transport was determined using the equation ΦPSII = (Fm′ - Fs)/Fm′, 

where Fs is the steady-state fluorescence in the light (PPFD = 1000 and 

400 μmol quanta m–2 s–1 for terrestrial and palustrine plants, respectively) 

and Fm′ is the maximum fluorescence obtained with a light-saturating 

pulse (8000 μmol quanta m–2 s–1). The electron transport rate (ETR) was 

calculated as ETR = ΦPSII × PPFD × αβ, where α is the leaf absorptance, 

assumed to be 0.84, and β is the distribution of absorbed energy between 

the two photosystems, assumed to be 0.5 (Gallé and Flexas, 2010). At 

least five readings in two to four plants per species were taken and 

averaged to be considered as ETR values of the measured plant. The 

average ETR value for each species was used for estimations of the ratio 

of ETR to AN. 

Respiration and oxygen-isotope fractionation measurements 

For respiratory measurements, the aerial leaves of terrestrial and 

palustrine plants were harvested and cut into pieces after 30 min in 
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darkness to be placed in a 3 ml stainless-steel closed cuvette maintained 

at a constant temperature of 25°C. Air samples were sequentially 

removed from the cuvette and fed into the mass spectrometer (Delta 

XPlus; Thermo LCC, Bremen, Germany). Changes in the 18O/16O ratios 

and O2 concentration were obtained to calculate the oxygen-isotope 

fractionation and the electron partitioning to the AOP (τa), allowing 

calculations of the in vivo activities of AOP and cytochrome oxidase 

pathway (COP) as described in Del-Saz et al. (2017a). Both end point 

fractionation values of the AOP (Δa) and the capacity of the alternative 

pathway (Valt) were determined in leaves of terrestrial and palustrine 

plants treated with a solution of 10 mM potassium cyanide (KCN) for 30 

min. For land plants, Δa values (n = 3) of 29.9 ± 0.2‰, 30.0 ± 0.2‰, 30.2 

± 0.5‰, 30.6 ± 0.2‰ and 30.3 ± 0.4‰ were obtained for P. 

cambricum, P. vittata, A. italicum, A. mollis, and T. caeruleum, 

respectively. For palustrine plants, Δa values of 32.5 ± 0.3‰, 30.8 ± 

0.3‰, 31.2 ± 0.8‰, 31.4 ± 0.1‰, and 29.6 ± 0.2‰ were obtained for A. 

heterophylla, C. thalictroides, H. stricta, L. cardinalis, and L. pteropus, 

respectively. On the other hand, an assumed value of 20.0‰ for the end 
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point fractionation values of the COP (Δc) was used for the electron 

partitioning calculations as this has been shown to be fairly constant in 

most of the leaves and species examined (Ribas-Carbó et al., 2005). Total 

mitochondrial ATP production (ATPtotal) together with ATP 

production via COP (ATPcop) and AOP (ATPaop) were modeled from the 

activities of the COP and AOP of each measurement, assuming that 

electron flow through the AOP drives the synthesis of 11 ATP for each 6 

O2 consumed whilst 29 ATP are formed for each 6 

O2 consumed via COP (Del-Saz et al., 2017b). Values presented are the 

mean of six to eight measurements performed in four to six plants per 

species that were performed from 9 am to 6 pm on the same days as gas 

exchange measurements were performed during the last 2 weeks of the 

experiment. In addition, the engagement of AOP (ρ) was calculated as a 

percentage of the ratio of the in vivo activity of AOP (valt) to Valt. 

Metabolite profiling 

Terrestrial leaves of palustrine and terrestrial plants were simultaneously 

sampled after 30 min in darkness on the last day of the experimental 

period, immediately frozen in liquid nitrogen, and stored at –80°C until 
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further analysis. Metabolite extractions, derivatization and gas 

chromatography time of flight-mass spectrometry (GC-TOF-MS) 

analyses were carried out as previously described (Lisec et al., 2006). 

The GC-TOF-MS system was composed of a CTC CombiPAL 

autosampler, an Agilent 6890N gas chromatograph, and a LECO Pegasus 

III time-of-flight mass spectrometer running in EI + mode. Metabolites 

were identified by comparison with database entries of standards (Kopka 

et al., 2005; Schauer et al., 2005). The data of each terrestrial species 

were normalized to the mean of its respective palustrine counterpart (i.e., 

the value of all metabolites for each palustrine species was set to 1). The 

data represent averages of three to six measurements corresponding to 

material harvested from three to six individual plants per species. 

Statistical analysis 

Data of AN, WUEi, total respiration (Vt), in vivo activity of COP 

(vcyt), ATPcop, and ATPtotal, were log-transformed to meet 

homoscedasticity. A two-way analysis of variance (p < 0.05) was 

performed with habitat level (terrestrial, palustrine) and plant family 

(Acanthaceae, Araceae, Campanulaceae, Polypodiaceae, and Pteridaceae) 
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as fixed factors (Table 2), and Tukey’s post hoc test (p < 0.05) was used 

to determine differences in each respiratory and photosynthetic parameter 

between species (Figures 2, 3, Tables 3, 4, and Supplementary Tables 2, 

3). Student’s t-tests were used for statistical analyses in Table 5 in order 

to compare data from terrestrial species with data from the respective 

palustrine counterpart in each family. To generate individual fold change 

data from the physiological parameters, we normalized each 

measurement of the terrestrial counterpart to the mean of the respective 

palustrine species, as for the GC-MS metabolite analyses, and Pearson 

coefficients were obtained with JMP®, Version 12.1.0 (SAS Institute Inc., 

Cary, NC, United States, 1989–2007; Table 6). Associations between the 

respiratory parameters and the metabolite profile were explored by 

applying the Partial Least Square (PLS) sparse regression as defined 

previously (Saccenti et al., 2014). Missing data in the metabolome 

dataset were imputed by employing a random forest imputation method 

before PLS analysis (Gromski et al., 2014). The “pls” package in R 

software was used to develop the PLS regression analysis. Also, this 

package includes a function to implement the variable importance for the 
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projection (VIP) for single-response orthogonal score plsr models 

(Wehrens and Mevik, 2007). 

 

Results 

Spatial patterns  

A species classification into biomes was obtained from a Whittaker 

diagram of MAT and MAP (Figure 1 and Supplementary Table 1; Wright 

et al., 2004). We observed species records in all biomes, especially in 

shrubland, temperate forest, tropical seasonal forest, woodland, and 

desert (25.6, 24.0, 22.2, 12.6, and 9.89% total records). A low register 

was found in tropical rainforest, grassland, temperate rainforest, boreal 

forest, and tundra (4.06, 1.11, 0.48, 0.03, and 0.02% total records). In 

general, palustrine species were more abundant than terrestrial species in 

biomes with values of MAP ≥ 1000 mm, such as temperate forest (33.0% 

palustrine vs. 15.1% terrestrial), tropical seasonal forest (32.3% 

palustrine vs. 12.2% terrestrial), and tropical rainforest (6.40% 

palustrine vs. 1.72% terrestrial). In biomes with values of MAP ≤ 1000 
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mm, palustrine species were more abundant only in woodland (19.3% 

palustrine vs. 5.96% terrestrial), whilst terrestrial species were more 

abundant than palustrine species in arid biomes such as shrubland (46.4% 

terrestrial vs. 4.72% palustrine) and desert (17.6% terrestrial vs. 2.16% 

palustrine). Specific abundances in each type of biome can be found 

in Supplementary Table 1. 

Leaf gas exchange 

Regarding net photosynthesis (AN), comparisons between groups showed 

no differences between angiosperms (Acanthaceae, Araceae, 

Campanulaceae) and ferns (Polypodiaceae, Pteridaceae) in terrestrial 

habitats; however among palustrine species, AN was significantly lower 

in the two ferns species compared to the angiosperm L. 

cardinalis (Campanulaceae; Figure 2A). When comparing between 

counterparts in each family, AN was significantly higher (by 2.5-fold) in 

terrestrial species of Acanthaceae, Araceae, Polypodiaceae, and 

Pteridaceae. Regarding gs among terrestrial species, this parameter was 

significantly lower in the fern P. cambricum (Polypodiaceae) only when 

compared with the angiosperm T. caeruleum (Campanulaceae). Contrary 
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to what was observed for AN, no differences were found in gs when 

comparing between counterparts in each family (Figure 2B). 

With regard to WUEi, no major differences were observed between ferns 

and angiosperms in terrestrial habitats; whilst among palustrine species, 

the two ferns species showed a significantly lower WUEi when 

compared to the angiosperm A. heterophylla (Araceae; Figure 2C). Very 

similar to the trends observed for AN, WUEi was significantly higher (by 

3.7-fold) in terrestrial counterparts of Acanthaceae, Polypodiaceae, and 

Pteridaceae, with the terrestrial fern P. cambricum (Polypodiaceae) 

showing the highest values of WUEi, and both the palustrine 

angiosperm H. stricta (Acanthaceae) and fern L. 

pteropus (Polypodiaceae) displaying the lowest values of WUEi (Figure 

2C). On the other hand, palustrine plants showed higher averaged values 

of ETR/AN (9.25) and Rdark/AN (0.173) than terrestrial plants (ETR/AN = 

8.10, Rdark/AN = 0.087) mainly because their small AN, and secondary, 

because the lack of major variations in Rdark and ETR (Tables 

2, 3 and Supplementary Table 2). 

Respiration and electron partitioning to the AOX pathway 
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A high heterogeneity was found in Vt, vcyt, and valt among all species. 

Considering that most of Vt takes place via COX activity, a similar 

heterogeneity was found in vcyt and Vt, with both varying significantly by 

3.3 and 2.7-fold, across species in the terrestrial and palustrine 

environments, respectively. Both valt and τa showed less variability 

than vcyt and Vt across terrestrial species (2.0 and 1.6-fold, respectively). 

In palustrine environments, higher variability was found in valt, differing 

significantly 5.4-fold across species, whilst τa showed similar variability 

to vcyt and Vt (2.6-fold). When comparing between counterparts in each 

family, Vt was significantly higher in terrestrial counterparts of Araceae 

(by 1.7-fold), and in palustrine counterparts from both fern families, 

Polypodiaceae and Pteridaceae (by 1.6-fold and 2.4-fold 

respectively; Table 2), differing slightly from vcyt, which was no different 

in terrestrial counterparts of Araceae (Table 4). A different pattern was 

observed for valt, which was significantly higher in the terrestrial 

counterpart of Araceae (4.0-fold) and in the palustrine counterpart of 

Pteridaceae (2.0-fold). A similar behavior was observed for ATP 

production modeled from vcyt and valt (Supplementary Table 3). 
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Regarding τa, the terrestrial counterparts of Acanthaceae, Araceae, and 

Polypodiaceae showed significantly higher values than their palustrine 

counterparts, 1.4, 2.3, and 1.4-fold, respectively. It is worth mentioning 

that in Polypodiaceae, the two ferns showed the highest values of τa in 

each habitat (Figure 3). On the other hand, leaves of H. stricta showed 

the highest engagement of AOP (ρ) (57%) mainly because the low Valt, 

followed by leaves of plants in Polypodiaceae and Pteridaceae (25.5%) 

that showed variability in Valt and valt, and by leaves of plants in 

Campanulaceae and of terrestrial plants in Araceae and Acanthaceae 

(14%) that displayed large Valt. The palustrine A. heterophylla showed the 

lowest ρ (9%) because the low valt (Tables 3, 4 and Supplementary Table 

2). 

In order to better understand the changes in photosynthetic parameters 

driving the species-specific response of the respiratory parameters, fold 

changes of AN, gs and WUEi values were correlated with fold changes 

of Vt, τa, vcyt, and valt as described in the statistical analyses section. The 

only significant correlation (r = 0.75) can be found between AN and τa. 

Similarly, to study whether AOP contributes significantly to ATP 
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synthesis, fold changes of τa and ATPtotal values were correlated with fold 

changes of τa, ATPcop and ATPaop. Significant correlations can be found 

between ATPtotal and energy synthesis by each pathway 

(ATPcop and ATPaop; r = 0.98 and 0.87), and between τa and ATPaop (r = 

0.98; Table 6). 

Relative metabolite levels  

By using GC-MS-based metabolite profiling from the aerial leaves of 

palustrine and terrestrial plants, we annotated 40 metabolites 

(Supplementary Table 5), including sugars, amino acids, organic acids, 

antioxidants and secondary metabolite precursors, as well as sugar-

alcohols (Table 5). Although the identification of 17 metabolites 

(glycine, asparagine, tryptophan, phosphoric acid, pyruvic acid, citric 

acid, malic acid, fumaric acid, 2-oxoglutaric acid, quinic acid caffeoyl, 

maltose, rhamnose, xylose, raffinose, melibiose, erythritol, and 

galactinol) were only partly detected (n = 2) or not detected at all (nd) in 

certain species, they were considered for a general interpretation of the 

results. Significant changes (Student’s t test, p < 0.05) in metabolite 

levels were observed for each metabolite, in the comparison between 
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terrestrial and palustrine counterparts in each family, with the exception 

of threonine, pyruvic acid, fumaric acid, and caffeic acid. 

Focusing on photosynthetic routes, we observed that Campanulaceae, the 

only family which showed no significant differences in AN between 

palustrine and terrestrial counterparts, showed the largest number of 

metabolites (19), mainly sugars and organic acids, with reduced levels in 

the terrestrial species when compared to the palustrine counterpart (Table 

5). In contrast, terrestrial species of Acanthaceae, Araceae, 

Polypodiaceae, and Pteridaceae, with higher values of AN than their 

palustrine counterparts, showed higher levels of sugars such as sucrose, 

fructose or glucose (Table 5), suggesting a higher energy status. We also 

observed that Araceae, with significantly higher gs in the terrestrial 

counterpart, was the only family also showing higher levels of 

metabolites such as malate and maltose, which are considered of interest 

due to their roles in determining stomatal movement (Fernie and 

Martinoia, 2009; Araújo et al., 2011; Gago et al., 2016). 

Regarding respiratory routes, in Araceae, the only family showing 

higher Vt in the terrestrial counterpart, the lack of change and decrease in 
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citrate and 2-oxoglutarate levels, respectively, together with increases in 

downstream intermediates (succinate and malate) suggests a high TCA 

cycle activity (Table 5). This pattern was significantly different 

(increased citrate levels with no changes in 2-oxoglutarate and malate) in 

the two terrestrial fern species that displayed lower Vt and vcyt, when 

compared to their palustrine counterparts, presumably due to lower TCA 

cycle decarboxylation activity. In this comparison, pronounced 

differences in γ-aminobutyric acid (GABA) levels – which are intimately 

connected to TCA cycle activity – between ferns and angiosperms 

suggest a different role for the GABA-shunt. In addition, the large 

accumulation of sugars such as sucrose, glucose, and fructose in ferns 

(Table 4) coincided with an accumulation of antioxidant and secondary 

metabolism precursors such as quinic acid and dehydroascorbic acid, 

likely indicative of a reduction in sugar oxidation by glycolysis and the 

TCA cycle while also promoting the accumulation of antioxidant and 

secondary metabolism precursors (Table 5). Notably, in Araceae, the 

only family showing higher values of valt in the terrestrial counterpart, we 

observed higher levels of metabolites such as valine, isoleucine, and 
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malate, which are considered of interest due to their positive correlation 

with valt in previous studies (Florez-Sarasa et al., 2012; Del-Saz et al., 

2016). 

Given the observed general tendency of several physiological parameters 

to correlate with several metabolites (Figures 2A, 3 and Table 5), we 

further investigated the observed respiratory patterns for each habitat 

group employing PLS statistical modeling combined with variable 

importance for projection (VIP) as a criterion to elucidate metabolite 

relevance from the generated models (Gago et al., 2016). This modeling 

helps to highlight putative metabolic networks that differentially drive 

the respiratory processes in the terrestrial as compared to the palustrine 

species studied. We used Vt, vcyt, valt, and τa as response variables and, 

after cross-validation (CV) of the generated models by the PLS, only 

models for τa can be considered robust due to the display of a R2 higher 

than 0.6, for both terrestrial (R2 = 0.62) and palustrine (R2 = 0.7) habitats. 

For palustrine species, significant associations with phosphoric acid, 

proline, glucose, malic acid, glyceric acid, quinic acid, quinic acid 

caffeoyl, fructose, GABA, and threonine were observed (Figure 
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4 and Supplementary Table 4). For terrestrial species, associations with 

τa were observed for trehalose, sucrose, glucose, threonic acid and 

glycerol (Supplementary Table 4). Interestingly, sugar metabolism was 

importantly related to τa for both lifestyle strategies, glucose being the 

only metabolite significantly associated in both; despite sugar 

metabolism in each family differing in the other metabolite associations. 

Terrestrial species associated mostly with levels of trehalose and sucrose, 

while palustrine species were mainly associated with phosphoric acid and 

proline. 

Discussion 

Habitats Are Associated With Different AN, Water Use Efficiency 

and Electron Partitioning to Alternative Oxidase Pathway 

In order to characterize terrestrial and palustrine species under the 

contrasting redox conditions that broadly differentiate both habitats, we 

decided to maintain plants under different light intensities to fall close to 

an optimum for each lifestyle. This is because palustrine plants are more 

often covered by dense canopy trees in humid forests than terrestrial 

plants in semi-arid Mediterranean forests, according to spatial 
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distribution of plant records and sample collection coordinates of 

terrestrial plants (Figure 1 and Table 1). Besides, in humid forest, ground 

layer plant species may display shade adaptations like low light 

saturation and light compensation points (Chazdon and Pearcy, 

1991; Meng et al., 2014), which led us to photosynthetically characterize 

these species at different PPFD. We did not expose plants to changing 

light intensities because it is well known that changes in growth light 

intensity does not affect oxygen isotope discrimination or τa as observed 

in leaves of Arabidopsis thaliana (Florez-Sarasa et al., 2011) and of sun 

and shade species (Noguchi et al., 2001). However, we ensured that 

experimental conditions were non-stressful, and enough to allow 

ETR/AN values typical of irrigated plants, positive leaf carbon balance 

and low AOP engagement (and enough overcapacity) in all species 

(Table 3). 

As leaves of terrestrial plants have large energy input because in air the 

light level is high, the terrestrial species A. mollis, A. italicum, P. 

cambricum, and P. vittata showed higher AN than their palustrine 

counterparts H. stricta, A. heterophylla, L. pteropus, and C. 
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thalictroides in Acanthaceae, Araceae, Polypodiaceae, and Pteridaceae, 

respectively (Figure 2A). This coincided with higher levels of sugars 

(e.g., sucrose, fructose, and glucose; Table 5), which were considered as 

markers of high photosynthetic activity (Gago et al., 2016). In contrast, 

no differences in AN were found between T. caeruleum and L. 

cardinalis in Campanulaceae, which coincides with important reductions 

in sugars and organic acids in T. caeruleum with respect to L. 

cardinalis (Table 5). Because the higher AN, WUEi, the ratio between 

AN and gs, was found to be larger in Acanthaceae, Polypodiaceae, and 

Pteridaceae (Figure 2C), which could be in line with previous studies 

describing a differential regulation of ecosystem (WUE) among biomes. 

In arid ecosystems, WUE is primarily controlled by evaporation; whilst 

in sub-humid regions, WUE is mostly regulated by assimilation (Yang R. 

et al., 2016), which could be partly due to a different predominance of 

palustrine and terrestrial records displaying contrasting values of WUEi 

(Figure 1 and Figure 2C) agreeing with the idea of water losses acting as 

a driving force for the evolution in land plants of gas exchange regulation 

system (Raven, 2002; Berry et al., 2010; Assouline and Or, 2013). 
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Contrary to AN, total respiration (Vt) was not higher in the terrestrial 

species of Acanthaceae, Araceae, Polypodiaceae, and Pteridaceae than in 

their palustrine counterparts. Differences in Vt were found among 

families in each habitat and between ferns and angiosperms (Table 4), 

similar to previous studies (Choy-Sin and Suan, 1974; Boyce and 

Mohamed, 1987; Davey et al., 2004; Hilman and Angert, 2016; Zhu et 

al., 2021). Variability was also found regarding valt and vcyt (Table 2). 

Respiration in leaves is highly variable among species as it depends on 

leaf characteristics such as leaf lifespan, nitrogen content, growth forms, 

and differential nutritional requirements, regardless of lifestyle or biome 

(Grime and Hunt, 1975; Reich et al., 1998; Lusk and Reich, 

2000; Millenaar et al., 2001; Wright et al., 2004; Atkin et al., 2015). 

Moreover, the carbon cost for leaf growth and maintenance may differ 

among species (Lambers et al., 2008). This is why τa, which represents 

the contribution of AOX to Vt, represents a better proxy to evaluate the 

importance of AOX activity for plant respiration when comparing among 

different plant species. In vivo AOX activity accounted for 10-36% 

of Vt in both palustrine and terrestrial species considered here, which is 
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within the range of values observed under both stressful and non-stressful 

conditions in terrestrial species (10–50%; Del-Saz et al., 2018a), and 

here, it was strongly influenced by habitat (Table 2). The contribution of 

AOX to Vt was significantly higher in terrestrial species from 

Acanthaceae, Araceae, and Polypodiaceae (Figure 3). In model terrestrial 

plants, previous studies reported τa increases under abiotic stressors 

mainly due to reductions in vcyt because the COX pathway is more 

sensitive to stressors than the AOX pathway (Del-Saz et al., 2018a), 

which helps to explain the different effect of habitat on 

both vcyt and valt (Table 2). Considering the highest values of AN and 

τa observed among terrestrial species (Figures 2A, 3) and the significant 

Pearson coefficient between these parameters (Table 6), the AOP is 

likely more important for the dissipation of excess energy in terrestrial 

plants than in palustrine plants, which is in line with previous studies 

describing higher oxygen isotope discrimination in sun leaves than in 

shade leaves (Noguchi et al., 2001). Moreover, this coincided with 

metabolic increases in the levels of several sugars and AN (Figure 

2A and Table 5). Interestingly, τa was variable among terrestrial and 
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palustrine species (Figure 3), suggesting that valt is coupled to 

fundamental metabolic processes under non-stress conditions that may 

differ among species (Florez-Sarasa et al., 2016). Regarding the 

differences observed between groups, previous studies suggested that the 

post-translational regulation of AOXs in ferns may differ from those of 

angiosperms because of the presence of a SerI residue instead of a CysI 

residue in the majority of the AOX protein sequences analyzed, which 

could presumably affect valt (Neimanis et al., 2013). 

The electron partitioning to the AOP is linked to habitat-specific 

metabolic routes 

A PLS approach through multivariate regression modeling identified 

significant relationships only between τa and several metabolites in each 

habitat (Figure 4 and Supplementary Table 4). In terrestrial plants, 

significant relationships were identified only between τa and metabolites 

related to sugar metabolism (sucrose, glucose, and trehalose). All of these 

carbohydrates are closely linked to glycolytic activity or sucrose 

synthesis that are highly dependent on leaf ATP synthesis or 

requirements (Lunn et al., 2006; Dimroth and von Ballmoos, 2008; Lim 

https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#F3
https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#B43
https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#B94
https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#F4
https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#S11
https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#B76
https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#B33
https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=752795#B72


93 
 

et al., 2020). In addition, the accumulation of these sugars likely confers 

osmotolerance and redox homeostasis in both ecosystems (Robe and 

Griffiths, 2000). Sucrose is a metabolic precursor of 

trehalose, via trehalose-6-phosphate, which acts as a signal for high 

carbon availability in the form of sucrose (Schluepmann et al., 

2004; Lunn et al., 2006; Paul et al., 2010; Fichtner and Lunn, 2021), 

which is in line with the high rates of AN observed in terrestrial plants 

(Figure 2A). Trehalose is hydrolyzed by trehalase into glucose, and 

together with fructose (a product of the reactions catalyzed by both 

invertase and sucrose synthase) are metabolic precursors of ascorbic acid 

(AA), one of the most abundant antioxidants in plants (Smirnoff and 

Wheeler, 2000; Hossain et al., 2017). AA can be metabolized to 

compounds like threonate (Hancock and Viola, 2005; DeBolt et al., 

2006; Smirnoff, 2018) which showed a significant relationship with τa in 

terrestrial plants. Notably, previous studies under salinity conditions 

highlighted a relationship between the AOP and erythronic acid (Del-Saz 

et al., 2016), a degradation product of AA (Green and Fry, 2005), 

reinforcing the role of the AOP in mitochondrial AA synthesis (Millar et 
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al., 2003; Bartoli et al., 2006; Del-Saz et al., 2016). In addition, threonate 

is also a precursor of osmoprotectants (Guerrier et al., 2000; Jouve et al., 

2004; Muscolo et al., 2015). On the other hand, τa in terrestrial plants 

also showed a significant relationship with glycerol, which is a lipid 

precursor, that similar to trehalose, is thought to be produced as a 

consequence of an enhanced CO2 assimilation in the Calvin-Benson 

cycle and/or from starch degradation (Liska et al., 2004), which 

corresponds to the highest values of photosynthesis, foliar carbon balance 

and oxygen isotope discrimination observed in terrestrial plants (Figures 

1A, 3 and Table 3). 

Palustrine plants displayed a higher energy efficiency of respiration 

bearing in mind their lower τa, the significant Pearson coefficient 

between ATPaop and ATPtotal (Table 6), and the highest VIP value 

obtained from the relationship between τa and phosphate (Supplementary 

Table 4), perhaps indicative of a tendency to save phosphorus during 

oxidative phosphorylation for the benefit of ATP synthesis via COX. 

Besides, we identified relationships between τa and primary metabolites 

related to sugar metabolism, photorespiration, secondary metabolism, the 
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TCA cycle and ammonium assimilation. Precisely, we found a significant 

relationship between τa and glycerate, corresponding to the described role 

of AOP in dissipating reducing equivalents from photorespiration 

(Watanabe et al., 2016; Timm and Hagemann, 2020), and suggesting a 

role of photorespiration in palustrine plants as previously described 

(Maberly and Spence, 1989). The relationships between τa and acyl-

quinic acids (Qui, CQA; Figure 4) in palustrine plants suggest a 

participation of the AOP in modulating carbon supply for these 

chlorogenic acids, whose accumulation is associated with enhanced 

tolerance to oxidative stress (Tamagnone et al., 1998; Niggeweg et al., 

2004), and competes with the accumulation of shikimate and derived 

metabolites (Marsh et al., 2009), such as phenylalanine and tryptophan. 

The reversible esterification of caffeoyl-CoA (whose metabolic precursor 

is CA) with Qui produces CQA. By the conversion of Qui to shikimate 

(Clifford et al., 2017), the shikimate pathway provides precursors for the 

synthesis of tryptophan that in turn is a metabolic precursor for the 

biosynthesis of auxins. In heterophyllous amphibious plants, auxin 

synthesis may be enhanced due to alterations in the perception of blue 
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light in submerged leaves. This is part of a mechanism to coordinate, 

together with other plant hormones, phenotypic plasticity in leaf form or 

heterophylly (Nakayama et al., 2012, 2014, 2017; Li et al., 2019, 2021). 

On the other hand, the significant relationships between τa and malate, 

GABA, and proline suggest that the AOP could also be related to the 

carbon supply for both the TCA cycle and ammonium assimilation. 

Through the mitochondrial 2-OG/malate transporter, malate can facilitate 

GABA transport (Ramesh et al., 2018; Bown and Shelp, 2020), whose 

synthesis mainly occurs from glutamate by the cytosolic glutamate 

decarboxylase, alternatively through polyamine degradation (Yang Y. et 

al., 2016), or by the oxidation of proline to glutamate in mitochondria 

(Fait et al., 2008; Shelp et al., 2012). Moreover, both GABA and proline 

may act as osmoprotectants and their catabolism in mitochondria can 

provide reducing equivalents as substrates for the AOP (Studart-

Guimarães et al., 2007; Michaeli et al., 2011; Florez-Sarasa et al., 2021), 

which is in agreement with the relationships identified between τa and 

these metabolites in palustrine plants (Figure 4 and Supplementary Table 

4). On top of this, GABA can act as a transducer of environmental stress 
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signals leading to the activation of genes for ethylene and abscisic acid 

biosynthesis (Kinnersley and Turano, 2000; Forde and Lea, 2007). 

Overall, the relationships between τa and metabolites related to hormone 

biosynthesis and signaling in palustrine environments could be especially 

relevant for heterophyllous amphibious plants. All these signaling 

metabolites, together with gibberellins, mediate perception and responses 

to fluctuations of water levels, and control the synthesis of new 

developing aerial leaves in the transition from a submerged to an aerial 

habit (Cox et al., 2004; Jackson, 2008; Chater et al., 2014; Kim et al., 

2018). Whilst some evidence has suggested that plant hormones such as 

abscisic acid, ethylene, gibberellins, and auxins are part of signaling 

networks controlling AOX expression (Ivanova et al., 2014; Berkowitz et 

al., 2016), their control of in vivo AOX activity remains, even in model 

terrestrial plants, to be tested. 

Concluding remarks 

Here we performed a comparative study of photosynthesis, WUEi, and 

respiration in palustrine and terrestrial species of angiosperms and ferns 

widely distributed across biomes, and maintained at different availability 
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of energy and water in their habitats. Our experimental design does not 

allow the identification of the most important primary force (light or 

water) driving associations between the respiratory parameters and the 

metabolites. However, under different redox conditions that broadly 

characterize their habitats in nature, we found evidence of a large entry of 

energy into leaves of terrestrial plants considering their higher values of 

AN, WUEi, and τa, as well as their significant relationships between 

τa and metabolites related to both sugar metabolism and osmotolerance. 

In palustrine plants, changes in τa could modulate the supply of carbon 

skeletons from sugars to metabolic routes involved in the production of 

hormones and signaling molecules important for heterophylly (e.g., the 

shikimate pathway and GABA shunt). Further experiments are needed in 

amphibious plants in order to study the precise regulation of the AOX 

pathway during the development of new aerial leaves during their 

emergence from water. In addition, the low τa observed together with the 

identification of τa relationships with phosphoric acid and other 

respiratory parameters suggests that mitochondrial electron partitioning 
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contributes to maximizing the ATP yield of respiration in palustrine 

plants. 
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TABLES 

 

 

 

Family Habitat Plant species Life span Description 
GPS 

Coordinates 

Acanthaceae 

Palustrine 
Hygrophilla 

stricta 
Perennial 

Angiosperm that reaches a height of 70 cm tall with lance-shaped 

shade leaves that can be up to 10-15 cm long and 2 cm wide 
----- 

     

Terrestrial Acanthus mollis Perennial 
Clump-forming angiosperm that reaches a maximum 180 cm in 

height with obovate leaves up to 40 cm long and 25 cm wide 

39°45'34.2"N 

2°42'39.5"E 

      

Araceae 

Palustrine 
Anubias 

heterophylla 
Perennial 

Rhizomatous angiosperm that reaches 30 cm tall in height and 

develops oval shade leaves that can be up to 38 cm long and 13 cm 

wide 

----- 

     

Terrestrial Arum italicum Perennial 
Herbaceous angiosperm that reaches 30 cm tall in height with arrow-

shaped 20-30 cm long leaves 

39°45'34.2"N 

2°42'39.5"E 

      

Campanulaceae 

Palustrine 
Lobellia 

cardinalis 
Perennial 

Herbaceous angiosperm that grows up to 1.2 m tall in height with 

coarsely toothed shade leaves over 15 cm long and 4 cm wide 
----- 

     

Terrestrial 
Trachelium 

caeruleum 
Perennial 

Herbaceous angiosperm that grows 0.5-1 m tall with small lance-

shaped leaves over 7.5-10 cm long 

39°45'34.2"N 

2°42'39.5"E 

      

Polypodiaceae 

Palustrine 
Leptochilus 

pteropus 
Perennial 

Rhizomatous fern that reaches 15-30 cm tall in height with narrow 

and twisted shade leaves that can be up to 20 cm long 
----- 

     

Terrestrial 
Polypodium 

cambricum 
Perennial 

Rhizomatous fern that grows 60 cm tall with fronds over 5-30 cm in 

length 

39°47'26.3"N 

2°41'23.3"E 

      

Pteridaceae 

Palustrine 
Ceratopterys 

thalictroides 
Annual 

Shade-adapted rhizomatous fern that grows 15-30 cm high and 10-

20 cm wide with finely branched leaves 
----- 

     

Terrestrial Pteris vittata Perennial 
Rhizomatous fern that grows up to 1 m and with fronds that are from 

30-80 cm long 

39°45'51.3"N 

2°42'33.6"E 
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Table 1 Classification, collection, and life histories of the different plant species used in this study. Note that 

amphibious species were obtained from commercial sources in Mallorca (Spain). 
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Table 2. Significance of sources of variation after two-way analysis of 

variance analyses for each parameter. 

  Habitat Family Habitat x Family 

ETR *** * ns 

AN *** *** ns 

gs ns *** ** 

Rdark ns ns * 

WUEi *** *** *** 

V
t
 ns *** *** 

a *** *** *** 

v
cyt

 ** *** *** 

v
alt

 ns *** *** 

Valt * * *** 

ATPcop ** *** *** 

ATPaop ns *** *** 

ATPtotal ns *** *** 
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Table 3. General characteristics of the studied terrestrial and palustrine plant 

species: the ratio of electron transport rate (ETR) to net photosynthesis (AN), 

the ratio of dark respiration (Rdark) to AN, and the ratio of valt to Valt (ρ).   

Family Habitat Plant species ETR/AN Rdark/AN ρ (%) 

Acanthaceae 
Palustrine Hygrophilla stricta 8.93  0.190 57 

Terrestrial Acanthus mollis 6.83 0.086 11 

      

Araceae 
Palustrine Anubias heterophylla 8.83 0.124 9 

Terrestrial Arum italicum 5.90 0.110  12 

      

Campanulaceae 
Palustrine Lobelia cardinalis 10.19 0.135 14 

Terrestrial Trachelium caeruleum 8.25 0.057 19 

      

Polypodiaceae 
Palustrine Leptochilus pteropus 8.46 0.158 23 

Terrestrial Polypodium cambricum 9.96 0.094 33 

      

Pteridaceae 
Palustrine Ceratopterys thalictroides 11.72 0.256 24 

Terrestrial Pteris vittata 11.21 0.088 22 
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Table 4. Total respiration (Vt) and the in vivo activities of cytochrome oxidase (vcyt) and alternative oxidase (valt) in 

aerial leaves of ten different terrestrial and palustrine plant species (see section “Materials and Methods”).   

Family Habitat Plant species Vt (nmol O2 g−1DW) vcyt (nmol O2 g−1DW) valt (nmol O2 g−1DW) 

Acanthaceae 
Palustrine Hygrophilla stricta 12.84 ± 2.12 ab 10.74 ± 1.83 abc 2.10 ± 0.298 bc 

Terrestrial Acanthus mollis 15.17 ± 1.45 a 11.74 ± 1.09 ab 3.43 ± 0.373 ab 

      

Araceae 
Palustrine Anubias heterophylla 7.03 ± 0.483 cd 6.34 ± 0.484 cd 0.694 ± 0.109 d 

Terrestrial Arum italicum 11.77 ± 0.975 ab 9.00 ± 0.724 bcd 2.78 ± 0.264 abc 

      

Campanulaceae 
Palustrine Lobelia cardinalis 15.39 ± 1.51 a 12.35 ± 1.54 ab 3.05 ± 0.419 abc 

Terrestrial Trachelium caeruleum 14.86 ± 0.896 a 11.24 ± 0.708 ab 3.63 ± 0.310 a 

      

Polypodiaceae 
Palustrine Leptochilus pteropus 8.37 ± 0.820 bc 6.21 ± 0.619 d 2.16 ± 0.210 bc 

Terrestrial Polypodium cambricum 5.19 ± 0.559 d 3.33 ± 0.350 e 1.86 ± 0.222 cd 

      

Pteridaceae 
Palustrine Ceratopterys thalictroides 20.03 ± 2.67 a 16.31 ± 2.35 a 3.71 ± 0.331 a 

Terrestrial Pteris vittata 8.29 ± 0.760 bcd 6.44 ± 0.579 cd 1.84 ± 0.198 cd 
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Table 5. Relative metabolite levels in leaves of 10 terrestrial and palustrine plant species belonging to five families 

of ferns and angiosperms as measured by GC-MS (see section “Materials and Methods”). 

  Acanthaceae   Araceae   Campanulaceae   Polypodiaceae   Pteridaceae 

  
Hygrophylla 

stricta 

Acanthus 

mollis 
  

Anubias 

heterophylla 

Arum 

italicum 
  

Lobelia 

cardinalis 

Trachelium 

caeruleum 
  

Leptochilus 

pteropus 

Polypodium 

cambricum 
  

Ceratopteris 

thalictroides 

Pteris 

vittata 

Amino acids 

Alanine 1±0.40 1.62±0.30  1±0.16 0.98±0.47  1±0.29 0.80±0.22  1±0.32 0.09±0.05  1±0.45 2.15±0.65 

Valine 1±0.56 1.64±0.32  1±0.14 4.76±1.53  1±0.19 0.79±0.29  1±0.36 0.79±0.28  1±0.32 2.78±1.07 

Isoleucine 1±0.40 1.27±0.22  1±0.13 2.57±0.41  1±0.39 0.67±0.29  1±0.32 0.96±0.42  1±0.30 3.25±1.58 

Glycine 1±0.75 1.12±0.57  1±0.19 0.32±0.10  nd  nd  1±0.75 0.69±0.23 

Proline 1±0.38 5.35±1.37  1±0.13 0.26±0.07  1±0.27 0.33±0.11  1±0.48 0.20±0.13  1±0.42 2.83±0.26 

Serine 1±0.42 1.98±0.25  1±0.10 0.80±0.30  1±0.32 1.03±0.39  1±0.19 0.37±0.10  1±0.30 2.49±0.80 

Threonine 1±0.38 0.46±0.11  1±0.50 0.43±0.04  1±0.28 0.54±0.16  1±0.15 0.53±0.15  1±0.33 1.47±0.51 

Phenylalanine 1±0.42 0.56±0.02  1±0.49 0.99±0.20  1±0.16 0.47±0.13  1±0.30 0.51±0.07  1±0.25 1.77±1.08 

Asparagine 1±0.36 1.85±0.71  1±0.16 2.31±0.05  *1±0.38 0.47±0.01  1±0.12 0.01±0.00  1±0.26 1.93±0.80 

Tryptophan 1±0.38 0.13±0.02  1±0.48 0.47±0.11  *1±0.20 0.36±0.00  1±0.35 2.58±0.80  1±0.26 2.02±1.14 

Glutamic acid 1±0.39 9.04±1.07  1±0.12 1.97±0.34  1±0.23 1.14±0.34  1±0.35 0.52±0.12  1±0.52 4.08±1.02 

  

Organic acids 

Glyceric acid 1±0.31 7.39±1.90  1±0.20 1.88±0.50  1±0.19 0.20±0.04  1±0.17 0.33±0.13  1±0.19 0.18±0.04 

Pyruvic acid 1±0.19 1.67±0.39  nd  1±0.21 0.60±0.16  nd  *1±0.27 0.24±0.05 

Citric acid nd  1±0.26 1.17±0.45  nd  nd  1±0.29 6.59±1.04 

Succinic acid 1±0.37 6.58±0.79  1±0.14 2.83±0.55  1±0.23 0.24±0.02  1±0.18 1.19±0.29  1±0.41 3.67±0.19 

Fumaric acid nd  1±0.30 0.51±0.08  1±0.24 1.01±0.49  1±0.68 0.09±0.03  1±0.34 0.40±0.03 

Malic acid nd  1±0.25 14.9±3.56  1±0.22 0.18±0.05  1±0.28 0.60±0.16  1±0.24 1.05±0.60 

2-Oxoglutaric acid 1±0.19 46.9±8.11  1±0.19 0.30±0.05  *1±0.27 0.29±0.10  nd  1±0.35 0.25±0.05 

Nicotinic acid 1±0.12 6.50±1.95  1±0.10 0.40±0.08  1±0.13 0.65±0.07  1±0.33 0.63±0.12  1±0.20 0.26±0.03 

4-Aminobutyric acid 1±0.21 0.48±0.05  1±0.19 0.21±0.06  1±0.17 0.13±0.04  1±0.66 0.49±0.13  1±0.43 1.90±0.28 

Threonic acid 1±0.24 1.66±0.32   1±0.19 14.6±1.58   1±0.22 0.27±0.06   1±0.37 1.32±0.41   1±0.25 10.5±0.92 
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 Antioxidants and secondary  

metabolism precursor 

Quinic acid 1±0.37 0.09±0.02  1±0.19 0.37±0.06  1±0.15 1.97±0.17  1±0.38 2.07±0.28  1±0.10 166±8.37 

Quinic acid caffeoyl 1±0.27 0.01±0.00  nd  1±0.11 544±77.8  1±0.16 1.37±0.11  *1±0.10 2.23±0.24 

Dehydroascorbic acid 1±0.34 0.68±0.08  1±0.14 1.70±0.20  1±0.28 0.53±0.04  1±0.18 20.2±3.79  1±0.40 45.6±8.01 

Caffeic acid 1±0.17 0.68±0.11  1±0.22 0.61±0.15  1±0.22 1.45±0.26  1±0.21 0.50±0.03  1±0.50 0.73±0.04 

  

Sugars 

Maltose nd  1±0.33 8.55±1.47  nd  1±0.08 2.16±0.30  nd 

Rhamnose 1±0.14 1.11±0.22  1±0.22 6.33±0.51  1±0.13 2.47±0.33  nd  nd 

1,6-Anhydroglucose 1±0.20 0.28±0.03  1±0.11 1.42±0.23  1±0.16 13.5±2.91  1±0.28 4.70±0.96  1±0.53 1.77±0.45 

Fructose 1±0.20 0.22±0.05  1±0.07 1.05±0.06  1±0.09 0.08±0.00  1±0.28 35.8±5.56  1±0.23 1.00±0.05 

Glucose 1±0.29 8.35±1.93  1±0.48 1.98±0.76  1±0.29 0.04±0.01  1±0.38 183±24.6  1±0.64 26.5±1.92 

Xylose *1±0.10 0.28±0.05  1±0.31 2.05±0.23  1±0.03 0.53±0.13  nd  nd 

Sucrose 1±0.26 1.92±0.26  1±0.16 1.14±0.36  1±0.23 0.91±0.12  1±0.37 1.17±0.10  1±0.60 5.73±0.39 

Raffinose 1±0.23 1.69±0.77  1±0.18 0.29±0.04  1±0.16 0.07±0.01  1±0.07 2.19±0.33  nd 

Trehalose 1±0.19 1.61±0.06  1±0.06 2.89±0.37  1±0.14 2.24±0.68  1±0.33 1.66±0.36  1±0.78 0.33±0.04 

Melibiose 1±0.19 1.53±0.44  1±0.34 0.96±0.02  nd  nd  1±0.53 2.10±0.11 

  

Sugar-alcohols 

Erythritol 1±0.38 0.62±0.08  1±0.19 8.21±2.04  1±0.13 1.64±0.10  nd  nd 

Galactinol 1±0.19 2.09±0.09  1±0.23 1.50±0.56  1±0.14 0.15±0.01  *1±0.51 1.56±0.56  1±0.17 0.68±0.14 

Glycerol 1±0.14 1.01±0.25  1±0.29 0.71±0.10  1±0.16 2.53±0.19  1±0.21 0.33±0.11  1±0.16 0.84±0.16 

Myo-inositol 1±0.21 2.18±0.22  1±0.22 19.6±6.25  1±0.05 1.35±0.11  1±0.13 0.20±0.04  1±0.42 25.8±10.5 

               

Other metabolites               

Phosphoric acid *1±0.34 20.6±8.45  1±0.17 0.18±0.11  1±0.76 0.89±0.25  1±0.41 0.37±0.23  1±0.23 1.57±0.78 
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Table 6. Pearson correlation coefficients between fold changes in 

photosynthetic parameters levels (AN, gs, WUEi) and in vivo respiratory 

parameters levels (Vt, vcyt, τa, valt), and between fold changes in respiratory 

parameters (τa and ATPtotal) and ATP synthesis through each pathway 

(ATPcop and ATPaop), in leaves of ten species of palustrine and terrestrial 

vascular plants (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
 AN gs WUEi 

Vt -0.29 0.52 -0.45 

a 0.75 0.23 0.27 

vcyt -0.44 0.55 -0.55 

valt 0.19 0.48 -0.17 

 ATPcop ATPaop a 

ATPtotal 0.98 0.87 0.62* 

a 0.43 0.92 --- 
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Supporting information Table 1. Specific abundances in biomes of the distribution of randomly selected and 

equalized plant records (≈10500) from different terrestrial and palustrine species belonging to the five families of 

ferns and angiosperms evaluated in this study (see Material and Methods). For each species, abundances of records 

were obtained from GBIF (http://www.gbif.org) and overlaid on the climate envelopes of Whittaker’s biomes 

(Whittaker 1970; Wright et al., 2004). The number of selected records for each species is shown at the bottom of 

table. The percentage abundance of total, palustrine, and terrestrial records in each biome are shown on the right 

side of the table. 

 

  Acanthaceae Araceae Campanulaceae Polypodiaceae Pteridaceae       
 

Hygrophila 

ringens 

Acanthus 

mollis 

Anubias 

spp. 

Schott 

Arum 

italicum 

Lobelia 

cardinalis 

Trachelium 

caeruleum 

Leptochilus 

pteropus 

Polypodium 

cambricum 

Ceratopteris 

thalictroides 

Pteris 

vittata 

Total 

records 

Palustrine 

records 

Terrestrial 

records 

Tropical rainforest 20 1 98 0 18 0 57 0 142 89 4.06% 6.40% 1.72% 

Temperate rainforest 5 2 0 0 0 0 1 0 20 22 0.48% 0.50% 0.46% 

Tropical seasonal forest 440 44 455 3 219 126 74 7 502 458 22.2% 32.3% 12.2% 

Temperate forest 120 178 2 103 1241 183 2 44 361 281 24.0% 33.0% 15.1% 

Boreal forest 0 0 0 0 1 1 0 1 0 0 0.03% 0.02% 0.04% 

Tundra 0 0 0 0 2 0 0 0 0 0 0.02% 0.04% 0.00% 

Woodland 386 29 40 8 150 67 12 0 419 208 12.6% 19.3% 5.96% 

Shrubland 15 686 0 477 221 919 0 88 11 259 25.6% 4.72% 46.4% 
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Grassland 0 5 4 3 78 1 1 1 1 22 1.11% 1.61% 0.61% 

Desert 8 54 0 6 69 703 1 9 35 151 9.89% 2.16% 17.6% 

 994 999 599 600 1999 2000 148 150 1491 1490    
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Supporting information Table 2. Values of photosynthetic electron transport rate (ETR); respiration (Rdark); and 

capacity of the alternative pathway (Valt) in aerial leaves of ten different terrestrial and palustrine plant species. 

Different letters indicate significant differences with a p value < 0.05 determined by post hoc Tukey–Kramer's test. 

Values are means ± SE for 2-4, 3-5, and 3 biological replicates for ETR, Rdark, and Valt, respectively. * denotes data 

obtained only in two plants per species. 

   

Family Habitat Plant species ETR (µmols  electrons m-2 s-1) Rdark (µmol CO2 m-2 s-1) Valt (nmol O2 g-1 DWs-1) 

Acanthaceae 
Palustrine Hygrophilla stricta 25.54 ± 2.67 cd 0.566 ± 0.120 ab 3.70 ± 0.131 e 

Terrestrial Acanthus mollis 40.49 ± 7.25 abcd 0.529 ± 0.171 ab 30.90 ± 4.10 a 
      

Araceae 
Palustrine Anubias heterophylla 30.11 ± 3.93 bcd 0.439 ± 0.126 ab 7.42 ± 0.866 de 

Terrestrial Arum italicum 51.71± 8.95 ab 1.01 ± 0.191 a 23.54 ± 5.83 ab 
      

Campanulaceae 
Palustrine Lobelia cardinalis *46.11 ± 3.88 abcd 0.635 ± 0.098 ab 21.40 ± 1.82 abc 

Terrestrial Trachelium caeruleum 65.21 ± 7.49 a 0.470 ± 0.054 ab 19.37 ± 3.19 abcd 
      

Polypodiaceae 
Palustrine Leptochilus pteropus 15.78 ± 1.62 d 0.307 ± 0.058 b 9.37 ± 0.694 cde 

Terrestrial Polypodium cambricum 49.16 ± 0.923 abc 0.484 ± 0.097 ab 5.72 ± 0.275 de 
      

Pteridaceae 
Palustrine Ceratopterys thalictroides 25.90 ± 1.67 cd 0.634 ± 0.089 ab 15.40 ± 3.07 bcde 

Terrestrial Pteris vittata 66.55 ± 4.83 a 0.542 ± 0.182 ab 8.47 ± 1.69 cde 
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Supporting information Table 3. Modeling of ATP production calculated from values of the in vivo activities of 

cytochrome oxidase (v
cyt

) and alternative oxidase (valt) in aerial leaves of ten different terrestrial and palustrine plant 

species. It is considered that 11 ATP are formed for each 6 O2 consumed by the AOP and 29 ATP are formed for 

each 6 O2 consumed by the COP (see Materials and Methods). Values are the mean of six to eight measurements 

obtained from 4-6 plants per species. Different letters indicate significant differences with a p value < 0.05 

determined by post hoc Tukey–Kramer's test. 

   

Family Habitat Plant species 
ATPcop  

(nmol ATP g−1 DW s−1) 

ATPaop  

(nmol ATP g−1 DW s−1) 

ATPtotal  

(nmol ATP g−1 DW s−1) 

Acanthaceae 
Palustrine Hygrophilla stricta 51.92 ± 8.82 abc 10.14 ± 1.44 bc 62.05 ± 10.23 ab 

Terrestrial Acanthus mollis 56.73 ± 5.25 ab 16.58 ± 1.80 ab 73.31 ± 7.02 a 
      

Araceae 
Palustrine Anubias heterophylla 30.63 ± 2.34 cd 3.36 ± 0.53 d 33.99 ± 2.34 cd 

Terrestrial Arum italicum 43.48± 3.50 bcd 13.42 ± 1.28 abc 56.90 ± 4.71 ab 
      

Campanulaceae 
Palustrine Lobelia cardinalis 59.69 ± 7.44 ab 14.73 ± 2.02 abc 74.42 ± 9.25 a 

Terrestrial Trachelium caeruleum 54.32 ± 3.42 ab 17.52 ± 1.50 a 71.84 ± 4.33 a 
      

Polypodiaceae 
Palustrine Leptochilus pteropus 30.01 ± 2.99 d 10.46 ± 1.02 bc 40.48 ± 3.96 bc 

Terrestrial Polypodium cambricum 16.07 ± 1.69 e 9.00 ± 1.07 cd 25.07 ± 2.70 d 
      

Pteridaceae Palustrine Ceratopterys thalictroides 78.85 ± 11.36 a 17.95 ± 1.60 a 96.81 ± 12.88 a 
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Terrestrial Pteris vittata 31.11 ± 2.80 cd 8.95 ± 0.96 cd 40.06 ± 3.67 bcd 
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Supporting information Table 4. Metabolites with higher VIP (variable 

importance for the projection) values obtained from partial least square 

sparse regression modeling outputs for each trait. The VIP ranking of 

metabolites is a representation of the most important metabolites for the 

models explaining each trait. High VIP values correspond to strong 

correlations. 

 

  
Palustrine a  

  
Terrestrial a  

Metabolite Comp 1 Comp 2 Comp 3 Comp 4   Comp 1 Comp 2 

 Phosphoric acid 2.6 2.4 2.4 2.3   ---    ---  

Proline 1.9 1.8 1.8 1.8   ---    ---  

Malic acid 1.8 1.7 1.7 1.7    ---   ---  

Glyceric acid 1.8 1.7 1.7 1.6    ---   ---  

Quinic acid 1.7 1.6 1.5 1.5    ---   ---  

Caffeoylquinic acid 1.4 1.4 1.4 1.3    ---   ---  

Fructose 1.4 1.3 1.3 1.3    ---   ---  

GABA 1.2 1.2 1.2 1.1    ---   ---  

Threonine 1.1 1.1 1.1 1.1    ---   ---  

Glucose 1.9 1.8 1.7 1.7   2.4 2.2 

Trehalose ---  ---    ---   ---    4.2 3.8 

Sucrose  ---   ---   ---   ---    2.8 2.6 

Threonic acid  ---   ---   ---   ---    0 2.1 

Glycerol  ---   ---   ---   ---    1.5 1.3 
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FIGURES 

 

Fig. 1. The boundaries of global biome type in relation to the climate 

factors mean annual temperature (MAT) and mean annual precipitation 

(MAP; Whittaker, 1970; Wright et al., 2004). For each habitat (terrestrial 

and palustrine), 5250 plant records (randomly selected and equalized, see 

section “Materials and Methods”) are overlaid on the climate envelopes of 

Whittaker’s biomes. Terrestrial and palustrine records are represented as 

brown and blue dots, respectively. (1) Tropical rainforest; (2) temperate 

rainforest; (3) tropical seasonal forest; (4) temperate forest; (5) boreal 

forest; (6) tundra; (7) woodland, shrubland, and grassland; (8) desert. 

Biome boundaries are only approximate. Specific abundances in each type 

of biome can be found in Supplementary Table 1. 

 

Fig. 2. (A) Net photosynthesis (AN), (B) stomatal conductance (gs), 

and (C) intrinsic water-use efficiency (WUEi) in all palustrine and 

terrestrial species tested in this study. In (C), values were calculated from 

https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full#B131
https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full#B132
https://www.frontiersin.org/articles/10.3389/fpls.2021.752795/full#S11
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mean values of AN and gs. Four to six plants were used to characterize each 

species. Different letters indicate significant differences with a p-value < 

0.05 determined by a post hoc Tukey–Kramer’s test. 

 

Fig. 3. Electron partitioning to the alternative pathway (τa) in all palustrine 

and terrestrial species tested in this study. Values are the mean of six to 

eight measurements obtained from 4 to 6 plants per species. Different letters 

indicate significant differences with a p-value < 0.05 determined by a post 

hoc Tukey–Kramer’s test. 
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Fig 1. 
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Fig 2. 
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Fig 3. 
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Supporting information Figure 1. Species classification into major biome 

types of the world, performed from a Whittaker diagram of MAT and MAP, 

showing the number of records of species from Araceae and Acanthaceae, 

in which Higrophylla stricta (7 records) was substituted for Higrophylla 

ringens (1264 records), and Anubias heterophylla (55 records) for Anubias 

spp. Schott. (617 records) for a greater accuracy in the study of species 

distribution. 1, tropical rainforest; 2, temperate rainforest; 3, tropical 

seasonal forest; 4, temperate forest; 5, boreal forest; 6, tundra; 7, woodland, 

shrubland, and grassland; 8, desert. 
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Supporting Figure 1. 
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CHAPTER 2: 
 

Photosynthesis: leaf shape as a key player for energy 

management and biochemical limitations 
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Abstract 

Vascular plants can have either compound or simple leaves. Compound 

leaves are believed to be photosynthetically more productive than simple 

ones, by having tiny leaflets increase in photosynthetic area is achieved. In 

addition, the leaflets allow greater cooling by convection, reducing 

transpiration costs especially in periods of drought. Simple leaves present 

other strategy, by invest more mass in less projected area during drought. 

As differences in the inversion of the foliar mass exist is expected that 

differences in mesophyll conductance (gm) occurs. In Central Chile, species 

with simple and compound leaves coexist. Moreover, a mega drought event 

is occurring since 2015, causing browning and tree mortality. However, 

assessment in photosynthetic limitations on both types of leaves in drought 

conditions have not addressed so far. We measured photosynthetic 

limitations in well-watered and drought conditions, and a log response ratio 

were obtained. We found that gm and CO2 assimilation (AN) were larger in 

compound leaves in well-watered conditions. Under drought conditions, 

both type of leaves respond negatively equal and foliar temperature in 

compound leaf species was 4°C lower. In this sense, megadrought events 

imposes an equal response in Chilean matorral species regardless leaf type. 
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Introduction 

There are two basic leaf types among the vascular plant’s realm: simple and 

compound leaves (Givnish, 1979). Whilst in simple leaves a single blade is 

inserted directly on the petiole, in compound leaves a blade has two or more 

subunits called leaflets that vary in number, form and connection to the 

petiole (e.g., palmately compound leaves vs. pinnately compound leaves). 

Compound leaves has been regarded as more productive than simple leaves 

due to their lower production cost (Givinish, 1979; Niinemets et al. 1999; 

Malhado et al. 2010). With the dissection of the photosynthetic area, 

compound leaves can maximize foliar area (diluting mass tissue in more 

projected area) for light capture and hence increase the growth rates 

(Givnish et al. 1979; Sack et al. 2003; Withfiel, 2006; Malhado et al. 2010). 

Further, the highly dissected venation usually found on compound leaves 

contributes with the mechanic support through the hydraulic force inside 

veins avoiding alterations in the leaf mass area (LMA) as occurs in simple 

leaves (Givnish et al. 1979; Whitfield et al. 2006; Li et al. 2008; Niinemets 

et al. 2010). For a similar area, compound leaves are more efficient in 

convective heat exchange, and thus less transpiration is required for cooling 

(Gates, 1968; Moya & Flexas, 2012; Michaletz et al. 2015). In fact, under 
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identical environmental conditions, the temperature of dissected leaves can 

be 4°C lower than that of simple leaves (Stokes et al. 2004). Convective 

heat exchange allows compound leaves to decrease water loss (Gurevitch et 

al. 1990; Xu et al. 2009), and to tolerate a wider range of temperatures for 

biochemical reactions to occur such as carbon assimilation (Michaletz et al. 

2015). Thus, based on leaf thermoregulation trade-off related to leaf area 

and transpirational cooling, different responses to drought can be expected 

between compound and simple leaves (Givinish, 1979; Michaletz et al. 

2015). 

Compound leaves are on average thinner than simple leaves (Li et al. 2008; 

de la Riva et al. 2016). Thinner leaves tend to have higher mesophyll 

conductances (gm), but lower tolerance to drought (Niinemets et al. 2011; 

Flexas et al. 2014). When exposed to drought simple leaf species increase 

LMA by packing mesophyll cells to avoid cellular lysis (Wright et al. 2004; 

Galmés et al 2007; Xu et al. 2009), whilst compound leaf species do not 

change LMA (Xu et al. 2009). In this sense, in well-watered conditions 

higher carbon assimilation can be achieved in compound leaves, however, 

under drought conditions, simple leaves can be more tolerant (Galmés et al. 

2007; Alonso-Forn et al. 2020b). 
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It is well known that photosynthesis decreases with drought, but whether 

drought equally affects the two diffusive components of photosynthesis 

(i.e., stomatal and mesophyll conductances), remains somehow 

controversial (Grassi et al. 2005; Galle et al. 2009; Ferrio et al. 2012; Nadal 

et al. 2018a; Alonso-Forn et al. 2020a). While it seems almost universal that 

plants exposed to drought close stomata to avoid water losses in detriment 

of carbon assimilation (AN) (Cornic et al. 2000; Nadal et al. 2018b; Alonso-

Forn et al. 2020a), for the mesophyll conductance (gm) some studies have 

shown that gm decreases with drought (e.g. Galle et al. 2009; Cano et al. 

2013; Ouyang et al. 2017) whilst others have found no changes (Galmés et 

al. 2007; Hommel et al. 2014; Ouyang et al. 2017). Further, to what extent 

leaf-shape related differences in diffusion photosynthetic traits affect carbon 

assimilation during drought remain elusive. 

Mediterranean-type ecosystem are characterized by severe droughts during 

summer, and they occur only in five regions of the world: California, South 

Africa, southeast of Australia, the Mediterranean basin, and central Chile 

(Lawrence, 1987; Arroyo et al. 1995; Mooney et al. 2001; Armesto et al. 

2007). Mediterranean plant species exhibit several morpho-physiological 

traits to deal with drought such as sclerophyllous leaves, low leaf areas, 
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increased efficiency in photosystem II, increases in the water use efficiency, 

and high RuBisCO specificity (Delfine et al. 2001; Galmés et al. 2005, 

2007; Medrano et al. 2008; Galle et al. 2011; Flexas et al. 2014; Alonso-

Forn et al. 2020ab). In the Mediterranean-type climate zone of central Chile 

species with simple and compound leaves coexist (Mooney & Dunn, 1970; 

Arroyo et al. 1995). Unlike other Mediterranean-type climate zones where 

some rainfall events usually occur during the growth season, in central 

Chile plants must cope with long droughts with no rain during months 

(Parson, 1976; Schultz, 2005). Moreover, central Chile has experienced an 

uninterrupted sequence of dry years since 2010 with mean rainfall deficits 

of 20–40% (Garreaud et al. 2020). The so-called Mega Drought (MD) is the 

longest event on record and with few analogues in the last millennia, with 

detrimental effects on water availability (Borzkut et al. 2018), vegetation 

and forest fires that have scaled into social and economic impacts (CR2 

2017). Recently, Miranda et al. (2020) used temporal trends in the 

Normalized Difference Vegetation Index (NDVI) to show that the extreme 

drought of 2019 significantly reduced NDVI (browning) in near one-third 

of the region's forests and that the highest browning was observed in 

sclerophyllous forest dominated by species that have been catalogued as 
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tolerant to drought. Further, global climate models project that observed 

climate trends are likely to be preserved and the number of extreme drought 

events will be increasing during the rest of the 21st century, which may 

have a detrimental impact on these ecosystems (Matskovsky et al. 2021). 

Therefore, it is important to understand how different representative species 

of this ecosystem would be affected in their photosynthesis to future 

increased episodes of extreme drought as well as to assess the underlying 

mechanisms. 

In the present study, we evaluated the photosynthetic response to an 

extreme experimental drought in compound and simple leaf species of the 

Central Chile matorral. We hypothesized that with no water limitation 

compound leaf species will show a higher AN than simple leaf species 

associated with a higher CO2 diffusion inside the leaves (gm). Nevertheless, 

with an extreme drought simple leaf species will be less affected than 

compound leaf species because of their stress-tolerant physiology, showing 

fewer changes in their photosynthetic traits. 

 

Materials and methods 

Study species and growth conditions 
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We selected six tree species abundant in the central Chile Mediterranean-

type zone; three of them have simple leaves whilst the other three 

compound leaves. The species with simple leaves were: Peumus boldus 

Mol. (Monimiaceae), Lithraea caustica Mol. (Hook et. Arn) 

(Anacardiaceae) and Cryptocaria alba (Mol.) Looser (Laureaceae), all of 

them characterized by ovoid to oval sclerophyllous coriaceous leaves (Fig. 

1). Compound leaves species were: Prosopis chilensis (Mol.) Stuntz 

(Fabaceae), Acacia caven Mol. (Fabaceae) and Sophora cassioides (Phil) 

Sparre (Fabaceae). P. chilensis and A. caven have bipinnate leaves, while S. 

cassioides have compound paripinnate leaves (Fig. 1). All the study species 

are distributed between 30º and 41º south latitude (Fig. 1S; Rodriguez et al. 

1983). 

For each species, twenty individuals of similar age (1.5 or 2 years) and size 

were selected. Plants were acquired from a commercial garden (“Encanto 

Salvaje” http://www.encantosalvaje.cl) and transplanted into a 30 height x 

15 cm diameter pots with soil taken from a natural matorral community 

near Farellones village (33ºS), located at 50 km east of Santiago, Chile. 

Plants were kept for 21 days in a greenhouse at 33/13 ºC (day/night mean 

temperature) and a PPFD of 1100 μmol photons m-2 s-1 with a 12/12 h 

http://www.encantosalvaje.cl/
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light/dark cycle, and 40-60% relative humidity. Pots were periodically 

irrigated (three times a week) at field capacity. After this period, plants of 

each species were randomly divided in two groups of 10 individuals, one 

group was maintained at field capacity (control treatment), whilst the other 

was exposed to a severe drought. For this, individuals under this treatment 

received no irrigation for 45 days. Then, to maintain this drought intensity 

comparable while we were conducting the gas exchange measures, pots 

were weighed every day and the water lost by evapotranspiration was 

refilled (usually < 50 ml). Plants were maintained 30 days under this water 

condition before the measurements. 

 

Leaf gas exchange and chlorophyll a fluorescence measurement  

Leaf gas exchange and chlorophyll fluorescence measurements were 

performed with a portable gas exchange system Li 6400XT (LI-COR Inc., 

Lincoln, NE, USA) equipped with a leaf chamber fluorometer (Li-6400-40; 

LI-COR Inc.). 

The response of the net photosynthesis CO2 uptake (AN) to varying 

substomatal CO2 concentration (Ci) was studied with AN - Ci curves. For 

each species and growth condition, 10 replicates were performed. For this, a 
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fully expanded leaf was introduced in the IRGA’s chamber and after 

stabilization (15 minutes) of AN and gs a measurement was recorded. 

Curves were performed by increasing CO2 concentrations from 0 to 50, 

100, 200, 300, 400, 600, 900, 1400 and 2000 µmol CO2 mol-1, at 1500 

µmol photons m-2 s-1 and between 40 to 60% humidity. AN -Ci curves were 

performed at both 21% and 2% of O2, the latter to suppress 

photorespiration.  

The actual photochemical efficiency of photosystem II (ΦPSII) was 

determined, simultaneously to the AN-Ci curves, by measuring steady-state 

fluorescence (Fs) and maximum fluorescence (Fm’) during a light-saturating 

pulse of c.a. 8,000 photons m-2 s-1 following the procedures of Genty et al. 

(1989): 

ΦPSII = (Fm’ – Fs) / Fm’ 

ΦPSII was used for the calculation of the linear rate of electron transport 

(ETR) according to Krall and Edwards (1992): 

ETR = ΦPSII · PPFD · α · β 

where α is the leaf absorbance and β is partitioning of absorbed quanta 

between photosystems I and II. The product α · β was determined from 

PAR/AN curves performed with 2% O2 and at increasing PAR values of 30, 
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50, 75, 100, 150, 200, 500, 100, 1500, 2000 µmol photons m-2 s-1 (Yin et al. 

2009; Bellasio et al. 2016). Corrections for the leakage of CO2 into and out 

of the leaf chamber were applied to all gas-exchange data (Flexas et al., 

2007).  

Dark respiration (Rd) was measured by darkening the measuring leaf for 30 

minutes with CO2 concentration of 400 µmol mol m-1 at 25 ºC. Measured 

Rd value was used to correct the AN - Ci curves. 

 

Estimation of mesophyll conductance 

From the combined AN /Ci curves and chlorophyll a fluorescence the in 

vivo value of gm was obtained following Harley et al. (1992): 

gm= AN/ (Ci-(Г*(ETR + 8 (AN + RL))/ (ETR – 4 (AN + RL)) 

where AN and Ci were obtained from gas exchange measurements at 

saturating light. The rate of non-photorespiratory CO2 evolution in the light 

(RL) was determined as half of dark respiration. Chloroplast compensation 

point Г* was obtained following Bernacchi et al. (2002), which used kinetic 

properties of RuBisCO and specificity factor (Sc/o) (von Caemmerer, 2000). 

ETR is the electrons that are managed by PSII, calculated with the αβ 

values obtained from the PAR/AN curves (Yin et al. 2009). 
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Leaf temperature 

To assess differences in the heat exchange between compound and simple 

leaves, infra-red thermal images were taken in six replicates per species at 

each growth condition. Leaf temperature was calculated by choosing 3 

points in each leaf. Thermal images were obtained with a thermographic 

camera Testo 875 (Testo 875-2i, Germany) equipped with a display 3.5¨ 

LCD of with a resolution of 320 x 250 pixels and a field of view of 32°x 

23°. All images were taken at midday when leaves reached their maximum 

temperature.  

 

Statistical analyses 

Linear mixed models were used to analyze the effect of drought on each 

parameter (photosynthetic rate (AN), mesophyll conductance (gm), stomatal 

conductance (gs)) where leaf-type was the fixed factor and species a random 

factor. Log response ratios (LnRR) were calculated to assess the magnitude 

of the effect of drought on the different photosynthetic parameters between 

compound and simple leaves as: 

LRR = log (Xd/Xc), 
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where Xd corresponded to the parameter X measured on plants exposed to 

drought and Xc to that parameter measured in control plants. Response 

ratios were calculated for photosynthetic rate (AN), mesophyll conductance 

(gm), stomatal conductance (gs). Linear mixed models were used to analyze 

the response ratio of each parameter where leaf-type was the fixed factor 

and species a random factor. The analyses were done in R 3.0 using Ranova 

library.  

 

Results  

Under well-watered conditions (control conditions), on average, compound 

leaf species had greater photosynthetic capacity than simple leaf species, 

where the compound leaf tree species Prosopis chilensis and Acacia caven 

were the species showing the highest AN value, corresponding with the 

highest gs values for A. caven and the highest gm value for P. chilensis (Fig. 

2). Notwithstanding, the simple leaf species Lithrea caustica also showed 

higher AN value corresponding with high gs and gm values (Fig. 2). 

Drought negatively affected AN, gs and gm in both leaf type species (Fig. 2, 

Table 1A), but leaf-type had no statistical effect on any of parameter 

evaluated (Table 1A). Size effect estimations with the LRR showed that 
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drought affected the photosynthetic parameters in similar magnitudes (Fig. 

3), with no statistical effects of leaf-type (Table 1B). 

Regarding species-specific responses, the compound leaf species Sophora 

cassioides and the simple leaf species Peumus boldus were the relatively 

less affected in terms of AN, gs and gm (Fig. 3). In contrast, the compound 

leaf species Prosopis chilensis and the simple leaf Cryptocaria alba were 

the more negatively affected on these parameters (Fig. 3). 

Under well-watered conditions, foliar temperature of compound-leaf 

species did not differ significantly from that of compound leaf species (30.4 

vs 29.8 °C in compound and simple leaf species, respectively). Nonetheless, 

the foliar temperature of control plants in compound leaf species was 

significantly 4°C lower than that of plants under drought, whilst no 

differences between treatments were observed in simple leaf species (Table 

2, Figure S2). 

 

Discussion  

Plants possess a great diversity of leaf shapes and sizes (Nicotra et al. 2011; 

Shi et al. 2020), and several studies remark that leaf shape plays crucial role 
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in process such as photosynthesis, thermoregulation, hydraulic conductivity, 

nitrogen content and growth (Wright et al. 2004; Michaletz et al. 2015; 

Oguchi et al. 2018; Alonso-Forn et al. 2020b). Nevertheless, few studies 

have characterized the photosynthetic responses to drought between 

compound and simple leaf species, which is particularly important for 

Mediterranean species that are increasingly exposed to severe droughts due 

to climate change (Miranda et al. 2020). We found that a severe drought 

negatively affect in a similar magnitude compound and simple leaf species 

from the Chilean matorral. 

We observed that with no soil moisture limitations (control conditions), on 

average, compound leaf species had greater photosynthetic capacity than 

simple leaf species, where the compound leaf tree species Prosopis 

chilensis and Acacia caven were the species showing the highest AN value. 

In P. chilensis, this could be due to the high values of gm observed (0.29 

mol CO2 m
-2s-1) that  are on the range of values typically found on herbs 

(Tomas et al. 2013; Nadal et al. 2018b), being greater than the gm values 

reported for other Mediterranean species that typically ranged between 0.18 

and 0.08 CO2 m
-2s-1 (Niinemets et al. 2005; Galmes et al. 2007; Niinnemets 

et al. 2009b; Peguero-Pina et al. 2012; Tomas et al. 2013; Flexas et al. 
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2014; Peguero-Pina et al. 2017; Alonso-Fern et al. 2020b). In A. caven, the 

high AN value seems to be related to a greater stomatal conductance that 

would allow higher CO2 diffusion inside leaves consequently increasing the 

amount of carbon in carboxylation sites (Cc). Therefore, it seems that 

compound leaf species tend to show higher AN and gm than simple leaf 

species, as expected due to their lower LMA values (Table S1). As an 

exception, the compound leaf species Sophora cassioides showed the 

lowest AN, analogous to the values observed in simple leaf species, 

probably due to their low gm. 

The lower AN values were observed on the simple leaf species P. boldus 

and C. alba, and these species have high LMA values (Table S1), 

suggesting a strong constraints for CO2 diffusion inside their leaves, and 

thus for AN (Niinemets et al. 2009b; Tosens et al. 2012; Niinemets et al. 

2015; Veroman-Jüergenson et al. 2019, 2020). Indeed, the gm values 

obtained for simple leaf species in well-watered conditions are near to the 

limit of the foliar spectrum for gm, and in the range of values found in other 

Mediterranean sclerophyllous species (<0.1 mol CO2 m2s-1 Niinnemets et 

al. 2009a; Peguero-Pina et al. 2012; Flexas et al. 2014; Peguero-Pina et al. 

2018; Alonso-Forn et al. 2020a). On the other hand, the simple leaf species 
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L. caustica showed the highest values of AN, with values similar to those 

reported in previous studies (e.g. Dunn, 1975; Lawrence, 1987, Brito et al. 

2014). The gm value of 0.1 mol CO2 m
-2s-1 L. caustica was that expected for 

a LMA of 160 g m-2 as proposed by Flexas et al. (2009), and to the value 

modelled for sclerophyllous species for a similar LMA value (Hassioutou et 

al. 2010). However, despite the high value of LMA in L. caustica, higher 

AN value found on this species are due to low diffusional limitation of 

photosynthesis according to the high gs and gm value respect the other 

simple leaves species. 

In contrast to our expectations, leaf-type did not affect photosynthetic plant 

responses to drought. Although compound leaves species were 4ºC cooler 

under drought compared to simple leaves species, supporting that a 

dissected leaf anatomy offer a great advantage in drought conditions by 

convective heat exchange (Givinish, 1979), all compound leaf species were 

strongly affected by drought in An, gs and gm. In addition, A. caven is a 

winter-deciduous species (Specht, 1988, Aronson, 1992), thus a high 

control of evaporative demands is critical for maintaining the carbon 

assimilation during short leaf life span (Mooney & Dunn, 1970).  
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In this study, we focused on the gas exchange response of Chilean matorral 

plants to severe drought conditions where no differences were observed 

between compound and simple-leaf species. This suggests that the 

“browning” of vegetation (Miranda et al. 2020) caused by the intense and 

extended mega-drought (Gerraud et al. 2019) is a general response of 

vegetation where all species, regardless their leaf-type, are seriously 

affected. However, to forecast how these species will respond to further 

increases in drought require additional analyses. For example, anatomy and 

mesophyll arrangement data are required if exists some type of adaptation 

during drought or changes in enzymatic RuBisCO properties/concentration 

of this species is related to leaf type (Onoda et al. 2017; Galmes et al. 2019; 

Alonso-Fom et al. 2020). Further experiments accounting for the recovery 

phase are needed to know whether compound and simple leaves show 

differences.  
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TABLES 

 

Table 1. 

A. Mixed linear model for photosynthesis, AN, mesophyll conductance, 

gm, and stomatal conductance, gs. Asterisks indicates statistical 

effects Ranova Test (p<0.05). 

 Source:                    

  Df         t value 

       

Pr(>|t|)  

AN      

 Type of Leaf 5 -0.061 0.954  

 Treatment 64 14.08 0.000 * 

 

Type of leaf x 

Treatment 64 -4.937 0.000 * 

    
gm      

 Type of Leaf 5 -0.242 0.816  

 Treatment 64 7.538 0.000  

 

Type of leaf x 

Treatment 64 -4.151 0.000 * 

      
gs      

 Type of Leaf 5 -0.033 0.975  

 Treatment 64 12.350 0.000 * 

 

Type of leaf x 

Treatment 64 -2.200 0.031 * 
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B. Mixed Lineal model for LnRR of carbon assimilation, AN. Mesophyll 

conductance, gm. Stomatal conductance, gs.  

 

     

Source 

  Df    t value              Pr(>|t|)  

AN Type of Leaf 4 -0.396 0.712  

      

gm Type of Leaf 4  0.165 0.876  

 

gs Type of Leaf 4  0.483 0.654   
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Table 2. Leaf temperature of compound and simple leaf species from the 

central Chile matorral growing under control and drought conditions. 

Values are mean ± S.D. (n = 6). 

 

Leaf type Species Condition 

Leaf 

Temperature 

(C°) 

 A. caven Control 27.4 ± 0.21  

Compound  Drought 27.2 ± 0.31  

 

P. 

chilensis Control 32 ± 0.44  

  Drought 29.8 ± 0.07  

 

S. 

cassioides Control 31.8 ± 0.54  

  Drought 28.5 ± 0.18  

 P. boldus Control 28.4 ± 0.62  

Simple  Drought 32.7 ± 0.55  

 C. alba Control 28.8 ± 0.6  

  Drought 33.3 ± 0.56  

 

L. 

caustica Control 32.1 ± 055  

  Drought 33.9 ± 0.47  
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FIGURES 

Figure 1. Compound (A-C) and simple leaves (D-E) used in this study. A, 

Prosopis chilensis. B, Sophora cassioides. C, Acacia caven. D, Cryptocarya 

alba. E, Lithraea caustica. F. Peumus boldus. Straight line indicates scale in 

cm. 

 

Figure 2. Photosynthesis (AN), stomatal conductance (gs) and Mesophyll 

conductance (gm) of simple and compound leaf species of the central Chile 

matorral. Values are mean ± two standard errors. 

 

Figure 3. Log response ratio (LnRR) to drought on photosynthesis (AN), 

stomatal conductance (gs), mesophyll conductance (gm) of two leaf-type 

species. Values are mean ± two standard errors. Zero line indicates no 

change. 
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Fig 1. 
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Fig 2. 
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Fig 3. 
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CHAPTER 3: 
 

Ecophysiology of the alternative respiration in roots: A role 

for AOX during nutrient deficiency and symbiosis with soils 

microorganisms  
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Abstract: The interaction of the alternative oxidase (AOX) pathway with 

nutrient metabolism is important for understanding how respiration 

modulates ATP synthesis and carbon economy in plants under nutrient 

deficiency. Although AOX activity reduces the energy yield of respiration, 

this enzymatic activity is upregulated under stress conditions to maintain 

the functioning of primary metabolism. The in vivo metabolic regulation of 

AOX activity by phosphorus (P) and nitrogen (N) and during plant 

symbioses with Arbuscular mycorrhizal fungi (AMF) and Rhizobium 

bacteria is still not fully understood. We highlight several findings and open 

questions concerning the in vivo regulation of AOX activity and its impact 

on plant metabolism during P deficiency and symbiosis with AMF. We also 

highlight the need for the identification of which metabolic regulatory 

factors of AOX activity are related to N availability and nitrogen-fixing 

legume-rhizobia symbiosis in order to improve our understanding of N 

assimilation and biological nitrogen fixation.  

  

Keywords: Alternative oxidase, Arbuscular mycorrhizal fungi, Nitrogen 

and Phosphorus nutrition, Rhizobium, Plant primary metabolism 
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Introduction 

Nitrogen (N) and phosphorus (P) are the two essential macronutrients for 

plants. Short supply of these nutrients may lead to the appearance of stress 

symptoms affecting photosynthesis, respiration and thus plant growth [1-6]. 

Under abiotic stress conditions, oxygen consumption in mitochondria may 

be less constrained than carbon fixation in chloroplasts due to the nature of 

the non-phosphorylating alternative pathway of respiration. This can help to 

maintain the functioning of primary metabolism and carbon balance even 

when photosynthesis is severely restricted [7, 8]. The singularity of this 

respiratory behavior can be especially notorious in roots, because 

respiration may increase when plants are nutrient limited, because the need 

for nutrient uptake requires the majority of carbon assimilated [8-10]. Roots 

are a sink for carbohydrates due to the energy requirements for ion 

transport, nutrient assimilation, growth and maintenance [3, 11-13]. 

Although alternative respiration is linked to carbon respiratory losses 

detrimental for plant growth, roots subjected to nutrient deficiency can 

reduce the energy efficiency of respiration through a respiratory bypass via 



176 
 

alternative oxidase (AOX) as part of a coordinated response directed to 

maximize the efficiency of nutrient acquisition. Mycorrhizas and N2-fixing 

legume root nodules are recognized as the two major plant root symbioses 

for enhancing nutrient uptake and plant nutrient status [14, 15]. The 

regulation of AOX activity in plants during symbiosis is of vital importance 

for the determination of both the energy efficiency of respiration and the 

costs of carbon and energy (ATP) associated with plant symbioses. This 

knowledge can be of great interest for breeding programs to improve crop 

production through plant symbiosis with soil microorganisms. Although 

this line of research is still in its infancy, recent studies have evaluated the 

metabolic regulation of the in vivo AOX activity in leaves and roots of 

plants in symbiosis with soil microorganisms [13]. Their observations have 

provided first evidences of how alternative respiration of both plant organs 

can be affected in the presence of microbial symbionts.  

Plant respiration is the combination of redox reactions, mostly involving 

both mitochondrial tricarboxylic acid (TCA) cycle and electron transport 

chain (mETC), which produce carbon skeletons, carbon dioxide (CO2), and 

ATP coupled to the consumption of oxygen (O2) and reducing equivalents 

[NAD(P)H and FADH2] through the activities of two respiratory pathways 
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which compete for electrons from the ubiquinone (UQ) pool [16]. The 

cytochrome oxidase pathway (COP) is the primary respiratory pathway, 

while the alternative oxidase pathway (AOP) decreases energy efficiency of 

respiration. AOX contributes to dissipate the excess of reducing equivalents 

from chloroplasts and mitochondria and provides metabolic flexibility when 

COX is impaired under several abiotic stressors [8]. The in vivo electron 

partitioning between the two pathways and the activities of cytochrome 

oxidase (COX) and AOX can be measured by using the oxygen-isotope 

fractionation technique that allows measurements of O2 consumption 

combined with its isotopic modification during plant respiration [17]. Over 

the last couple of decades, the regulation of AOX activity under a large 

range of abiotic and biotic stresses has been extensively studied in plants as 

recently reviewed by Del-Saz et al. [8]. In the last few years, several studies 

have focused on the in vivo AOX regulation at the post-translational level, 

reporting simultaneous changes in both AOX activity and levels of 

metabolites belonging to different metabolic pathways that produce and/or 

dissipate reducing equivalents [8]. These observations suggest that AOX 

activity can confer the metabolic flexibility needed for the continuity of 

primary metabolism, protein turnover and plant growth under stress [8, 18].  
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Plant symbioses with soil microorganisms may increase plant growth and 

affect levels of primary metabolites through the exchange of carbon and 

nutrients between plant roots and microsymbionts [19, 20]. The 

enhancement of plant growth is due to a double effect. On one hand, the 

microsymbiont induces an increase of nutrient content in plant organs, 

increasing carbon assimilation during photosynthesis [21-23]. On the other 

hand, increased rates of photosynthesis allow plants to satisfy the 

microsymbiont’s demand for carbon compounds. In other words, by the 

decrease of photosynthetic limitations, microsymbionts´s  lead plants to 

produce large amounts of carbon compounds required for maintain its own 

metabolism [19]. This phenomenon, called positive-feedback of 

photosynthesis [24], could be accompanied by adjustments in the energy 

efficiency of respiration, considering the tight relationship between 

photosynthesis and AOX activity [25-28]. Thus, adjustments in the energy 

efficiency of respiration can be conditioned by the metabolic costs of 

microsymbiont maintenance or by the metabolic benefits of improved 

nutrition, which in turn may depend on the microbial symbiont’s energy 

efficiency of respiration. 

2. Regulation of AOX activity by P availability 
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The main P resource for plants in soils is inorganic phosphate (Pi), which 

mostly can be retained or complexed by cations (e.g., Ca2+ and Mg2+) [29]. 

The other P pool in soil comprises organic P compounds derived from the 

degradation of plant litter, microbial detritus and organic matter [30]. Pi is 

involved in cellular bioenergetics and metabolic regulation, and it is also 

important as a structural component of essential biomolecules such as 

DNA, RNA, phospholipids, ATP and sugar-phosphates [2, 31]. A decrease 

in cytosolic Pi may restrict oxidative phosphorylation leading to an 

increased proton gradient and membrane potential. In turn, this prompts an 

over-reduction of the components of the electron transport chain, inhibiting 

oxygen consumption through the COX pathway, which is coupled with 

ATP synthesis. This creates a decrease in the re-oxidation of NADH 

produced in the TCA cycle [4, 16]. Furthermore, the accumulation of 

NADH in the mitochondrial matrix also inhibits the TCA cycle 

dehydrogenases, decreasing the activity of the TCA cycle and limiting the 

production of important metabolic intermediates [32]. 

A plant trait that enhances the capacity to acquire P in the poorest P soils is 

the production of cluster roots in members of the Proteaceae family, most of 

which do not form mycorrhizal associations [33-36]. Cluster roots are very 
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effective at acquiring P that is largely absorbed into soil particles, because 

of their pronounced capacity to exude carboxylates [9]. Cluster roots of 

Lupinus albus release much more citric and malic acid than lupin roots of 

plants grown under P sufficiency. Florez-Sarasa et al. [37] observed that 

growth under P limitation increased the activity of AOX in cluster roots of 

L. albus together with the synthesis of citrate and malate, as in Hakea 

prostata plants under the same conditions [38]. It is thought that the 

production of vast amounts of citrate in cluster rootlets is inexorably 

associated with the production of NADH [38, 39, 40]. This led Florez-

Sarasa et al. [37] to state that AOX allows the continuity of TCA cycle 

activity by re-oxidizing the high levels of NADH produced during citrate 

synthesis when COX activity is restricted due to the P‐deficiency‐induced 

adenylate restriction. 

The capacity to synthesize acidifying and/or chelating compounds is not 

restricted to species with morphological structures such as cluster roots and 

dauciform roots, several species can produces organic acid in P deficiency 

[9]. In roots without these adaptations, and in the absence of mycorrhiza, 

the levels of enzymes involved in organic acid biosynthesis, such as PEP 

carboxylase, often increase in response to P starvation in pea, tomato and 
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Brassica nigra [41]. This increase in enzyme levels was related to a higher 

amount of organic acids being produced for root exudation. This capacity is 

not only present in roots; leaves of plants grown under P limitation may 

accumulate carboxylates such as citrate, malate, and fumarate [41, 42]. 

Carboxylates in leaves can be transported via the phloem and directed to 

roots for exudation [41, 42]. Pioneering studies reported an adaptive 

response of respiratory metabolism and the mitochondrial electron transport 

chain to P limitation in NM roots [43-44], including increased AOX 

capacity [44, 45-46]. This in the line with previous studies reporting 

imbalances of C/N ratio and ROS levels in AOX-deficient cells under P 

deficiency [46, 48] although the situation at tissue level has been recognized 

to be more complex [18]. Recent studies have observed increases of AOX 

activity in roots of non-cluster roots for species grown under P limitation, 

such as Nicotiana tabacum and Solanum lycopersicum in the absence of 

mycorrhiza [13, 50]. In these species, increments of AOX activity were 

observed, coinciding with a higher synthesis of carboxylates citrate and 

malate. In leaves, there were reports of pioneer studies reported increases of 

AOX activity in Phaseolus vulgaris and Gliricidia sepium plants grown 

under P limitation, but a decrease of foliar AOX activity was observed in 
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Nicotiana tabacum, although this disparity was not related to any 

respiratory metabolite [51]. A recent study in Solanum lycopersicum plants 

grown at P-sufficient and limiting conditions, and exposed to sudden short-

term (24 h) P-sufficient pulse, observed foliar respiratory bypasses via 

AOX and an increased accumulation of citrate, together with an enhanced 

expression of high‐affinity P transporters LePT1 and LePT2 in conditions of 

limited P concentration [50]. These observations suggest that P 

concentration in plant organs regulates AOX activity in coordination with 

biochemical and molecular adjustments, functioning as a mechanism 

directed to maximize P acquisition [50]. Despite these findings, there is still 

a lack of understanding about the entire metabolic puzzle leading to the 

synthesis of citrate and increases in AOX activity. Studies combining 

metabolite profiling and measurements of electron partitioning between 

COX and AOX in P deficient plants could certainly shed light on the 

metabolic role of AOX in plant species adapted to P deficiency, which 

increase carbon use efficiency by decreasing Pi consumption in leaves as 

represented in Figure 1, below. The rate of photosynthesis and the export of 

its products from the chloroplast are determined by the availability of Pi in 

both chloroplast and cytosol [9, 51]. Low chloroplast Pi availability induces 
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a decrease in the rate of photosynthesis by decreasing both ATP synthesis 

and Calvin-Benson cycle activity, which results in a reduced availability of 

intermediates, e.g., ribulose 1,5-biphosphate (RuBP), and decreased 

carboxylation activity of Rubisco [52]. Low cytosolic Pi availability 

decreases the export rate of the products of the Calvin-Benson cycle, 

leading to increasing amounts of triose-phosphate and starch in the 

chloroplast [51, 52]. Consequently, sucrose formation and glycolysis can be 

reduced, which may limit carbon supply into mitochondria, thus decreasing 

both tricarboxylic acid (TCA) cycle activity and respiration [5, 30], and 

therefore, plant growth and yield. In order to save Pi, leaves reduce Pi 

consumption in phosphorylation of sugar metabolites by converting 

phosphorylated metabolites (glucose-6-P, fructose-6-P, inositol-1-P and 

glycerol-3-P) to non-P-containing di- and tri-saccharides, as observed in 

Hordeum vulgare and Eucalyptus globulus P-deficient plants [53, 54]. In 

these studies, such changes coincided with reduced levels of organic acid 

intermediates of the TCA cycle, suggesting a short entry of carbon into 

mitochondria. Bearing in mind that the conversion of di- and tri-saccharides 

to organic acids requires Pi, it is unlikely that they can be further respired 

[53]. Under this circumstance, the use of alternative carbon resources would 



184 
 

allow the continuity of TCA cycle reactions to produce organic acids, e.g., 

citrate for secretion and to sustain the mitochondrial electron transport 

chain. In this sense, changes in levels of amino acids glutamine, arginine 

and asparagine was observed in P-deficient plants [53, 54]. A similar 

response was recently observed in Hordeum vulgare [42]. These amino 

acids were suggested to provide carbon skeletons to mitochondria when 

plants reduce the consumption of Pi [42]. It is known that plants can 

metabolize proteins and lipids as alternative respiratory substrates when 

carbohydrates are scarce in plant cells [55, 56]. Carbon consumption of 

these alternative respiratory substrates could be associated with the 

generation of NADH in the TCA cycle, whose re-oxidation would be 

favored by AOX activity when COX is restricted under P deficiency 

(Figure 1).  

2.1. Regulation of AOX activity by arbuscular mycorrhizal symbiosis 

More than 90% of terrestrial plants are associated with root-colonizing 

fungi, establishing a durable and close mutualistic symbiosis, called 

mycorrhiza [58]. The endotrophic arbuscular mycorrhiza is the most 

common type, occurring in about 80% of plant species [59]. The 
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establishment of the association between AMF and plants implies the 

generation of roots with representative structures typical of this symbiosis 

such as (1) intraradical mycelium, which is a fungal structure that inhabits 

the plant intracellular space; (2) arbuscule, which is the space where the 

carbon and nutrient exchange between fungus and plant takes place; (3) the 

vesicles, storage structures and (4) the extraradical mycelium, which is a 

structure that extends from the root surface to the soil, beyond the root P-

depletion zone and has access to a greater volume of soil compared to roots 

and root hairs alone [60]. Mycorrhizal associations act as ‘scavengers’ for 

Pi uptake in the soil solution. Compared to non-mycorrhizal (NM) plants, 

the advantages of increased P acquisition and photosynthesis increase with 

decreasing soil P availability [61]. The increase in photosynthesis in plants 

with mycorrhiza is related to an increased demand for carbohydrates 

supplied to the fungus [19, 62]. Some carbohydrates produced in leaves 

during photosynthesis are transported to roots, where they are broken down 

in respiration to produce ATP and carbon skeletons required for protein 

synthesis. Around 20% of the carbon fixed by photosynthesis is destined to 

form soluble sugars and organic acids in order to supply energy metabolism 

in fungal cells [63]. These metabolic carbon requirements of AM symbiosis 
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may affect plant respiration [64-67] as well as the levels of primary 

metabolites in plant organs [68-70]. In fact, AM symbiosis decreases the 

carboxylate-releasing strategy as observed in ten Kennedia species and five 

species of legumes [71, 72]. The mechanism for the reduction in 

rhizosphere carboxylates with AM symbiosis could be a consequence of the 

reduction of carbon availability in roots due to the demand of AMF for 

carbon compounds, or it could be a consequence of higher plant P 

concentration due to improved nutrition. Measurements of in vivo AOX 

activity and the accumulation of carboxylates in roots of Nicotiana tabacum 

and Arundo donax, showed that AM symbiosis decreased root respiration 

via COX and AOX in N. tabacum, decreased respiration via COX in A. 

donax, and decreased synthesis and exudation of citrate and malate in A. 

donax and N. tabacum, respectively [13, 73]. On top of this, both species 

showed symptoms of ameliorated physiological status and increased 

biomass accumulation in shoots. These results probably denote that the 

synthesis of rhizosphere exudates in non-AM plants imposes an important 

carbon cost detrimental for plant growth as compared with AM plants, 

which do not invest as much carbon in the synthesis of carboxylates, thus 

respiring less and allowing carbon to accumulate. Bearing all this in mind, it 
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would be logical to assume that the mechanism for the reduction in 

rhizosphere carboxylates is related to improved plant P status rather than 

less carbon availability. In fact, previous studies described that increasing P 

availability tends to reduce the amount of carboxylate in rhizosphere soil 

[74, 75], and the carboxylate-releasing strategy requires more carbon when 

P availability is in the range at which AM plants are functional [76]. 

Nevertheless, it is important to highlight that the effect of AM symbiosis on 

plant growth is variable because it depends on the host plant and the fungal 

species [77]. In this sense, in vivo AOX measurements have been made only 

in positive symbiotic interactions (beneficial for plant growth), and there is 

still a lack of studies that test the role of alternative respiration in defective 

symbiotic interactions (detrimental for plant growth). Besides, it has been 

reported that the effect of AMF on plant growth depends on the stage of 

colonization [60]. In this sense, a recent study in N. tabacum showed that 

symbiosis with Rhizophagus irregularis differently affects both respiration 

and ATP synthesis in leaves at different growth stages, when plants grow in 

P deficient soils. AM symbiosis represented an ATP cost (via decreased 

COX activity) for tobacco leaves that was detrimental for shoot growth at 

early stages, presumably because fungal structures were still under 
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construction. At the mature stage, this cost turned into an ATP benefit (via 

incremented COX activity), which allowed for faster growth presumably 

because symbiosis was functional, bearing in mind the observed increase in 

both foliar P status and shoot growth [78]. 

AM symbiosis can improve nutrient acquisition because AM provide an 

additional means of nutrient uptake, the mycorrhizal nutrient uptake 

pathway [79-80], which can bypass the pathway of direct nutrient uptake in 

a P availability‐dependent manner [81-86]. Studies relating the functioning 

of the mycorrhizal nutrient uptake pathway to the in vivo electron 

partitioning to AOX are required, keeping in mind that AOX is also present 

in various fungi including Rhizophagus intraradices [87], and that P 

acquisition by AMF requires energy, which is obtained during oxidative 

phosphorylation in fungal mitochondria. Precisely, ATP is needed for P 

uptake by the external hyphae, P transport and export to the internal hyphae 

and P uptake by the plant at the arbuscule (Figure 2). It would be logical to 

assume that positive AMF-plant interactions display high rates of COX 

activity in extra radical mycelium to ensure ATP availability and to 

energize the mycorrhiza pathway uptake. Measurements of the in vivo COX 

and AOX activities together with techniques like multicompartment plant 
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growth systems [88] and 13C and 33P isotopic labeling [89] may help to 

identify AMF-plant associations with efficient energy rates of extra radical 

mycelium respiration when the mycorrhizal nutrient uptake pathway is 

active. This could contribute to expand our view on the interplay between 

nutrient uptake pathways in plants with mycorrhiza.  

3. Regulation of AOX activity by N availability 

 Nitrogen is required by plants in greater quantities than any other mineral 

element. Almost all the N available for plants is present in the reduced form 

of nitrate (NO3
-), ammonium (NH4

+), organic compounds and molecular 

nitrogen (N2) in the air [90, 91]. The major source of N in soils resides in 

the atmosphere, through both biological N2 fixation and the deposition of 

NO3
- and NH4

+ in precipitation. In soils, NH4
+ and NO3

-
 move towards roots 

through transpiration-driven mass flow because they are water soluble [92]. 

Both NH4
+ and NO3

-
 enter the plant cells via specific transporters [93, 94]. 

In order to be incorporated, NO3
-
 is reduced to NH4

+ by nitrate reductase 

(NR) and nitrite reductase [995]. Then, NH4
+ is further converted into 

glutamine and glutamate, in a reaction catalyzed by glutamine 

synthetase/glutamine 2-oxoglutarate amino-transferase (GS/GOGAT) cycle 
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[94]. At the cellular level, nitrogen assimilation is finely regulated 

according to its supply and demand. Nitrogen controls the regulation of 

nitrate transporters, activities of nitrate and nitrite reductase, the functioning 

of primary metabolic pathways associated with the production of reducing 

equivalents, and the production of organic acids required for N assimilation 

into amino acids [2].  

There is a correlation between leaf N content and rates of respiration [96-

99]. Short supply of N leads to decreasing rates of both photosynthesis and 

respiration by reducing protein turnover and increasing breakdown of 

nucleic acids and enzymes [9, 100]. Under these circumstances, a minimum 

supply of TCA metabolites (e.g., 2-oxoglutarate, isocitrate, and citrate) may 

maintain optimum N assimilation and amino acid biosynthesis [101-103]. 

Indeed, TCA cycle enzymes fumarase, NAD-dependent isocitrate 

dehydrogenase, and NAD-dependent malic enzyme are up-regulated under 

low N [95, 104], and protein degradation acts as an alternative respiratory 

substrate [55]. In this situation, AOX activity could play a role in 

maintaining the functioning of primary metabolism by allowing 

adjustments in energy efficiency of respiration. However, there are no 

studies that test the regulation of AOX activity in vivo under N limitation. 
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Such a hypothetical role should be evaluated in plant species with 

constitutively high levels of the AOX protein, or AOX activity. Plants 

possess a higher threshold for AOX capacity [8, 26, 29, 105, 106], which is 

variable depending on the plant species and environmental conditions [29, 

105]. It is thought that this high threshold eliminates the need for de novo 

AOX protein synthesis, granting alternative respiration the ability to 

respond to sudden changes in levels of reducing equivalents [8, 26, 107]. In 

this sense, a short supply of N in plant species with high levels of AOX 

protein such as legumes, could induce a decrease of both AOX protein and 

capacity to some extent without compromising the accuracy of AOX 

activity measurements, allowing us to evaluate the in vivo role of AOX 

under stress. Preliminary results in Lotus japonicus have shown that total 

respiration decreases (via COX and AOX) in leaves and roots when plants 

grow under short supply of KNO3, in comparison with plants grown at 

sufficient KNO3 supply. Interestingly, a short supply of KNO3 induces an 

increase of the energy efficiency of respiration (via decreased contribution 

of AOX activity to total respiration) only in leaves (Ortíz et al. 

unpublished), which suggests the existence of a differential regulation 
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between organs directed to maximize ATP synthesis in leaves, most likely 

for maintenance purposes.  

On the other hand, the source of N could be another regulatory factor of 

AOX activity in leaves. Classic studies have observed that the expression 

and activity of several glycolytic and TCA cycle enzymes were 

differentially affected following NH4
+ or NO3

- uptake [101-103, 108], 

which could be accompanied with respiratory adjustments. It is known that 

nitrate uptake and its conversion to ammonium require large amounts of 

ATP and reducing equivalents [109-110]. However, respiration increases 

when ammonium is present as the main N source [112-114]. This has been 

explained as a consequence for the lack of the important reductant sink 

exerted by nitrate reductase, thus leading to an increase of reducing 

equivalents in cytosol, that are dissipated by mitochondrial electron 

transport chain. Under this scenario, AOX could play a significant role 

during this dissipation of reductants, considering its roles in maintaining the 

cell redox balance [8, 115, 116]. In this way, the accumulation of NH4
+ and 

its associated toxicity is prevented by the action of the GS/GOGAT cycle 

activity [117] in parallel to the mitochondrial dissipation of reductants. In 

fact, previous studies have shown an increase in AOX capacity and 
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enhanced of several AOX isoforms in plants grown under NH4
+ supply 

[114, 115, 118-120]. Moreover, negative correlations between AOX 

capacity and nitrate concentrations were observed [114], although the 

electron flow through AOX under aerobic conditions can be important for 

the reduction of NO generation associated to nitrate reduction [121]. 

Interestingly, the growth of AOX-overexpressing plants is less restricted as 

compared to wild type (WT) Arabidopsis plants grown under NH4
+ 

nutrition, although the metabolic causes of this phenotype remain uncertain 

[118].  The hypothetical role of AOX in conferring metabolic flexibility 

during NH4
+ nutrition still needs to be tested by in vivo activity 

measurements (Figure 3).} 

3.1. Regulation of AOX activity in the Rhizobium-legume symbiosis 

Legumes are good candidates to study the regulation of AOX activity by N 

availability because these plants have been suggested to display faster rates 

of foliar AOX activity under stress as they constitutively express high levels 

of AOX protein under normal growth conditions [122-124]. In fact, 

measurements of in vivo AOX activity have been performed in leaves of six 

legumes species: common bean (Phaseolus vulgaris), garden pea (Pisum 
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sativum), barrel medic (Medicago truncatula), soybean (Glycine max), 

mung bean (Vigna radiata) and faba bean (Vicia faba). These experiments 

have been important to evaluate the regulation of the AOX activity under P 

limitation, high light, salinity, pathogen infection and variable temperatures 

[25-27, 29, 106, 125, 126]. Furthermore, legumes are suitable for the study 

of the regulation of AOX activity by N availability in roots because of their 

ability to establish symbiosis with a group of soil bacteria collectively 

designated as rhizobia. Rhizobia is a group of diazotrophs, most of them 

belonging to the α-proteobacteria, that include the genera Rhizobium, 

Mesorhizobium, Ensifer (formerly Sinorhizobium), Bradyrhizobium and 

Azorhizobium, among others) [127]. The rhizobia-legume symbiosis 

provides a suitable biological system to evaluate variations in both nutrient 

status and metabolite levels in plant organs due to the exchange of carbon 

and nutrients between host plants and bacteroids (that is, the differentiated 

endosymbiotic form of the bacteria able to fix nitrogen). 

Legumes can fix atmospheric nitrogen (N2) through the nitrogenase activity 

that reduces N2 to NH3
- and is located in the root nodule bacteria [128-130]. 

Biological N2 fixation in leguminous plants requires the development of a 

specific symbiotic relationship between rhizobia soil bacteria and the plant 
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root in conditions of limited nitrogen availability in soil [131]. In 

bacteroids, the nitrogenase reaction requires a great deal of energy, 

consuming at least 16 ATP and 4 pairs of electrons for every molecule of 

N2 reduced to ammonia [83]. This energy is obtained from plant carbon 

compounds in the form of TCA cycle intermediates (fumarate, succinate or 

malate) via a dicarboxylic-acid transport system [132-134]. Similar to 

mycorrhizal symbiosis, the nodule imposes a carbon cost in roots that 

cannot exceed their nutritional benefit. However, it is unknown whether 

respiratory adjustments in nodulated roots contribute to the regulation of the 

carbon economy in legumes. In this sense, preliminary results obtained in 

roots of L. japonicus nodulated by Mesorhizobium loti, revealed higher 

rates of total respiration via COX (and diminished AOX activity) when 

compared to non-nodulated roots of plants grown at low KNO3 (Ortíz et al. 

unpublished). These results are in agreement with the previous studies 

describing high rates of respiration in nodulated roots [135-137]. On the 

other hand, we observed similar rates of respiration in nodulated roots when 

compared to non-nodulated roots of plants grown at sufficient KNO3 (Ortíz 

et al. unpublished). Based on these results, it seems that the effect of 

rhizobia on root respiration could be related to an improved N status rather 
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than to carbon costs of nodule maintenance and nitrogenase activity. 

Biological nitrogen fixation leads to the production of ammonium in 

bacteroids, which is transferred to the host plant through the symbiosome 

membrane and initially assimilated to glutamine, and then to either ureides 

or amides to ameliorate N status in leaves [130, 134, 138-140]. Similar to 

roots, rhizobia inoculation did not significantly change the activities of the 

two terminal oxidases in leaves of L. japonicus plants grown under KNO3 

sufficiency, thus suggesting a similar N status between these plants. 

Furthermore, leaves of non-nodulated plants grown at low KNO3 displayed 

the lowest rates of ATP synthesis via decreased COX and AOX (Ortíz et al. 

unpublished). Based on this preliminary results, it seems that the activities 

of both COX and AOX in plant organs depend on N availability. Another 

regulatory factor of AOX activity in leaves could be determined by the type 

of nodule. The determinate legume root nodules, characteristic of some 

tropical legumes as soybean and common bean, primarily exports ureides 

(allantoin and allantoate) as fixed-N compounds to be metabolized in 

leaves. These compounds are converted to glycine, which in turn will be 

converted to serine as part of the photorespiration pathway that is associated 

to the mitochondrial release of ammonia in and its re-assimilation into 
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nitrogenated compounds [133, 141]. On the other hand, indeterminate 

nodules, characteristic of certain temperate legumes as barrel medic and 

pea, assimilate amides in the form of asparagine (Asn) and glutamine (Gln) 

[141, 142], which are exported to the aerial part to be directly incorporated 

into leaf metabolism. This bypasses the production of reducing equivalents 

related to the decarboxylation of glycine to serine in leaf mitochondria [12] 

that is observed in determinate nodules, which could be associated with 

changes in AOX activity (Figure 4). 

Although nitrogenase enzyme requires O2 for ATP synthesis, this enzyme is 

extremely O2-labile, being inhibited above a certain O2 concentration. This 

was called “the oxygen paradox” [143]. In order to maintain respiration and 

ATP synthesis in the infected cells, the nodule displays several mechanisms 

for delivering a regulated flux of O2, whilst maintaining free O2 

concentration at low levels in infected cells. One of these mechanisms is the 

occurrence of an O2 diffusion barrier to the nodule central zone, where 

nitrogen-fixation takes place [144]. Besides, it is thought that rates of 

bacteroid respiration are high enough to ensure a quick consumption of O2, 

as soon as the gas diffuses into the central zone to avoid its accumulation 

[145]. This behavior is achieved by the presence of terminal oxidases with 
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different Km for oxygen that prevents nitrogenase inhibition and allows 

rapids changes in oxygen concentration and modulates the consumption 

[146, 147, 148]. In soybean nodules, terminal oxidase presents a high 

affinity for oxygen, showing higher activities at 0,1 µmol and little activity 

between 1-3 µmol O2 dissolved respectively [146, 148]. However, fast rates 

of nitrogenase activity would increase the demand for O2 concentration in 

the infected cells. To increase O2 diffusion to bacteroids, the infected cells 

contain leghemoglobin that acts as an O2 carrier. This is an iron protein with 

high affinity for O2, which regulates O2 diffusion from the cytosol to the 

bacteroid in adequate concentrations to fuel its respiration, preventing 

inhibition of nitrogenase [149, 150]. Thus, the ability of the nodule to 

respond to sudden increases of O2 in infected cells is very important 

because of their repercussions on biological nitrogen fixation. AOX has 

been found in nodules infected by several species of rhizobia such as 

Bradyrhizobium  japonicum and Rhizobium leguminosarum [151, 152], 

although with lower abundance and capacity than any other tissue of the 

same plant as was described in soybean root nodules [123]. Thus, it is 

unlikely that AOX activity may play a significant role in nodule respiration 

as it does in plant cells [153, 154]. However, the observed upregulation of 
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AOX mRNA levels in senescent bean nodules was proposed to contribute 

to the redox balance in mitochondria [151]. Until this date, there are no 

results of in vivo activities of COX and AOX in legumes nodules. Accurate 

estimates of the activities of COX and AOX in plant nodules would require 

in vivo measurements in bacteroid and mitochondria by using on-line 

liquid-phase systems [152, 154, 155]. They are worthy for the corroboration 

of the high energy efficiency of nodule respiration, which can be assumed 

to be tightly coordinated with the nitrogenase activity, considering its 

dependence on O2 consumption for ATP synthesis [156, 157]. In fact, 

abiotic stressors result in the inhibition of carbon metabolism in host 

legumes as well as in the increase of nodule resistance to O2 diffusion in 

order to constrain respiration and nitrogenase activity and save carbon that 

will eventually become scarce [158]. It is worth mentioning the existence of 

different metabolic responses to Pi deficiency observed among legumes 

when biological nitrogen fixation is suppressed under Pi deficiency [133]. 

One of these responses is the enhancement of Pi uptake and recycling in 

nodules [139, 159, 160] that may lead to the use of alternative respiratory 

substrates of carbon compounds such as amino acids, as observed in the 

metabolic profiles performed during symbiotic nitrogen fixation in 
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phosphorus-stressed common bean [161]. Although methodological 

improvements are still needed for the study of nodule respiration, it seems 

that measurements of both apparent nitrogenase activity and total 

nitrogenase activity, in combination with O2 isotope fractionation and 

metabolite profiling in plant organs, is a good starting point to understand 

how biological nitrogen fixation and plant respiratory metabolism are 

connected in legumes.  

Concluding remarks 

The study of the metabolic regulation of AOX activity in plant species that 

establish symbioses with soil microorganisms under nutrient deficiency is 

important for further understanding of plant growth responses to abiotic 

stress and global climate change. Previous and preliminary studies 

analyzing the in vivo response of AOX in roots and leaves of plants in 

symbioses with AMF and rhizobia under conditions of P and N limitation 

suggest that the absence of the symbiont imposes nutritional restrictions for 

ATP synthesis. Hence, plant symbioses with soil microorganisms confer 

energetic benefits due to improved plant nutrition. Moreover, the supply of 

N and P from the microbial symbiont to the plant depends on the ATP 
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availability in the microbial symbiont, which is regulated by its demand for 

carbon compounds. This regulation could involve high energy efficient 

rates of respiration for the benefit of ATP synthesis in hyphae and legume 

roots nodules under sudden changes in the demand for carbon compounds. 

Thus, regulation of respiration in plants by N and P, and its interaction with 

AMF and nitrogen-fixing bacteria, merits further attention in order to 

expand the view of the molecular mechanisms related to microsymbiont 

respiration. The identification of new regulatory factors (e.g., of AOX 

activity) can be taken into account in breeding programs for improvement 

of crop production. 
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FIGURES  

Figure 1. Schematic representation of the TCA cycle and its connection 

with Pi consumption in leaves of plant species adapted to P deficiency. Low 

Pi availability limits both photosynthesis and respiration. In chloroplasts, the 

export rate of the Calvin-Benson cycle products, which are needed for the 

synthesis of sucrose, decreases under P limitation. This leads to increasing 

amounts of triose-phosphate and starch in chloroplasts. In cytosol, an 

accumulation of non-P-containing saccharides allows the cell to save Pi, but 

it aggravates the short supply of respiratory substrates into mitochondria. In 

contrast, protein degradation provides carbon skeletons to mitochondria via 

hydroxyglutarate synthesis that can be used for the synthesis and exudation 

of rhizosphere carboxylates citrate and malate, and feeds electrons to the 

mETC through to the ubiquinol pool via an electron-transfer 

flavoprotein:ubiquinone oxidoreductase (ETFQO) [56]. Similarly, the 

γ‐aminobutyrate (GABA) shunt allows the entry of carbon skeletons in the 

form of acetyl-CoA, pyruvate, succinate, oxalacetate and α-ketoglutarate 

into the TCA cycle from amino acids alanine, glutamate and asparagine 

[58]. The re-oxidation of NADH generated in the TCA cycle may be 
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favored by AOX activity when COX is restricted by low Pi availability. 

TCA, tricarboxylic acid cycle. 

 

Figure 2. Simplified overview of the interaction between respiratory 

metabolism of plant organs and mycorrhiza, conditioned by the demand for 

ATP synthesis and P uptake. Photosynthetic soluble sugars are used in 

respiration in leaves or transported to the root in order to fuel respiration and 

produce carbon skeletons for the fungal symbiont. Soluble sugars and 

organic acids can be exported to the fungal symbiont to fuel respiration in 

both intra and extraradical mycelium. ATP is required for P uptake and 

transport across organisms. TCA, tricarboxylic acid cycle. Modified from 

Hughes et al. [60]. 

 

Figure 3. A simplified schematic overview of the compartmentation of 

some of the interactions between primary metabolism pathways during 

ammonium and nitrate assimilation. Nitrate is mainly transported from roots 

to leaves via xylem where is converted into nitrite with the consumption of 

reducing equivalents in cytosol. In the chloroplast, the reducing power of 



219 
 

light-activated electrons drives the conversion of nitrite to ammonium from 

cytosolic nitrate reductase (NR)-derived nitrite by a nitrite reductase (NiR) 

activity, and its assimilation by the GS/GOGAT cycle. 2-oxoglutarate which 

is required for ammonium assimilation, is exported to the chloroplast by a 2-

oxoglutarate /malate translocator. Ammonium uptake bypasses the nitrate 

reductase reaction in cytosol thus increasing the reducing equivalents 

available that can be dissipated during respiration. During photorespiration, 

the retrieval of CO2 and NH4
+ during the glycine cleavage reaction in 

mitochondria leads to an increased NADH/NAD+ ratio in the mitochondrial 

matrix that has been suggested to be related to changes in AOX activity.  

TCA, tricarboxylic acid cycle. 

 

Figure 4. Simplified overview of the nitrogen-fixing pathways in nodulated 

legumes, conditioned by the demand for ATP synthesis for nitrogenase 

activity in determinate and indeterminate nodules. Soluble sugars are 

catabolized via glycolysis to respiratory substrates for the synthesis of TCA 

metabolites, which are transported across the peribacteroid and bacteroid 

membranes to fuel the TCA cycle and respiration in the bacteroid. The 



220 
 

ammonia produced during nitrogenase activity is exported to the plant and 

assimilated by GS and GOGAT enzymes. In determinate nodules, glutamine 

is converted to ureides (allantoin), that are decarboxylated in metabolic 

pathways of photorespiration, contributing to the accumulation of NADH in 

mitochondria. In indeterminate nodules, glutamine and glutamate are further 

converted to asparagine and aspartate to be incorporated into the nitrogen 

metabolism of leaves. ASN, asparagine; ASP, aspartic acid; TCA, 

tricarboxylic acid cycle. Modified from Liu et al. [131]. 
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GENERAL DISCUSSION 

 

The data contained in this thesis support the idea that plants possess 

several biochemical and physical ways for the management and regulation 

of energy input (Articles 1 and 2). As proposed in hypothesis 1, the high 

solar incidence and dry atmosphere of the terrestrial environment impose a 

great flow of electrons to the alternative oxidase in terrestrial plants 

promoting a higher energy balance (Article 1). In line to the above, leaf is 

the organ in charge of receiving solar energy and converting it into chemical 

energy through photosynthesis while at the same time avoiding excessive 

water loss and heating. The results obtained suggest that leaf type is 

essential in plant energy regulation. Thanks to changes in shape and size, 

plants can physically and biochemically regulate the energy received by the 

sun (Article 2, Figure 11). As occur in leaves during land conditions, 

nutrient deficiency causes energy misbalances in plant metabolism. Our 

results based on Article 3 demonstrate that mitochondrial respiration allows 

to plant great metabolic flexibility during conditions of N and Pi deprivation 

by regulating the substrate respired. In this sense, hypothesis 3 is accepted, 

due to the role of respiration and alternative oxidase in this metabolic 
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flexibility. Also, during symbiosis with soil microorganisms such as 

mycorrhiza and rhizobia, the role of respiration includes regulation of sugar 

metabolism by changes in the photosynthetic rates and hence, nitrogen 

metabolism. Based on this observation, hypothesis 4 is accepted due to the 

different changes occurring in the activities of two oxidases during 

symbiosis with soil microorganisms, which maintain the energetic balance 

in plants. 

Environmental mechanisms for both dissipation and management of 

energy excess in plants: how leaf form and habitat can determine 

photosynthetic limitations and respiratory adjustments  

Several reports highlighted the role of mitochondrial oxidases in 

energy regulation status on plants subjected to stress (Vanlerbergue et al. 

2013; Florez-Sarasa et al. 2014; Del Saz et al. 2017; Florez-Sarasa et al. 

2019). In addition, leaf type also regulates energy incoming by changes in 

leaf area for more light capture and gas exchange or reducing it to avoid 

energy excess and water loss during drought (Sack et al. 2002; Givinish et 

al. 1979; Vogel et al. 2009). In this sense, terrestrial lifestyle promotes 

simple leaves form to increase light capture, and hence photosynthesis and 

growth (Li et al. 2019; Van Veen & Sasidharan, 2019). In article 1, 
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terrestrial species seems to show higher activity of both glycolysis and TCA 

reactions. These changes are related to high conversion fluxes for these 

metabolites and thence "faster" metabolism (Fell, 2005). Also, the higher τ 

value in terrestrial species indicates a higher partitioning of electrons to 

alternative respiration (Figure 12). Regard palustrine species, the return to 

the aquatic ecosystem from land may have decreased the AOX contribution 

to total respiration, a consequence of diminished exposure to high-reducing 

environments (Figure 12). For example, during leaf shape alternation or 

heterophylly, submerged leaves exposed to terrestrial conditions, such as 

high light and dry atmosphere produce aerial leaves (Iida et al. 2016). The 

morphological changes are mediated by ABA signaling. These 

phytohormone promote stomatal density, thick cuticle, and oblong shape 

such a simple leaf form (Kim et al. 2018; Li et al. 2019; Van Veen & 

Sasidharan, 2019). The ABA effects also regulate genes related to 

zeaxanthin reactions, used in the NPQ for dissipating the excess of energy 

during stressful conditions (He et al. 2008). In this sense, the terrestrial 

environment promotes the apparition of a simple leaf form orchestrated by 

ABA signaling, which may help to increase photosynthesis while avoiding 

water loss (Brodibb et al. 2010; Komatsu et al. 2020). In addition, the 
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partitioning of electrons to alternative respiration probably allows plant 

mitochondria to move the energy threshold to a higher level, promoting a 

greater flow of metabolites and hence, increasing metabolism and growth 

rates. 

The existence of another type of leaf: the compound one, presents 

another mechanism for regulating the management of the energy incoming 

by plants related to carbon assimilation capacity (Article 2, Figure 12). 

Contrary to aquatic conditions, the terrestrial atmosphere does not present 

stable temperatures (Maberly et al. 2014). During water-limited conditions, 

increases in leaf temperature caused by lower stomata aperture and 

incoming light reduced the photosynthetic integrity (Asada, 2006). The 

presence of leaflets, short in size and thin, allowed in compound leaves 

higher AN, gs, and gm values than simple leaves in well water conditions. 

This data gives a physiological explanation of the hypothesis that 

establishes that compound leaves present higher AN due to their tiny leaflets 

(Givinish, 1979). However, the negative effects of drought are observed in 

both types of leaves, but with a few differences. For example, simple leaves 

species presented a low AN reduction during drought compared to 

compound leaves. One explanation is due to the high LMA in simple leaves 
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(Figure 12). Increases in LMA are a natural response of plants in low water 

conditions by increasing the thickness of mesophyll cells and cells walls, 

the cellular integrity is achieved (Flexas et al. 2014). The compound leaves, 

by having low LMA, probably are prone to cellular lysis during an extended 

drought period and therefore present a higher loss in photosynthetic 

capacity (Article 2). Another difference between both types of leaves was 

the convective heat exchange. During drought conditions, compound leaves 

presented 4ºC lower than simple leaves. This data reflects the physical 

mechanism that allows plants to manage the energy input during stress such 

as drought. In this sense, the strategy used in simple leaves is to develop 

higher LMA and sclerophylly with lower net carbon assimilation, ensuring 

the photosynthetic integrity during growth season. In contrast, compound 

leaves promote a better physiological convection temperature, which 

guarantees a higher AN until the fragile leaflets are damaged. 
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Figure 12. Graphic representation of chapter 1 and 2. As land conditions represent a high energy 

input in leaves, changes in the partitioning of electrons to alternative oxidase and a leaf shape that 

promotes convective cooling represent the mechanism for land colonization. Details in the 

discussion. 

 

Respiratory mechanism for the dissipation of energy excess in roots: 

role of AOX activity during nutrient starvation and symbiosis with soil 

microorganisms 

Chapters 1 and 2 show the role of respiration and leaf shape on energy 

balance, promoting higher carbon assimilation and tolerance to drought 
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conditions. Roots are organs that continuously require ATP from respiration 

to maintain the vital functions of plants, such as the absorption of nutrients 

and water. Several works stated root respiration as a sensor of energy status 

on plants during nutrient deficiency (Sieger et al. 2005; Florez-Sarasa et al. 

2014; Gandin et al. 2014; Del Saz et al. 2017). Chapter 3 shows the role of 

root respiration in rearranging and balancing the source-sink relationship 

during N and Pi deficiency. In these conditions, low requirements for 

growth during nutrient limitation decrease ATP needs and COX activity. 

The low ATP demand for biosynthetic processes causes an accumulation of 

photoassimilates (Körner, 2015). The root respiration maintains an energy 

balance by an oxidizing surplus of NADH and increases the carbon respired 

via AOX during Pi and N deprivation (Figure 13). Thus, AOX maintains 

carbon homeostasis during nutrient limitation by metabolite signaling from 

TCA cycle, and carbon assimilation in the leaves, is regulated according to 

the requirements of metabolism. In this sense, roots respiration acts as a 

sensing mechanism that continually communicates the nutrient status and 

balances it to carbon assimilation in leaves.  

In the presence of rhizobia and mycorrhiza symbionts, complex 

respiration adjustments maintain plant energy balance (Article 3, Figure 13). 
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As the rhizosphere possesses several microorganisms, roots can establish 

positive associations with them since ancient times (Selosse et al. 1998, 

2004). Mycorrhizal and rhizobia act as a new sink for photoassimilates. By 

exerting a positive effect in photosynthesis to maintain their carbon needs, 

both symbioses promote plant growth by the fertilizer effect (Kaschuck et 

al. 2009, 2010). Based on the differential contribution of COX and AOX, 

and the positive growth effect during mycorrhizal symbiosis, I decided to 

evaluate if rhizobium symbioses could exert a similar response on the 

respiratory metabolism. I found that COX and AOX activities in leaves of 

the legume L. japonicus are more related to nutrient status and have no 

effect on the carbon symbiont requirements. In contrast, roots present a 

significant increase in COX contribution to total respiration whit reductions 

of AOX respiration. Thus, symbiosis promoted biomass accumulation by 

decreasing carboxylate exudation and nutrient uptake in the case of 

mycorrhiza. In the case of legume-rhizobia symbiosis, the biomass 

accumulation is probably by increasing the efficiency in the ATP produced 

by O2 consumed and hence a COX improvement. 

 



233 
 

  

 

Figure 13. The root respiration during symbiosis and nutrient deficiency. The changes in energy 

status during N and Pi deficiency lowering the carbon assimilation and glycolysis. The low ATP 

demand increases AOX contribution in order to increase the sink strength for carbon and avoid 

ROS generation during nutrient stress. In contrast, during symbiosis, the effect of carbon 

assimilation increases the glycolysis pathway and COX efficiency for ATP production. In this 

way, despite de cost of symbiosis growth is maintained. In chapter 3, more detail of metabolic 

changes during nutrient deficiency and symbiosis can be found. 
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In summary, in this thesis, I found that plants cope and manage imbalances 

of energy input under both, biotic and abiotic stresses, being able of 

reprogramming its primary metabolism either in leaves or roots (Chapter I-

III). In addition, I found that the contribution of AOX in leaves may 

promote higher photosynthetic capacity by increases of metabolite fluxes 

during land colonization (Chapter I). Regarding differences in the energy 

management and photosynthetic capacity based on biochemical limitations, 

I found that compound leaves present higher carbon assimilation and 

dissipation of heat during drought (Chapter II), demonstrating that the foliar 

form in terrestrial conditions appeared as an adaptation to regulate the 

amount of energy received (Chapter I and II). Regarding root respiration, 

the energy requirements for nutrient uptake process is only provided by 

oxidized sucrose coming from leaves. In this sense, role of roots in the 

maintenance of the stoichiometry required for correct biomass investment 

allows it to balance the energy from photosynthesis with the nutrient 

availability. Based on this, I found that AOX's contribution to root 

respiration depends on the limiting nutrient (Chapter III). In addition, 

symbioses impose carbon costs in plant photosynthesis which must be 

balanced by respiratory adjustments to improve plant yield. Thus, I stated 
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that AOX contribution during symbiosis decreases, and in parallel with 

increases in COX activity, promotes biomass accumulation in plants 

(Chapter III). Thus, photosynthetic and respiratory characterizations are 

important to understand the changes that occur during limitations in plant 

growth and yield, taking account the predicted climate change scenario. 
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Figure 14. Summary of the conclusions obtained in the three chapters of the thesis. 
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CONCLUSIONS 

 

 

1) In vascular plants, AOX could have contributed to cope with high 

reducing environments during aquatic-to-land transition, and 

progressively could have increased photosynthesis rates allowing a 

large management of energy in leaves. 

 

2) Leaf type and shape regulates the energy used by photochemical 

process, allowing more photosynthesis by decreases in biochemical 

limitation and heat exchange drought conditions. However, trade-off 

between foliar mass and drought tolerance dominates photosynthetic 

rates and response to stress. 

 

3) Symbiosis under nutrient deficiency alters primary metabolism and in 

vivo activities of both mitochondrial oxidases in plants. The presence 

of mycorrhiza and rhizobium promotes growth, producing a 

fertilizing effect, which contribute to maintain carbon balance in 

plants. 

 



238 
 

4) Legume-rhizobia symbiosis increases the contribution of the 

cytochrome oxidase over alternative oxidase for the benefit of ATP 

synthesis. However, nitrogen status in plants is more important for 

respiration than the presence of the symbiont.  
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FUTURE PERSPECTIVES 

In this thesis, we used an integrative approach for searching responses of 

respiration and photosynthesis during abiotic and biotic stress. I integrated 

the role of mitochondrial oxidases in an evolutionary context using 

palustrine amphibious plants as a proxy for land transition to evaluate if 

AOX may exert a different function in respiration and carbon metabolism 

(Neimanis et al. 2013). These results show the energy management 

occurring in plants, its regulation by the mitochondrial metabolism, and its 

coordination with chloroplast. 

In addition, our results showed that the physical properties of the leaf 

regulate the energy budget that the plant received from the sun. In this 

sense, compound, and simple leaves present different carbon assimilation 

rates, and this is due to leaf size and shape differences, which in turn affect 

the photosynthetic limitations. In this line, investigations into how the size 

of leaves affects the biochemical reactions related to energy management 

that occur in leaves are needed. In addition, Research in this field is 

required in different biomes and crops species (e.g legumes) for agriculture 

improvement programs.  
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Regard root physiology, nitrogen and phosphorous are significant for plant 

respiration and photosynthesis. The symbioses with mycorrhiza and 

rhizobium present an opportunity for solving fertilizer cost and availability 

by improving nutrient status in plants. Several works show the importance 

of the two oxidases in photosynthesis and mitochondria (Del-Saz et al. 

2017; Selinski et al. 2018; Vanlerbergue et al. 2020). However, this is the 

first attempt to integrate plant response during symbiosis with metabolites 

that improved ATP synthesis and growth. In this sense, metabolite profiling 

arises as a tool for understanding changes in the primary metabolism of 

roots and leaves, which occurs during abiotic stress such as drought and 

nutrient deprivation. Works in this line are urgent based on extreme drought 

events and fertilizer exhaustion predictions, both dangers for sustain and 

feeding the human population. 
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