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Abstract

Spatial and temporal attributes are typical examples of data that can be represented

at different levels of granularity or resolution. The massive amount of this type of data

makes it impractical to store and process data without making use of efficient algo-

rithms and structures. In search of a way to handle multigranular data, several data

models have been proposed; however, there is no efficient implementation in terms

of space usage and query time for any of the various existing models for handling

multigranular data. In this thesis, we study algorithms and data structures to process

different queries on multigranular models, specifically, the work done uses succinct

data structures and achieves a good trade-off between space usage and query time.

In particular, we start by proposing a succinct data structure and algorithm for the

implementation of a multigranular model that is general enough to be used in different

domains. This model is based on the relations of subsumption and disjoint between its

elements (i.e. granules), and their respective negations, and it proposes the strategy of

deriving new relations, in order to reduce the space to be used. The proposed structure

used (|E| − |V |) log2 |V | + O(|E|) space to store a graph with V vertices and E edges

to store a graph that represent the subsumption relation, plus |Er| log |V |+ |Er|+ |V |+
o(|Er| + |V |) for for each of the other relationships, and improves the derivation of

new relations, compared to other implementations. A second succinct data structure

is proposed, with a focus on the spatial domain by providing algorithms for processing

topological queries like inclusion, disjointness, and adjacency between regions on a

multi resolution context. In the case of a set of n regions without a hierarchy, we can

manipulate it efficiently using 4n + o(n) bit, for the case when we have a hierarchy of

height h, our structure proposed requires as little as O(n log h) bits, while maintaining

a similar query time compared to a non-compact implementation.
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Chapter 1

Introduction

Many different real applications require storing and handling data at different levels of

detail due to the nature of the data, diverse data origins, and resource-constraint spec-

ifications. An example of this is working with spatial and temporal data, as they can

generally be associated with different temporal scales or different levels of spatial res-

olution. The multigranular nature of the data presents several problems when handling

data at various levels of detail. Some of these problems are how to store information

efficiently in space, how to answer queries between objects that are at different levels

of detail or how to deal with discrepancies between different levels of detail, where

the latter problem is quite common when integrating data from different sources. The

following example is used to illustrate the problems mentioned above.

Example 1 Consider a database that stores information about total number of people

infected by Covid-19 in Chile at regional level in a specific month, as show in Table 1.1.

In addition, Table 1.2 stores the same information but associated at the provincial level

in a specific week and differentiated by gender.

For further understanding, recall that the administrative subdivision of Chile defines

regions that are composed of provinces. Thus, the space of Chile is organized in gran-

ularities (i.e., Region and Province), each of them composed of granules (particular

regions and provinces) that make a partition of the space.

Region Date Total
Valparaı́so September 5098
Santiago September 12010
Biobı́o September 7478

Table 1.1: Total cases by region

Province Week Sex Total
Quillota 18 Male 53
Arauco 18 Female 33
Concepción 18 Female 207
Biobı́o 18 Female 196

Table 1.2: Total cases by province

1
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A common query would be to obtain the number of women infected at the regional

level. In the example presented above, the region of Biobı́o in week 18 had a total of

436 women infected. To get this answer, it is required to know how the data at the

province level are related with the data at the regional level, which implies storing how

each tuple between the two levels are related. This means that storing this information

has a quadratic cost in terms of space required in cases where several granularities

are present (for only two granularities, foreign keys could be used), which is unfeasible

if we have a large amount of data.

Another problem with this query is that we need a way to transform the data be-

tween the different levels of detail or granularity. For this example, with only two levels

of detail it is trivial, but in the case that we also have the information at the level of

county and city, it becomes necessary to have an algorithm that solves this in an effi-

cient way in terms of query time. Finally, the information, in addition of being at different

spatial scales, is associated with different temporal levels of detail. This presents an-

other problem, because a month is not formed by an exact number of weeks, so when

transforming information between both levels, we may lose accuracy.

The work in this thesis focuses on designing and implementing algorithms and data

structures to process different queries on multigranular models. First, we develop al-

gorithms to answer disjoint and subsumption queries based on the model presented

in [73]. This proposed new strategy presents a way of dealing with data of a multigran-

ular nature in an efficient manner in terms of query time while maintains low space

usage, this is due to an approach of storing partial information, with which it is possible

to derive the rest of the information not explicitly stored. As a second line of research,

algorithms and data structures were developed based on a generalization of the topo-

logical model to a multigranular instance, based on the work presented in [55] with

a focus on answering topological queries. The algorithms developed are focused on

answering topology-related queries between objects, such as list the neighbors of an

object or check for containment between two objects, being that the objects consulted

are not necessarily in the same level of detail, keeping the space used low.

This document is organized as follows: Chapter 2 provides the background needed

to understand the developed work. Chapter 3 presents related work about handling
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multigranular data. In Chapter 4 we present the data structure and algorithms devel-

oped for the multigranular model presented in [73], while in Chapter 5 we propose sev-

eral space-efficient data structures to support a topological representation of regions

that are organized in a multi-granular or hierarchical structure. In Chapter 6, we dis-

cuss open problems and future work. Finally, in Chapter 7 we present our conclusions

about this thesis.

1.1 Hypothesis

The thesis work is based on the following hypothesis: It is possible to design practical

implementations of multigranular data models that require small space. We say an

implementation is practical if it can be implemented in commodity architectures, can

scale on processing time over the data volume and it uses memory space accord-

ingly with the theoretical results. We complement this hypothesis with the following

research questions: i) Are graph-based structures useful for representing hierarchies

of granularities? ii) What is the trade-off between representing explicitly versus deriving

relationships between granules at different granularities?

1.2 Main Goal

The main goal of this thesis is to design and implement algorithms and data struc-

tures that allow the handling of multigranular data in different models; in particular,

algorithms for the multigranular model proposed in [73] and algorithms for a restricted

multigranular model inspired by the characteristics of the spatial domain.

1.3 Specific Goals

1. To design construction and query algorithms that make use of succinct data struc-

tures to answer topological queries in a multigranular instance.

2. To design construction and query algorithms that make use of inference rules to

answer subsumption and not disjoint queries in the multigranular model proposed

in [73].
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3. To evaluate the performance of the developed algorithms against other imple-

mentations capable of answering the same queries, using real world data.

1.4 Methodology

• Review of the state of the art in models focused on handling multigranular data;

particularly, focusing on general models for handling multigranular data and mod-

els focused on geographic partitions.

• The development of algorithms that allowed the use of the inference rules pro-

posed in [75] in a multigranular model, in order to reduce the space used, was

undertaken. Using succinct data structures, a new way to represent the stored

data was devised. Additionally, algorithms were developed to derive non-stored

information using inference rules.

• The development of a succinct data structure focused on answering topological

queries about partitions of a spatial region was undertaken, extending the idea

of a compact representation of a planar network to a multigranular context. Al-

gorithms were developed to answer topological queries using the proposed data

structure. Various alternatives for the development of the structure were explored.

The objective of these implementations was to reduce space usage while main-

taining competitive query times with respect to other implementations of similar

functionality.

• All proposed data structures and algorithms in this thesis were implemented in

C++. The SDSL library (available for C++) was used in the implementation be-

cause it contains several succinct data structures needed by the designed algo-

rithms.

• An experimental evaluation was conducted to compare the structures and algo-

rithms developed with other implementations of equal functionality. In the evalua-

tion of the algorithms, the time needed for answering the respective queries and

the space usage were assessed. All measurements were made on a machine
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running Linux 3.13.0-86-generic, in 64-bit mode, and the running time was mea-

sured using the clockgettimefunction.Bothrealandsyntheticdatasetswereusedtoevaluatetheeffectofscalabilityandothermetricsassociatedwitheachimplementation..

• Reproducibility of the results obtained in this work is an integral part of this thesis

As such, all implementations, corpora and results are available in the following

public web repositories: https://github.com/Desidia/gbp (work developed in chap-

ter 4) and https://github.com/Desidia/pemb (work developed in chapter 5) .

1.5 Contributions

• We designed and implemented a data structure for the multigranular model pre-

sented in [73]. The proposed structure occupies (|E|−|V |) log2 |V |+O(|E|) space

to store a graph with V vertices and E edges to store a graph that represent the

subsumption relation, plus |Er| log |V |+ |Er|+ |V |+ o(|Er|+ |V |) for each of the

other relationships space. Based on the proposed structure, several algorithms

were developed for the inference of relations between the granular components

of the structure. In our experiments, these algorithms demonstrated a significant

improvement in terms of their query time with respect to other implementations

based on adjacency list and algorithm for graph traversal. The structure and al-

gorithms developed are described in detail in Chapter 4. The developed work

was submitted to the Software, Practice and experience journal, and is currently

under review.

• We designed and implemented several space-efficient data structures to support

access to the topological representation of two-dimensional regions that are orga-

nized in a multi-granular or hierarchical structure. The proposed structures build

upon compact planar graph embeddings and serves to answer queries about in-

clusion, disjointness, and adjacency between regions. For a set of n regions and

a hierarchy of height h, our representation requires as little as O(n log h) bits,

which becomes O(n) if the number of regions increases by a multiplicative con-

stant from each level to the next. Our experimental results show that our propose

structure use around as 8 bits per region. Further, with about 16 bits per re-

gion, our data structures answer all queries within 10 nanoseconds per retrieved
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elements, and in some cases less than half a nanosecond. The structure and

algorithms developed are described in detail in Chapter 5. We published our

preliminary results in the Data Compression Conference (DCC) [53]. The full ver-

sion of this work was later extended and published in the journal Information and

Computation [54].

• We provide a repository with all our implementations and datasets. The reposi-

tories are available on https://github.com/Desidia/gbp (work developed in Chap-

ter 4) and https://github.com/Desidia/pemb (work developed in chapter 5).



Chapter 2

Background

In this section, we present concepts required to understand the work presented in this

thesis. We begin by describing existing spatial data models and topological queries.

We continue by discussing the multigranular model presented in [73] on which the

work presented in Section 5 is based and, finally, we present compact data structures

relevant to this work, paying special attention to strategies for compact representations

of planar-graph embeddings.

2.1 Spatial data models

Part of the work developed in this thesis focuses on solving topological queries between

spatial objects at different granularities. For a better understanding of the work done,

the models for representing spatial data [67, 136] are described below.

There are two conceptually different spatial models [116, 64]: the object model

and the surface or field model. While object model focus on representing objects that

are located on a space, a field or surface model focuses on representing the space

to which attributes are associated. Then, these models are materialized in different

logical models, being the most relevant the vector and raster models.

2.1.1 Vector model

Vector model uses the approach of representing the world as a collection of discrete

objects. Spatial objects have non-spatial and spatial attributes. From a database per-

spective, spatial objects are typically stored in extended relational databases that pro-

vide spatial attributes as a data type with its operators.

Within the vector approach, there are several different ways of storing geometrical

7
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information ranging from the simpler, so called Spaghetti model, to more complex Topo-

logical model. Both models are common in Geographic Information Systems (GISs)

and the difference between them is how the data is structured and organized. The

following is a description of both models.

Spaghetti model. In the spaghetti model [23, 68], each point (0-dimension), line (1-

dimension), or polygon (2-dimension) feature is represented as a string of (X,Y) co-

ordinate pairs with no inherent structure. The name of the model is due to the fact

that one can imagine each line as a strand of spaghetti, in this way, more complex

figures (made up of several lines) would be formed by the addition of several strands

of spaghetti. A major disadvantage of this model is that each polygon must be made

up of its own strands of spaghetti. In other words, each polygon must be defined by

its own set of (X,Y) coordinate pairs, that is, even if there are polygons that share the

same edge, each one will store in its set of coordinates the representation of the shared

edge, which implies storing redundant information and, in consequence, impacting the

efficiency of the model.

Despite the location assigned to spatial features (lines), or strand of spaghetti, spa-

tial relationships are not explicitly encoded within the spaghetti model; rather, they are

implied by their location. This results in a lack of topological information, which results

in complications if the user want to perform measurements or analysis. Nevertheless,

the simple structure of the spaghetti data model allows for efficient reproduction of

maps and graphics when the topological information is unnecessary, as is the case of

applications that focus primarily on making a graphic representation of spatial objects.

Topological model. The topological data model [67, 34, 40] is characterized by the

incorporation of topological information directly into the dataset, as the name implies.

In essence, it utilizes a set of rules to precisely describe the relationships between

adjacent points, lines, and polygons and determines how they share geometries. For

example, consider two adjacent polygons. In the spaghetti model, the boundary shared

by two polygons must be described individually for each polygon, in a general view, the

shared boundary would be described as two identical, but separate lines. By including
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topological information, the shared boundary would be represented by a single line,

storing a reference to distinguish which side of the line belongs to which polygon.

Three fundamental topological principles that are necessary to understand the topo-

logical data model are described as follows. First, connectivity describes the arc-node

topology for the feature dataset. Nodes are more than simple points, in the topological

data model, they represent intersection points where two or more arcs converge. Area

definition involves the concept of polygon-arc topology, where an arc delineating an

area serves as the basis for polygon formation. Specifically, in polygon-arc topology,

polygons are constructed using arcs, and each arc is stored only once, avoiding redun-

dant. Contiguity, the third topological principle, is based on the concept that polygons

sharing a boundary are considered to be adjacent. In the context of polygon topology,

it is essential for all arcs within a polygon to possess a specific direction, characterized

by a from-node and a to-node. This directional attribute facilitates the determination

of adjacency information. When polygons share an arc, they are deemed adjacent or

contiguous, enabling the definition of the ”left” and ”right” sides of each arc. The explicit

storage of this left and right polygon information is an integral part of the attribute data

within the topological data model.

2.1.2 Raster model

The raster data model [87, 93, 125] consists of rows and columns of equally sized pixels

interconnected to form a planar surface, being these pixels the basic unit of the raster

model, which are used for the creation of points, lines, areas, networks, and surfaces.

While pixels in GIS data can take various shapes, such as triangles, hexagons, or

octagons, square pixels are often preferred for their simplicity. As a result, the majority

of raster GIS data utilizes square pixels. When transforming the data model from one

projection to another, these square pixels are commonly reshaped into rectangles with

different dimensions. The raster data model, recognized as a grid-based system due to

its reliance on a consistent series of square pixels, allocates, commonly, a single data

value to each grid locale. Within this framework, individual cells contain unique values

that characterize spatial phenomena at a location indicated by its row and column.

The raster model will average all values within a given pixel to yield a single value.
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Therefore, the larger the area covered by each pixel, their associated data values will

be less accurate. The area covered by each pixel determines the spatial resolution of

the raster model from which it is derived.

Several methods exist for encoding raster data from scratch. Some of these meth-

ods include the following:

• Cell-by-cell raster encoding. This encoding method is minimally intensive, cap-

turing raster data by generating records for each cell value organized by both row

and column.

• Run-length raster encoding. This method encodes cell values in runs (sequences

in which the same data value appears in many consecutive data elements) of

pixels with similar values, this may produce highly compressed image files.

• Quad-tree raster encoding. This approach entails dividing a raster into a hierar-

chical structure of quadrants, each further subdivided based on pixels with similar

values. The process of subdividing the raster halts when a quadrant consists en-

tirely of cells with identical values. Such a non-divisible quadrant is referred as

leaf node.

The use of a raster data model confers many advantages. First, the technology

necessary for generating raster graphics is both cheap and widely available. The raster

data model possesses a straightforward underlying data structure, where each grid

location in the raster image corresponds to a singular value. This inherent simplicity

facilitates the interpretation and maintenance of graphics, especially when compared

to its vector counterpart.

Despite its advantages, the raster data model comes with several drawbacks. The

first disadvantage is the tendency for raster files to be relatively large in size. Particu-

larly in the case of raster images built from the cell-by-cell encoding methodology. A

second drawback of the raster model is that the resultant images are often less aes-

thetically pleasing than their vector counterparts, especially when the raster images

undergo enlargement or zooming. Additionally, the geometric transformations inherent

in map re-projection efforts pose challenges for raster graphics, constituting a third dis-

advantage of the raster data model. Altering map projections can lead to changes in



11

the size and shape of the original input layer, often resulting in the loss or addition of

pixels.

When compared to the raster data model, vector data models often serve as supe-

rior representations of reality, being this the default model implemented in many spatial

extensions of database administrators, such as PostGis. This is attributed to the higher

accuracy and precision achieved through points, lines, and polygons, as opposed to

the regularly spaced grid cells in the raster model. Additionally, vector data allows for

greater flexibility in altering the scale of observation and analysis. Another advantage

of the vector model, is that topology is inherent. The incorporation of topological infor-

mation in a vector model yields streamlined spatial analysis, simplifying tasks such as

error detection, network analysis, proximity analysis, and spatial transformation.

2.1.3 Topological queries

In general, we can distinguish between three types of queries when working with space

objects [35].

Thematic query. Thematic queries consist in the selection and management of the-

matic information. This process is comparable to a query of a conventional database,

whose data have no spatial reference. Thematic queries are usually used to filter spa-

tial objects with respect to certain attributes; an example of this would be select the

regions that have an area ≤ 20 km2 or select the rivers of seasonal type.

Geometric query. Geometric queries consist of obtaining measurable characteristics

of space objects. The way to answer geometrical queries will depend on the type of

model used for the representation of the spatial objects (vector model or raster model).

Common geometric queries are to obtain measurements, such as area, length or di-

ameter, distance between objects, and the proximity analysis (buffering).

Topological query. While geometric queries select objects based on their measur-

able spatial characteristics and thematic queries identify elements based on their prop-

erties, topological selection criteria are rooted in the spatial arrangement of objects



12

in relation to one another. Topological arrangements of objects are accessed through

features such as adjacent, part of or within. Topology deals with the spatial and struc-

tural characteristics of geometric objects, irrespective of their size, type, or specific

geometric shape. Notable topological properties include the object’s dimensionality

and the relationships arising from the type of intersections between objects. Some

common and relevant examples of topological queries are retrieving the spatial objects

contained within a certain geometry G, or retrieving the K nearest neighbors of a cer-

tain spatial object Q. Importantly, all topological properties remain invariant under any

continuous deformation of space.

Several methods have been investigated for the classification of possible topological

relationships [32]. An interesting method for the classification of topological relations

was proposed in [38, 39]. This work proposes that each space object is composed of

two components, its interior and its boundary, and analyzes the intersection of these

components between each type of defined space object (point, line and region), known

as the 4-intersection model. Later in [41], this model was extended by proposing a new

component, the exterior. Due to the large number of relationships obtained using the

9-intersection schema, several of these relationships are grouped together in order to

provide a smaller set of topological relationships that are easy to use. Given two regular

objects with extension (i.e., regions), A and B, the following topological relationships

are defined:

• Disjoint: There is no intersection area between object A and object B.

• Meet: Object A and object B only meet at a boundary.

• Overlap: Object A and object B overlap.

• Contains: Object A contains object B.

• Inside: Object B lies inside object A.

• Covers: Object A covers object B.

• Covered by: Object B is covered by object A.

• Equal: Object B and object A match
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Figure 2.1 shows a graphic example of each of the relationships mentioned above

in addition to its 9-intersection matrix, where the first row/column corresponds to the

interior of the spatial object, the second row/column corresponds to the boundary and

the third second row/column corresponds to the exterior.

Figure 2.1: Topological relationships and their 9-intersection matrix . Source: [33]

2.2 Multigranular data model

One of the motivating multigranular data models for this thesis is the model proposed

in [73]. This model is general enough to deal with different domains of application and

provides a general axiomatic-based definition of multigranular data. Relevant concepts

about this model are detailed below.

2.2.1 Basic components of the model

The basic components of the multigranular model are the granularities and the granules

that form them. Informally a granularity is a way of dividing a domain into granules that

compose it, while a granule is a portion of the domain that does not overlap with any
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other granule of the same granularity. An example of granularity is the Region gran-

ularity in Figure 2.2, while granules are the particular regions (Metropolitana, Maule,

etc. for the case of Chile) that compose the granularity .

A partial order relationship can be established between the granularities so that a

granularity G is defined as finer than a granularity G′ if for every granule in G, there is a

granule in G′ that contains it. Similarly, the granules also have a partial order structure

given by the relationship that a granule may be contained in another granule, what it

calls a subsumption relation.

In this multigranular model, a granular space is composed of a set of granules

GranuleSet, the multigranular structure is defined as a pair S = (Grty(S),GrAsgn(S)).

Grty(S) corresponds to a set of granularities where each one represents a different

level of information detail. This set has a transitive and reflexive relationship as well

as an upper limit. GrAsgn(S) extends the idea of a domain assignment of a relational

attribute to the multigranular context, also provides a basic order and assigns a set of

granules to each granularity, therefore, GrAsgn works as a mapping function GrAsgn:

GranuleSet→ 2Grty(S).

Figure 2.2 illustrates a granularity structure associated with electoral and adminis-

trative sub-divisions in Chile. The arcs in this figure represent relationships between

granularities; in this example the granules that make up the province granularity are

formed by granules belonging to the county granularity. In this figure the symbol ⊤
define a global granularity, which works as an upper limit in the set of granularities, that

is, GrAsgn(⊤) = GranuleSet. The foregoing highlights that the main notion for working

with granules in the space domain is that of space division [78], given that working with

spatial granules is mainly a mapping of information instantiated to a specific space.

The multigranular model defines basic rules between granules in order to define the

multigranular structure. This set of basic rules PrBaRules < S > are the following:

• Subsumption rule g1 ⊑S

⊔
S
S: It indicates that the domain that represents the

granule g1 is contained in the domain represented by the union of the set S. Note

that when |S| = 1, that is, it has only one element called g2, it is equivalent to

g1 ⊑S g2.

• Disjoint rule
d

S
{g1, g2} = ⊥S: It indicates that the domain of the granule g1 does
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Figure 2.2: Electoral and administrative sub-divisions in Chile

not intersect with the domain of the granule g2.

The combination of basic rules allows the definition of rules that enable to express

conditions that were not treated in previous works that model granularity. An example

of a more complex rule would be:

Chile =
⊔
⊥ RegionR | I ≤ R ≤ XV I

This rule expresses through the symbol
⊔

that Chile is formed by the join of the

16 regions (represented by the number I to XVI) that currently comprise it, while the

⊥ symbol indicates that the join is disjoint, that is, each region that makes up Chile is

disjoint from the others. Notice that ⊥ can be unnecessary to specify if the join is over

granules of a same granularity, as it is the case of regions that make Chile. But in a

general case, one could join granules of different belonging to different granularities.

2.2.2 Multigranular structure

One of the main components of the multigranular model is the multigranular structure,

since it describes how the different levels of granularities are related while describing
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the relations between granules. In practical terms the multigranular structure is com-

posed of two structures: (i) the granularities structure, which describes the type of

relations between the granularities and the granules that compose them and (ii) the

granular structure, which describes the subsumption and disjoint relation between

the granules.

The work developed in [74] formalizes the above in [73]. It emphasizes that complex

rules are defined on the basis of primitive rule sets. It also defines join rules as (g ⋆ 3

S), where ⋆ ∈ {=, ⊑S} and 3 ∈ {
⊔

S
,
⊔
⊥

S
} being g a granule and S a set of granules.

In [74] the concept of pairs of granularities is introduced. This concept is defined

as a pair < G1,G2 > ∈ Grty(S) × Grty(S), such that G1 ̸= G2, and based on this, a

join rule will be called bigranular (< G1,G2 >) if Head ⟨φ⟩ ⊆ Granules ⟨ S|G1 ⟩ and

Body ⟨φ⟩ ⊆ Granules ⟨ S|G2 ⟩, where φ ∈ join rules. These bigranular join rules pro-

vide additional information to the already introduced “finer than” relationship between

granularities. The work in [74] shows that bigranular join rules imply disjoint in logical

terms, and that every bigranular join rule will be resolvable for the disjointness; that is,

it is possible to establish in any case whether it is true or false the disjointness between

granules. Different types of bigranular join rules are defined in [74] and, for each one

of them, the minimum amount of relations between granules that needs to be stored to

be able to answer the queries of subsumption and disjoint between granules.

An example of a bigranular join rules is the Equality join order: G1 ⊴Φ
S G2, which in-

dicates that every granule g in G2 is composed by the union (disjointed) of granules in

G1. Equality join order is quite common to find in practice, and indicates that knowing

subsumption or not-disjoint is equivalent, so it is sufficient to store only one of them.

The definition of bigranular join rules has a practical importance. In real world applica-

tions, it is common to deal with this type of rules, and the formalization of these allows

the development of a practical implementation.

The structure of granularities provides information on how the granules are related

to each other at different granularity levels, even though there are cases where there

is no common pattern of relationship at the granularity level. For example, the national

parks in Chile are not necessarily contained in a single region such that no bigranular

join rule between the Region granularity and the NationalPark granularity can provide
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information regarding how their granules are related.

To the best of our knowledge, no research has been done on ways to decrease the

information stored in the granular structure, that is why in the case that the granularities

structure does not provide information regarding the relations between the granules

of a bigranular join rule, all the relations between the granules are stored. This is a

problem in real situations because of the large amount of data to be handled.

2.2.3 Inference rules and their implementation

To clarify notation, in what follows, ⊥S represents disjoint, ̸ ⊥S represents not disjoint,

⊑S represents subsumption and ̸⊑S represents not subsumption.

In [75], inference rules are defined, which are proven to be correct and complete,

to derive relations of subsumption ⊑S, not subsumption ⊑S, disjoint ⊥S and not dis-

joint ̸ ⊥S. Correctness indicates that the inference rules cannot derive false relations;

whereas completeness indicates that these are all possible inference rules over the

basic rules. The use of these rules allows a design that does not require storing all the

relations between granules. The definition starts by using inference rules that make

⊑S and ⊥S to be true (positive rules). They are derived from the transitivity of ⊑S

and that if it is true that g′1 and g′2 are disjoint, then the respective granules g1 ⊑S g′1

and g2 ⊑S g′2 are disjoint too. Rules are added to derive unsatisfaction from relations

(negative rules) and by exchanging premise predicates for conclusion. Note that the

multigranular model contemplates the lack of information in the multigranular structure,

so it will not always be possible to derive the information; due to this, the failure to

derive a relation through these inference rules does not imply that the denial of that

relationship is fulfilled (e.g., if nothing can be derived from rule 1, this does not imply

that the not subsumption relation will be given between the granules).

The following are the inference rules defined in [75] to derive the possible relations

between two granules. Later, in Chapter 4, the rules of inference are explored in detail.

g1 ⊑S g2 g2 ⊑S g3
g1 ⊑S g3

(2.1)



18

d
S
{g1, g2} = ⊥S

g1 ̸⊑S g2
(2.2)

g1 ̸⊑S g2 g3 ⊑S g2
g1 ̸⊑S g3

(2.3)

g1 ⊑S g2 g1 ̸⊑S g3
g2 ̸⊑S g3

(2.4)

d
S
{g1, g3} ≠ ⊥S g3 ⊑S g4

d
S
{g2, g4} = ⊥S

g1 ̸⊑S g2
(2.5)

g1 ⊑S g2
d

S
{g2, g3} = ⊥Sd

S
{g1, g3} = ⊥S

(2.6)

g1 ⊑S g2d
S
{g1, g2} ≠ ⊥S

(2.7)

g1 ⊑S g2 g1 ⊑S g3d
S
{g2, g3} ≠ ⊥S

(2.8)

d
S
{g1, g2} ≠ ⊥S g2 ⊑S g3d

S
{g1, g3} ≠ ⊥S

(2.9)

2.3 Multi-granular hierarchies

In contrast to what was presented in the previous section, the following details are

necessary to understand the work developed in Chapter 5, which is based on the

particular case of hierarchies related to spatial data.

The definition of spatial granularity [133] comes from the definition of temporal gran-

ularity by [12]. Formally, the spatial granularity is a function that maps non-overlapping

portions, referred as granules of the spatial domain, into indexes or identifiers. [24]

defined a spatio-temporal granule as a tuple (s, t), meaning that at time index t, the
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spatial index s is valid. [8] assigns to each spatio-temporal granule a sequence of

spatial granules, one per temporal granule.

There exist several relations between granularities. Among them, a granularity P is

said to be a partition of a granularity Q, if for each granule g ∈ Q, there exists a set S

of granules in P whose geometric union makes up Q [12, 133, 24, 91]. This definition

of spatial partition is a natural realization of a granularity, but the notion of granularity is

more general because the set of granules that form the granularity may not cover the

whole spatial domain.

Partitions have been an important notion to model the spatial domain [42, 96, 37].

Concepts of maps, resolution, spatial objects and topological reasoning build on parti-

tions and their properties. [135] proposed a formalization based on the theory of rough

sets [114] to deal with resolution and multi-resolutions in geographic spaces and vague

spatial objects. In this work, a resolution is a finite partition of a set S of locations on

a plane. Partitions can be organized in terms of a partial order relation; in this sense,

the notion of resolution is equivalent to the notion of granularity.

The work in [14] proposes a taxonomy of granular partitions. This taxonomy clas-

sifies partitions in terms of: i) degree of structural fit, which refers to the concept of

mereological structure; ii) degree of completeness and exhaustiveness of projection,

where projection refers to the notion that objects are located at particular cells or gran-

ules of a partition; iii) degree of redundancy, in which cells may belong to different

partitions.

As seen, multi-granular topological hierarchies, or restricted versions thereof such

as spatial partitions, have been studied in the past from different communities, which

emphasizes the importance of this model and its implementation.

Given a geographic connected region R, the formalization of a multi-granular spatial

hierarchy is as follows. A partition L = {r1, . . . rn} is a granularity composed of regions

ri (called granules), such that (i) ∀ri, rj ∈ L, ri∩rj = ∅ (i.e., regions are disjoint or touch

each other, but they do not internally intersect) and (ii) R =
⋃n

1 ri (i.e., the geometric

union of regions makes the whole R). We will say that regions in L are neighbors if they

share common boundaries. A partition can be seen as a planar graph, where nodes

represent regions and an edge between two nodes indicates that the corresponding
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regions are neighbors.

Partitions can be organized into hierarchical structures by inclusion relations. Let

L1 = {r1,1, . . . r1,n1} and L2 = {r2,1, . . . r2,n2} be two partitions, with n1 ≤ n2 being the

number of regions per partition. Let contains(r, r′) be a function that returns true if re-

gion r contains region r′. Then, L1 is a coarser level of granularity than L2, denoted by

L1 ≺ L2, if (i) ∀r2,i ∈ L2, ∃r1,j ∈ L1 such that contains(r1,j, r2,i) holds (i.e., every region

in L2 is within a region in L1) and (ii) ∀r1,i ∈ L1, ∃S ⊆ L2 r1,i =
⋃

r2,j∈S r2,j (i.e., each r1,i

is made of the union of regions in L2). We can generalize to several partitions (gran-

ularities) L1 ≺ L2 ≺ · · · ≺ Lh, with L1 being the coarsest or lowest level of granularity

and Lh the finest or highest level of granularity. Figure 2.3 shows a spatial hierarchy

composed of three granularity levels: L1 is the region level (Figure 2.3(c)), L2 is the

state level (Figure 2.3(b)), and L3 is the county level (Figure 2.3(a)), so L1 ≺ L2 ≺ L3.

Based on this definition of a partition and of the multi-granular hierarchy, the follow-

ing properties hold.

• Let Li ≺ Lj, with i < j, then for each r′ ∈ Lj, there is only one r ∈ Li such that

contains(r, r′). Conversely, for each r ∈ Li, there must be at least one r′ ∈ Lj

such that contains(r, r′).

• Because a partition Li can be represented as a planar graph, with ni = |Li|
nodes and mi edges (the number of pairs of neighboring regions in Li), it holds

ni < mi ≤ 3ni − 6.

• Let rj, r
′
j ∈ Lj be regions of a partition, if there is an Li such that Li ≺ Lj,

then there exist ri, r′i ∈ Li, not necessarily different, such that contains(ri, rj) and

contains(r′i, r
′
j). Further, if rj and r′j are neighbors (i.e., they share a boundary) and

ri ̸= r′i, then ri and r′i must be neighbors. Further, when rj and r′j are neighbors,

contains(ri, rj) holds and contains(ri, r
′
j) does not hold, we say that ri and r′j are

neighbors as well.
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(a) Geographic division at county level.

(b) Geographic division at state
level.

(c) Geographic division at
region level.

Figure 2.3: Example of a geographic division with aggregation levels Region, State,
and County.

2.4 Succinct data structures and compact planar embeddings

The work presented in this thesis focuses on the development of algorithms and struc-

tures for the implementation of two multigranular models: i) A first general multigranular

model based of work presented in [73] and ii) a second multigranular model focused on

hierarchical structures of regions defined by the inclusion relation. The proposed data

structures are based on several succinct data structures, since these show a signifi-

cant space saving, while maintaining good access times to its elements. The concepts

related to the succinct structures needed to understand the work done in this thesis

are presented below.
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2.4.1 Succinct data structures

A succinct data structure is an asymptotically space-efficient and query-time-efficient

representation of a data structure. Space efficiency implies that the space used by the

succinct data structure closely approaches the information-theoretic lower bound for

that data structure. Specifically, if lwr is the information-theoretic lower bound, then a

succinct data structure utilizes lwr + o(lwr) bits. Query-time-efficient implies that the

succinct representation attains the optimal query time achieved by other non-succinct

data structures. For example, consider the representation of a binary tree with n nodes.

In a traditional linked representation, where each node has references to its left-child,

right-child and parent, the space complexity is Θ(n lg n) bits under the RAM model with

Θ(lg n) bits per reference. In contrast, in a succinct representation of a binary tree, the

consideration of only C =
(
2n+1
n

)
/(2n+1) different binary trees leads to an information-

theoretic lower bound of lwr = lgC, which is less than 2n bits. Consequently, a succinct

representation for a binary tree is expected to utilize 2n + o(n) bits while maintaining

the ability to support operations in optimal time..

The research on succinct data structures has been broad, including succinct repre-

sentation for text indexes [58, 107, 94, 63, 66], trees [82, 121, 102, 10, 60, 83, 90, 71,

44], and graphs [82, 28, 27, 6], among others [97, 99, 113, 62]. Those structures also

show a good behavior in practice [46, 3].

2.4.2 Bitmaps

A Bitmap B is a sequence of bits that supports the following queries:

• rankb(B, i) returns the number of bits set to b in B between the positions 0 and

i (both included). Consider the bitmap B = 1100110110. Then, rank1(B, 4) = 3.

By default, if no b is specified, we consider that rank operation counts the number

of ones.

• selectb(B, i), which is the complementary operation of rank, returns the position

in which the i-th bit of kind b is located in B. Following with the example used

previously, select0(B, 3) = 6. Again, if no bit value is specified, the operation

select searches for the i-th 1 by default.
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• access(B, i) checks the value of a given position i in the bitmap B. Following with

the example, access(B, 6) = 0.

Figure 2.4: Example of two level directory, source [2]

The concepts of rank and select operations were initially introduced in [82]. In this

paper, the first bitmap representation supporting the rank operation in constant time

was defined. This representation comprises a two-level directory. At the first level, the

results of rank1(B, i−1) are stored for each i that is a multiple of s = ⌊log(n)⌋ ⌊log(n)/2⌋.
Figure 2.4 illustrates an example where the first level counter stores rank1(B, 19) and

rank1(B, 31) with s = 20. The second level, associated with each block in the first level,

stores various local rank results within its corresponding block. Specifically, it computes

rank1(Si, j−1), where Si is the sequence of bits between two counters of the first level,

and j is a multiple of b = ⌊log(n)/2⌋. Figure 2.4 provides an illustration of this second

level directory. For example, the first value in this sequence is 2 because rank1(S1, 3) =

2, where S1 = 100100111...001. Using this directory, the operation rank1(B, i) can be

solved. Firstly, the number of bits from the beginning of the sequence to the position of

the nearest multiple of s less than i (referred to as p) is computed using the first level

of the directory. Subsequently, the second level is employed to compute the number of

ones from position p + 1 to the nearest multiple of b less than i (referred to as p′), and

this count is added to the previous result. Finally, a lookup table is used to compute

the number of ones from position p′ + 1 to i. These bits work as an index to access a

table storing the number of ones for every combination of bits, as depicted on the right
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of the figure.

The additional space required to facilitate rank operations in this solution encom-

passes the directory and the lookup table. In the first level of the directory, partial

results for n
s

superblocks are stored. The cost of storing a counter for each of these

superblocks is log(n) bits, resulting in a total space of O( n
log(n)

) bits for the first level. In

the second level, n
b

blocks are stored, with log(s) bits allocated for each, yielding a total

space of O(n log log(n)
log(n)

) for the second level. Lastly, the lookup table stores rank values for

every combination of b bits, incurring a cost of O(2b · b · log(b)) = O(
√
n log(n) log log(n))

bits. Considering these partial results, the overall space required to support rank and

select operations with this approach is o(n).

In [112], a novel approach to storing bit sequences is introduced to reduce space

utilization while maintaining comparable response times. The proposal involves divid-

ing the bitmap into blocks of uniform size. Each block is represented by the count of

bits with a value of 1 that it contains. A compression scheme is employed, clustering

adjacent blocks into intervals of varying lengths. A different technique is presented

in [119], where a bitmap compression method is based on a numbering scheme. Sim-

ilar to the previous approach, the sequence is partitioned into blocks of the same size.

Each block is associated with two values: ci, representing the count of ones within the

block, and oi, serving as an identifier in a vocabulary comprising different combinations

of bits. This vocabulary is sorted so that blocks with fewer ones or zeros have shorter

identifiers. For a block length of u, the storage cost for each ci is log(u+1) bits, and each

oi incurs a cost of log
(
u
ci

)
bits. Various implementations exist in the current state of the

art. For example, the work in [110] proposed a highly compressed solution specifically

designed for managing sparse bitmaps. Another implementation tailored for sparse

bitmaps is the gap encoding strategy, which encodes the gaps between sequences of

consecutive bits with a value of 1 [122, 94].

2.4.3 Wavelet trees

The wavelet tree (wtree) was introduced the first time in [65]. Previously, in Compu-

tational Geometry, [25] introduced a similar non-succinct data structure. Although the

wtree was initially designed as a data structure for encoding a reordering of sequence
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elements [47, 65], its versatility has led to successful applications in various domains.

Notably, it has been effectively employed in indexing documents [132], grids [108], and

even sets of rectangles [22]. These are just a few examples of its wide-ranging appli-

cations; for a more comprehensive overview, we recommend referring to surveys such

as [107, 95].

The inception of the wavelet tree (wtree) traces back to its introduction in [65], es-

tablishing itself as one of the most extensively studied succinct data structures. Prior

to this, within the domain of Computational Geometry, a somewhat analogous yet less

succinct data structure was pioneered by [25]. This data structure represents a set

of points on a two-dimensional grid, detailing a successive reshuffling process where

the points begin sorted by one coordinate and conclude sorted by the other. Although

initially conceived as a means to encode sequence element reordering [47, 65], its

adaptability has led to its successful deployment across various domains. Noteworthy

applications include its utilization in document indexing [132], grid management [108],

and even the representation of sets of rectangles [22]. These examples represent only

a fraction of its versatile applications; for a more exhaustive exploration, we recommend

consulting surveys such as [107, 95].

For the purpose of this thesis, a wtree is a sophisticated data structure crafted to

efficiently manage a sequence of n symbols, denoted as S = s1, s2, . . . , sn, over an

alphabet Σ = [1..σ]. It excels in supporting several key operations: access(S, i), which

retrieves the symbol at position i in sequence S; rankc(S, i), which tallies the occur-

rences of symbol c up to position i in sequence S; and selectc(S, j), which pinpoints

the position in sequence S of the j-th appearance of symbol c. wtree structures are

characterized by their ability to be stored in space bounded by various measures of the

entropy of the underlying data, enabling compression.

The wtree is conceived as a balanced binary tree where each node represents a

range R ⊆ [1, σ] of the alphabet Σ. The left child of a node denotes a subset Rl,

corresponding to the first half of R, while the right child represents a subset Rr, corre-

sponding to the second half. Every node essentially denotes a subsequence S ′ of S,

comprising symbols with values in R. This subsequence is stored as a bitmap, where

a 0 bit indicates that position i belongs to Rl, and a 1 bit indicates that it belongs to Rr.
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In this context, we focus on wtrees where the symbols of Σ are contiguous in [1, σ].

If they are not contiguous, a bitmap is utilized to remap the sequence to a contiguous

alphabet [30]. Given these constraints, the wtree forms a balanced binary tree with

⌈lg σ⌉ levels.

Representation of a wtree using O(1) pointers per node and its associated
bitmaps. The subsequences of S in the nodes (gray font) and the subsets of
Σ in the edges are drawn for illustration purposes.

Representation of a wtree using one pointer per level and its associtaed n-bit
bitmap. It can simulate the nagivation on the tree by using the rank operation
over the bitmaps.

Figure 2.5: A wtree for the sequence S =“once upon a time a PhD student” and the
contiguous alphabet Σ = {o,n,c,e,‘ ’,u,p,a,t,i,m,P,h,D,s,d}. We draw spaces
using stars. Source [124]

In its most basic form, this structure demands n⌈lg σ⌉ + o(n lg σ) bits for the data

and requires an additional O(σ lg n) bits to encode the tree’s topology (assuming O(1)

pointers per node). It efficiently handles the aforementioned queries in O(lg σ) time by

navigating the tree using rank/select operations on bitmaps with O(1)-time complex-

ity [120]. An elementary recursive construction algorithm operates in O(n lg σ) time

(not accounting for space-efficient construction algorithms [31, 128]).
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The space required by the structure can be further reduced. The data can be com-

pressed and stored in space bounded by its entropy through compressed encodings of

bitmaps, another strategy to reduce space is to change the shape of the tree, in order

to be able to store the tree in a single bitmap B. The time complexities do not change.

However, in practice the operations are slowed down due to the extra rank operations

needed to navigate. Additionally, the removal of the O(σ lg n) bits of the topology can

also be achieved using the wavelet matrix, the idea focuses on organizing all the 0s

to the left of all the 1s within a row. This reordering causes the wavelet tree nodes to

disperse across the level bitmap while preserving their sequential order. Consequently,

the wavelet matrix can emulate any algorithm originally designed for the wavelet tree.

Figure 2.5 shows an example of two wtree representations for the sequence S =

“once upon a time a PhD student”. The first part of Figure 2.5 shows the O(1)-pointers-

per-node representation, while the seconds part shows the one-pointer-per-level rep-

resentation.

The following is the traversal performed by the operation access(S, 24) in both rep-

resentation. In the first representation, the query proceeds as follows: Let curr be

the root, Bcurr be the bitmap of the current node, i = 24 be the index of interest,

R be the range [0, σ − 1] = [0, 15], and rankc(Bcurr , i) be the count of c-bits up to

position i in Bcurr . Initially, we inspect the bit Bcurr [i]. Since the bit is 1, we recom-

pute i = rank1(Bcurr , i) − 1 = 7, update curr to be the right child of curr , and halve

R = [8, 15]. This process is repeated. Since Bcurr [i] = 0, i = rank0(Bcurr , i) − 1 = 4,

curr is updated to be the left child of curr , and R = [8, 11]. Again, with Bcurr [i] = 0,

i = rank0(Bcurr , i)− 1 = 2, curr is changed to be the left child of curr , and R = [8, 9].

Finally, in the last level, with Bcurr [i] = 0, the range is R = [8, 8], and the answer for

access(S, 24) is Σ[8] =‘ t ’. Both rankc(S, i) and selectc(S, i) involve similar traversals

to access(S, i). For a more detailed explanation of wtree operations, refer to [107].

In the one-pointer-per-level representation, the procedure is akin to the one de-

scribed earlier, with the exception that the traversal of the tree must be simulated using

rank operations over the bitmaps [30].

The wtree supports more complex queries beyond the basic primitives described
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earlier. For instance, research in [94] demonstrated its connection with a classical two-

dimensional range-search data structure. More examples of more complex queries are

shown in [59], where new algorithms for WT are defined like range report, range quartile

or range intersection. In addition, WT applications to information retrieval are pre-

sented.

The utilization of wtree has been extensively explored across various contexts, lead-

ing to ongoing research aimed at refining wtree algorithms and methodologies. In re-

cent studies such as [84, 36, 100], novel strategies have been proposed to enhance

the efficiency of wtree construction in practical applications. Additionally, in works such

as [51, 52, 49], different algorithms and approaches for constructing wtree on multicore

architectures have been investigated. Furthermore, wtree finds applications in diverse

domains, as demonstrated by studies such as [86], where a parallel wavelet tree algo-

rithm utilizing Map-Reduce hybridization is proposed for constructing a textual search

index,[127], where a new technique employing Word-Based Tagging Coding compres-

sion is implemented using Parallel Wavelet Tree to enhance exact matching results in

compressed text, and[137], which presents an efficient recursive parallel wavelet tree

algorithm for indexing and searching geographical documents. These examples repre-

sent just a fraction of the recent research endeavors that leverage and propose novel

algorithms based on the wtree.

2.4.4 Compact trees

Trees are fundamental data structures in computer science, and they play a crucial role

in various applications. One efficient way to represent a tree with n nodes is to use 2n

bits instead of O(n) pointers. Generally, two types of trees are distinguished: ordinal

trees and cardinal trees. i) Ordinal Trees: Ordinal trees allow for an arbitrary number

of children per node, but they only distinguish the order of these children; the main

focus is on the relative order of children rather than restricting the number of possible

children for each node. ii) Cardinal Trees: Cardinal trees have a fixed set [1, θ] of

types of children, and each node might have one or no child of each type; they are

more rigid structures than ordinal trees. In summary, ordinal trees provide flexibility in

the number of children per node but emphasize the order, while cardinal trees impose
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a fixed set of possible children types on each node. The choice between these tree

types depends on the specific requirements and constraints of the problem at hand.

For the present work, the compact representation of ordinal trees is of interest(this

is because the work developed in Chapter 5 is based on a compact representation).

In the following, compact representations for ordinal trees will be described. Table 2.1

shows the operations commonly supported by the various representations of ordinal

trees.

Figure 2.6: Example of ordinal tree and their compact representations

LOUDS representation

The work done for Jacobson in [82] introduced the first succinct tree representation for

ordinal trees. This representation relies on the Level-Order Unary Degree Sequence

(LOUDS) of a tree. The LOUDS approach involves visiting the nodes in a level-order

traversal, encoding their degrees in unary, capturing the number of children each node

has. In a level-order traversal, the root is visited first, followed by its children from left

to right, and subsequently, all nodes at each successive level. This encoding requires

2n+O(1) bits to represent an ordinal tree with n nodes, additional o(n) bits are used to

support rank and select operations on the encoding; an example of this representation

can be seen in the Figure 2.6. Jacobson initially analyzed these operations in the bit

probe model, demonstrating their support in O(lg n) probes. Subsequently, Clark and
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Munro [29] extended this capability by showing how to achieve O(1) time complexity

for rank and select operations under the word RAM model, considering a word size of

θ(lg n).

As a result, the LOUDS representation excels in providing efficient O(1) time com-

plexity for parent, child, and child rank operations. Beyond these fundamental opera-

tions, it is straightforward to extend support to rank level, select level, level succ, and

level pred operations, all achievable in constant time.

Operation Description

1 parent(x) Report the parent of node x
2 child(x, i) Find the ith child of node x
3 child rank(x) Report the number of left siblings of node x
4 degree(x) Report the degree of node x
5 depth(x) Report the depth of node x
6 desc(x) Report the number of descendants of node

x
7 level ancestor(x, i) Find the ancestor of node x that is i levels

above node x
8 subtree size(x) Report the number of nodes in the subtree

rooted at node x
9 height(x) Report the height of the subtree rooted at x

10 deepest node(x) Find the deepest node in the subtree rooted
at node x

11 lca(x, y) Find the lowest common ancestor of nodes
x and y

12 lmostleaf(x) /rmostleaf(x) Find the leftmost/rightmost leaf of the
subtree rooted at node x

13 leafrank(x) Report the number of leaves before node x
in preorder

14 leafselect(i) Find the ith leaf from left to right
15 prerank(x)/postrank(x) Report the number of nodes preceding

node x in preorder/postorder
16 preselect/postselect(i) Find the ith node in preorder/postorder
17 levellmost(i)/levelrmost(i) Find the leftmost/rightmost node among all

nodes at depth i
18 levelsucc(x)/levelpred(x) Find the node immediately to the left/right of

node x among all nodes at depth i

Table 2.1: Commonly supported operations for compact representations of ordinal
trees.
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Balanced Parenthesis representation

The work done for Munro and Raman in [102] proposed another type of succinct

representation of trees based on the isomorphism between balanced parenthesis se-

quences (BP) and ordinal trees. The BP sequence of a given tree is derived by per-

forming a depth-first traversal. For each visited node, an opening parenthesis is written,

followed by a closing parenthesis immediately after all its descendants are visited. This

process results in a 2n-bit encoding of a tree with n nodes, represented as a sequence

of balanced parentheses. Identification of a node can be accomplished, for instance,

by referencing the position of the opening parenthesis within the corresponding pair;

an example of this representation can be seen in the Figure 2.6. The work of Munro

and Raman, building on Jacobson’s ideas [82], introduced a succinct representation of

an ordinal tree with n nodes in 2n + o(n) bits based on a balanced parenthesis (BP)

sequence. This representation supports various basic operations in constant time us-

ing an auxiliary structure of size o(n) bits. By showing how to translate operations

performed on the tree into basic operations on the parenthesis sequence that repre-

sents it, Munro and Raman [102] presented a succinct representation of an ordinal

tree with n nodes in 2n + o(n) bits based on BP, which supports parent, desc, depth,

rankpre/post and selectpre/post in constant time, and child(x, i) in O(i) time. Munro

et al. [103] enhanced the previous work by introducing constant-time support for leaf

rank, leaf select, left leaf, right leaf, and leaf size on the BP representation. This im-

provement involved the use of o(n) additional bits, which were also utilized in design-

ing space-efficient suffix trees. Chiang et al. [27] demonstrated constant-time support

for the degree operation. Munro and Rao [104] extended support to level ancestor,

level succ, and level pred in constant time, with applications in the succinct represen-

tations of functions. Lu and Yeh [90] presented constant-time support for child, child

rank, height, and LCA (lowest common ancestor) operations.

Depth-First Unary Degree Sequence representation

In the work presented by Benoit et al. [10], a novel tree representation called Depth-

First Unary Degree Sequence (DFUDS) was introduced. This representation, derived
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by traversing nodes in depth-first order (preorder) and encoding their degrees in unary,

differs from the commonly used LOUDS encoding. In the DFUDS sequence, a node

with a degree of d is represented by d opening parentheses followed by a closing paren-

thesis, listing nodes in preorder. The representation lists all nodes in preorder, starting

with an additional opening parenthesis added at the beginning of the sequence; an

example of this representation can be seen in the Figure 2.6. The DFUDS number of

a node is determined by the rank of the opening parenthesis in its parent’s description

corresponding to the node. The work in [10] presented a succinct tree representation

based on DFUDS using 2n + o(n) bits, fundamental operations like child, parent, de-

gree, and desc are supported in constant time. Each node is identified by referencing

the position of the first parenthesis in its representation. Jansson et al. [83] extended

the DFUDS representation by incorporating o(n) additional bits. This extension enabled

constant-time support for various operations, including child rank, depth, level ances-

tor, LCA (lowest common ancestor), left leaf, right leaf, leaf rank, leaf select, leaf size,

rankPRE, and selectPRE. Barbay et al. [7] demonstrated how to support rankDFUDS

and selectDFUDS operations, facilitating constant-time conversions between the pre-

order number and DFUDS number for the same node. This constant-time conversions

provided the basis for strategies supporting queries in labeled trees, as proposed in [7].

Range min-max tree

The most practical compact representation for ordinal trees is the range min-max

tree (RMMT) [109]. The RMMT is a complete binary tree that stores some statistics

about the number of opening and closing parentheses of the balanced parenthesis se-

quence B. The compact tree is built upon a basic operation called excess, defined as

excess(i) = excess(i− 1) + 1 if B[i] = ‘(’, or excess(i) = excess(i− 1)− 1 if B[i] = ‘)’. The

sequence B is virtually divided into blocks of length l, where each block is represented

by a leaf of the RMMT. For the leaf v associated with a block B[s..e], the whole excess,

defined as v.e = excess(e) − excess(s − 1), and the minimum excess value of the leaf,

defined as v.min = mini∈[s,e]{excess(i)− excess(s− 1)}, are stored. For an internal node

u with left child ul and right child ur, the whole and minimum excess values are also
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stored, defined as u.e = ul.e + ur.e and u.min = min{ul.min, ul.e + ur.min}, respec-

tively. Once those values are stored in the RMMT, the operations find open, find close

and enclose are reduced to the primitive operations fwd search(B, i, d) (the leftmost

position j > i in B, such that excess(i)+d = excess(j), with d < 0) and bwdsearch(B, i, d)

(the rigthmost position j < i in B, such that excess(i) + d = excess(j), with d < 0). Fig-

ure 2.7 present an example of a range min-max tree, using the ordinal tree presented

in figure 2.6, in this example each block is of size 6, where e is the whole excess and

min is the minimum of each block. Both primitive operations scan sequentially a con-

stant number of blocks of B and move up and down in the RMMT looking for the answer,

spending O(l+lg n
l
) time. We assume l = Θ(log n) in this paper, so the time is O(log n)

and the space is O(n) bits. These complexities can be reduced to O(1) and o(n) by

means of more complex data structures [109].

Within the same time and space complexities, the RMMT can also support rank((B, i)

and select((B, i) by storing a new field n′ on each node of the RMMT. For each leaf v of

the RMMT, v.n′ stores the number of opening parentheses in the block B[s..e] associ-

ated with v, and for each internal node u with left and right children ul and ur, we store

u.n′ = ul.n
′ + ur.n

′.

Figure 2.7: Example of Range min-max tree, using Ordinal tree presented in image 2.6

All previous operations can be applied to a sequence S[1..n] composed by two inter-

twined balanced parenthesis sequences, B and B∗. For convenience, B is represented

with parentheses, B∗ with brackets (for the remainder of the paper, parentheses refers
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(a) Planar graph at county level.

(b) Planar graph at state level.

(c) Planar graph at region
level.

Figure 2.8: Planar graph representations of the aggregation levels of Figure 2.3. Span-
ning trees are represented with thick edges.

to round brackets (), while brackets refers to square brackets []), and the intertwine is

represented with a bitmap A[1..n], such that A[i] = 1 iff S[i] = ‘(’ or S[i] = ‘)’, and

A[i] = 0, otherwise. Thus, the operation rank()(S, i) (the number of opening or closing

parentheses in S up to position i) is supported in constant time by rank1(A, i). Similarly,

select()(S, i) (the position of the i-th opening or closing parenthesis in S) is supported in

constant time by select1(A, i). In the same way, for S[i] = ‘)’, find open(S, i) is mapped to

select1(A, find open(B, rank1(A, i))). Operations find close and enclose are supported

similarly.

2.4.5 Compact planar embeddings

Compact representations of planar-graph embeddings have been studied [98, 105],

an example of planar-graph embeddings can be seen in Figure 2.8, which shows the

induced planar embedding of the geographic area of Figure 2.3.
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Tutte [131] demonstrated that representing a specific embedding of a connected

planar multigraph with n vertices and m edges requires approximately m log 12 or

3.58m bits in the worst case. Turán [130] provided a simple representation using 4m

bits. Jacobson [82] proposed a compact representation using O(m) bits, designed for

efficient navigation, and based on book embeddings [139]. Munro and Raman [102]

proposed a representation that 2m + 8n + o(m) bits instead of the estimated 64n

bit used by the Jacobson’s representation, while still maintaining fast navigation, and

based on the same book embeddings. Keeler and Westbrook [85] emphasized that the

constant factor in [82] space bound is relatively large and proposed a representation

using m log 12 + O(1) bits for planar graphs (not embeddings). This applies to planar

embeddings containing either no self-loops or no vertices with degree 1; however, they

sacrificed fast navigation in this approach. Chiang, Lin, and Lu [27], building upon prior

work by Chuang et al. [28], presented a representation (without allowing self-loops)

that utilizes 2m+3n+o(m) bits with fast navigation, based on so-called orderly spanning

trees. It’s worth noting that, while all planar graphs can be represented with orderly

spanning trees, some planar embeddings cannot. For simple planar embeddings (with

no self-loops or multiple edges, hence m ≤ 3n), the representation proposed by Chi-

ang, Lin, and Lu [27] achieves a space of 2n + 2m + o(m) ≤ 4m + o(m) on connected

graphs. Barbay et al.[6] proposed a data structure that employs O(m) bits to represent

simple planar graphs while ensuring fast navigation. However, it is important to note

that their constant factor is relatively large, specifically 18n + o(m).

In a significant breakthrough, Blelloch and Farzan [16], building upon the work of

Blandford et al.[15], achieved a remarkable result by matching Tutte’s lower bound on

general planar embeddings. Their structure utilizes m log 12 + o(m) bits and supports

efficient navigation, relying on small vertex separators [89]. Notably, this representation

can handle any planar graph within its lower-bound space plus a sublinear redundancy,

even in cases where the exact lower bound is unknown for general planar graphs [17].

Although Blelloch and Farzan successfully addressed the problem theoretically, their

representation is intricate and has not been implemented. Other researchers, such as

He et al.[72], Aleardi [1], Fusy et al.[57], and Yamanaka [138], have explored specific

types of planar graphs, focusing on tri-connected planar graphs and triangulations.
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Turán’s representation [130] is noteworthy for its simplicity. The representation is

constructed in two stages. In the first stage, an arbitrary spanning tree T of the planar

embedding is computed. In the second stage, a depth-first search (DFS) traversal is

performed, generating a sequence S of length 2m, where m is the number of edges in

the planar embedding. Throughout the traversal, an edge in T is denoted by either ‘(’

or ‘)’, depending on whether it is the first or second time the edge is visited. Similarly,

an edge not in T is represented by ‘[’ or ‘]’. Utilizing two bits per symbol in S, the

representation requires 4m bits of space.

Although Turan’s representation does not provide primitives to navigate the graph,

[48] augmented it using compact representations of trees and bitmaps that add up o(m)

extra bit, and enable navigation operations. The work is based on the idea that if we

perform a depth-first traversal of a spanning tree T of G, starting from any vertex on the

outer face of G and always process the edges incident to the vertex v we are visiting

in counter-clockwise order, then each edge not in T corresponds to the next edge we

cross in a depth-first traversal of the complementary spanning tree T ∗. The extended

representation lists the incident edges of a vertex and the edges bounding a face both

in O(1) time per edge, computes the vertex degree in any time in ω(1), and checks

whether two vertices are neighbors in any time in ω(logm). Later, [55, 56] improved

the time bounds and extended the representation to support the topological model

(without multi-granularity) using 4m + o(m) bits and offering relevant time guarantees;

recall Table 2.2. Hereinafter, we refer to their work as PEMB.

In Chapter 5, we present a generalization of PEMB in order to support multi-granular

hierarchies of spatial objects. A map with several levels of granularity can be seen as

a set of planar embeddings, one per level, plus the information about containment re-

lationships among levels. The embedding of level i has ni nodes and mi edges. A

straightforward representation consists of using PEMB to represent each planar em-

bedding of the collection (using 4mi + o(mi) bits per level i), plus h− 1 integer vectors

to store the region of the preceding level that contains each region. This arrangement,

for example, supports the query contains in O(h) time. Its main drawback is the space

consumption of the vectors, ⌈ni log ni−1⌉ bits at each level i > 1.

The design of compact data structures to manage spatial and spatio-temporal data
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Operation Complexity

Do regions r1 and r2 share a boundary? any in ω(1)
Is boundary e on the border of region r1? O(1)
Regions separated by boundary edge e O(1)
Boundary edges of region r1 O(1) per boundary edge
Regions adjacent to region r1 O(1) per region
Number of regions adjacent to region r1 any in ω(1)

Table 2.2: Topological operations considered in [55, 56]. Let r1 and r2 be two regions
and e be a boundary edge.

goes beyond the planar-graphs applications described above, and indeed it has been

an active area of research in the last few years. There are some outstanding results

both for the raster model [19] and for the vector model [22]. Also, there exist com-

pact representations for trajectories of moving objects in free space [21] and when the

movement is restricted to a network [20]. In [126], algorithms for solving spatial joins

between raster and vector datasets on top of compact representations are presented.

The underlying motivation of all those works is to provide data structures for different

spatio-temporal data types with fast query time in small space.



Chapter 3

Related work

This section reviews related work concerning the implementation of multigranular mod-

els. Specifically, it describes extensions to the datawarehouse model focused on

managing multigranular data, multigranular data models for spatio-temporal data, and

mechanisms for dealing with uncertainty when operating with data at different levels of

granularity.

3.1 Extension of Datawarehouse models

In the world of databases, a well-known model focused on answering queries at differ-

ent levels of aggregation is the datawarehouse model [80], which is characterized by

storing complete information at the most detailed level and then pre-compute aggrega-

tions for the defined information dimensions. In [78], extensions of the datawarehouse

schema are proposed by adding the granularity attribute and modifying the fact table.

This allows us to exploit the multigranular nature of the data beyond what schemata

such as the star schema or the snowflake schema are capable of, because these

schemata require a rigid structure of the levels of detail. The proposed multigranu-

lar schema stores information at different levels of granularity, however and unlike the

model in [74, 75], it does not specify relationships through join or disjoint join rules,

but only based on subsumption, and it focuses on data that do not change or suffer

updates.

In the context of multigranular data aggregation in datawarehouse, a practical ap-

proach is provided by [79]. The approach is mainly focused on a single dimension

based on data aggregation in relational systems. This work focuses on proposing multi-

granular solutions for the time dimension (table commonly used to store time stamps).

They propose to add the granularity attribute to the table, which indicates for each tuple

38
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the level of granularity it holds, and provide different algorithms to perform the aggre-

gation of data according to this new proposed attribute and design options for the fact

table to handle data at different levels of granularity.

The work in [77] presents a multi-dimensional and multi-granular schema (MMDW)

for data warehousing. MMDW is an extension of the standard star schema and it is

based on ROLAP. MMDW has the ability to store the multi-granular data and to aggre-

gate data on-the-fly or to pre-compute and store the aggregated data at any desired

combination of dimensions and granularities for analysis and reporting purposes. The

advantages of MMDW are that it is a general model so it can be used in various real

applications. It also offers better query times and uses less space than other models

used in data warehouses. Despite of this, the model still occupies excessive space

due to the fact that it pre-computes information among all the possible combinations

of granularities and, although it allows calculating information at the moment of being

consulted, it does not provide algorithms that simplify this computation. Finally, it is

based on performing the corresponding aggregation operation through the required

granularities.

3.2 Multigranular Spatio-Temporal models

The notion of granularity appears in the spatio-temporal information domain. A highly

referenced paper on temporal granularity is [12]. This work introduces the concept of

spatial granularity, which refers to a mapping function from a domain of indexes to a

subset of the temporal domain. It also introduces the concept of granule, which is the

element that composes a granularity and refers to a portion of the temporal domain

to be represented. The work in [12] also defines a set of granularity relationships,

which are relationships between the granules composing two granularities that have

the same time domain. In a similar way, the work in [133] defines spatial granularity

as a mapping from a domain of indexes to portions of a space, called spatial granules.

It defines methods to navigate between granularities and highlights the problem of

uncertainty when moving between granularities from greater to less detail.



40

The paper in [13] describes formalisms and the way to work with temporal granu-

larities, which is described as the qualification of sentences to different temporal gran-

ularities and the definition of the relationships between the different temporal granu-

larities. Basic components are proposed to model temporal granularity, emphasizing

the concept of language, which refers to the approach used to represent information

at different granularities. Two approaches to languages can be distinguished: i) The

quantitative approach, which consists of a model capable of positioning temporary en-

tities within a metric framework. It can be based on two approaches, a logical approach

or one based on set theory, and ii) The qualitative approach, which consists of a model

capable of characterizing the position of temporary entities with respect to others, this

characterization can be both topological and vectorial.

In [43] an extension of the relational model capable of handling temporal granular-

ity is proposed. Such model is summarized as a database in which each tuple is a

timestamp under some defined granularity. In [134] a method is developed to answer

questions about this model. The answers are computed based on the hypothesis as-

sociated with the database instance, handling the missing values, considering them

constant or interpolating them. The authors propose an arc-consistency algorithm to

check when granularities are periodic with respect to a common finer granularity, while

proposing an approximate algorithm to handle the constraints of each granularity and

the transformation of information from one granularity to another.

In [45] a conceptual model for handling multigranular spatial data is proposed. The

authors propose to work with two types of granularity dimensions, the spatial granularity

that focuses on the possible variations of the geometry of an object with respect to

different scales, and the semantic granularity that focuses on the possible variations

of the set of domain objects with respect to the levels of detail requested by different

users/applications.

In the context of instances with spatial/temporal data, the work in [24] defined a

spatio-temporal granule as a tuple (s,t), meaning that at time index t, the spatial index

s is valid. In a similar way, the work in [8] assigns to each spatio-temporal granule a

sequence of spatial granules, one for each granule in the temporal granularity. In [11]

a representation of multigranular spatio-temporal data is proposed, this work proposes
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the use of a meta-scheme in conjunction with the relational model and defines a new

type of data with which they are able to represent the space-time granularity. It also

provides tools to operate on objects with different granularities in order to address their

integration and inter-operability.

The study presented in [26] introduces a formal framework designed to extend the

granularity conversion and granular comparison of spatio-temporal data across hetero-

geneous granularity systems. This framework starts by generalizing coexisting gran-

ularity systems to accommodate their heterogeneity. It defines a graph model to rep-

resent the structures of these systems, capturing the semantics and uncertainty asso-

ciated with granularity conversions. The framework introduces two key constraints for

composing inter-system granularity conversions: semantic preservation and semantic

consistency. The study establishes that granularity systems can be combined, only

if they adhere to either semantic preservation or semantic consistency, in addition to

globally sharing a common refined granularity.

In the context of granularity, prior research has introduced the concept of relations

between granularities, enabling the characterization of structures that organize the do-

main. One such notion is spatial partition, where if granularity P is a partition of gran-

ularity Q, then for each granule g ∈ Q there exists a subset S of granules in P such

that g is the union of non-overlapping elements of S [12, 133, 24, 91]. Note that this

definition of spatial partition is a natural realization of a granularity, but the notion of

granularity is more general in the sense that the set of granules that form the granular-

ity may not cover the whole domain. Even more, partition has been an important notion

for the spatial domain [42, 96, 37]. Concepts of maps, resolution, spatial objects and

topological reasoning use partitions and their properties. The work in [135] proposes a

formalization based on the theory of rough sets [114] to deal with resolution and multi-

resolutions in geographic spaces and vague spatial object. In this work, a resolution is

a finite partition of a set S of locations on a plane. Partitions can be organized in terms

of a partial order relation, and in this sense, the notion of resolution is equivalent to the

notion of granularity. A taxonomy of granular partitions is found in [14]. This taxonomy

classified partitions in terms of: i) Degree of structural fit, which refers to the concept of

mereological structure. ii) Degree of completeness and exhaustiveness of projection,
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where projection refers to the notion that objects locate at a particular cells or granules

of a partition. iii) Degree of redundancy in which cells may belong to different partitions.

3.3 Inference mechanisms

Database systems are traditionally seen as passive repositories with capability for effi-

cient query processing. However, there also exist deductive database systems where

new knowledge can be derived. Deductive databases can be seen as an extension of

databases with rules [118]. The multigranular model presented in Section 2.2 have as

basic information the subsumption and disjoint relations between its elements, and pro-

poses the idea of not storing all the relations explicitly, but a subset and derive the rest

through the application of several inference rules. In general, subsumption and disjoint-

ness are important relations for modeling multigranular data, where granules represent

a portion of a domain that must be disjoint and can be organized in terms of a partial

order structure by subsumption [73]. Granular data is of particular interest in the spa-

tial domain due to the common organization of spatial objects through inclusion and

aggregation, such as it is the case of a political-administrative subdivision [24]. Beyond

the spatial domain, disjointness and subsumption appear when dealing with semantic

networks in knowledge representations and conceptual modeling in database theory.

In this context, subsumption corresponds to the is-a relation saying that an element of

a given type is also an element of another type, and disjointness establishes that two

types do not share common elements.

Associated with subsumption and disjointness, there are inference mechanisms to

derive new knowledge [76], which also avoid representing explicitly all possible rela-

tions at once. For hierarchical structures, representing explicitly subsumption relations

through foreign keys in the relational database context is usual; however, combining

subsumption and disjointness scale up to represent a very large number of relations.

Focusing on the spatial domain, spatial reasoning tries to determine if a set of topo-

logical relations defined over a set of spatial objects is said to be consistent, meaning

that there are no contradictions among the topological relations, or if the set of topolog-

ical relations satisfy a consistency network [92, 88]. For example, given three objects

x, y and z, and the relations x is in y, y is in z, and x is disjoint to z, the dataset is
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topologically inconsistent since the first two relations imply that x is in z holds. As this

example shows, checking topological consistency uses the notion of composition of

topological relations, which is basically one type of inference rule. Composition is such

that given the relations between objects x and y, and between y and z, one can derive

the relation between x and z [9].

In addition to the use of inference rules in the spatial domain, the work in [4, 5] pro-

vides a set of inference rules for is-a and disjoint relations and shows their soundness

and completeness. It uses set-theory and analyzes negative terms as complement of

a given set. Similarly, the work in [18] proposes a set of inference rules for afunctional

dependencies (afds) together with functional dependencies (fds) and proves that they

are sound and complete.

3.4 Handling uncertainty in multigranular data

In the realm of managing information with uncertainty, one widely used model is rough

sets. A rough set is denoted by a pair of crisp sets known as lower and upper ap-

proximation. The lower approximation represents the set of objects that unequivocally

belong to the target set, while the upper approximation encompasses objects that may

potentially belong to the target set. An insightful characterization of rough sets, in-

troducing the concept of types (originally referred to as kinds), is presented in [115].

Two distinct approaches are employed for characterizing rough sets: the accuracy co-

efficient, which measures how closely the rough set approximates the target set, and

the topological characterization introduced through the notion of types. Practical ap-

plications of rough sets often involve combining both types of information about the

borderline region, incorporating accuracy measures and topological classifications of

the set under consideration [129].

Building upon this foundation, the work in [129] explored the types of rough sets by

investigating the types associated with union and intersection operations of rough sets

of different types. The extension of these concepts to a multigranular instance is intro-

duced in [117], where notations and definitions are provided. The study delves into the

topological properties of multigranular rough sets concerning set-theoretic operations

such as union, intersection, and complement. The findings offer insights into obtaining
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answers for these operations in a multigranular instance, facilitating the approximation

of classifications and rule induction.



Chapter 4

A data structure for subsumption and disjoint relations in a

multigranular model

The work in this chapter describes an efficient data structure, both in space and time,

to process subsumption and disjoint relations between granules as part of the multi-

granular model in [73], and the inference rules presented in [76], which are used to

derive relations between granules.

The organization of this chapter is as follows. It begins by presenting the rules of

inference to be considered for the developed data structure in Section 4.1. Then, the

structure is presented and the developed algorithms are detailed in Section 4.2. Finally,

the experimental evaluation performed is presented in Section 4.3.1.

4.1 Inference rules

In this work we adopt the multigranular data model [73], where the notion of gran-

ularity enables the classification of the underlying granules that form a granularity.

In this model, a granular space is composed of a set of granules GnlSet, which in-

cludes the top ⊤ (virtual granule that subsumes all granules) and bottom ⊥ gran-

ules (virtual granule that is subsumed by all granules). A granule structure is then

a pair (Dom,GnlToDom) composed of a non-empty domain Dom and a mapping func-

tion GnlToDom : GnlSet → 2Dom from granules to a subset of the domain, such that

GnlToDom(⊤) = Dom, GnlToDom(⊥) = ∅, and for every g ̸= ⊥, GnlToDom(g) ̸= ∅.
Intuitively, GnlSet can be seen as the set of labels that map through GnlToDom to a

portion of Dom, like the name of a county maps to its portion of the geographic space

(i.e., a subset of Dom).

It was shown [76] that these rule sets are correct and complete. Correctness means

that the inference rules cannot derive false relations, while completeness means that

45



46

Positive Rules

g1 ⊑ g2 g2 ⊑ g3
g1 ⊑ g3

(a)
g1 ⊑ g2

d
{g2, g3} = ⊥d

{g1, g3} = ⊥
(b)

g ⊑ g
(c)

d
{⊥, g} = ⊥

(d)
⊥ ⊑ g

(e)
g ⊑ ⊤

(f)

Negative Rules

g1 ⊑ g2 g1 ̸⊑ g3
g2 ̸⊑ g3

(a′)
g1 ̸⊑ g3 g2 ⊑ g3

g1 ̸⊑ g2
(b′)

g2 ⊑ g3
d
{g1, g2} ≠ ⊥d

{g1, g3} ≠ ⊥
(c′)

d
{g1, g2} ≠ ⊥

d
{g3, g2} = ⊥

g1 ̸⊑ g3
(d′)

d
{g, g} ≠ ⊥

(e′)

Table 4.1: Inferences rules proposed by Hegner and Rodrı́guez [73].

(successive applications of) the inference rules derive everything that can be inferred

from the basic relations. We say that the rules without premises are “axioms”, in our

case (c), (d), (e), (f), and (e’) in Table 4.1.

Table 4.2 shows the inference rules covered in this work and their semantics, ex-

cluding axioms because they need no implementation strategy. Those cover all the

rules presented in Table 4.1, except for rule (d′). This is because the strategies we

developed are based on the efficient derivation of the subsumption relation, and rule

(d′) does not have this relation between granules as a premise. Despite this fact, a

particular case of this inference rule is covered by rule (6) in Table 4.2. As a result,

we can only ensure completeness and correctness for rules that infer subsumption,

disjoint and not-disjoint. For the not-subsumption relation, we offer strategies for its

derivation, but we cannot guarantee completeness. The second column in Table 4.2

shows the mapping between the implemented rule and the original rule it corresponds
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Rule Orig. Rule Meaning Relation

1 g1⊑g2 g2⊑g3
g1⊑g3

a If GnlToDom(g1) ⊆ GnlToDom(g2) and
GnlToDom(g2) ⊆ GnlToDom(g3), then
GnlToDom(g1) ⊆ GnlToDom(g3)

subsumption

2 g1⊑g2
d

{g2,g3}=⊥
d

{g1,g3}=⊥ b If GnlToDom(g1) ⊆ GnlToDom(g2) and
GnlToDom(g2) ∩ GnlToDom(g3) = ∅, then
GnlToDom(g1) ∩GnlToDom(g3) = ∅

disjoint

3 g1⊑g2d
{g1,g2}≠⊥ c’ If GnlToDom(g1) ⊆ GnlToDom(g2), then

GnlToDom(g1) ∩GnlToDom(g2) ̸= ∅

not disjoint
4 g1⊑g2 g1⊑g3d

{g2,g3}≠⊥ c’ If GnlToDom(g1) ⊆ GnlToDom(g2) and
GnlToDom(g1) ⊆ GnlToDom(g3), then
GnlToDom(g2) ∩GnlToDom(g3) ̸= ∅

5 g2⊑g3
d

{g1,g2}̸=⊥
d

{g1,g3}≠⊥ c’ If GnlToDom(g2) ⊆ GnlToDom(g3) and
GnlToDom(g1) ∩ GnlToDom(g2) ̸= ∅, then
GnlToDom(g1) ∩GnlToDom(g3) ̸= ∅

6
d

{g1,g2}=⊥
g1 ̸⊑g2

a’ If GnlToDom(g1) ∩ GnlToDom(g2) = ∅, then
GnlToDom(g1) ̸⊆ GnlToDom(g2)

not subsumption
7 g1 ̸⊑g2 g3⊑g2

g1 ̸⊑g3
b’ If GnlToDom(g1) ̸⊆ GnlToDom(g2) and

GnlToDom(g3) ⊆ GnlToDom(g2), then
GnlToDom(g1) ̸⊆ GnlToDom(g3)

8 g1⊑g2 g1 ̸⊑g3
g2 ̸⊑g3

a’ If GnlToDom(g1) ⊆ GnlToDom(g2) and
GnlToDom(g1) ̸⊆ GnlToDom(g3), then
GnlToDom(g2) ̸⊆ GnlToDom(g3)

Table 4.2: Inference rules supported in this work and their equivalence with the original
rules proposed by Hegner and Rodrı́guez [76] (see Table4.1).

to. Note that for the case of rules 3, 4 and 5, all of them are based on rule c’. It was

implemented this way because cases 3 and 4 correspond to particular cases of the

implementation of the rule. In addition, this decomposition allows us a clearer demon-

stration of correctness of the proposed strategy. A similar reasoning applies to rules 6

and 8, where both are based on rule a’, being rule 6 a particular case of this one. In

Section 4.2.2 we explain in more detail how these rules were implemented and their

equivalence with the original ones.

As an example of how to use the rules, consider the granules and their explicitly
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stored relations in Figure 4.1. Based on these relations, subsumption and disjoint

relations can be derived using rules (1) and (2), respectively. For example, the relation

L ⊑ C is derived from the stored relations L ⊑ G and G ⊑ C, and
d
{N, I} = ⊥

can be derived from the relations N ⊑ H and
d
{H, I} = ⊥. Not-disjoint and not-

subsumption relations can be derived using additional rules. More precisely, rules (3),

(4) and (5) derive the relation of not-disjoint, and rules (6), (7) and (8) the relation of

not-subsumption. For example, rule (3) derives
d
{C,G} ≠ ⊥ since G ⊑ C is a stored

relation. Relation F ̸⊑ J can be derived by applying rule (7) since K ̸⊑ J and K ⊑ F

are explicitly stored.

Figure 4.1: Example of a granule graph.

4.2 Proposed data structures

We propose a data structure to facilitate the derivation of relations using a subset of

the inference rules outlined in Section 4.1, specifically, implementing all the rules pre-

sented in Table 4.2. Our work achieves complete derivations for g1 ⊑ g2 (subsumption),
d
{g1, g2} = ⊥ (disjoint), and

d
{g1, g2} ≠ ⊥ (not-disjoint), while a partial derivation is

obtained for g1 ̸⊑ g2 (not-subsumption).

The derivation of relations follows a two-step strategy: i) infer subsumption relations

using rule 1, and ii) infer new relations using at least one of the rules 2–8. This two-step

strategy, which stresses the importance of subsumption relations, owes to the fact that

all the rules, except rule 6, have a subsumption relation as a premise. Hence, in Sec-

tion 4.2.1 we propose an efficient implementation for subsumption, and in Section 4.2.2

we describe how to support the other relations.
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For all the algorithms that support the rules we use compact data structures to

represent the different relation graphs (i.e., the graphs that store explicit knowledge

about each relation). To avoid confusion, we denote the graphs representing the rela-

tions subsumption, disjoint, not-disjoint, and not-subsumption as Gsub, Gdis, Gnotdis, and

Gnotsub, respectively. For technical reasons that will be explained later, the identifiers of

the granules in Gsub will be considered as the global identifiers for all the rules. When

alternative representations need to assign new identifiers to the granules, a mapping

from granules in rule 1 and the new identifiers will be explicitly stored and its space

reported as part of the data structure.

4.2.1 Inferring subsumption relations

By representing all the granules and their subsumption relations as a directed graph

Gsub, we can infer a new subsumption relation between granules g1 and g2 (g1 ⊑ g2) by

finding a path that connects them. Classical data structures, such as adjacency lists,

adjacency matrices and edge lists can be used for this purpose. As the main operation

to support the inference rules involves graph traversals, which are implemented more

efficient with adjacency lists, our baseline described in Section 4.3 is based on those.

In practical cases, such as the granularity structure of Figure 2.2, it is common

to explicitly store only relations between granules of consecutive granularities in the

structure. In such cases, the graph Gsub(V,E) corresponds to a tree-like graph, that

is, a graph in which E is not much larger than V . Because the nodes of the same

granularity are disjoint by definition, deviations from a tree can occur only when different

overlapping hierarchies exist, with nodes contained in those overlapping areas. The

fact that this is uncommon can be exploited in order to define more space-efficient

data structures to represent the graphs. We describe next a graph representation that

uses (|E| − |V |) log2 |V |+O(|E|) bits to represent Gsub and, in addition, is optimized to

detect the paths that witness subsumption.

Tree-like graphs Fischer and Peters [50] introduced a succinct data structure to rep-

resent directed tree-like graphs called GLOUDS (Graph Level Order Unary Degree

Sequence). Tree-like means that only a few edges must be removed from the graph to
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turn it into a tree. GLOUDS transforms the tree-like graph into a tree T by traversing

the graph in BFS order. When visiting the edge (u, v), if v was already visited, a copy

v′ of v, called a shadow node, is created and the edge (u, v′) is added to the tree. We

will refer to v′ as a copy of v. The tree is then stored using two compact components:

1. A LOUDS-like representation B of T , in which the main difference with the original

LOUDS is that the children of a node that are shadow nodes are marked with a

symbol 2 instead of a 1 (hence B is no longer a binary sequence).

2. An array H with the identifiers of the shadow nodes in the same order they were

written in B.

This representation supports simple navigational queries, such as computing in-

degree and neighbors in O(1) time per returned vertex, and out-degree in O(1) time in

total. We could use GLOUDS to store Gsub, which would allow us to infer subsumption

relations between granules g1 and g2 by checking ancestorship: g2 ⊑ g1 iff g1 is an

ancestor of g2, or of a copy of some g such that g2 ⊑ g. Note that the ancestorship can

be checked in time proportional to the length of the path between g1 and g2 (or g1 and

g), while the final condition involves recursively verifying subsumption from nodes g.

In order to improve the performance of checking ancestorship, we modify the rep-

resentation of the GLOUDS data structure. Specifically, we change the LOUDS repre-

sentation of T to a balanced parentheses (BP) representation Bo, which allows check-

ing ancestorship in constant time. In BP, nodes are identified by their rank in the DFS

traversal of T that produced the representation. Those ranks will be the global identi-

fiers in the implementations of all the rules. We reach constant time because, in the

BP representation, a subtree rooted at a vertex v is represented as a contiguous range

of parentheses in Bo, which also produces a contiguous range of identifiers. This is a

key characteristic of this approach that will also be exploited in Section 4.2.2, because

for the rest of the rules it is important to be able to obtain the set of granules Sg con-

tained by a given granule g in an efficient way. To check if vertex u is an ancestor of

another vertex v, we only need to determine if the range representing v is contained in

the range representing u. The range representing a vertex can be obtained in constant

time by using the primitives of the balanced parenthesis representation explained in
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Section 2.4.4. Specifically, if the node identifier is g, we find with p = select1(Bo, g)

the position in Bo of its opening parenthesis, and then with q = find close(Bo, p) the

position of its closing parenthesis.

Our adaptation of GLOUDS, referred to as GBP (Graph Balanced Parenthesis),

encompasses the following components, as depicted in Figure 4.2:

1. A bitvector Bo represents T using BP.

2. A second bitvector Bs marks the opening parentheses of Bo that correspond to

shadow nodes.

3. The vector H stores the identifiers of those shadow nodes, now in DFS order

(i.e., their order in Bs).

Implementation of inference rule 1 Algorithm 1 checks if granule g2 subsumes gran-

ule g1. First, if g2 is an ancestor of g1 in T , then g2 subsumes g1 (line 6). If not, we check

if one of the shadow nodes that descend from g2 is an ancestor of g1 (lines 8–14)1.

Otherwise, the rule returns false (line 15). This process is a forward chaining reason-

ing based on the transitivity property of subsumption. All the operations used in the

algorithm take constant time. Hence, the complexity is dominated by the number of re-

cursive calls. This depends linearly on the number of shadow nodes, which is usually

small in practice.

1By definition a node is an ancestor of itself.
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(a) Original graph (b) Tree with shadow nodes

GLOUDS

BLOUDS = 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 2 2 0 2 0 0 0 0 0 0

H = 9 10 13

GBP

Bo = 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0

Bs = 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

H = 9 10 13

(c) GLOUDS and GBP representations

Figure 4.2: Example of a tree-like graph represented with GLOUDS and with GBP.

1 Procedure RULE1(g1,g2)

2 p1 ← select1(Bo, g1)

3 q1 ←
find close(Bo, p1)

4 p2 ← select1(Bo, g2)

5 if p1 ≤ p2 ≤ q1 then

6 return True

7 l← rank1(Bs, g1 − 1)

8 t← rank1(Bo, q1)

9 r ← rank1(Bs, t)

10 foreach i← l + 1 to r

do

11 if rule1(H[i],g2)

then return

True

12

13

Algorithm 1: Algorithm to

infer relation 1.

1 Procedure REACH(g)

2 Q← ∅
3 S ← ∅
4 Q.add(g)

5 while Q is not empty do

6 g′ ← Q.get()

7 p′ ← parent(g′)

8 if p′ is valid then

9 S.add(p′)

10 r ← rankg′(H, |H|)
11 for i← 1 to r do

12 s← selectg′(H, i)

13 v ←
select1(Bs, s)

14 p← parent(v)

15 if p is valid then

16 Q.add(p)

17 S.add(p)

18 return S
Algorithm 2: Algorithm to

compute all granules that

reach g.

1 Procedure REACHED BY(g)

2 Q← ∅
3 S ← ∅
4 Q.add(g)

5 while Q is not empty

do

6 g′ ← Q.get()

7 p1 ← select1(B, g′)

8 q1 ←
find close(B, p1)

9 S.add(⟨p1, q1⟩)
10 lt←

rank1(B, p1−1)
11 l←

rank1(Bs, lt)+1

12 rt← rank1(B, q1)

13 r ← rank1(Bs, rt)

14 for i← l to r do

15 Q.add(select1(Bs, H[i]))

Q.add(select1(Bs, H[i]))

16 return S
Algorithm 3: Algorithm

to compute all granules

reached by g.
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4.2.2 Inferring other relations

As we mentioned above, to support the other three relations (disjoint Gdis, not-disjoint

Gnotdis, and not-subsumption Gnotsub) we will use a two-step algorithm. In the first step,

we use the GBP-based data structure for Gsub defined above to obtain a set of induced

subsumption relations S (obtained using Algorithm 2). For the second step, we will

have as input the set S and a matrix M r, where M r[i][j] indicates that the i-th granule

is related with the j-th granule in relation r, where r = {dis, notdis, notsub}. As an ex-

ample for the disjoint relation, Figure 4.3 shows a graph and its equivalent matrix. We

note that only the explicit relations, not including those that can be inferred, are stored

in these matrices. The identifiers of the nodes in the matrices are those assigned in

the GBP-based representation, where the descendants of a node in the tree defined by

GBP have identifiers in a consecutive range. Hence, the ranges will be used for query-

ing the matrices. We will represent those binary matrices in a way that (1) uses space

proportional to the number of 1s (i.e., of explicit relations to store), and (2) efficiently

supports operation range check(a,a′,b,b′), which returns whether there is a marked

cell in the region delimited by the rows a and a′, and the columns b and b′. Additionally,

we will use a simpler operation check cell(a,b) = range check(a,a,b,b).

Each matrix M r, which presents the graph Gr(V,Er), is of dimensions |V | × |V |
and has |Er| 1s. To store it, we traverse it in row major order, storing the ids of the

columns of each marked cell in a sequence I. The resulting sequence is stored in

a wavelet tree. To group the values of the same row, we use a bit sequence 10d,

where d ≥ 0 is the number of cells marked in such row. The bit sequences of all rows

are concatenated in top-down order and stored in a plain bitmap C with support for

rank/select operations. This representation requires |Er| log |V | bits to store the column

ids plus |Er|+|V |+o(|Er|+|V |) bits to store the bitmap C. Notice that for all the matrices

M r we use the same set V of nodes for all the graphs. The range check(a,a′,b,b′)

operation in the matrix is mapped to range checkI(p1,p2,b,b
′) in the wavelet tree of I,

where p1 = rank0(C, select1(C, a)) + 1 and p2 = rank0(C, select1(C, a
′ + 1))− 1.

An alternative implementation of the matrices is to use the GBP representation

for the edges present in Gdis, Gnotdis and Gnotsub. The space for Gr would then be

(|Er| − |V |) log |V |+ O(|Er|) bits, as described for Gsub, plus |V | log |V | bits to map the
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identifiers from those of Gsub to those of Gr, for a total of |Er| log |V |+O(|Er|) bits. We

can then check the presence of an edge (i.e., a matrix cell) in constant time, but matrix

ranges must be checked element by element.
1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 1 0 0 1 1 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0 0 0 0

3 0 1 0 1 0 1 1 0 1 1 0 0 0

4 0 0 1 0 0 1 1 0 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0 0 0 0 0

6 1 0 1 1 0 0 1 0 0 0 0 0 0

7 0 0 1 1 0 1 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 1 0 0 0 0

9 0 0 1 0 0 0 0 1 0 0 0 0 0

10 0 0 1 0 0 0 0 0 0 0 1 1 0

11 0 0 0 0 0 0 0 0 0 1 0 0 0

12 0 0 0 0 0 0 0 0 0 1 0 0 1

13 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 4.3: Example of the graph and its matrix representation considering the disjoint
relation.

Granules g1 and g2 are disjoint

We first check if there is an edge connecting g1 and g2 in Gdis, which is stored as Mdis.

If so, then g1 and g2 are disjoint. If not, we try to infer the relation using Rule 2.

• Rule 2. This rule states that g1 and g2 are disjoint if there exist granules g′1 and

g′2, such that g1 ⊑ g′1 and g2 ⊑ g′2, and g′1 and g′2 are disjoint. Thus, we compute

in Gsub the sets S1 and S2 of granules that contain g1 and g2, respectively (see

Algorithm 2). Then, for every pair of granules g′1 ∈ S1 and g′2 ∈ S2, we compute

check cell(g′1,g
′
2) in Mdis. If at least one call to check cell() returns true, then

g1 and g2 are disjoint. Note that this strategy directly captures repeated applica-

tions of Rule 2, because it obtains all possible ancestors of both granules and

there is no other way to derive a possible relation between them.
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Granules g1 and g2 are not disjoint

We first check if there is an edge connecting g1 and g2 in Gnotdis. If such an edge exists,

we have that g1 and g2 are not disjoint. Otherwise, we aim to infer it using rules 3, 4

and 5.

• Rule 3. We check if g1 is contained by g2, or vice versa, in Gsub using Rule 1. If

so, then g1 is not disjoint with g2.

• Rule 4. We compute two sets, denoted S1 and S2, comprising all the granules

in Gsub that are subsumed by g1 and g2, respectively. An essential property to

consider here is that, given the representation of Gsub using GBP, the granules

returned are organized into contiguous ranges. The amount of these ranges

corresponds to the number of shadow nodes reachable during a traversal of Gsub

initiated from either g1 or g2, plus one. Notice that this traversal is not actually

performed. Instead, we directly compute the ranges using Algorithm 3. If the

intersection of the sets S1 and S2 is nonempty, then g1 and g2 are not disjoint.

• Rule 5. This rule is implemented in a similar way as Rule 4, but instead of check-

ing the intersection of S1 and S2, we apply the operation range check() in Mnotdis

for each range contained in S1 with each range contained in S2. If the operation

returns true at least once, then g1 and g2 are not disjoint. Note that this verification

accommodates the potential application of Rule 5 multiple times.

It is evident that the strategy proposed for rule 5 entails the adoption of a new

representation of this rule:
d

S{g1,g2}≠⊥S g2⊑Sg3 g1⊑Sg4d
S{g3,g4}≠⊥S

. This method of represent-

ing rule 5 proves advantageous in capturing the concept that both g1 and g2 can

represent a range of granules. The following demonstration establishes the equiv-

alence of this proposal to the original rule 5.

Theorem. Given granules g1, g2, g3, g4

d
S
{g1, g2} ≠ ⊥S g2 ⊑S g3d

S
{g1, g3} ≠ ⊥S

≡
d

S
{g1, g2} ≠ ⊥S g2 ⊑S g3 g1 ⊑S g4d

S
{g3, g4} ≠ ⊥S

Proof. We have to show implications in both directions.
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1. Let us proof that

d
S
{g1, g2} ≠ ⊥S g2 ⊑S g3d

S
{g1, g3} ≠ ⊥S

⇒
d

S
{g1, g2} ≠ ⊥S g2 ⊑S g3 g1 ⊑S g4d

S
{g3, g4} ≠ ⊥S

Assume that
d

S{g1,g2}≠⊥S g2⊑Sg3d
S{g1,g3}≠⊥S

is true but
d

S{g1,g2}≠⊥S g2⊑Sg3 g1⊑Sg4d
S{g3,g4}≠⊥S

is false.

To have that
d

S{g1,g2}≠⊥S g2⊑Sg3 g1⊑Sg4d
S{g3,g4}̸=⊥S

is false, then
d

S
{g1, g2} ≠ ⊥S g2 ⊑S

g3 g1 ⊑S g4 should be true but
d

S
{g3, g4} ̸= ⊥S false. Make g1 = g4, then

we have
d

S
{g1, g2} ̸= ⊥S g2 ⊑S g3 g1 ⊑S g1 and we should have that

d
S
{g3, g1} ≠ ⊥S is false. Since

d
S
{g3, g1} ≠ ⊥S is true because we start

with
d

S{g1,g2}≠⊥S g2⊑Sg3d
S{g1,g3}≠⊥S

being true, we reach a contradiction.

2. In the other direction

d
S
{g1, g2} ≠ ⊥S g2 ⊑S g3 g1 ⊑S g4d

S
{g3, g4} ≠ ⊥S

⇒
d

S
{g1, g2} ≠ ⊥S g2 ⊑S g3d

S
{g1, g3} ≠ ⊥S

This trivially proved by making again g1 = g4 and g1 ⊑S g1.

With the above, we can conclude that both representations of the rule are equiva-

lent. Note that the proposed strategy presents us with an iterative way of deriving

the rule, without incurring in recurrence or the need to combine with other rules to

derive
d

S
{g1, g2} ≠ ⊥S. This can be viewed simply as follows: If

d
S
{g1, g2} ≠ ⊥S

could be derived through another relation, the only alternative is through rules 3

or 4, and therefore:

– If derived through rule 3: this means that g1 ⊑S g2, therefore, by using rule

3, we would also derive directly
d

S
{g3, g4} ≠ ⊥S.

– If derived through rule 4: this means that there exists a granule gx such that

gx ⊑S g1 and gx ⊑S g2, therefore, by using rule 4, we would also derive

directly
d

S
{g3, g4} ≠ ⊥S.

Granule g1 does not contain granule g2

Unlike for previous relations, we cannot guarantee completeness for not-subsumption,

as explained in Section 4.1. Still, we provide here partial strategies for its derivation.
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We first check if there is an edge connecting g1 and g2 in Gnotsub. If so, then we conclude

that g1 does not contain g2. Otherwise, we aim to infer the relation using rules 6, 7 and

8.

• Rule 6. The verification of this rule is straightforward: If there is an edge connect-

ing g1 and g2 in Gdis, or if by applying the rules for deriving disjoint between g1 and

g2 we conclude that
d
{g1, g2} = ⊥, then g1 does not contain g2, and vice versa.

• Rules 7 and 8. For rule 7, we compute the set S1 of all the granules in Gsub that

contain g1 (see Algorithm 2), and check if there is an edge (g2, g
′
1) in Gnotsub for

every granule g′1 ∈ S1, if this is true, we derive the relation g2 ̸⊑ g1. For rule 8, we

compute the set S2 of all the granules in Gsub reachable from g2 (see Algorithm 3),

and check if there is an edge (g′2, g1) in Gnotsub for some granule g′2 ∈ S2, if this is

true, we derive the relation g2 ̸⊑ g1. We implement the verification of these two

rules in the same procedure: we first compute S1 and S2 as previously described.

Then, we check if there is an edge (g′2, g
′
1) in Gnotsub for some pair of granules

g′1 ∈ S1 and g′2 ∈ S2. To implement this more efficiently, we use the operation

range check() in Gnotsub for each granule in S1 with each range in S2.

Axioms

Given the characteristics of the axioms, no strategy is necessary for their implementa-

tion; their verification is straightforward.

4.3 Experimental evaluation

4.3.1 Implementation details

In this section we provide some practical details about the different implementations.

All of them, except the baseline, were implemented using the Succinct Data Structures

Library (SDSL) [61].

Baseline. We compared our data structures with a baseline representation consisting

of four adjacency lists, storing direct and inverse relations, one for each relation of
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subsumption, disjoint, and their respective negations. To compute all the granules

reached by a granule g and all the granules that reach g, standard graph traversals

algorithms are performed. An alternative baseline would be to store explicitly all the

axioms and the induced relations, but this alternative would potentially store up to n2

relations, which is not feasible. For instance, for the dataset 7 of Section 4.3.3, the

space of this alternative reaches about 16.8GB only for the subsumption relation, while

our solution GBP+Matrix uses 902.9MB for the four relations.

GLOUDS-based data structures. We implemented two versions of the GLOUDS-

based variant. The first version, called GLOUDS, implements the original idea of Fis-

cher and Peters [50], using wavelet trees to store both the LOUDS representation of

the tree-like graph and H, the ids of the shadow nodes. The inference rules were

implemented using the ideas presented in Sections 4.2.1 and 4.2.2, adapting the Algo-

rithms 2 and 3 to use the LOUDS representation.

For the variant that uses a balanced parenthesis representation instead of LOUDS,

called GBP, we used the implementation of the compact tree of Navarro and Sadakane

[106] to store Bo, a plain bitmap to store Bs, and a wavelet tree to store H. We tested

three variants of GBP, varying only in how the IDs of each granule are stored in H: i) A

first variant storing the original IDs directly in a wavelet tree; ii) a second variant, where

the identifiers stored in H are previously mapped to a contiguous range, using an extra

bitmap Hm for the mapping between the original IDs and the contiguous identifiers;

and iii) a third variant, using the same strategy as variant ii) but using a compressed

bitmap [110] to represent Hm. Additionally, we included an extra plain bitmap Bopen

to mark the non-shadow nodes of GBP. Technically, this bitmap is redundant (rank

and select on this bitmap can be simulated by using rank and select over the other

components of the structure), but we decided to include it since we obtained slightly

better running times, at the cost of negligible extra space.

A granule can have different identifiers in the graphs representing the different rela-

tions and in the datasets. In particular, structures to support the mapping from identi-

fiers in a dataset to its corresponding Gsub, supporting direct and inverse mapping, and
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from graph Gsub to the others, supporting direct mapping, are needed. In our implemen-

tation, the direct and inverse mapping were implemented using compact permutations

of the SDSL library.

In addition, a change from the strategy presented in the previous section to verify

inference rule 1 was introduced. The strategy outlined above was based on obtaining

a set S of ranges of granules contained by a given granule g, and then checking if the

queried granule g′ was contained in the set S trough the range check() operation. This

strategy is not affected by the height of potentially high hierarchies. However, in prac-

tice, it is faster to follow a strategy based on obtaining the ancestors of a granule, since

the tested datasets have relatively low height. We adapted Algorithm 2 accordingly.

Matrices. The matrices were implemented verbatim to the description in Section 4.2.2.

We refer to the implementation of GBP complemented with the matrices as GBP+Matrix.

Note that this representation uses a GBP for the relation subsumption and one addi-

tional matrix for each of the other three relations. The alternative representation that

uses a GBP for each relation is referred to as GBP.

Intersection of sets. For the strategy described in Section 4.2.2, specifically for in-

ference rule 4, the final step consists in checking out if there is an intersection between

two sets S1 and S2, obtained in previous steps. Remember that each element of the

sets represents a range of values, stored as a pair. The intersection algorithm works

in two steps: i) Sort both sets S1 and S2, based on the first element of each pair, and

then ii) traverse both sorted sets from smallest to largest values. When visiting the i-th

range of S1 and j-th range of S2, we check if they intersect or not. After that, the range

with the lowest closing value is replaced by the next range in the respective set. Step ii)

is repeated until the final range in one of the sets is reached. The temporal complexity

is O(|S1| log |S1|+ |S2| log |S2|) for the first step, and O(|S1|+ |S2|) for the second, where

|S| represents the cardinality of the set S. No extra space is required.
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4.3.2 Experimental setup

We run all the experiments on a computer with an Intel Xeon Gold (5320T) processor,

clocked at 2.3 GHz; 252 GB DDR4 RAM memory, with speed 3,200 MT/s; 40 physical

cores each one with L1i and L1d caches (32 KB and 48 KB, respectively), and L2

cache (1,280 KB); and a shared L3 cache of size 30 MB. The operating system is

Linux 5.10.0-13-amd64 (Debian 10.2.1-6), in 64-bit mode. All the evaluated algorithms

were implemented in C++ and compiled with GCC version 10.2.1 and -O3 optimization

flag.

4.3.3 Datasets

The datasets used for the evaluation of the implemented algorithms can be classified

into two categories: i) Synthetic datasets, generated in order to evaluate the behavior

of the implementations in scenarios with different characteristics, and ii) Real datasets,

used to evaluate the algorithms in a real world instance.

Synthetic datasets

We have developed a multigranular instance generator that allows us to manipulate

various characteristics of the generated datasets. This enables us to assess the per-

formance of different approaches across a spectrum of scenarios, ranging from favor-

able to unfavorable configurations. The generator takes input parameters including a

description of the granularity graph, the number of granules in each granularity, and

the count of subsumption relations between granularities. Notably, the input descrip-

tion includes subsumption relations between granularities as well as counts of non-

subsumption, disjoint, and non-disjoint relations. Utilizing this information, the genera-

tor constructs a multigranular instance, represented in the form of four graphs (one for

each relation). It is important to note that the generator does not guarantee minimal

information in the generated instances, as it may produce relations that could also be

inferred using inference rules.

Taking the granularity structures from Figure 4.4 as input, we utilized the instance

generator to compute nine synthetic instances – three for each granularity structure.
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(a) Multigranular structure I (b) Multigranular structure II (c) Multigranular struc-
ture III

Figure 4.4: Granularity structures used in the generation of the synthetic datasets.

We varied the number of granules per granularity and the number of not subsumption,

disjoint, and not disjoint relations. Table 4.3 summarizes the characteristics of each

generated instance, where Granules refers to the number of granules in the instance,

Subsumption Edges to the number of relations in the subsumption graph obtained from

the dataset, and Other Relations to the amount of not subsumption, disjoint and not

disjoint relations (the same amount for the 3 relations).

The Multigranular Structure I (Figure 4.4(a)) represents an instance where the sub-

sumption graphs obtained from it will have a large number of cycles, which is not fa-

vorable for the implementations based on compact data structures. The subsumption

graphs obtained from Multigranular Structure II (Figure 4.4(b)), instead, will have a

low number of cycles, which is favorable for the implementations based on compact

data structures. Finally, the Multigranular Structure III (Figure 4.4(c)) represents an

instance where the generated subsumption trees will have a larger height than in pre-

vious cases, which is unfavorable for the baseline.
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Structure Dataset Granules Subsumption Edges Other Relations

Multigranular
Structure I

1 7,742,101 10,962,100 300,000
4 77,421,001 109,621,000 300,000
7 77,421,001 109,621,000 30,000,000

Multigranular
Structure II

2 5,723,001 7,723,000 30,000
5 57,230,001 77,230,000 30,000
8 57,230,001 77,230,000 3,000,000

Multigranular
Structure III

3 2,968,721 2,989,840 30,000
6 5,937,441 5,979,680 30,000
9 19,739,201 19,823,680 3,000,000

Table 4.3: Characteristics of the generated synthetic datasets.

Real-world dataset

A real-world dataset was obtained to evaluate all the structures in practical scenarios.

This dataset is based on the TIGER dataset,2 provided by the U.S. Census Bureau,

which corresponds to geographic and cartographic data of the administrative divisions

in the United States. For this study, we computed relations between each possible

pair of granules based on their geometry. From these obtained relations, a subset was

selected for analysis. The dataset comprises a total of 11,555,150 granules, 11,705,035

subsumption relations and 691,350 other relations. Figure 4.5 illustrates the granularity

structure of this dataset, while Table 4.4 presents the distribution of granules for each

granularity.

Figure 4.5: Granularity structure of the real-world dataset.

2TIGER dataset, version 2019. https://www2.census.gov/geo/tiger/TIGER2019/

https://www2.census.gov/geo/tiger/TIGER2019/
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Granularity Granules Granularity Granules

Census blocks 11,166,336 County subdivisions 36,693
Block groups 220,740 Places 29,853
Census tracts 74,133 Unified school districts 10,887
Counties 3,233 Public Use microdata area 2,380
States 56 State legislative districts 4,833

lower
Congressional 444 State legislative district 1,961
districts upper
Urban areas 3,601 Country 1

Table 4.4: Number of granules for each granularity in the real-world dataset.

4.3.4 Results and discussion

Execution time

Based on the implementations described in Section 4.2, and using the datasets de-

scribed above, we conducted two experimental evaluations to measure the perfor-

mance of the implementations on various multigranular instances: a) A first experi-

mental evaluation, in which the assessment is made at the rule level. This analysis

offers a more detailed perspective and provides comprehensive information about the

performance of different strategies across all the datasets. b) A second experimental

evaluation, where the assessment is performed at the relation level, as certain relations

require checking multiple rules. This experiment, presented only on the real dataset,

provides us with an overview of the behavior of the implementations in deriving each

relation.

To carry out both experimental evaluations, a total of 10,000 queries were per-

formed. For each executed query, two granules were randomly selected, with the only

restriction that both granules could not belong to the same granularity. Each executed

operation was repeated 10 times, leaving the first repetition for cache warming and

reporting the average of the last nine. Regarding the GBP-based implementations,

only the variant with the best average performance for each dataset is shown. Algo-

rithms 4, 5, 6 and 7 show the strategy used in the second experimentation to derive

the four possible relations. Table 4.5 shows the best performing variant for GBP and

GBP+Matrix.
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Datasets

1 2 3 4 5 6 7 8 9 Real-world

GBP no no no no compressed no no no compressed plain
mapping mapping mapping mapping bitmap mapping mapping mapping bitmap bitmap

GBP+Matrix
no plain plain compressed plain plain no compressed compressed plain

mapping bitmap bitmap bitmap bitmap bitmap mapping bitmap bitmap bitmap

Table 4.5: Summary of the best-performing variants for GBP and GBP+Matrix. No
mapping represents the variant that does not map the identifiers of H to a contiguous
range, plain bitmap represents the variant that maps to a contiguous range using a
plain bitmap, while compressed bitmap uses a compressed bitmap for the mapping.

1 Procedure

SUBREL(g1,g2)

2 return RULE1(g1,g2)

3

Algorithm 4: Infer

subsumption relation

between g1 and g2.

1 Procedure DISREL(g1,g2)

2 return RULE2(g1,g2))

3

Algorithm 5: Infer Dis-

joint relation between g1

and g2.

1 Procedure NOTDISREL(g)

2 if RULE1(g1,g2) then

3 return TRUE

4 if RULE4(g1,g2) then

5 return TRUE

6 if RULE5(g1,g2) then

7 return TRUE

8 return FALSE
Algorithm 6: Infer Not-

disjoint relation between g1

and g2.

1 Procedure NOTSUBREL(g)

2 if RULE2(g1,g2) then

3 return TRUE

4 if RULE7 8(g1,g2) then

5 return TRUE

6 return FALSE
Algorithm 7: Infer Not-

subsumption relation be-

tween g1 and g2.

Table 4.6 shows the average query time of executing the evaluated inference rules.

We omit rules 3 and 6 because, as it was explained in Section 4.2, their implementation

is straightforward using either rule 1 or the information explicitly stored. For each multi-

granular structure, we show only the results of the largest dataset as, in general, there

are no significant differences with the other datasets in the behavior of the algorithms.

When necessary, we explicitly mention other datasets to highlight some differences.

In general, the GBP+Matrix structure is the one that provides the best query times.

Although GLOUDS is highly competitive for rule 1, which forms the foundation for the

others, its use in the remaining rules is clearly surpassed by other alternatives. Next,

a more detailed analysis with graphs is presented for each of the evaluated rules. In
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these box and whisker plots, the solid orange lines and the dashed green lines repre-

sent the median and the average of the 10,000 queries executed for each operation on

each dataset, respectively.

Implementation Rule 1 Rule 2 Rule 4 Rule 5 Rule 7–8

1

Baseline 0.080 0.093 109.447 110.237 64.327
GLOUDS 0.004 0.418 498.780 677.693 269.359
GBP 0.010 0.843 19.347 132.677 14.818
GBP+Matrix 0.051 0.010 1.544 3.019 0.868

2

Baseline 0.033 0.060 88.517 89.201 66.301
GLOUDS 0.001 0.129 382.118 565.223 268.735
GBP 0.003 0.180 19.980 111.255 16.996
GBP+Matrix 0.002 0.005 2.581 2.756 1.871

3

Baseline 0.015 0.026 28.745 29.143 15.910
GLOUDS 0.003 0.065 108.523 146.766 55.975
GBP 0.006 0.114 1.473 28.426 1.340
GBP+Matrix 0.002 0.008 0.301 0.322 0.191

4

Baseline 1.536 1.005 924.500 935.604 558.991
GLOUDS 0.006 1.211 4,440.620 7,203.446 2,402.746
GBP 0.013 1.612 183.484 1,425.052 129.811
GBP+Matrix 0.005 0.010 28.732 29.891 16.320

5

Baseline 1.810 0.658 881.351 876.708 455.990
GLOUDS 0.001 0.317 3,834.380 5,803.235 1,932.735
GBP 0.002 0.371 287.755 1,546.167 157.213
GBP+Matrix 0.002 0.005 27.553 29.035 13.832

6

Baseline 0.035 0.055 61.340 61.538 36.181
GLOUDS 0.003 0.088 238.832 365.719 134.817
GBP 0.006 0.131 3.367 84.028 3.020
GBP+Matrix 0.002 0.008 0.622 0.881 0.381

7

Baseline 0.593 1.827 946,395.831 985,031.864 504,671.148
GLOUDS 0.012 34.241 4,492,048.734 8,734,626.647 2,469,116.228
GBP 0.017 125.174 185,807.011 2,650,916.996 919,867.408
GBP+Matrix 0.051 0.026 13,505.470 19,021.349 7,620.357

8

Baseline 2.232 3.393 699,895.857 706,570.169 410,272.566
GLOUDS 0.004 9.994 3,414,470.570 5,312,987.940 2,818,667.450
GBP 0.002 23.453 164,676.120 1,262,852.952 178,314.425
GBP+Matrix 0.002 0.007 22,801.088 400,027.292 12,800.239

9

Baseline 0.122 0.278 177,104.284 178,217.012 104,075.019
GLOUDS 0.008 2.228 1.157,154.270 1,773,641.919 568,361.203
GBP 0.008 4.265 9,555.768 173,426.880 59,694.149
GBP+Matrix 0.002 0.009 1,471.840 3,072.575 827.238

Real-world

Baseline 0.706 0.784 168,944.355 169,866.044 78,652.403
GLOUDS 0.002 1.529 789,767.128 1,237,133.055 319,982.573
GBP 0.003 5.083 12,133.495 349,513.661 25,323.073
GBP+Matrix 0.001 0.003 670.821 1,623.978 330.210

Table 4.6: Average query times, in ms.

Figure 4.6 presents the results for inference rule 1. For this rule there is no clear

winner, as can be seen in Table 4.6, the differences in the performance of GLOUDS

versus GBP-based structures are not conclusive. This may be partially explained by
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(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 4.6: Running time in milliseconds for the inference rule 1.

(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 4.7: Running time in milliseconds for the inference rule 2.

(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 4.8: Running time in milliseconds for the inference rule 4.
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(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 4.9: Running time in milliseconds for the inference rule 5.

(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 4.10: Running time in milliseconds for the inference rule 7-8.

(a) Subsumption relation (b) Disjoint relation (c) Not-disjoint relation (d) Not-subsumption rela-
tion

Figure 4.11: Running time in milliseconds for the experimental evaluation at the relation
level on the Real-world dataset.
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the fact that, in the datasets, the height of the granularities is negligible compared to

the amount of granules per instance. Thus, GLOUDS, whose performance is directly

dependent on the height, exhibits a similar behavior to GBP-based alternatives, which

do not depend on the height of the instances.

In addition, as we will see in the results for the following rules, GBP and GBP+Matrix

yield better results when the computation of ranges of consecutive identifiers is com-

bined with the other rules. Notice also that the poor performance of the baseline is

mainly due to the large number of cache misses produced at the time of obtaining the

ancestors of a granule, by following the reverse references from children to parents

(which are explicitly stored). This can be concluded by analyzing the smaller datasets,

in which, although the baseline presents worse performance than the other implemen-

tations, the differences are smaller. Finally, no significant changes are perceived in the

behavior of the structures when confronted with multigranular structures with different

complexities.

Figure 4.7 presents the results for inference rule 2. In general, GBP+Matrix

presents better running times than the rest of the implementations. This is because, in

comparison with GLOUDS and GBP, the use of matrices accelerates the verification of

the existence of a relation other than subsumption. Remember that in GBP+Matrix,

the identifiers used in the matrices are the same used in the GBP representation of

Gsub, therefore, no mapping is needed, while for GLOUDS and GBP a mapping is

mandatory. When considering the mean of the reported query times, GLOUDS outper-

forms GBP for all the evaluated instances. This is primarily due to the main difference

between both implementations for this inference rule, which lies in the way of obtaining

the ancestors of a node. This operation is faster in GLOUDS. It is worth noting that, de-

spite this, GBP has a better median than GLOUDS in most of the datasets, except for

dataset 8, which suggests that, in general, it has a higher number of favorable cases.

Figure 4.8 displays the results for inference rule 4. In this case, GLOUDS exhibits

the highest variance, with the lowest and highest query times observed. This variance

contributes to GLOUDS having the worst average performance among the evaluated

approaches. On the other hand, GBP+Matrix achieves the best average query time,

despite being slower for favorable queries due to the overhead involved to support



69

range operations over the matrix in the cases of nodes without descendants or with

only one descendant. However, this approach ensures a low query time for unfavorable

cases. GBP performs better than GLOUDS in terms of average query time but has a

worse median for datasets 7 and 8. This highlights an advantage of the GBP variants,

which may be slightly slower for favorable cases due to the extra mappings between

bitmaps (Bo and Bs) but perform better overall, even in the worst-case scenarios. All

evaluated implementations exhibit consistent trends regardless of the dataset being

evaluated.

Figure 4.9 displays the results for inference rule 5. The behavior observed for this

rule is similar to that of inference rule 4. It leads, however, to an increase in response

time for GLOUDS and GBP in their unfavorable cases, with GBP becoming slower than

the baseline in its worst cases. GBP+Matrix also increments its query time in worst-

case, but remains the implementation with the best average for all datasets and better

median for the dataset 9 and the real-word dataset.

Figure 4.10 illustrates the outcomes for inference rules 7-8. In this context, akin

to the scenario concerning rule 4, it is observed that GLOUDS exhibits the highest

variance, with the lowest and highest query times observed. GBP+Matrix, on the

other hand, achieves the best average and median query times. Notably, GBP+Matrix

performs significantly better on average than the other implementations in datasets

based on Multigranular Structure III, consistently delivering the best query times for

all evaluated queries (including the most favorable and the most unfavorable). This is

because Multigranular Structure III is taller than the others and produces a moderate

number of shadow nodes, making it a favorable scenario for GBP+Matrix.

Finally, Figure 4.11 displays the result for the second experimental evaluation car-

ried out at the relation level on the Real-world dataset. For subsumption and disjoint

relations, the same behavior as described above for their individual rules is presented.

For the not-disjoint relation it can be seen how GBP+Matrix shows the best perfor-

mance both on average, median, and for the worst cases. In the case of the not-

subsumption relation, it can be seen that GBP+Matrix presents better performance

for both the worst case and on average than the rest of the implementations, even
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Datasets

Implementations 1 2 3 4 5 6 7 8 9 Real-world

Baseline 709.4 519.8 261.6 7,073.0 5,196.5 523.0 7,308.2 5,220.1 1,761.4 1,031.3
GLOUDS 132.0 92.2 40.5 1,504.7 986.2 83.6 1,541.7 1,048.1 304.1 176.6
GBP 152.6 108.2 49.9 1,690.3 1,148.1 102.5 1,712.9 1,194.0 363.7 215.9
GBP + Matrix 57.6 40.5 15.0 630.0 431.9 30.3 902.9 456.8 126.4 72.8

Table 4.7: Total space used for each data structure, in MB.

so, it presents a worse median than the rest, which shows that, in general, for favor-

able queries it tends to be slower than other implementations. It is also worth noting

that, although GBP has a worse average performance than GBP+Matrix, it exhibits

a better median and ranks as the second-best performing implementation concerning

unfavorable cases.

Space usage

Table 4.7 shows the total space used by each implementation for each dataset. In

all of them, the baseline occupies considerable more space than the others, while

GBP+Matrix is the one that uses the least space. GBP uses, in general, more space

than GLOUDS (close to 20% extra in the worst cases), because it needs additional

bitmaps to distinguish the shadow nodes.

Figure 4.12 provides a detailed view of the space occupied by the main compo-

nents for the largest datasets. As it can be observed, the primary distinction between

GBP+Matrix and the GBP and GLOUDS implementations is that it occupies less

space to represent permutations. This is because it stores a single permutation to map

identifiers from the input dataset to Gsub, compared to storing four permutations to map

from the input to Gsub and from Gsub to the other relations.
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(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 4.12: Detailed analysis of the space used by each approach.



Chapter 5

Compact Representations of Spatial Hierarchical Structures

The work in this chapter proposes new data structures to implement a topological

model in spatial database systems that represents and accesses data organized as

a hierarchical structure of regions defined by the inclusion relation (spatial version of

the subsumption relationship presented in the previous chapter) . Our approach differs

from classical indexing structures that optimize spatial queries [69, 123, 70], which are

specially designed to answer spatial range queries that return objects that are inside

of a specific region given as the input of the query.

The work in [55] showed how to implement the topological spatial data model us-

ing a planar-graph compact structure, which is based on Turán’s representation [130]

(structure a.k.a. PEMB). We extended their work by adding extensions to answer the

topological relations of disjointness, inclusion, and adjacency at different levels of de-

tail, which are useful in the context of spatial partitions such as administrative subdivi-

sion of the space. Note that this approach restricts our results to the two-dimensional

space. Table 5.1 shows notation to be taken into account for the remainder of the chap-

ter ,while Table 5.2 shows as a summary the execution time and space used for each

approach.

The organization of this chapter is as follows: It begins by presenting the the 3

approaches developed in Section 5.1 to support the hierarchical information and the

algorithm develop for each approach, after that, a general strategy (valid in any of the

3 described approaches) is presented in Section 5.4 for the support of disconnected

regions. Finally, the experimental evaluation performed is presented in Section 5.5.

72
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R Partition into top-level regions
h Number of levels in the hierarchy, 1 to h
Li Set of regions of level i, L1 corresponds to R
ni Number of regions at level i, ni = |Li|
mi Number of pairs of neighboring regions of level i, mi = Θ(ni)
dr Number of neighbors of region r at its same level
n Total regions of all levels, n =

∑h
i=1 ni

m Total neighboring pairs at all levels, m =
∑h

i=1 mi = Θ(n)
Si Representation of the planar embedding of level i

Table 5.1: Notations.

Operation Complexities
Approach 1 Approach 2 Approach 3

contains(r1, r2) O(1) O(log n log h) O(1)
touches(r1, r2) O(min(dr1 , dr2)) O(min(dr1 , dr2) log n log h) O(min(dr1 , dr2))
contained(Lj , r1) O(1) O(log n log h) O(1)

Space in bits O(n lg h) + o(hnh) O(n lg h) O(n log n)
Space w/exponential growing O(n) O(n) O(n log n)

Table 5.2: Multi-granular operations considered in this article, where r1 and r2 are
regions at levels i ≤ j, respectively, and dr1 and dr2 are their respective number of
neighboring regions. The complexity of the contained query is per returned element.
We present three solutions (one per column) with different complexities.

5.1 Approaches developed

5.1.1 Approach 1: Mapping via bitmaps

Instead of building PEMB independently for each planar embedding of the collection, we

proposed an approach to synchronize the construction of the compact representation

of the embeddings, which allows to implicitly encode the mapping among consecutive

granularity levels in less space. The synchronization is made by the spanning trees of

the different aggregation levels. In Section 5.1.3 we present an algorithm to compute

a spanning tree at level h, from which we can induce valid spanning trees for the other

aggregation levels as follows (we prove later than this construction is correct).

Definition 1. Given a spanning tree T of the planar embedding of Lh, we induce span-

ning trees for the planar embeddings of L1, L2, . . . , Lh−1 using the following rules:
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• Let (u, v) be an edge of T , and let ui and vi be the regions containing regions u

and v at level Li, respectively. Then, the edge (ui, vi) belongs to the spanning

tree of level Li.

• Multiple edges and self-loops are deleted.

Figure 2.8 shows an example of spanning trees following Definition 1. From the

spanning tree of Figure 2.8(a) we can induce the spanning trees of Figures 2.8(b) and

2.8(c).

5.1.2 Structure

Each granularity level Li is stored in two components (see Figure 5.1): 1) The planar

graph embedding is stored using PEMB, generating a sequence Si of parentheses and

brackets, where parentheses represent the spanning tree of the planar embedding and

brackets represent the edges not in the spanning tree. In Section 5.1.3, we show how

to construct the sequence Si. The space consumption for the h granularity levels is

4
∑h

i=1 mi + o(
∑h

i=1mi) = 4m + o(m) bits; 2) The mapping among granularity levels

is stored as a bitmap Bi of length 2nh with support for rank and select operations.

Following Definition 1, the edges of the spanning tree of Li, induced from the spanning

tree of Lh, are marked in the bitmap Bi. Precisely, let e be an edge of the spanning

tree of Li, then we set Bi[p] = 1 and Bi[q] = 1, where p and q are the positions in Sh of

the opening and closing parentheses of the edge in Lh that induced e. Notice that for

level h we do not need to store a bitmap Bh. Since Bi has only 2ni 1s, its compressed

representation requires 2ni log
nh

ni
+O(ni) + o(nh) bits.

Overall, the space of this representation is 4m + o(m) + 2
∑

i ni log
nh

ni
+ O(n) +

o(hnh) = 2
∑

i ni log
nh

ni
+O(n)+o(hnh) bits. Since lg nh

ni
≤ lg n

ni
and, by Jensen’s inequal-

ity,
∑

i ni lg
n
ni
≤ n lg h, the total space is in O(n lg h) + o(hnh) bits. Further, the space

is O(n) under the exponential growing assumption: since ni ≤ nh/c
h−i,

∑
i ni lg

nh

ni
≤∑

i nh(h− i)/ch−i · log c = O(nh). In turn, the o(hnh) term can be O(hnh/ lg nh) = O(nh)

[113].
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S3 =

S2 =

B2 = 101010110110100001011010000001100101010001

S1 =

B1 = 100000100000000000000000000001000000000001

Figure 5.1: Compact representation of the geographic division of Figure 2.8.

5.1.3 Construction

The compact representation is built by performing a DFS traversal on the planar graph

of the highest granularity level, h. During the traversal, when we mark a vertex as

visited, we also mark as visited the h − 1 regions that contain it in coarser granularity

levels. Thus, an edge (u, v) is traversed when the target vertex v has not been visited

before and one of the following conditions holds: a) u and v are contained by the same

region at level h − 1; b) at least one of the regions containing vertex v has not been

visited before. Algorithm 8 shows the strategy previously described.

In the traversal, each edge of the planar embedding of Lh is processed twice1 and

only the edges of the spanning tree are traversed. Let us focus on the generation of

Si and Bi, where, by default, all values of Bi are 0s. Assume that we are processing

the j-th edge e = (r1, r2) of Lh, where regions r′1 ̸= r′2 contain regions r1 and r2 at

level i, respectively. The following conditions are checked (function CHECKEDGE(e) in

algorithm 8):

1. If it is the first time that e is processed and the edge (r′1, r
′
2) belongs to the span-

ning tree of level i, then Bi[j] = 1 and a symbol ‘(’ is appended to Si.

2. If it is the first time that e is processed and the edge (r′1, r
′
2) does not belong to

the spanning tree of level i, then a symbol ‘[’ is appended to Si.

1We assume that the input graph is undirected, and hence each edge is processed twice.



76

Input : Planar graph embedding G at the highest level Lh, with n vertices and m edges, the
hierarchy relations among regions, and the starting vertex s

Output: Parentheses sequence Sh and the bitmaps Bi∈[1..h−1].

1 Algorithm TRAVERSALDFS(G, s)
2 m′ ← number of regions across all granularity levels
3 Stack O, Stack E
4 visitedvertex[1..n] // default value no visited
5 visitededge[1..m] // default value no traversed
6 visitedreg[1..m

′] // default value no visited
7 entry edgeh−1 // Map for each level different to h, default value 0
8 foreach incident edge e of s, in cw order do O.push(e)
9 while Stack O is not empty do

10 e← O.top(); O.pop()
11 if CHECKEDGE(e) = 1 then
12 Append ‘(’ to Sh, E.push(e)
13 visitededge[e]← traversed()
14 visitedvertex[e.src]← visited
15 foreach incident edge e′ of e.tgt in cw order do
16 O.push(e′)
17 foreach granularity level l do

// l From 0 to h− 1
18 p← GETREGION(l, e.src)
19 q ← GETREGION(l, e.tgt )
20 if visitedreg[q] = no visited AND p ̸= q then
21 Append ‘(’ to Sl

22 FIRSTVISIT(e, l)
23 Bl[i]← 1

24 i← i+ 1// Initially, i← 0

25 else if CHECKEDGE(e) = 2 then
26 Append ‘[’ to Sh

27 visitededge[e]← traversed[]
28 foreach granularity level l do
29 p← GETREGION(l, e.src)
30 q ← GETREGION(l, e.tgt )
31 if entry edgel[p, q] = 0 AND p ̸= q then
32 Append ‘[’ to Sl

33 FIRSTVISIT(e, l)
34 else if CHECKEDGE(e) = 3 then
35 Append ‘)’ to Sh

36 foreach granularity level l do
37 p′ ← GETREGION(l+1, e.src)
38 q′ ← GETREGION(l+1, e.tgt )
39 if entry edgel[q, p] = 1 then
40 Append ‘)’ to Sl

41 Bl[i]← 1

42 i← i+ 1

43 else if CHECKEDGE(e) = 4 then
44 Append ‘]’ to Sh

45 foreach granularity level l do
46 p′ ← GETREGION(l+1, e.src)
47 q′ ← GETREGION(l+1, e.tgt )
48 if entry edgel[q, p] = 1 then
49 Append ‘]’ to Sl

50 return S
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51 Procedure CHECKEDGE(e)
52 if visitededge[e] = traversed() then return 3
53 else if visitededge[e] = traversed[] then return 4
54 else if visitedvertex[e.src] = visited then return 2
55 else if visitedvertex[e.src] = no visited AND CHECKLEVELS(e) = False then return 2
56 else return 1
57 Procedure CHECKLEVELS(e)
58 foreach Granularity level l from h to 1 do
59 r1 ← GETREGION(l, e.src)
60 r2 ← GETREGION(l, e.tgt )
61 if r1 = r2 then return True
62 else if visitedreg[r2] = visited then return False
63 return True
64 Procedure FIRSTVISIT(e, l )
65 q ← GETREGION(l, e.tgt )
66 p′ ← GETREGION(l+1, e.src)
67 q′ ← GETREGION(l+1, e.tgt )
68 visitedreg[q]← visited
69 entry edgel[p

′, q′]← 1

Algorithm 8: Construction algorithm. For an edge e, its endpoints are referred as
e.src and e.tgt. The function GETREGION(l, v) returns the vertex containing v at
level l.

3. If it is the second time that e is processed and the edge (r′1, r
′
2) belongs to the

spanning tree of level i, then Bi[j] = 1 and a symbol ‘)’ is appended to Si.

4. Finally, if it is the second time that e is processed and the edge (r′1, r
′
2) does not

belong to the spanning tree of level i, then a symbol ‘]’ is appended to Si.

Observe that Bi[j] = 1 indicates that we are entering to or exiting from a region at

granularity level i, depending on whether it is the first or second time that such edge

has been processed. In particular, exiting from a region means that all its regions

contained at finer granularity levels have been processed.

By using an auxiliary bitmap to mark the processed edges at each i < h, all se-

quences Si and bitmaps Bi can be computed at the same time during the traversal,

obtaining a final time complexity of O(nh + hmh) ⊆ O(hn), dominated by the at most h

comparisons per edge. We now prove the correctness of the construction algorithm.

Lemma 1. The algorithm described above computes a valid spanning tree.

Proof. We show by contradiction that there are no cycles and that all regions of Lh

belong to the produced subgraph. On the one hand, a cycle means that during the
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construction an edge (u, v), where both u and v and/or their containing regions are

marked as visited, was added to the set. However, that contradicts the rule that only

edges leading to a non-visited target regions are added at any level i. Therefore, the

produced subgraph is acyclic.

Note that, when we leave a region by an edge to another, we do not reenter the

region, to avoid cycles. We resume the traversal of the region only once we return from

the outgoing edge. This makes the traversal of a region reach all of its nodes, exactly

as if the outgoing edges were ignored. This is the key to show that all the regions are

reached by the tree, which makes it a spanning tree. Assume the opposite, and let r be

a region that is not reached and that touches a reached region r′. Such a region must

exist because there is a path of regions between every non-reached region and the

region where we start the traversal, which is reached by definition. When the algorithm

traversed r′, it reached all of its nodes, in particular the one with an edge towards r,

which exists because r and r′ are neighbors. At that point, r was not reached and the

traversal should have entered it; a contradiction.

5.1.4 Operations

In order to support the operations of Table 5.2, we provide the following primitive oper-

ations to navigate the compact representation.

Basic primitives. Hereinafter, we consider that each region, represented by a vertex

in the planar embedding of Li, is identified by its pre-order rank in the traversal of the

spanning tree of level i.

• go up Lh(x, i): This operation allows us to map the x-th region of granularity level

i to a region at level h. To do that, we must find the position of the x-th region

in Si with z = select((Si, x), to then map such position into the bitmap Bi, with

y = select1(Bi, rank()(Si, z)). Finally, the position of the output region corresponds

to the position of the y-th open parenthesis in Sh, which can be obtained with

select()(Sh, y). The time complexity is O(1), since it depends on constant time

operations rank and select.
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• go down Lh(x, d): This operation is complementary to go up Lh, mapping the x-

th region of Lh into a region at level h − d. We start as for go up Lh, finding the

position of the x-th region in Sh with z = select((Sh, x), to then map it to the bitmap

Bh−d with p = rank()(Sh, z). The final answer corresponds to the position in Sh−d

of the nearest ancestor y of x in the spanning tree of level Lh−d that is marked in

Bh−d. To do that, we compute q = select()(Sh−d, rank1(Bh−d, p)). If Sh−d[q] = ‘(’,

then q is the answer, otherwise it is q′ = enclose(Sh−d, find open(Sh−d, q)). This

operation takes constant time.

• region id(Si, x): This operation returns the id of the region represented by the

open parenthesis Si[x] = ‘(’. It can be solved in constant time with rank((Si, x).

• go level(x, i, j): This operation is a generalization of operations go up Lh and go down Lh,

mapping the x-th region of Li into a region at level j. It can be solved in O(1) time

by mapping the x-th region of Li into a region of Lh, to then map such region of

Lh into a region of Lj, as go down Lh(go up Lh(x, i), h− j). Notice that when j < i,

we are going down in the hierarchy, whereas when j > i we are going up.

Main operations. We now focus on the operations of Table 5.2. Let r1 ∈ Li and

r2 ∈ Lj be two regions such that i ≤ j:

• contains(r1, r2): Does region r1 contain region r2?. First, if r1 and r2 belong to the

same level (i.e., i = j), we just return whether r1 = r2. Otherwise, we compute

the region r′2 ∈ Li that contains r2, r′2 = region id(Si, go level(r2, j, i)), and return

whether r1 = r′2. The time complexity of this query is O(1).

• touches(r1, r2): Does region r1 share a boundary with region r2? We distinguish

two cases: 1) If r2 is not contained in r1 (contains(r1, r2) = false), we must find

a neighbor of r2 that is contained in region r1; and 2) if r2 is contained in r1

(contains(r1, r2) = true), then we must find a neighbor of r2 that is not contained

in r1. For each neighbor w of r2, we compute its containing region at level i as

z = region id(Si, go level(w, j, i)). For the first case, if we cannot find a neighbor

of r2 such that r1 = z, then we return false; otherwise we return true. Similarly,
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for the second case, if we cannot find a neighbor of r2 such that r1 ̸= z, then we

return false; otherwise we return true. The time complexity is O(dr2), depending

directly on the number of neighbors of r2.

• contained(Lj, r1): List all regions at level j contained in region r1. To support this

operation, we report all regions in the range Sj[a..b] that are contained by the re-

gion r1, where a = go level(r1, i, j) and b = find close(Sj, a). To report the regions,

we traverse the range left-to-right reporting every region region id(Sj, a
′), where

initially a′ = a and then it is redefined as the position of the next open parenthesis,

a′ = leftmost((Sj, a
′), until a′ > b. It is possible, however, that each such position

a′ is marked as the beginning of a new region, in which case we have to skip

the subtree with a′ = leftmost((Sj, find close(Sj, a
′)). An opening parenthesis at

position p is marked if Bi[c] = 1, where c = select1(Bj, rank()(Sj, p)). Thus, this

operation can be answered in O(nj) time. Despite its high worst-case complexity,

we implement this solution with competitive practical results, see Section 4.3. We

can, however, improve the theoretical result so as to spend O(1) time per output

region, by limiting the number of skipped subtrees between consecutive output

regions. This can be done by adding dummy vertices that work as the root of

consecutive subtrees that must be skipped. By marking the dummy vertices in

the bitmap B, we can skip them during the left-to-right traversal. Thus, skipping a

dummy vertex is equivalent to skip its descendant subtrees. The dummy vertices

skipped then amortize to the number of the vertices that belong to the output,

because there is at least one useful node between every two dummy nodes. The

extra space is O(nj) bits in the level j, since we can add up to one dummy vertex

per edge of the planar embedding. Additionally, to distinguish the dummy ver-

tices, we can mark them in a bitmap of O(nj) bits.

Theorem 2 summarizes the results of this first approach:

Theorem 2. A geographic connected region organized as a multi-granular hierarchy

with n regions in total and h granularity levels can be represented in O(n lg h) + o(hnh)

bits, where nh is the number of regions at granularity level Lh. The same representation
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supports operations contains(r1, r2) in constant time, touches(r1, r2) in O(min(dr1 , dr2))

time, and contained(Lj, r1) in constant time per returned element, where r1 and r2 rep-

resent a region at granularity levels Li and Lj, respectively, and dr1 and dr2 are their

respective number of neighboring regions. Under the exponential growing assumption,

the space consumption is O(n) bits.

Subsections 5.2 and 5.3 introduce two new approaches that provide trade-offs for

the work done in this approach. In particular, the approach of Section 5.2 improves the

space consumption, both in practice (as we show in Section 4.3) and in theory by a

sublinear term, at the cost of increasing the running time by a factor of O(log n log h),

meanwhile the approach of Section 5.3 reduces in practice the running time of the

operations at the cost of increasing space consumption.

5.2 Approach 2: Mapping sequence

The data structures of the first approach have two sources of redundancy:

• If Bi[k] = 1, then Bj[k] = 1 for all j ≥ i, that is, the mapping bitmaps are contained

in the next ones.

• Following Definition 1, from Sh we can derive the sequences Si, i < h. In

particular, the k-th parenthesis of sequence Si corresponds to Sh[select()(Sh,

select1(Bi, k))].

Our second approach removes both sources of redundancy, in exchange for higher

time complexities.

Instead of storing the h compact planar embeddings, we only store the sequence

Sh. By construction, the sequence Si is implicitly contained in the sequence Si+1.

Therefore, Sh implicitly represents all the sequences S1, . . . , Sh−1. We need a way to

check if a vertex in Sh, represented by a pair ( ), is present or not in an (implicit) arbitrary

sequence Si∈{1...h−1}. Note that a parenthesis that is present in a sequence Si is also

present in all sequences Sj∈{i+1...h}, therefore, the first source of redundancy implies

that the mapping bitmaps Bi can be replaced by a single sequence that tells the lowest

level j a position of Sh belongs to. In turn, the bitmap Bi defines the sequence Si, so in
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Figure 5.2: Sequences S
()
3 , S[]

3 , B() and B[] for the sequence S3 of Figure 5.1.

principle storing the sequence of lowest levels plus Sh should be sufficient. We need,

however, to navigate the sequence of parentheses and brackets of Si. Although we do

not represent Si explicitly, we will represent the needed RMMTs.

5.2.1 Structure

Let S()
h be the sequence composed of only the parentheses of Sh. We define the se-

quence B()[1..2nh], which stores the lowest level each parenthesis of S()
h belongs to.

Formally, B()[k] = j iff the k-th parenthesis of S()
h is present at the sequence Sj but not

at Sj−1. Thus, the i-th parenthesis of S()
h is present at Sj iff B()[i] ≤ j, and the position

in S
()
h of the i-th parenthesis of Sj can be computed as select≤j(B(), i). Analogously, we

define the sequences S
[]
h and B[][1..2(mh − nh + 2)], associated with the dual graph of

the planar embedding of level h. Figure 5.2 shows the sequences S
()
3 , S[]

3 , B(), and B[]

corresponding to the sequence S3 of Figure 5.1.

The representation is then composed by:

• The planar graph embedding of Lh, represented with PEMB. It uses 4mh + o(mh)

bits.

• The RMMTs of the balanced parenthesis sequences S
()
1 , S

()
2 , . . . , S

()
h , and S

[]
1 , S

[]
2 , . . . , S

[]
h .

Summing up the 2h RMMTs, the space usage is O(m) bits. See Figure 5.3 for an ex-

ample of the RMMTs of Figure 5.1.

• The sequences B() and B[] with support for rank≤ and select≤ operations, using

2(mh + 2)⌈lg h⌉+ o(mh lg h) = 2mh lg h+ o(n lg h) bits.
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Figure 5.3: RMMTs of balanced parenthesis sequences S
()
1 , S()

2 and S
()
3 . A node of the

RMMT covering the block S
()
i [i..j] stores: the last excess value of the block (ei), the

minimum excess value of block (mi), and the number of opening parentheses in the
block(n′

i). The values and parentheses in gray are not explicitly stored.

Since mh = O(m) and m = Θ(n), the total space is O(n lg h) bits. In fact, the

sequences B() and B[] can be represented to within their zero-order entropy. The

sequence B() has ni − ni−1 − . . .− n1 ≤ ni occurrences of the symbol i, and therefore

its entropy H0(B()) is at most
∑

i∈[1..h]
ni

n
log n

ni
. Similarly, the entropy H0(B[]) of B[] is at

most
∑

i∈[1..h]
mi

m
log m

mi
. Under the exponential growing assumption, ni ≤ nh/c

h−i and,

since mi = Θ(ni), there exists a constant d such that mi ≤ mh/d
h−i. As shown in the

end of Section 5.1.2, both entropies are O(1). Both B() and B[] can then be stored in

space O(m(H0(B()) +H0(B[])) + o(nh log h) + O(h log n) = O(n) + o(n log h) bits [120],

and the space o(n log h) can be O(n log h/ log n) = O(n) [113]. Thus, the total space is

O(n) bits.

We can traverse the implicit sequences S
()
1 , . . . , S

()
h−1 by performing select≤j and

rank≤j operations over the sequence B(). The i-th parenthesis of Sj is obtained in

O(log nh log h) time as select≤j(B(), i), and the number of parentheses of Sj in the range

S
()
h [1..i] is obtained in O(log h) time as rank≤j(B(), i). Similarly, operations find open(S

()
j , i),

find close(S
()
j , i) and enclose(S

()
j , i) are supported in O(log nh log h+log nh) = O(log nh log h)

time, where the term log nh log h corresponds to the traversal of a block in the RMMT of
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S
()
j , performing an operation leftmost≤j(S

()
h , i) for each parenthesis of the block, and the

term log nh comes from the up/down traversal of the RMMT.

5.2.2 Operations

As before, we introduce the implementation of basic primitives upon which the main op-

erations are constructed. The time complexities of all the operations become O(log nh log h).

• go up Lh(x, i): To support this operation we use the RMMT of the sequence S
()
i to

find the x-th open parenthesis, z = select((S
()
i , x). Then, we map the position of the

parenthesis to the sequence B() by computing y = select≤i(B(), z). Finally, the position

of the sought region in Sh is select()(Sh, y).

• go down Lh(x, d) : The answer is the position q in Sh so that (q, find close(S
()
h , q)) most

tightly encloses the x-th parenthesis of Sh and B()[q] ≤ h−d. We find the position of the

opening parenthesis representing the x-th region of Lh with p = select((S
()
h , x). Then,

q = rank≤h−d(B(), p) is the number of parentheses in S
()
h [1..p] that belong to S

()
h−d. If the

q-th parenthesis is opening (i.e., S()
h [select≤h−d(B(), q)] = ‘(’), the answer is q. Otherwise,

the answer is its closest ancestor, at position q = enclose(S
()
h−d, find open(S

()
h−d, q)).

• region id(Si, x): We map the position of x to S
()
h with p = select≤i(B(), x), and then

count the number of opening parentheses up to position p that belong to Si using its

RMMT, rank((S
()
i , p).

The operation go level is implemented just as in Section 5.1.1, go level(x, i, j) =

go down Lh(go up Lh(x, i), h− j), with time complexity O(log nh log h).

The implementation of the main operations contains, touches, and contained fol-

lows the same steps of their counterparts in Section 5.1.1, reaching complexities

O(log nh log h), O(dr2 log nh log h), and O(log nh log h) per element, respectively. In par-

ticular, for the operation touches, the traversal of the neighbors of a region is performed

using the RMMT primitives fwd search and bwd search.

The following theorem summarizes the results of this approach:

Theorem 3. A geographic connected region organized as a multi-granular hierarchy

with n regions in total and h granularity levels can be represented in O(n lg h) bits. The
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same representation supports operations contains(r1, r2) in O(lg n lg h) time, touches(r1, r2)

in O(min(dr1 , dr2) log n log h) time, and contained(Lj, r1) in O(lg n lg h) time per returned

element, where r1 and r2 represent a region at granularity levels Li and Lj, respec-

tively, and dr1 and dr2 are their respective number of neighboring regions. Under the

exponential growing assumption, the space consumption is O(n) bits.

Note that our asymptotic space complexity does not change if we represent the

sequences Si in explicit form. In this case we can operate them directly and, although

the complexities do not change, we expect them to be much faster in practice (the

structure, in turn, becomes larger in practice). This approach is much more direct, as

we only have to change the operations on bitmaps Bi by operations on the sequences

B() and B[].

5.3 Approach 3: Hierarchy tree

Our third approach aims to offer better running times in practice, though using more

space, compared to the representation of Section 5.1.1. As in our first representation,

the planar embeddings representing the topology of each aggregation level are stored

independently using PEMB. However, the topological hierarchy is stored in a different

manner. Instead of using the h bitmaps Bi, we represent a tree H associated with the

relation contains, called the hierarchy tree. For every pair of regions r1 and r2 such

that r1 ∈ Li and r2 ∈ Li+1, and contains(r1, r2) is true, region r2 is added to the tree

H as a child of region r1. Additionally, a dummy root is added connecting the nodes

that represent regions of L1. Thus, all nodes at depth i in H represent regions at

aggregation level i. Figure 5.4(a) shows the tree H for the topological hierarchy of

Figure 2.8.

Once the tree H is computed, we store its topology as a balanced parenthesis

sequence TH . During the traversal, we additionally store in a permutation M the pre-

order rank in TH of the opening parenthesis representing each node of H. The values

stored in M are laid level by level (1 to h), in the order the PEMB representation of

each Li represents the corresponding nodes. Notice that such an indexing allows us

to map the regions between the topological hierarchy and the planar embeddings, and
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(a) Hierarchy tree H representing the topological hierarchy of Figure 2.8. The root of the tree is a dummy
node.

(b) Balanced parenthesis sequence TH , sequence M and offsets O of the tree H of Figure 5.4(a).

Figure 5.4: Components to store the topological hierarchy in the third representation.

vice-versa. Further, the position of the leftmost value of each level i in M is stored in

an array of offsets O[1..h]. For instance, if the region r ∈ Li is the j-th visited region of

that level during DFS traversal of Li, and is also the k-th region visited in the traversal

of TH , then, M [O[i] + j − 1] = k. Figure 5.4(b) shows an example of TH , M and O.

This representation uses 4m+o(m) bits for the h planar embeddings. The balanced

parenthesis sequence TH , supporting navigational operations, uses 2n+o(n) bits. The

permutation M uses (1+ ϵ)n log n+O(n) bits, with a representation that also computes

M−1(j), that is, where in M is the value j, in time O(1/ϵ) [101]. The total space is then

O(n log n) bits.

5.3.1 Operations

We now describe how the operations are computed with this representation.

• contains(r1, r2): We map both regions to TH and check if r1 ∈ Li is an ancestor of
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r2 ∈ Lj. Let r′1 = M [O[i] + r1 − 1] and r′2 = M [O[j] + r2 − 1] be the mappings in

TH of r1 and r2. Then the answer is true iff r′1 ≤ r′2 ≤ find close(r′1). The operation

contains then takes O(1) time.

• touches(r1, r2): This is built on top of operation contains as in Section 5.1.1. The

time complexity is then O(dr2).

• contained(Lj, r1): The regions to report correspond to all the descendants of r1 ∈
Li at depth j > i in TH . The node representing r1 in TH is r′1 = M [O[i] +

r1 − 1]. Let p = select((T
H , r′1) and q = find close(TH , p) be the positions of the

opening and closing parentheses of r′1 in TH . We then report the regions of all

the opening parentheses at depth j − i from p up to q. To do that, we go down

in O(1) time from r′1 up to its leftmost descendant u at depth j − i, reporting the

position p′ = fwd search(TH , p, j − i). Then, we keep reporting the region to the

right of p′ with its same depth, up to p′ > q, by computing p′ = level next(p′) =

fwd search(TH , find close(TH , p′), 1). For every position p′ to report, we return

its region id with M−1(rank((T
H , p′)) − O[j]. The time complexity of operation

contained is then O(1/ϵ) (i.e., any desired constant) per element reported.

The following theorem summarizes the results of this section:

Theorem 4. A geographic connected region organized as a multi-granular hierarchy

with n regions in total and h granularity levels can be represented in O(n lg n) bits. The

same representation supports operations contains(r1, r2) in O(1) time, touches(r1, r2) in

O(min(dr1 , dr2) time, and contained(Lj, r1) in O(1) time per returned element, where r1

and r2 represent a region at granularity levels Li and Lj, respectively, and dr1 and dr2

are their respective number of neighboring regions.

5.4 Storing multiple connected components

The approaches proposed above support only hierarchies and maps that form a single

connected component. However, in some scenarios, maps can be composed by more

than one connected component. An example of this would be partitions that include
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islands. In this section, we present a strategy to support multiple connected compo-

nents. The strategy is independent of the approaches proposed in previous sections

and can be implemented as an extension of any of them.

The main idea is to extend the use of a planar graph embedding to a multigran-

ular instance, therefore, a requirement for the construction of the planar embeddings

is that the entry and exit vertices of a region must be the same. For this reason,

the approaches proposed above do not support disconnected sub-regions, because

depending on the way the traversal is made at the time of building the planar embed-

dings, the entry and exit vertices may not be the same. To solve this problem, it is

proposed to split the regions containing disconnected sub-regions in such way that the

new regions generated contain only connected regions.

Given a region r at level Li, composed by c > 1 connected components, we treat

the connected components as independent regions r1, r2, . . . , rc, increasing the total

number of regions at level Li. To store the information that regions r1, r2, . . . , rc actually

conform only one region r, we store two bitmaps, Di and MDi, and an integer array

Ci. The entry Di[r] = 1 indicates that region r is conformed by multiple connected

components; otherwise, Di[r] = 0. The bitmap MDi stores in unary the number of

connected components of region r and the array Ci stores the regions r1, r2, . . . , rc,

when c > 1. The construction of the representation is performed as follows:

1. We perform a traversal of the planar embedding of level Li detecting the set R

of regions composed by multiple connected components with respect to the level

Li+1.

2. For each region r ∈ R, r is partitioned into its c > 1 connected components r1, r2,

. . . , rc. The entry Di[r] is set to 1, the sequence 0c−21 is appended to the bitmap

MDi, and the regions r1, r2, . . . , rc are appended to the array Ci.

3. The embedding of level Li is updated with the new regions r1, r2, . . . , rc.

4. We repeat steps 1-3 for level Li−1.

Figure 5.5 shows an example of how regions are partitioned.
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Figure 5.5: Example partitioning a region

Under this setting, operation contains(r′, r), with r′ ∈ Li, r ∈ Lj and Li ≺ Lj, refers to

whether every connected component of r is contained in some connected component

of r′. To support it, we first recover all the connected components of r′ and mark them

in a bitmap B. Then we check if Dj[r] = 1, to determine if the region r is partitioned.

If needed, we obtain its connected components by traversing the range Cj[p, q], where

p = select1(MDj, rank1(Dj, r) − 1) + 1 and q = select1(MDj, rank1(Dj, r)). We map

each connected component rk of r to its containing region r′k at level i, an check if r′k
is marked in B. We return whether every component r′k was marked in B. The time

complexity is O(wijc + c′), where c′ and c are the number of connected components

of r′ and r, respectively, and wij is the cost of mapping regions from level j to level i,

which can be done with any of the solutions discussed in Sections 5.1.1–5.3.

Similarly, operation touches(r′, r) checks whether some connected component of r′

shares a boundary with some connected component of r. To solve it, for each con-

nected component of r we map its neighbors, at level j, to their containing regions at

level i, marking them in a bitmap B. Finally, we compare the connected components

of r′ with the marked regions in B, and return whether a coincidence is found. The

time complexity is O(d̂rwij + c′), where d̂r is the number of neighbors of r at level j,

computed as the sum of the neighbors of each connected component that conforms r.

Operation contained(Lj, r), with r ∈ Li and Li ≺ Lj, lists all the regions at granular-

ity level Lj that are contained in some connected component of r. To implement it, we

recover all c connected components at level i of r, and map each of them to its descen-

dants at level j. Notice that the resulting regions at level j may be grouped into c′ ≥ 1
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connected components, which must be recovered as for the basic case. Thus, the time

complexity is O(wijc+ tc′c
′), where tc′ is the cost of traversing the regions contained in

the c′ connected components at level j.

The additional space consumption for arrays Ci, MDi, and Di, is O(n+ c log c) bits,

where c is the number of components across all levels. Note that the connected regions

involve only 1 bit of extra space, used in Di to indicate they have only one connected

component. In practical datasets, c is much smaller than n (see the next section, for

example).

5.5 Experimental evaluation

5.5.1 Experimental setup

All the experiments were carried out on a computer equipped with an Intel Core i7

(3820) processor, clocked at 3.6 GHz; 32 GB DDR3 RAM memory, clocked at 1,334

MHz; 4 physical cores each one with L1i, L1d and L2 caches of size 32 KB, 32 KB

and 256 KB, respectively; and a shared L3 cache of size 10 MB. The computer runs

Linux 3.13.0-86-generic, in 64-bit mode. All our algorithms and the baseline were

implemented in C++, using the library SDSL [61], and compiled with GCC version

4.8.4 and -O3 optimization flag. For the compact planar embeddings, we directly use

the code of [48]. We measured running times using the clock gettime function.

Datasets

The datasets used to evaluate our approaches are based on the TIGER dataset,2 pro-

vided by the U.S. Census Bureau, which corresponds to geographic and cartographic

data of the administrative divisions in the United States. The dataset is organized

as a hierarchy of granularities with levels L1 to L6 being State, County, Census tract,

Census block group, Census block, and Face, respectively (see Table 5.3). With this

base information, we generated four datasets, tiger 8s, tiger usa, whole usa, and

tiger usa+.

2TIGER dataset, version 2019. https://www2.census.gov/geo/tiger/TIGER2019/

https://www2.census.gov/geo/tiger/TIGER2019/
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Dataset Level Vertices (n) Edges (m)

L1 9 20
L2 595 1,730

tiger 8s L3 11,626 31,412
(1 comp.) L4 33,804 91,891

L5 2,233,031 5,429,483
L6 4,761,354 10,326,904

L1 57 140
L2 3,235 9,102

whole usa L3 74,135 201,824
(98 comp.) L4 220,743 598,245

L5 11,166,337 26,746,322
L6 20,037,199 44,503,624

Dataset Level Vertices (n) Edges (m)

L1 50 140
L2 3,110 9,095

tiger usa L3 72,512 201,631
(1 comp.) L4 216,243 597,784

L5 11,004,160 26,732,935
L6 19,735,874 43,837,150

L1 3,852,017 6,392,483
L2 4,518,394 8,364,881

tiger usa+ L3 5,686,152 11,767,903
(1 comp.) L4 7,821,874 17,711,491

L5 11,846,172 27,868,766
L6 19,735,874 43,837,150

Table 5.3: Datasets used in our experiments. Each level includes one node represent-
ing the external face of the embedding.

The first dataset, tiger 8s, contains the information of eight neighboring states

(Nevada, Utah, Arizona, Colorado, New Mexico, Kansas, Oklahoma and Texas), while

tiger usa includes the information of the whole continental part of the country. During

the construction of both datasets, we found cases where a region was composed of

disconnected subregions (e.g., Santa Catalina Island is a disconnected region of the

State of California). In such cases, we only considered the largest subregion. Addi-

tionally, both datasets are conformed by one connected component.

On the other hand, the dataset whole usa corresponds to the tiger usa dataset, but

including the disconnected subregions, and Alaska, Hawaii and overseas U.S. islands,

being conformed by 98 connected components. Finally, we generated the synthetic

dataset tiger usa+, which corresponds to the dataset tiger usa with a different (fic-

titious) grouping of regions. By choosing random starting regions at level L6, a BFS

traversal was performed to group from 1 up to 10 contiguous regions into one. The

BFS traversals were performed until all regions of level L6 were grouped. The proce-

dure was repeated for all levels L5 up to L2. We use this dataset to evaluate situations

where the ratio of grouping is smaller than in the original dataset.
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5.5.2 Evaluated implementations

Based on the approaches described in Sections 5.1.1 to 5.3 for the representation of

the multi-granular maps, we developed the following implementations:

Approach 1 (T). Implementation based on the approach described in Section 5.1.1,

which uses compact planar embeddings to represent each level of granularity, as well

as h − 1 bitmaps, where we use a plain bitmap for level h and bitmaps of type T for

the rest of levels, to store hierarchy-related information, where T can be: i) PLAIN (a

plain bitvector), ii) SD (the sparse bitmap SD-array [111]), iii) RRR (an H0-compressed

bitvector [120]).

Approach 2 (RMMT). Implementation based on the approach described in Section

5.2, which uses a compact planar embedding for the highest level of detail, and range

min-max trees (RMMT) for the sequences B[] and B(), to represent the mapping among

aggregation levels.

Approach 2 (PLAIN-S). A variant of the previous one that uses compact planar em-

beddings to represent each level of granularity, and range min-max trees over integer

vectors (stored as a plain vector) to store the hierarchical information represented in

the sequence B(). Although storing the hierarchical information implies an increase in

the space usage compared to what was proposed in Section 5.2, it drastically improves

the query time of the proposed operations. For the scanning of the RMMT blocks, two

strategies S are evaluated: linear search (L) and binary search (BS), where binary

search can be done by computing rank≤i on each comparison.

Approach 2 (WT-S). Another variant of the approach described in Section 5.2, similar

to APPROACH 2 (RMMT). This implementation uses compact planar embeddings to

represent each level of granularity and range min-max trees, with the difference that it

uses a wavelet tree to store the hierarchical information represented in the sequence

B(). This represents a saving in terms of space usage when compared with Approach

2 (PLAIN-S), at the cost of a slower access time to the elements in B(). Again, for the

scanning of the RMMT blocks, two strategies S are evaluated: linear search (L) and

binary search (BS).
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Approach 3. Implementation based on the approach described in Section 5.3, which

uses compact planar embeddings to represent each level of granularity in combination

with a balanced parenthesis sequence representing the hierarchy tree and a compact

permutation data structure representing M , for the mapping between planar embed-

dings and the hierarchy tree.

Baseline. As a baseline, we developed a data structure that also uses the compact

planar embeddings of [48] to represent each level, but the hierarchy is stored in non-

compact form. Specifically, each level i ∈ {0..h−1} of the hierarchy is stored in a vector

in which position j, representing a region r′, stores the index of the region r at level i−1
that contains r′. In addition, for a region r at level i, the data structure stores pointers

to all the regions at level i + 1 contained in r. In this data structure, the operation

go level(x, i, j) is supported in O(h) time, because all the levels of the hierarchy are

traversed in the worst case. All the main operations were implemented in a similar

fashion to our approaches, hence providing running times of O(h), O(min(dr1 , dr2)h)

and O(
∑j

k=i nk), for contains(r1, r2), touches(r1, r2), and contained(Lj, r1), respectively,

where r1 is a region at level Li and r2 a region at level Lj.

5.5.3 Performance on connected regions

We first consider the basic case of connected regions. The performance of APPROACH

2 variants is mainly dependent on the use of the RMMT, and this in turn depends on

the length l of the RMMT blocks. We considered values l ∈ [24 .. 215].

Regarding the evaluation of operations contains and touches, we executed 200 ran-

dom operations for each pair of aggregation levels.3 As for operation contained, we

executed the queries between all possible pairs of aggregation levels. For contains

and contained, there are 15 valid pairs ((Li, Lj), i ∈ [1, 5], j ∈ [i + 1, 6]), whereas for

touches there are 21 valid pairs ((Li, Lj), i ∈ [1, 6], j ∈ [i, 6]). This gives a total of 3,000

3The outer face is omitted from the pool of candidates because of its very large number of neighbors,
which may impact the results.
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operations of the first type, 4,200 operations of the second type, and 11,666,872 oper-

ations of third type. In the results, for each experiment we show the average time of 30

repetitions.

Figure 5.6 shows the space-time tradeoffs obtained on the datasets tiger usa and

tiger usa+ (we omit dataset tiger 8s because it performed similarly to tiger usa),

with the three operations.

The first observation is that, as expected, APPROACH 2 (RMMT) uses by far the

least amount of space, using as little as 8–12 bits per region. In exchange, however,

it is one and even two orders of magnitude slower than other approaches, because of

the need to navigate over simulated parenthesis sequences.

The second observation is that APPROACH 1 (SD) essentially dominates all the

other approaches in the space-time tradeoff map of tiger usa, using 15–16 bits per

region and taking 0.4–10 nanoseconds per operation. The only exception is the base-

line, which sometimes outperforms APPROACH 1 (SD) in time, yet at the cost of using

80–135 bits per region, that is, about 5–8 times more space.

On the synthetic dataset tiger usa+, we use APPROACH 1 (RRR) instead of AP-

PROACH 1 (SD), because it saves more space. In this dataset, the least-space variant

of APPROACH 2 (WT-BS) is equally fast and uses slightly less space (indeed, the sweet

points of several other variants are pretty close). In this dataset, APPROACH 3 offers

considerably better times using about twice the space, around 34 bits per region.

The only considerably worse variant is APPROACH 2 (PLAIN-BS), followed by AP-

PROACH 2 (PLAIN-L) in the dataset tiger usa.

Figures 5.7 and 5.8 show the results grouped by distance level, where all valid pairs

(Li, Lj), i ∈ [1, 6−c], j = i+c are grouped into the distance level c. For APPROACH 2 we

only maintain the variants APPROACH 2 (RMMT) with block length l = 29 and APPROACH

2 (WT-BS) with l = 215. Hereinafter, in our analysis of the second approach, we

only show those two implementations and their best configurations. For the contained

operation, the running time was normalized by the number of regions returned.

In general, the distance c does not significantly affect the time performance of the

operations, except for the operation contained, where times tend to improve with larger

distances. This is because more regions are reported as the distance grows, and this
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(a) Operation contains dataset tiger usa.
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(b) Operation contains dataset tiger usa+.
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(c) Operation touches dataset tiger usa.
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(d) Operation touches dataset tiger usa+.
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(f) Operation contained dataset tiger usa+.

Figure 5.6: Running time in nanoseconds using the datasets tiger usa and
tiger usa+.
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(c) Operation contained.

Figure 5.7: Running time in nanoseconds using the dataset tiger usa, where distance
level corresponds to the distance between the levels of the queried granules.
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Figure 5.8: Running time in nanoseconds using the dataset tiger usa+.

decreases the time per reported region due to cache effects. In general, the baseline

is the fastest implementation on all the operations. It is, however, closely followed in

almost all cases by some variant of APPROACH 1, which uses many times less space.

Similar results can be observed for the dataset tiger usa+, except that APPROACH

3 becomes the second fastest on the operation contained. This owes to the way this

dataset was constructed: its hierarchy tree is wider and has more nodes than the

hierarchy tree of tiger usa. APPROACH 3 is more cache-friendly when reporting many

nearby regions.

5.5.4 Space Usage

Table 5.4 shows the space consumption of the baseline and the three different ap-

proaches. For the datasets tiger 8s and tiger usa, APPROACH 1 (PLAIN) uses about

30% the space consumed by the baseline while APPROACH 1 (SD) uses about 19%.
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AP. 1 (PLAIN) AP. 1 (COMPRESS) AP. 2 (RMMT) AP. 2 (WT) AP. 3 Baseline

tiger 8s 23.6 13.1 8.7 14.0 32.9 66.9
tiger usa 88.4 57.9 38.0 62.1 137.3 310.6
tiger usa+ 111.6 104.9 54.4 97.6 196.9 897.4

Table 5.4: Space usage in MB.

For the dataset tiger usa+, both implementations use about 12% of the space con-

sumed by the baseline. It is important to notice that the compressed bitmaps, either

SD or RRR, do not save much extra space for the dataset tiger usa+, due to the high

amount of 1-bits because of the smaller grouping ratio between contiguous levels of

the dataset.

APPROACH 2 (RMMT) is the most space-efficient implementation, using only 12%

of the space consumed by the baseline for datasets tiger 8s and tiger usa), and

6% for the dataset tiger usa+. APPROACH 2 (WT) uses about 21% for the first two

datasets and 11% for tiger usa+. Finally, APPROACH 3 uses about 46% for the first

two datasets and 20% for the last one.

In general, the change in the topological hierarchy of the dataset tiger usa+ com-

pared to the dataset tiger usa affects the baseline in a greater extent than the compact

representations.

5.5.5 Performance with non-connected components

Because of the low number of related components present in the datasets, the strategy

presented did not incur a significant overhead of space or a significant increase in

execution time, so replicating the experimentation for all implementations would not

reflect changes with respect to the graphs presented in Figure 5.9, therefore, only the

implementation that showed the best trade-off was considered.

A final experimental evaluation was performed using the dataset whole usa in order

to measure the impact of the proposed strategy for dealing with more than one con-

nected component. Since the number of connected components is low regarding to

the total number of regions (98 connected components and around 20 million regions

at level L6), the expected overhead of the proposed strategy is very limited. Thus, to
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Figure 5.9: Running time in nanoseconds using the dataset whole usa.

represent non-connected components, we extended the approach with the most inter-

esting time-space trade-off, APPROACH 1 (SD).

Regarding space consumption, the baseline uses 325.2 MB, while APPROACH 1

(SD) uses 60.1 MB, where 0.5 MB correspond to space consumption of bitmaps D,

MD and C. The proposed strategy of Section 5.4 adds 43,009 new regions obtained

from the partition of regions with more than one connected component, which induces

less than 1% of extra space.

Figure 5.9 shows the average running time for the three operations. From the figure,

we can conclude that the proposed strategy to deal with multiple connected compo-

nents impacts the execution time in a negligible way, maintaining running times similar

to those of Figure 5.7.



Chapter 6

Discussion and Future Work

In this chapter, a more general discussion about the results obtained in the experi-

mental evaluations of the two main contributions of this thesis (Chapters 4 and 5) is

presented, as well as some open problems and potential new lines of research arising

from the work presented in this thesis.

6.1 Discussion

Recall that the main contribution of this thesis is to provide strategies for the implemen-

tation of two models focused on the management of multigranular information.

First, we present algorithms for a space-efficient and response-time efficient im-

plementation of a general multigranular model presented in [73] (Chapter 4). Based

on the experimental evaluation carried out, we can conclude that the strategies pre-

sented allow an efficient derivation of the relations covered by the model, being the

GBP +Matrix implementation the one that showed the best performance on average

for all the covered inference rules. Although the Baseline implementation shows bet-

ter response time for certain queries, it should be noted that GBP +Matrix shows a

notoriously better response time than the other implementations evaluated for queries

that required a longer time. It is important to highlight the following conclusions ob-

tained through experimental evaluation: i) Despite the theoretical complexities of the

developed algorithms, in practice there were unexpected results, which are mainly due

to the impact of cache failures at the time of carrying out the queries; an example of

this can be seen in the queries associated with the inference rule 1, where the base-

line implementation showed a worse performance than the other alternative structures.

This is mainly because it is the largest data structure and is based on an adjacency list,

which is an implementation prone to have more cache failures. ii) GBP +Matrix is the
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implementation that occupies less space, as mentioned in chapter 4, which is because

it occupies space proportional to the amount of relations other than subsumption and

only requires storing a single mapping vector. This implies that in certain datasets that

are not very favorable for the structure, where there is a larger number of relationships

other than subsumption in comparison to the total number of granules, the space used

by the dataset will be similar to the one used by GBP or GLOUDS. iii) Inference rule

4 shows that the GBP -based implementations presents a notoriously better perfor-

mance on average than the other implementations for the 4 datasets evaluated. This

holds particular significance since a substantial portion of response time is dedicated

to retrieving the descendants of the queried granules. The efficiency demonstrated in

obtaining descendants, a common query when dealing with hierarchies, underscores

the potential for new research avenues aimed at harnessing and further optimizing this

advantage.

Second, in Chapter 5 new data structures to implement a topological model that

represents and accesses data organized as a hierarchical structure of regions defined

by the inclusion relation are proposed. Three different strategies were developed for

the management of hierarchical information, each one presenting its own particulari-

ties: i) The first proposed approach is the one that presents the best trade-off between

response time and space used, serving as a general use structure when not seeking

to improve space used or response time for a particular query. ii) A second approach,

which focuses on minimizing the redundant information in the strategy presented in the

first approach, uses less space (6% of the space used by the baseline), at the expense

of being the one that presents the worst response time for the 3 queries analyzed, and

therefore, being the variant to use in cases where it is necessary to minimize space.

iii) a third approach, focused on improving the response times presented by the two

previous approaches, changing the way of representing the hierarchy presented in the

other approaches by a new data structure called hierarchical tree. Due to the intro-

duced new structure, it occupies more space, in exchange for improving the response

times to obtain the descendants of a node (which is used to detect the nodes contained

at a certain specific level in the hierarchy). It should be noted that this implementation

presents better performance in datasets of higher complexity in terms of number of
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granules and partitions per level.

6.2 Open lines

The following are several lines of research stemming from the work presented in this

thesis, beginning by commenting on the lines of research focused on the work pre-

sented in Chapter 4, continuing with the lines of research focused on the work pre-

sented in Chapter 5, and ending with some topics of common interest for all the work

presented in this thesis.

6.2.1 Future works related to the data structure for multigranular model

Chapter 4 presents strategies and algorithms for an efficient implementation both, in

terms of space used for the representation of the relationships between granules and

query time, for the multigranular model presented in [73], using the inference rules

proposed in [75]. The work developed focused on how to implement a subset of rules

efficiently at a particular level. Based on what has been presented, the following works

are proposed to be developed in order to provide a data structure capable of being

used for an implementation of the proposed multigranular model in [73].

Algorithm for the not supported inference rule

Strategies for inference rules related to subsumption, disjoint and not-disjoint relations

were proposed, but for the case of the not-subusmption relation, only a subset of the

proposed rules in [75] were implemented, specifically the following rule was not imple-

mented: d
S
{g1, g3} ≠ ⊥S g3 ⊑S g4

d
S
{g2, g4} = ⊥S

g1 ̸⊑S g2

The main difficulty in developing a strategy for this rule is due to the presence of two

relations other than containment as the premise of the rule, so it was not possible to

develop a strategy that would ensure a complete derivation of the rule while maintaining

a fast response time.
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Minimum set of information to be stored

The strategies proposed for the inference rules covered in this paper are capable of

deriving relations from a set of explicitly stored relations, however, this set may have

redundancies in the sense of storing relations that can be derived through the same

rules. This implies an extra cost in the space used, in addition to negatively influence

the performance of the queries in practice, since the cost of obtaining redundant gran-

ules is greater than the possible savings by having more granules that can answer the

query. Having a characterization of the minimum set to be stored facilitates the devel-

opment of an algorithm for the uncovered inference rule, by being able to characterize

the relationships involved in the rule, in the same way, it facilitates the improvement of

the algorithms and the proposed structure. Because of this, it is relevant to develop an

algorithm capable of reducing a set S of explicit relationships to be stored to a subset

S ′ that has no redundant relationships.

Algorithms for deriving relations

As previously mentioned, the primary focus of this work was on developing efficient

algorithms for testing individual inference rules. However, a comprehensive query-time

strategy for collectively testing all the inference rules for each relation was not explicitly

addressed. The significance of this aspect becomes evident in the second experimen-

tal evaluation conducted on the real dataset. In this evaluation, the performance in

deriving negative relations deteriorates compared to the specific evaluation of each

rule, mainly due to the potential re-processing of previously computed information and

an increase in cache missed. We propose the integration of the rules into a unified

method capable of verifying each relation, akin to the approach employed for rules 7

and 8.

Other research lines

In addition to the lines of research described above, there are still several challenges

to be solved in order to achieve a practical implementation for the multigranular model.

Some of the relevant challenges are listed below:
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1. Granularity structure: The work developed in the implementation of the infer-

ence rules only concerns the granule structure, without considering the informa-

tion provided by the granularity structure. In [74] there are several bigranular

relationships that define the behavior at granularity level between the granules

that compose them, and we propose to integrate the information provided by the

various possible bigranular relationships to the algorithms already developed in

this thesis, in order to speed up the queries and reduce the amount of information

to store.

2. Integration mechanisms: One of the particularities of this multigranular model is

the facility it has to add new multigranular data sources; because of this, it would

not be strange the emergence of discrepancy between the information at the

time of adding new data sources. The development of verification and integration

mechanisms is proposed, with the objective of maintaining the correctness of the

previously stored information.

3. Complex queries and new types of relations: The multigranular model focuses

on the containment and disjoint relationships (and their respective negations), ar-

guing that on the basis of these it is possible to elaborate more complex rules.

The present work focuses only on the derivation of these relations. It is proposed

the development of a set of common queries in multigranular instances and al-

gorithms for these, such as, for example, obtaining all granules that intersect

but neither subsume nor are subsumed by a g granule, taking advantage of the

strengths of the developed structure, such as its effectiveness in obtaining the

descendants of a granule.

6.2.2 Future work related to compact representations of spatial hierarchical

structures

Chapter 5 presents 3 different strategies for the implementation of a topological model

with the ability to answer queries within a multigranular context, where the hierarchical

structure is extracted from the containment relationship of a region and the different
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partitions that can be generated from it. The proposed implementations present differ-

ent trade-offs between the space used and the response time of the proposed queries,

varying from a data structure that does not present redundant information, at the cost

of a longer query time, to an implementation that stores extra information, in order to

improve response times in practice. The following is a description of some of the lines

of research of interest arising from this work.

Optimize distances between parentheses

We can divide the proposed structures into two components, i) the representation of

each level of the hierarchy, and ii) the representation of the hierarchical division. One

of the main structures for the representation of both components is the sequence of

balanced parentheses (a.k.a. BP). One of the main operations to use in the BP is

the find close operation, used to navigate between the different nodes represented

by the BP, having a complexity of O(log b−a
N

), where N is the length of the parenthesis

sequence, a is the position of the open parenthesis, and b is the position of the closed

parenthesis associated with a. Because of this, one way to speed up queries in practice

is to decrease the distance between the parentheses. This is valid for the presented

work since there are different ways to build the pemb (planar embedding) given an initial

partition S (this is because any spanning tree is valid for the construction). The work

presented in [81] explores various strategies for pemb generation, demonstrating an

improvement in query times by reducing the distance between parentheses. In the

case of the present work, a new variable to consider is added, since the way in which

the initial pemb is generated influences the generation of the BP used for the hierarchy

representation. Because of this, we propose the development of new strategies and

heuristics for the generation of the pemb, evaluating the performance of the queries and

analyzing in particular the effect of these strategies both for the generation of the initial

pemb and the generation of the hierarchical representation in an invidual way.
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Inclusion of relevant queries

The work developed is focused on answering 3 queries: Contains, Touches and Con-

tanied, these are not the only queries of interest to answer in a hierarchical model,

given that the model is based on extracting the hierarchy from a partition of a spa-

tial region, answering the eight named spatial relationship predicates defined in the

standard OGC SFS 2.1, and three non-standard relationship predicates. The 8 spatial

relationship predicates are of direct verification using the implemented queries, an ex-

ample of this is to verify overlap, where, given that we work with partitions of a region,

it is not possible that there is a pair of regions that meet the condition, or the case

of checking intersect, where it is enough to answer the touches query. However, to

answer ContainsProperly, one must perform a combination of contains and touches

queries. This opens the possibility of developing algorithms that seek to simultaneously

verify both conditions, instead of verifying each one individually.

Finally, in the case of query Touches, there is still a opportunity for improvement,

given that it would be expected to achieve an implementation that requires time pro-

portional to the number of neighbors of one of the regions. This could be addressed

either by using some auxiliary structure to speed up this query while maintaining the

proposed strategies, or by developing a new data structure focused on improving this

query.

6.2.3 Common open problems in both multigranular models

Finally, two problems of common interest for both multigranular models covered in this

thesis are mentioned below.

• Dynamic structures: The structures devised in this thesis are static, meaning

they do not support the modification of information once the structure is con-

structed. While there exist dynamic proposals for the foundational components

used in developing structures for each model, a direct application is insufficient.

For instance, in the case of GBP , a proper mapping between granules and their

identifiers obtained during construction is required. Similarly, for pembs, maintain-

ing coherence in the order in which regions are traversed during construction is
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essential. The development of strategies that allow the correct integration and

use of dynamic variants of the components for the multigranular models covered

in this thesis is proposed.

• Evaluation of multigranular models in particular instances: For both multi-

granular models we mainly used synthetic data or real datasets related to ge-

ographic divisions, for example, an instance of spatial partitioning, or hierarchi-

cal partitioning based on web pages, this type of data source is widely known, it

would be interesting to use other multigranular instances different from the typical

geographic or temporal divisions, in order to evaluate the behavior in instances

with different characteristics and queries to be answered, .



Chapter 7

Conclusions

At present, the amount of information that needs to be stored and processed is greater

than ever, every day the available data sources increase, in the same way the available

information evolves in terms of its form, it becomes more and more frequent the need

to manage information that is available at different levels of detail. Because of this, it

becomes a necessity to have tools that are capable of both storing and processing this

information efficiently. The work developed in this thesis presents strategies for the im-

plementation of two models focused on the management of multigranular information.

The developed algorithms are mainly based on the use of succinct data structures, with

the objective of reducing the use of space, while maintaining response times similar to

common algorithms or data structures.

First, data structures and strategies were presented to allow the development of an

efficient implementation of the multigranular model presented in Chapter 4. For this

multigranular model, several inference rules were proposed in [76], with the objective

of not storing all the information explicitly, but only a subset of it. At that time, there

were no other works focused on the development of efficient structures for deriving

subsumption and disjointness relations. This work proposed several strategies for de-

riving information based on a set of inference rules, which had been proven to be both

correct and complete. The implementation was correct and complete for the subsump-

tion, disjoint, and not-disjoint relations. The experimental evaluation demonstrated that

the proposed methods were not only more compact but also significantly faster when

compared to a baseline approach that explicitly stored the information of each relation

using graphs and solved operations using well-known traversal algorithms.
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Secondly, data structures and algorithms were presented that are capable of com-

pactly representing a hierarchical partitioning of the space, so that basic queries re-

garding containment and adjacency of regions of arbitrary levels can be computed

efficiently. It is known that the topology of a planar graph with n regions without a hi-

erarchy can be efficiently manipulated within 4n + o(n) bits. On a hierarchy of height

h, our representation requires as little as O(n log h) bits, which becomes O(n) if the

number of regions increases by a multiplicative constant from each level to the next.

Within this asymptotically optimal space, we designed various representations that ef-

ficiently determine (1) whether a region contains another, (2) whether a region touches

another, and (3) all the regions of some level contained by a given region. Our ex-

perimental results showed that we could represent the partitioning and hierarchical

information within as little as 8 bits per region in practice, which is about twice the

space required to represent a partition without hierarchies. Further, with about 16 bits

per region (i.e., roughly 4 times the space without hierarchies), our data structures an-

swered all queries within 10 nanoseconds per retrieved element, and in some cases,

less than half a nanosecond.

In this thesis, two compact structures were proposed, and different algorithms were

developed for them, with a focus on the multigranular context. In the first part, strategies

were developed for a multigranular model based on subsumption and disjoint relations,

while in the second part, the focus was on an implementation geared towards answer-

ing queries about a spatial structure generated from the division of a region S and the

containment relationship between the various sub-regions generated. It is expected

that this thesis will help to strengthen the research related to multigranular models, as

well as the development of new compact structures focused on particular instances.
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[6] Jérémy Barbay, Luca Castelli Aleardi, Meng He, and J. Ian Munro. Succinct
representation of labeled graphs. Algorithmica, 62(1-2):224–257, 2012.
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