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Resumen

En esta tesis se propone nuevas herramientas tedricas y practicas para el campo de
investigacién de tomografia de estados cuanticos.

Como introduccién a esta tesis los capitulos 1 y 2 fijan nuestro enfoque de la mecénica
cuantica y la teoria de probabilidad. KEstos capitulos son esenciales, ya que definen
también los conceptos béasicos necesarios para entender las propuestas, asi como los ob-
jetivos filoséficos de nuestra investigacion.

En los capitulos 3 y 4, se introduce brevemente los conceptos de discriminacion y
tomografia cudntica de estados respectivamente. Al final de estos capitulos explicamos
nuestros primeros resultados: una nueva herramienta tedrica (los estados equidistantes),
que ha sido 1til en otras investigaciones de nuestros colleages y también un novel es-
quema de tomografia que combina el enfoque Invercién lineal con las técnicas de discrim-
inacién de estados. Este esquema tomografico también tiene la caracteristica novedosa
de que es posible una reconstruccién probabilistica del estado original sobre el sistema
medido.

En el capitulo 5 se desarrolla la teoria de los marcos de reconstrucciéon y defini-
mos el conjunto especial de los operadores conocidos como SIC-POVM. Las mediciones
definidas por la SIC-POVMs permiten una férmula de reconstruccién tomogréfica que
hace de la Tomografia de estados cudnticos més confiable y que también se puede uti-
lizar para sustituir la regla de Born y cambiar el formalismo de la mecanica cuantica.
Lamentablemente atin no hay prueba analitica de la existencia del SIC-POVMs de rango
uno. Explicamos dos de nuestros intentos para dar una prueba analitica de la existencia
desde SIC-POVM de dimensién arbitraria. Estos dos intentos no tuvieron éxito, pero
muestran nuevas caracteristicas de la estructura de la SIC-POVMs. Fueron publicados
en revistas ISI.

En el capitulo 6 se propone una nocién de optimizacién de un proceso de recon-
struccién y encontramos las condiciones que un marco de reconstruccién debe satisfacer

iii
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para que sea 6ptimo en este sentido. Se demuestra que la SIC-POVMs y las bases
mutuamente excluyentes (MUBS) son 6ptimas en este sentido. Se introduce una gen-
eralizacién de la SIC-POVMs conocida como SIC-POVM condicional (CSI-POVM) y
muestran que también son 6ptimas para la reconstruccién de un subespacio del espacio
de estados cudnticos. A continuacién, se propone un nuevo conjunto de bases para
la reconstruccién que generaliza al de MUBS, utilizando los estados equidistantes. La
optimizacion de esta generalizacién es sélo una conjectura hasta ahora.

En el capitulo 7 se presenta el nuevo enfoque de la mecdnica cudntica conocido
como Bayesianismo Cudntico. También se exploran las consecuencias de este enfoque
para la tomografia de estados cudnticos, es decir: el teorema cudntico de Finetti y la
férmula de reconstruccién de los SIC-POVM. A continuacion, se prueba que los mismos
objetivos alcanzados con la féormula de los SIC-POVM se puede lograr por medio de
los CSI-POVM, con la ventaja de que tenemos una prueba analitica de la existencia
de los CSI-POVM para dimensiones que son el sucesor de la potencia de un primo.
Exploramos las consecuencias de la correspondiente férmula de reconstruccién de los
CSI-POVM para el Bayesianismo Cuantico.



Abstract

In this thesis we propose new theoretical and practical tools for the research field of
Quantum State Tomography.

As an introduction to this thesis, Chapters 1 and 2 set out our approach to quantum
mechanics and the theory of probability. These chapters are essential, and which also
define the basic concepts necessary to understand proposals and philosophical goals of
our research.

In Chapters 3 and 4, we briefly introduce the concepts of quantum state discrim-
ination and quantum state tomography respectively. At the end of this chapters we
explain our first results with a new theoretical tool (the equidistant states) that has
been useful in many other research of our colleages and also a novel tomography scheme
that combines the linear invertion approach with the techniques of quantum state dis-
crimination. This tomographic scheme has also the novel feature that a probabilistic
reconstruction of the measured state is possible.

In Chapter 5 we develop the theory of reconstruction frames and define the especial
set of operators known as SIC-POVM. The measurements defined by SIC-POVMs al-
low a reconstruction tomographic formula that makes quantum state tomography more
reliable and as well, can be used to replace Born’s rule and change quantum mechan-
ics formalism. Sadly there is still no analytic proof of the existence of SIC-POVMs of
rank one. We explain two of our attemps to give an analytic proof to the existence
of SIC-POVM in arbitrary dimension. This two attemps were not successful, but they
show novel features of the structure of SIC-POVMs. They were published in ISI reports.

In Chapter 6 we give a notion of optimality for a reconstruction process and found
the conditions that a reconstruction frame should satisfy to be optimal in this sense.
We show that SIC-POVMs and mutually unbiased bases (MUBs) are optimal in this
sense. We introduce a generalization of SIC-POVMs known as conditional SIC-POVM
(CSI-POVM) and show that they are also optimal for reconstruction of a subspace of
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the quantum state space. Then we propose a new set of bases for reconstruction that
generalize the MUBSs, using the equidistant states. The optimality of this generalization
is a conjecture so far.

In Chapter 7 we introduce the novel approach to quantum mechanics known as
Quantum Bayesianism. Also we explore the consequences of this approach for quantum
state tomography, that is: the quantum de Finetti theorem and the SIC-POVM recon-
struction formula. Then we prove that the same goals achieved with the SIC-POVM
formula can be achieved by means of the CSI-POVM, with the advantage that we have
an analytical proof for the existence of CSI-POVM for dimensions that are de successor
of the power of a prime. We explore the consequences of the corresponding CSI-POVM
reconstruction formula for Quantum Bayesianism.
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Basics in Quantum Mechanics Formalism

Here we give the basic definitions and statements of quantum mechanics formalism
within the context of quantum information to be the framework of the discussions and
researches developed in the following chapters. The scheme has been taken from [I]
with the necessary changes and rearrangements for a succinct presentation that deals
with the requirements of this Thesis.

1.1 General approach to physics

Quantum Mechanics is a breakthrough in science, not only because of its formidable
applications, but because it changes our way to understand Nature. The ontological
problem to define nature is so important, because delimits the range of applicability of
Physics (and with this the whole science). At the beginning Aristotle thought nature
as an etiology, i.e. the study of the objects of the world and its causalities[2]. Then
Galileo changed this conception, and Nature becomes the mathematical determination
of events i.e. we substitute objects with mathematical models whose laws will determine
the observed events [2, 3].

Now Quantum Mechanics, through the indeterminacy principle forces us to take ac-
count of events, not as independent elements of reality, but also connected with us in an
unseparable way. This makes phenomena the elementary block of Nature. Phenomena
is the aspect that objects offer to our senses [1], i.e. its measurements and Nature is
the course of this measures; the law of phenomena [2].

Because of this, every time we face reality within physics three basic concept emerge
to grasp the constitution of nature: physical systems, physical process and observables.
A physical system is any phenomena, describable in finite space-time and its dynamical
evolution (free, manipulated or both) is a physical process [6]while observables are any
property we can measure in a physical system [5].

When measuring an observable various outcomes are simultaneously possible, but
their plausibility shows to be different in general. To give a quantitative account of this
plausibility is developed the concept of probability [7, &]. Is the belief of the author
that probabilities are just a way to extend our logical reasoning for cases when deductive
reasoning is not possible due to a lack of enough information. This will be discussed in



2 1.1. General approach to physics

more detail in Chapter two where this conception of probabilities and its relation with
statistical frequency will be clarified.

For what follows we just need to explain that statistical frequency is a particular kind
of data which is the number of actual outcomes which its plausibility we are interested
in, divided by the number of all the actual outcomes in the observable. A probability of
a particular outcome is in general a function of the statistical frequency and our prior
information.

It must be remarked that the mathematical framework here developed includes
this general definition as well the more simplistic identification of statistical frequency
limit (i.e. extrapolation) with the probability, which is the core belief of frequentist
interpretation of probabilities. Having say that, then we call a state of a physical system
the characterization of the probabilities of the various outcomes to every conceivable
measuring of a particular observable of the physical system[5].

Any theory whose predictions are just probabilities about the results of different
observables is called a statistical theory and such is the case of quantum mechanics.
Statistical experiments are experiments in which the prediction power of a statistical
theory is tested. They require to be repeated according to the same procedure as it can
be set out in a detailed laboratory manual. Two kinds of procedures are required:

e Preparation procedures: Which prepare a certain kind of physical system in a
distinguished state

e Registration procedures: Also known as tests are the procedures for measuring a
particular observable.

A mathematical description of such a setup basically consist of two sets S , £ and
amap SXE& 3 (p, A) — p(A) € [0,1]. The elements of S describe the states i.e.
preparations, while the A € £ known as effects, represent all results of a measurement
of any observable of the system. The probability to get the result represented by the
effect A on a system prepared in the state p , is given by p (A). This is a very general
scheme applicable not only to quantum mechanics but also to a very broad class of
statistical models, containing in particular classical probability theory. In order to
make use of it we have to specify the precise structure of the sets S , £ and p(A) for
the types of systems we want to discuss. Most of the following technical results that
complete the mathematical structure required for this approach are taken from different
chapters of the book-review Fundamentals of quantum information theory by Michael
Keyl [1].

1.1.1 Operator Algebras

The scheme we are going to discuss is based on an algebra A ! of bounded operators
acting on a Hilbert space H. More precisely A is a (closed) linear subspace of B (#), the
algebra of bounded operators on H, which contains the identity (I € A) and is closed
under products (4, B € A= AB € A) and adjoints (A € A = A* € A). For simplicity

!An algebra A (or algebra over a field) is a vector space equipped with a bilinear product. If V'
is a vector space a bilinear product is a function ¢ : V x V — V such that for any v € V, the maps
w — ¢p(w,v) and w — ¢(v, w) are linear maps V — V.
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we will refer to each such A as an observable algebra. The key observation is now that
each type of system we will study in the following can be completely characterized by
its observable algebra A, i.e. once A is known there is a systematic way to derive the
sets S, £ and the map (p, A) — p(A) from it. We frequently make use of this fact by
referring to systems in terms of their observable algebra A, or even by identifying them
with their algebra and saying that A is the system.

Although A and H can be infinite dimensional in general, we will consider only
finite dimensional Hilbert spaces, as long as nothing else is explicitly stated. Hence
we can choose H = C? and B(H) = My(C) the algebra of d x d matrices. Since
A is a subalgebra of B (H) it operates naturally on H and it inherits from B (#) the
operator norm ||Al| = supjy|=1 [|A%[| and the operator ordering A > B <« (¢, A) >
(v, BY) Vi € H. Now we can define:

S(A) ={pe A%lp=0, p(I) =1} (1.1)

where A*denotes the dual space of A, i.e. the set of all linear functionals on A, and
p >0 means p(A) >0 VA > 0. Elements of S(A) describe the states of the system
in question while effects are given by

E(A)={AcA|A>0, A<T} (1.2)

More generally we can look at p (A) for an arbitrary A as the expectation value of A
in a system of state p. Hence the idea behind equation (1.1) is to define states in terms
of their expectation value functional.

Both spaces are convez i.e. p, 0 € S (A) and 0 < A < 1 implies that A\p+(1 — ) o €
S (A) and similarly for £ (A). The extremal points of S (A) respectively € (A), i.e. those
elements which do not admit a proper convex decomposition,

r= Y+ (1-ANz=A=1lorA=00ry=z=x

play a distinguished role: the extremal points of S (A) are pure states and those of
E (A) are the propositions of the system in question. The latter represents the effects
which register a property with certainty.

1.1.2 Quantum systems

For quantum systems we have:

A=B(H) (1.3)

where we have chosen again H = C?. The corresponding systems are called d-level
systems, qudits or qubits when d = 2 holds. To avoid clumsy notations we frequently
write S (H) and & (H) instead of S (B(H)) and £ (B(H)). From equation (1.2) we
immediately see that an operator A € B (H) is an effect iff it is positive and bounded
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above by I. An element P € £ (H) is a proposition iff P is a projection operator
(P? = P).

States are described in quantum mechanics usually by density matrices, i.e. positive
and normalized trace class operators. To make contact to the general definition in
equation (1.1) note first that B (H) is a Hilbert space with the Hilbert-Schmidt scalar
product (A, B) = Tr (A*B). Hence each linear functional p € B(H)" can be expressed
in terms of a (trace class) operator p by A — p(A) = Tr(pA). In this way each p
defines a unique functional p. If we start on the other hand with p we can recover the
matrix elements of p from p by prp; = Tr (plj) (k) = p(|5) (k|) , where |j) (k|denotes
the canonical basis of B (). More generally we get for ¢, ¢ € H the relation (¢, p1p) =
p (|¥) (¢|), where [¢) (¢| now denotes the rank one operator which maps n € H to
(¢,m) 1. In the following we drop the ~ and use the same symbol for the operator and
the functional whenever confusion can be avoided. Due to the same abuse of language
we will interpret elements of B (H)*frequently as (trace class) operators instead of linear
functionals (and write Tr(pA) instead of p(A) ). However we do not identify B (H)”
with B (#) in general, because the two different notations help to keep track of the
distinction between spaces of states and spaces of observables.

Positivity of the functional p implies positivity of the operator p due to 0 < p (|1) (¥|)
(1, pt) and the same holds for normalization: 1 = p (I) = T'r (p). Hence we can iden-
tify the state space from equation (1.1) with the set of density matrices, as expected
for quantum mechanics. Pure states of a quantum system are the one dimensional pro-
jectors. As usual we will frequently identify the density matrix |¢) (1| with the wave
function v and call the latter in abuse of language a state.

1.1.3 Classical systems

The observable algebra A of such a system is the space:

A=CX)={f: X > C) (1.4)

of complex valued functions on the finite set X of elementary events. To interpret
this as an operator algebra acting on a Hilbert space H choose an arbitrary but fixed
orthonormal basis |z) , x € X in H and identify the function f € C (X) with the operator
f=>,fz|z) (x| € B(H) (we use the same symbol for the function and the operator,
provided confusion can be avoided). Most frequently we have X = {1,...,d} and we
can choose H = C¢ and the canonical basis for |z). Hence C (X) becomes the algebra
of diagonal d x d matrices. Using equation (1.2) we see that f € C (X) is an effect iff
0< fr <1, Vx € X. Physically we can interpret f, as the probability that the effect f
registers the elementary event x This makes the distinction between propositions and
fuzzy effects very transparent: P € £ (X) is a proposition iff we have either P, = 1 or
P, =0forall z € X. Hence the propositions P € C (X) are in one to one correspondence
with the subset wp = {x € X | P, =1} C X which in turn describe the events of the
system. Hence P register the event wp with certainty, while a fuzzy effect f < P does
this with a probability less than one.

Since C (X) is finite dimensional and admits the distinguished basis |z) (x|, z € X
it is naturally isomorphic to its dual C*(X). More precisely: each linear functional
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p € C*(X) defines and is uniquely defined by the function x — p, = p(|z) (z|) and
we have p (f) =) . fepz. As in the quantum case we will identify the function p with
the linear functional and use the same symbol for both, although we keep the notation
C* (X) to indicate we are talking about states rather than observables.

Positivity of p € C*(X) is given by p, > 0 for all x and normalization leads to
1=p{)=p_, |x) (x]) =D, ps- Hence p to be a state, C* (X) must be a probability
distribution on X and p, the probability that the elementary event x occurs during
statistical experiments with systems in the state p. More generally p (f) = > . fops is
the probability to measure the effect f on systems in the state p. If P is a particular
proposition, p (P) gives the probability for the event wp. The pure states of the system
are the Dirac measures d,, € X ; with 0, (|y) (y|) = 0zy. Hence each p € S (X) can
be decomposed in a unique way into a convex linear combination of pure states.

1.1.4 Observables

We can think an observable E taking its values in a finite set X as a map which
associates to each possible outcome x € X the effect £, € £(A) (when A is the
observable algebra of the system in question) which is true if = is measured and false
otherwise. If the measurement is performed on systems in the state p we get for each
x € X the probability p, = p(F,) to measure . Hence the set of p, should be a
probability distribution on X, and implies that £ should be a positive operator valued
measure (POVM) on X. Then we have the following definition:

DEFINITION 1.1: Consider an observable algebra A C B (H) and a finite set X. A family
E = (E;),cx of effects in A (i.e. 0 < B, <1 ) is called a positive operator valued
measure (POVM) on X if 3 .x E; = I (known as completeness relation ) holds. If
all E; are projections, E is called projection valued measure (PVM).

In quantum mechanics we know that observables are described by self adjoint op-
erators on a Hilbert space H. If A is such observable operator then it has the form:
A= Z/\EU(A) AP, where o (A) denotes the spectrum of A, i.e. the set of eigenvalues
and Py denotes the projection onto the corresponding eigenspace. Hence there is a
unique PVM, P = (Py),. #(A) associated to A which is called spectral measure of A.
It is uniquely characterized by the property that the expectation value ), o(A) Ap (Py)
of P in the state p is given for any state p by p(A) = Tr (pA). Hence the traditional
way to define observables within quantum mechanics perfectly fits into the scheme just
outlined. However it only covers the projection valued case and therefore admits no
fuzziness. For this reason POVMs are sometimes called generalized observables.

1.2 Composite systems

Composite systems occur in many places in quantum information theory. In this cases
we are allow to construct states and observables from the subsystems. In quantum
mechanics this is done in terms of tensor products, and we will review in the following
some of the most relevant material
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1.2.1 Tensor products

Consider two (finite dimensional) Hilbert spaces H and K. To each pair of vectors
Y1 € H, 9 € K we can associate a bilinear form 11 ® 19, called the tensor product of
Y1 and g, by 1 @ o (1, P2) = (1, ¢1) (2, ¢2). For two product vectors ¢ ® ¥, and
m ®ng their scalar product is defined by (¢ ® 2, m ® n2) = (11, m) (Y2, m2) and it can
be shown that this definition extends in a unique way to the span of all ¥; ® 19 which
therefore defines the tensor product H ® K. If we have more than two Hilbert spaces
Hj, j=1,...,N their tensor product H; ® ... ® Ho can be defined similarly.

The tensor product A; ® Ay of two bounded operators A1 € B(H), As € B(K) is
defined first for product vectors 1 ® Y2 € H® K by A1 ® A (1 ® ¥2) = (A191) ®
(Ag1p2)and then extended by linearity. The space B(H ® K) coincides with the span
of all Ay ® Ay. If p € B(H ® K) is not of product form (and of trace class for infinite
dimensional H and K) there is nevertheless a way to define restrictions to H respectively
KC called the partial trace of p. It is defined by the equation

Try [Tric (p) Al = Trysk (pPA®1) VA € B(H) (1.5)

If two orthonormal bases ¢1, ... ,¢, and ¥1,... ¥, are given in H respectively K
we can consider the product basis ¢1 ® ¥1,... ,0n ® ¥, in H ® K, and we can expand
ecach¥ e HQK as ¥ = ij VU0 @1y, with Wi, = (¢ ® ¢y, ¥). This procedure works
for an arbitrary number of tensor factors. However, if we have exactly a twofold tensor
product, there is a more economic way to expand W, called Schmidt decomposition in
which only diagonal terms of the form ¢; ® v; appear.

PROPOSITION 1.2: For each element W € H ® I there are orthonormal systems
O1y .o s On and Py, ... 1y (not necessarily bases because n can be smaller than dim (H)
and dim (K)) of H and K respectively such that ¥ = Zj \//\7-(1)]' ® 1; holds. The ¢;
and ; are uniquely determined by W. The expansion is called Schmidt decomposition

and the numbers \/\; are the Schmidt coefficients.

For a proof see Chapter 2, section 2 page 16 in [I]. As an immediate application
of this result we can show that each mixed state p € B(H)" (of the quantum system
B (H)) can be regarded as a pure state on a larger Hilbert space H ® H'. We just have
to consider the eigenvalue expansion p = >, A [¢;) (¢;| of p and choose an arbitrary
orthonormal system ¢, j =1,...,n in H'. Using Proposition 1.2 we get:

COROLLARY 1.3: Each state p € B(H)* can be extended to a pure state ¥ on a larger

system with Hilbert space H @ H' such that Tryy (]¥) (¥|) = p holds.

1.2.2 Compound and hybrid systems

To discuss the composition of two arbitrary (i.e. classical or quantum) systems it is
very convenient to use the scheme developed in subsection 1.1.1 and to talk about the
two subsystems in terms of their observable algebras A C B(H) and B C B(K). The
observable algebra of the composite system is then simply given by the tensor product
of AR B, i.e.

A@B:=span{AB|A€ A BeB} CB(H®K) (1.6)
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The dual of A ® B is generated by product states, (p®0)(A® B) = p(A) o (B)
and we therefore write A* ® B* for (A® B)*.

We will consider the special cases arising from different choices for A4 and B. If both
systems are quantum A = B (#H) and B = B(K) we get

BH)®B(K)=B(HoK) (1.7)

as expected. For two classical systems A = C (X) and B = C(Y) recall that ele-
ments of C (X) (respectively C (Y')) are complex valued functions on X (on Y'). Hence
the tensor product C (X) ® C (Y') consists of complex valued functions on X x Y, i.e.
C(X)®C(Y) =C(X xY). In other words states and observables of the composite
system C (X) ® C (Y') are given by probability distributions and random variables on
the Cartesian product X x Y.

If only one of the subsystems is classical and the other is quantum, we have a hybrid
system. The elements of this observable algebra C (X) ® B(H) can be regarded as
operator valued functions on X, i.e. X 3 & — A, € B(H) and A, is an effect iff
0 < A, < T holds for all z € X. The elements of the dual C* (X) ® B* (H) are in a
similar way B* (X) valued functions X > 2 — p, € B* (H) and p is a state iff each p,
is a positive trace class operator on H and ) p, = I. The probability to measure the
effect A in the state p is >, ps (A).

1.2.3 Correlations

Let us now consider two effects A € A and B € B then A® B is an effect of the composite
system A ® B. It is interpreted as the joint measurement of A on the first and B on
the second subsystem, where the “yes” outcome means “both outcomes give yes”. In
particular A®I means to measure A on the first subsystem and to ignore the second one
completely. If p is a state of A ® B we can define its restrictions by pA (A) = p(A®1)
and p® (A) = p(I® A). If both systems are quantum the restrictions of p are the partial
traces, while in the classical case we have to sum over the B, respectively A variables.
For two states p1 € S(A) and p2 € S(B) there is always a state p of A ® B such
that p; = p™ and py = pB holds: We just have to choose the product state p; ® ps.
However in general we have p # p* ® p® which means nothing else than p also contains
correlations between the two subsystem systems.

DEFINITION 1.4: A state p of a bipartite system A QR B is called correlated if there
some A € A, B € B such that p(A® B) # p™ (A) pP (B) holds.

From this we see that p = p; ® py implies p (A ® B) = p1 (A) p2 (B) = p™ (A) pB (B)
hence p is not correlated. If on the other hand p(A® B) = p?(A) pB (B) we get
p = p* @ pB. Hence, the definition of correlations just given perfectly fits into our
intuitive considerations.

An important issue in quantum information theory is the comparison of correlations
between quantum systems on the one hand and classical systems on the other. Hence
let us have a closer look on the state space of a system consisting of at least one classical
subsystem.

are



8 1.3. Channels

PROPOSITION 1.5: Fach state p of a composite system A ® B consisting of a classical

and an arbitrary system has the form:

p=2_ Xir) @} (1.8)

jEX

with positive weights A\j > 0 and p;‘l eS(A), ,0? e S (B).

For a proof see Chapter 2, section 2 page 17 in [I]. If A and B are two quantum
systems it still possible for them to be correlated in the way just described. We can
simply prepare them with a classical random generator which triggers two preparations
devices to produce systems in the states p}“, pf' with probability A;. The overall state
produced by this setup is obviously the p from equation (1.8). However, the crucial point
is that not all correlations of quantum systems are of this type. This is a consequence
of the definition of pure states p = |¥) (V| € S(H) : Since there is no proper convex
decomposition of p, it can be written as in Proposition 1.5 iff ¥ is a product vector, i.e.
VU = ¢ ® ¢. This observation motivates the following definition:

DEFINITION 1.6: A state of the composite system B (H1) @ B (Hz) is called separable

or classical correlated if it can be written as

p=>"%n" @y (1.9)
J

with states ,o(k) € B(Hy) and weights \; > 0 . Otherwise p is called entangled. The set

J

of all separable states is denoted by D (H1 @ Ha) or just D if Hy and Hz are understood.

1.3 Channels

The purpose of this section is to provide a framework for the description of all the
dynamical operations on the states of a physical systems.This is done in a way that we
give account not only of the effect of a physical process over a physical system, but also
on the state of knowledge of this system. The basic idea is to represent each processing
step by a “channel”, which converts input systems, described by an observable algebra A
into output systems described by a possibly different algebra B. Henceforth we will call
A the input algebra and B the output algebra . If we consider e.g. the free time evolution,
we need quantum systems of the same type on the input and the output side, hence in
this case we have A = B = B (H) with an appropriately chosen Hilbert space #H. If on
the other hand we want to describe a measurement we have to map quantum systems
(the measured system) to classical information (the measuring result). Therefore we
need in this example A = B (H) for the input and B = C (X) for the output algebra,
where X is the set of possible outcomes of the measurement.

Our aim now is to get a mathematical object which can be used to describe a
channel. To this end consider effect A € B of the output system. If we invoke first
a channel which transforms A systems into B systems, and measure A afterward on
the output systems, we end up with a measurement of an effect 7'(A) on the input
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systems. Hence we get a map T : £ (B) — & (A) which completely describes the
channel. Alternatively we can look at the states and interpret a channel as a map
T* : S(A) — S (B) which transforms A systems in the state p € S (A) into B systems
in the state T* (p) € S(B). To distinguish between both maps we can say that T
describes the channel in the Heisenberg picture and T™ in the Schrdinger picture. On
the level of the statistical interpretation both points of view should coincide of course, i.e.
the probabilities (T%p) (A) and p (T'A) to get the result “yes” during an A measurement
on B systems in the state T*p, respectively a T A measurement on A systems in the
state p, should be the same. We say also that the map T : B* — A* is dual to T,
ie. T*p(A) = p(TA) for all p € B* and A € A. Since (T*p) (A) is linear in A we see
that 7" must be an affine map i.e. T (A1 A1+ AaAs) = MT (A1) + AT (A2) for each
convex linear combination A;A; + A2 As of effects in B, and this in turn implies that T
can be extended naturally to a linear map, which we will identify in the following with
the channel itself, i.e. we say that T is the channel.

1.3.1 Completely positive maps

Let us change now slightly our point of view and start with a linear operator T'
A — B. To be a channel, T" must map effects to effects, i.e. T has to be positive:
T (A) > 0VA > 0 and bounded from above by I, i.e. 7' (I) < I. In addition it is natural
to require that two channels in parallel are again a channel. More precisely, if two
channels T : Ay — By and S : Ay — By are given we can consider the map T'® S
which associates to each A® B € A; ® Ay the tensor product T'(A) ® S (B) € B1 ® Ba.
It is natural to assume that 7" ® S is a channel which converts composite systems of
type A1 ® Ay into By ® By systems. Hence S ® T should be positive as well.

DEFINITION 1.7: Consider two observable algebras A, B and a linear map T : A —
BCB(H).

1. T is called positive if T (A) > 0 for all positive A € A.

2. T is called completely positive (cp) if T ®@ Id : A® B(C") — B(H) @ B(C") is
positive for all n € N. Here Id denotes the identity map on B (C™).

3. T is called unital if T (I) = I holds.

If item 2 holds only for a fixed n € N the map T is called n-positive. This is obviously
a weaker condition than complete positivity. However, n-positivity implies m-positivity
for all m < n, and for A = B ((Cd) complete positivity is implied by n-positivity,
provided n > d holds.

Let us consider now the question whether a channel should be unital or not. We
have already mentioned that T (I) < T must hold since effects should be mapped to
effects. If T'(I) is not equal to I we get p (TI) = T*p(I) < 1 for the probability to
measure the effect I on systems in the state T*p, but this is impossible for channels
which produce an output with certainty, because I is the effect which measures whether
we have got an output. We will assume in the future that channels are unital if nothing
else is explicitly stated.
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1.3.2 The Stinespring theorem

Consider now channels between quantum systems, i.e. A =B (H;1) and B = B (H3). A
simple example (not necessarily unital) is given in terms of an operator V' : H; — Ho
by B(Hi1) 2 A~ VAV* € B(H2). A second example is the restriction to a subsystem
which is given by (Heisenberg picture) B(H) > A— A®Ix € B(H ® K). Finally the
composition S o T = ST of two channels is again a channel. The following theorem,
which is the most fundamental structural result about cp maps, says that each channel
can be represented as a composition of these two examples.

THEOREM 1.8(STINESPRING DILATION THEOREM): Ewvery completely positive map T :
B (H1) — B (Hs2) has the form:

T(A) =V (A®Ic)V (1.10)

with an additional Hilbert space K and an operator V. : Ho — Hi; ® K. Both (i.e.
K and V') can be chosen such that the span of all (A® 1) Ve with A € B(H1) and
¢ € Hy is dense in H1 ® K. This particular decomposition is unique (up to a uni-
tary equivalence) and called the minimal decomposition. Also the minimal K satisfies

dim (K) < [dim (H1))? dim (Hs).

For a proof see [9].

1.3.3 Ideal and noisy channels

We can think in a channel ' : B(H) — B(H) as an operation that performs the
transmission of quantum information over long distances, where 7% (p) is the quantum
information which will be received when a system characterized by p was sent. Ideally
we would prefer those channels which do not affect the information at all, i.e. T =1,
or as the next best choice, a T" whose action can be undone by a physical device, i.e.
T should be invertible and 7! is again a channel. The Stinespring theorem (Theorem
1.8) immediately shows that this implies 7%p = UpU* with a unitary U. This means
that the system carrying the information do not interact with the environment. We will
call such a kind of channel an ideal channel. In real situations, however interaction with
the environment, i.e. additional unobservable degrees of freedom, can not be avoided.
The general structure of such a noisy channel is given by:

T* (p) = Tric (U (0@ po) U*) (111)

where U : H® K — H ® K is a unitary operator describing the common evolution
of the system H and the environment K. Here also p, € S (K) is the initial state of the
environment.

It must be remarked the connection between channel and the orthodox formulations
of quantum dynamics. The connection between both formulations lies in the fact that
evolution of states is given by the Shrdidinger equation :

L Op
zha = [H, p] (1.12)
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where H is the Hamiltonian operator of the physical system, and the solution in
terms of the unitary operator

i [tout 1 —i k' ptout 3] te_1
U=1-- dt1H (t — | — dt dto - -- dty H(ty) ... H(t
[ G oo [

tin

(1.13)
where toy > t1 > ... >t > t;, (i.e. this is a Dyson series), is:
P (tout) = UP (tzn) U* (114)

and this is equivalent to our ideal channel by the identification of T*p with p (tout)
and p with p (¢;,) respectively. This is nothing more than saying that the output state
T*p is the same as the state of the system at the output time t,,; and the input state
p is the state of the system at the input time t;,.

To finish we notice that Hamiltonian operators of a quantum system are obtained
by the application of first and second quantization on the classical Hamiltonian function
of the physical system.

1.4 Remarks on our Informational approach

In this Chapter we have introduced the basic and fundamental concepts of quantum
mechanics within an informational scheme developed by Michael Keyl in [1]. Since,
Michael Keyl proposes that quantum information is a different kind of information
than classical one, we have introduced some changes at the beginning of the sections to
take a different point of view. For us the information provided by quantum mechanical
phenomena is not of a different kind, but is an information that we get from a different
inference process than the information we get from classical systems. The information
we get in quantum systems is always probabilities and as in classical systems they
provide us a decision-making tool of the same kind, what is different are the rules for
characterize those probabilities, i.e. their inference.

The scheme gives a unifying framework for different parts of our work with quantum
mechanics, first by showing how to describe preparations and test for a system, only by
choosing the appropriate operator algebra, then by demonstrating that application of
tensor products and partial trace over the chosen operator algebra gives account of the
operations of composition and selection of subsystems, respectively. Finally, the concept
of channels gives a framework for treating the information of all kind of systems under
all kind of processes, being the process due to physical changes in the physical system
or to selection and/or composition of the information about the system.

In Chapter two we will go further in this direction, by taking a Bayesian interpreta-
tion of probabilities and showing this way that more than just the results of quantum
mechanics is just manipulation of our state of knowledge (Chapter 7), clearing the path
to find the true teachings of quantum mechanics about reality.






Bayesianism: A view of probability within
scientific inference.

2.1 Scientific method and Scientific knowledge

Science is an activity of human beings, whose purpose is the acquisition of knowledge
from reality s phenomena and the construction of tools (material or theoretical) for pre-
dicting and controlling such phenomena. This purposes are not exclusive from science,
but also other philosophical systems have been proposed for making research about real-
ity itself, some of them which also claim to go beyond the scope of science [14, 4, 10, 12].
What is particular of science is its method and because of that any statement about a
phenomena can claim to be scientific, only when its truth can be analyzed within the
scientific method. This is why we have first to review the steps of scientific method, as
well its conceptions of truth and objectivity.

Truth in science is the correspondence between concepts (or statements) and facts[!].
Since this correspondence is demonstrated through measurement of certain quantities
whose values are determined by the concepts or statements, it ‘s at the same time limited
by the error associated to the measurement instruments. This is why scientific truth of
any statement is always bounded for error and quantities value have meaning only in
the significant digits. Measurement instruments are extensions of our senses, which also
give a quantification of senses experiences. Because of this, scientific truth also assume
human beings and its basics experiences, as well the a priori conditions that allow such
experiences. !

On the other extreme is the problem of the ontology of facts, which is the link
between reality and us [2]. This also is a subtle matter upon which the applicability
of science depends in particular any conception of objectivity. Objectivity is the claim
that the facts related to properties of objects are independent of the mind process of
the observers and then a particularity within the ontology of facts problem.

Scientific community (i.e. the set of people who is professionally engaged with

!Neurophysiology and physiology use scientific method in its analysis and that’s why it would be
a circular reasoning to try to justify scientific truth on their analysis, their valid claims are then only
allowed in the description of the basic experiences and the phenomena associated, but never as a
justification of them or its a priori conditions.

13
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Science) has not reached a consensus about this philosophical matters that underlies any
scientific experience, or which philosophical system and methods should be trusted the
research in this topics. There has been recognized some implications that are essential
for scientific work as well a classification of the fundamental quantities that the a priori
conditions allow us to observe, experience and measure (distance, time intervals, mass,
charge, etc.) is provided by the community to make the scientific results reliable and the
scientific discussion meaningful. Despite this philosophical complications that certainly
require more research if we attempt to have a deeper understanding of reality, science
have shown until now to be the widest and most reliable source of knowledge about
reality, the humanity has ever created.

This review of scientific truth and scientific objectivity has as a result the implica-
tions that our state of knowledge is always incomplete and experimenters with the same
state of knowledge should reach the same conclusions respectively. Which are the most
relevant implications for the present work.

The seven steps of scientific method are [11]:
1. Identification of the Scientific Problem
2. Preliminary hypothesis
3. Acquisition of additional facts (data)
4. Formulation of a model (system of hypothesis)
5. Deduction of the consequences of the model
6. Ezperimental testing of the consequences
7. Development of applications
Now we will review them shortly:

1 Identification of the Scientific Problem. The first step comes from two pos-
sibilities: a conflict between our concepts or theory and a fact, i.e. the finding
of a false concept or theory, or a new fact that can’t be explained from the ac-
cepted conceptions or theories about the phenomena involved, i.e. the finding of
an incomplete conception or theory. This findings are what we understand for a
Scientific Problem and the first step in the method is about a clear exposition of
it.

2 Preliminary hypothesis. After the identification of the scientific problem, the fact
which leads to the problem and the concepts or theories involved in it must lead
to some hypothesis about the phenomena. This new set of hypothesis do not
necessarily consist in a theory, but should be used to realize new observations or
experimentation’s about the phenomena.

3 Acquisition of additional facts (data). The observations and experimentation’s
implied by the preliminary hypothesis must be realized and the new data obtained
from them displayed and organized.
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4 Formulation of a model (system of hypothesis). Now, the new data should be
analyzed and a new model or theory created to give account of all this new facts,
this means the data must fit or correspond with some of the hypothesis of the
model or others that are a result of the model hypothesis and combination rules.
There is no rule for the creation of the model, only the requirement just outlined.

5 Deduction of the consequences of the model. After the creation of a model
able to give account of all the data, the model must be examined and find new
consequences from its hypothesis, rules and inner structure that predict facts that
have already not being observed, this is what we know as a prediction.

6 Ezxperimental testing of the consequences. The predictions of the model require
the development of an experimental setup that should reproduce the necessary
conditions to observe the predicted facts, if the subsequent observations are in
correspondence with consequences of the model, this will validate it within its
known range of applicability. Otherwise we are now in the presence of a new
scientific problem and we have to start with the scientific method again, until we
obtain a validated model.

7 Development of applications. When we are in possession of a validated model,
this should be used as the theoretical background for the development of technol-
ogy by scientists or engineers.

The goal of Bayesianism is to give an unifying procedure for making inferences, including
deductive and inductive inference in the same mathematical model. This was also the
original goal of probability theory, and this is why Bayesianism goes back to the roots
of probability theory, reinterpreting it as extended logic. This is why Bayesianism
and its statistical methods emerge as a help within scientific method by providing a
powerful tool in the inference process required in steps 2, 5 and 6. Because of this,
Bayesian interpretation is not only of philosophical interest, but also a source of practical
developments for all disciplines interested in the use of the scientific method.

2.2 Bayesian approach to probabilities and statistical inference

Around the fourth century BC, Aristotle [13] recognized that deductive inference can
be analyzed into repeated applications of the strong syllogisms:

(a) Major premise:{ If A is true, then B is true}, Minor premise: {4 is true} / Con-
clusion: {Therefore B is true}

(b) Major premise:{ If A is true, then B is true}, Minor premise: {B is false} /
Conclusion: {Therefore A is false}

Most of the scientific theories and mathematics have work on their inner structure and
inferences through the Aristotelian deductive reasoning, based on this two syllogisms.
They can be applied multiple times, and the conclusions will be strong as the premises
are. On the other hand, Inductive or plausible inference has been proposed for the
case where, because of incomplete information, Aristotelian deductive reasoning is not
possible. Plausible inference is based on the weak syllogisms:
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(c) Major premise:{ If A is true, then B is true}, Minor premise: {B is true} / Con-
clusion: {Therefore A becomes more plausible}

(d) Major premise:{ If A is true, then B is true}, Minor premise: {A is false} /
Conclusion: {Therefore B becomes less plausible}

This extension of logic has shown problematic, due to the absence of a quantitative
account of this conclusions, making obscure its meaning, their inference not reliable (or
without a measure of reliability) and subject of a long history of philosophical criticism
[16, 17, 15, 18]. This has been the reason why, until now, deductive reasoning has
been the only unquestionable method of inference in science and mathematics, as in the
words of Sir James Clerk Maxwell (1850): “The actual science of logic is conversant at
present only with things either certain, impossible or entirely doubtful, none of which
(fortunately) we have to reason on.”. It must be remarked that, still this being the
case, inductive reasoning is clearly used in science and mathematics in an informal way
[23, 24],

The early work on probability theory by James Bernoulli (1713,[20]), Rev. Thomas
Bayes (1763, [19]) and Pierre Simon Laplace (1774, [21]), viewed probability as an
extension of logic, where the inclusion of plausible reasoning could be introduced by
defining probability as the measure of plausibility required to give a quantitative account
of the weak syllogisms. Unfortunately, Laplace failed to give convincing arguments to
show why this definition of probability uniquely required the basic rules for manipulating
probabilities. The frequentist definition of probability was introduced to satisfy this
point, but in the process, eliminated the interpretation of probability as extended logic.
So, the two conceptions of probability are:

1) Frequentist statistical inference: p(A) : long-run relative frequency with which
A occurs in identical repeats of an experiment. “A” is restricted to propositions
about random variables.

2) Bayesian statistical inference: p(A|I): a real number measure of the plausi-
bility of a proposition or hypothesis A, given (conditional on) the truth of the
information represented by I. “A” can be any logical proposition, not restricted
to propositions about random variables.

The new resurgence of Bayesian approach is due to the achievement of finding the
missing arguments for the requirement of the basic rules for manipulating probabilities.
This is done through a set of desiderata known as such, rather than axioms, because
they do not assert anything true, but only state desirable goals.

The Desiderata of Bayesian probability theory are:
I. Degrees of plausibility are represented by real numbers
II. As new information supporting the truth of a proposition is supplied, the number

which represents the plausibility will increase continuously and monotonically.
Also, the deductive limit must be obtained where appropriate.
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III. Consistency?

(a) Structural consistency: If a conclusion can be reasoned out in more than
one way, every possible way must lead to the same result.

(b) Propriety: The theory must take account of all information, provided it is
relevant to the question.

(c¢) Jaynes consistency: Equivalent states of knowledge must be represented
by equivalent plausibility assignments.

From this desiderata is it possible to develop probability theory as an extension of
logic [7, 8]. This was done through the works of G. Polya [24], R.T. Cox [25] and
E.T. Jaynes (most remarkably in the book Probability Theory-The Logic of Science
[7]). Their greatest achievement was the deduction of the basic rules for manipulating
probabilities: Sum rule and Product rule, just by requiring to a monotonous, continuous
function 0 < p(-) < 1 of the degree of plausibility (A|I) of an statement or hypothesis
A (assuming information I), to satisfy the previously stated desiderata. This is:

(1) Sum Rule:
p(A[I) +p (A|I) =1

(2) Product Rule:

p (A, B|I) = p(All)p(B|A, I) = p(B|I) p(A|B, I)

Where A, B states for the conjunction of statements A and B and A is the negation of
A. From both rules is it possible to derive the extended sum rule:

p(A+ B|I) =p(All) +p(B|I) —p(A BlI)

Here A + B is the disjunction of statements A and B. In the special case of A and
B mutually exclusive, we have the generalized sum rule:

p(A+B|I)=p(AlI) +p(B|)

And in particular, from the product rule (a rearrangement of the two sides of the
equation) follows the Bayes” Theorem:

p(Hi|I)p(D|H;,I)
p(DII)
2In my opinion this consistency desiderata express more a desire of equivalency between statements

rather than requiring logical consistency. Of course, they are required to ensure consistency, but this
one is assumed only in the construction of the sum rule.

p(Hi|D,I) =

(2.1)
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We have rewrite the variables with the purpose to explain in more detail their usual
meaning in the Bayesian analysis. This is: H; = “proposition assenting the truth of
a hypothesis of interest”, I = “proposition representing our prior information”, D =
“proposition representing data”, p (D|H;,I) = “probability of obtaining data D, if H;
and I are true”, also known as the likelihood function £ (H;), p (H;|I) = “prior probabil-
ity of H;”, p (H;|D, I) = “posterior probability of H;”, p (D|I) =Y. p (H;|I)p (D|H;,I),
normalization factor which ensures ). p (H;|D,I) =1, also known as total probability
factor.

Now we are in position to show, how Bayesian inference includes all kinds of syl-
logism. First we start with the strong syllogisms (a) and (b). The major premise
translated to Boolean algebra (i.e. the algebra of Aristotelian logic, [22]) is A,B = A
and the minor premise is “A is true”. Then by writing down the product rule for (a) :

p(A,BII) = p(All)p(B|A,I)
p (A B|I)
p (AlI)

Using the prior information I =7 A, B = A”

— p(BIAI) =

—p(4,B|I) = p(Al)
—p(BJA L) = 1
which means that B is certain when A is true under the major premise. Since minor

premise assure us that A is true, then B must be certain. Now for (b) we have the same
major premise as in (a) and minor premise “B is false”.

Using the prior information I =7 A, B = A”

—>p(A,B|I) =
—>p(A\B,I) =

which means that A is impossible when B (the negation of B) is true under the major

premise. Since minor premise assure us that B is true, then A must be impossible. For
the weak syllogism (c) we start with the Bayes” theorem:

p(A[I)p(B|A,I)
p(B|I)

Using the prior information I =7 A, B = A”

p(AlB,I) =
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—p(B|A ) =1

Also, by the definition of plausibility function p(-) we have

p(BlI) <1

Then, substituting into Bayes” theorem gives:

p(A[B,I) > p (Al

which means that A is more plausible when B is true under major premise, than in
its prior plausibility. Since minor premise assure that B is certain, the plausibility of A
is increased. For the weak syllogism (d) we start again with the Bayes” theorem:

p(BII)p(A|B,1)
p (Al)

Based on the same prior information syllogism (c) gives p (A|B,I) > p (A|I) so using
the sum rule we have:

p(BIAI) =

—1-p(A|B,I) > 1-p(A|)
—p(A|B,I) < p(A|I)
Netiad] Lo

p(AID) T

Substituting into Bayes” theorem:

p(B|A,I) < p(B|I)

which means that B is less plausible when A is true under the major premise, than
in its prior plausibility. Since the minor premise states that A is true, we have that
the plausibility of B decreases. This shows how Bayesianism includes deductive, as well
plausible reasoning in its plausibility model, unifying in this way the different inference
procedures.

To finish the section we remark that in Bayesianism, a probability is a representation
of our state of knowledge of the real world. A frequency is a factual property of the real
world that we measure or estimate. One of the strengths of Bayesian inference is the
ability to incorporate relevant prior information in the analysis. In Bayesian inference,
we can readily incorporate frequency information using Bayes” theorem and by treating
it as data. In general, probabilities change when we change our state of knowledge;
frequencies do not.
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2.3 Examples of Bayes theorem application

This examples have been taken from the chapter one of the book, “Bayesian Logical Data
Analysis For The Physical Sciences - A Comparative Approach With Mathematica” [3].

2.3.1 Model selection

Here we analyze a simple model comparison problem using Bayes theorem. We start
by stating our prior information I and the new data D.
I stands for:

1. Model M predicts a star’s distance, d; = 100 light years (ly).
2. Model My predicts a star’s distance, do = 200 ly.

3. The uncertainty e in distance measurements is described by a Gaussian distribu-
tion of the form:

1 e2
p(e’]—)_mexp(_ﬁ>

where o = 40 ly.

4. There is no current basis for preferring M; over Ma, so we set p (M1 |I) = p (Ms|I) =
1/2 .

D = “The measured distance is d = 120 ly.”

The prior information tells us that the hypothesis space of interest consist of mod-
els (hypotheses) M; and Ms. We proceed by writing down Bayes theorem for each
hypothesis, e.g.,

p (Mi|I)p (D|My, 1)
p(D|I)

p (Ma|I)p (D| My, I)
p(D|I)

p(Ml‘D>I) =

p(MQ‘D7I)

Since we are interested in comparing the two models, we will compute the odds ratio,
equal to the ratio of the posterior probabilities of the two models. We will abbreviate
the odds ratio of model M; to model My by the symbol Oqs.

0. _ PALID.T) _ p(Mi|1)p(D|My, 1) /p(DII) _ p(D|M;, 1)
27 p(Ma|D,I) — p(Mo|I)p(D|My, 1) /p(DII) ~ p(D|Ma,1)

(2.2)

where the equal terms cancel each other. Then, to evaluate the likelihood p (D|Mj, I)
, we note that in this case we are assuming M is true. In that case, the only reason the
measured d can differ from the prediction di is because of measurement uncertainties
e. We can thus write d = d; + e or e = d — dy. Since d; is determined by the model, it
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it certain and so the probability p (D|Mj, I)of obtaining the measured distance is equal
to the probability of the error e {d;}. Thus we can write:

p(DIM1.T) = p(e{di} 1) = 502

\/217 exp (—(d_dl)Q> = 0.00880 (2.3)

Similarly we can write for model Mo:

p(D[My, I) = p(e{dz} [I) =

exp (—(d_dg)Q> = 0.00135 (2.4)

1
V2mo 202
The relative likelihood of the two models is proportional to the heights of the two
Gaussian probability distributions at the location of the measured distance. Substitu-

tion of equations 2.3 and 2.4 into 2.2 gives us an odd ratio of 6.52 in favor of model
M.

2.3.2 Incorporating frequency information

A 1996 newspaper article reported that doctors in Toronto were concerned about a
company selling an unapproved mail-order HIV saliva test. According to laboratory
tests, the false positive rate for this test was 2.3% and the false negative rate was 1.4%
(i.e., 98.6% reliable based on testing of people who actually have the disease).

In this example, suppose a new deadly disease is discovered for which there is no
known cause but a saliva test is available with the above specifications. We will refer
to this disease by the abbreviation UD, for unknown disease. You have no reason to
suspect you have UD but decide to take the test anyway and test positive. What is
the probability that you really have the disease? Here is a Bayesian analysis of this
situation. For the purpose of this analysis, we will assume that the incidence of the
disease in a random sample of the region is 1074 .

Let H = “You have UD”, H = “You do not have UD”, D; = “You test positive for
UD”, I; = “No known cause for the UD, p(D1|H,I;) = 0.986 , p (Dﬂﬁ, Il) = 0.023,
incidence of UD in population is 1074.”

The starting point for any Bayesian analysis is to write down Bayes theorem,

p(H|I)p(Di|H, Ih)

H|Dy, L) =

(2.5)

Since p (D1|I1) is a normalization factor, which ensures ) . p (H;|D1,11) = 1, we can
write:

p(Dill) =p(H|L)p(D1|H,I,) +p (H|I) p (D1|H, I) (2.6)

In words, this latter equation stands for
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prob. of a \ _ [prob. you " prob. of a + test,
+ test ~ \_have UD when you have UD
n prob. you don’t prob. of a + test
have UD when you don’t have UD
_ (Incidence of UD reliability 1-incidence « false positive
N in population of test of UD rate
and then,
1 —4
p(H|Dy, 1) = 0~ > 0956 = 0.0042 (2.7)

10—% x 0.986 4 0.9999 x 0.023

Thus, the probability you have the disease is 0.4% and not 98.6%.

2.4 Advantages of the Bayesian approach
Some advantages that can be deduced from our presentation are:

1. Provides a simple and rational approach for answering any scientific question
involving plausible reasoning for a given state of information.

2. Calculates probabilities of hypothesis directly

3. Incorporate relevant prior information through Bayes theorem. This is one of the
great strengths of Bayesian analysis. For data with a high signal-to-noise ratio, a
Bayesian analysis can frequently yield many orders of magnitude improvement in
model parameter estimation, through the incorporation of relevant prior informa-
tion about the signal model.

Other advantages that we will not review here are:

1. Provides a way of eliminating nuisance parameters (i.e. parameters that are unim-
portant or uninteresting for the analysis) through the procedure of marginaliza-
tion. For some problems the marginalization can be performed analytically, per-
mitting certain calculations to become computationally tractable [3].

2. Provides a factor in model comparison which automatically quantifies Occam “s
razor. In any given model. this quantitative Occam ’s razor helps us to identify
and eliminate those variables that are not really needed to explain the phenomenon

[5]-

3. Provides a way for incorporating the effects of systematic errors arising from both
the measurement operation and theoretical model predictions [3].
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2.5 Implication for quantum mechanics

In Chapter one we developed an informational scheme to quantum mechanics that is
general enough to include other statistical models, and in particular classical probabil-
ity theory. This chapter goes one step forward by giving those statistical results the
Bayesian interpretation and this has deep implications over our scheme and quantum
mechanics. If our scheme include classical probability, and this last one is an extension
of logic, the scheme must also be an inference tool of the same kind. We have seen that
in the informational scheme quantum mechanics comes out from the consideration of
the underlying operator algebra B (H) which is richer in structure (and includes also)
than the classical algebra C (X) of complex valued functions on a finite set. From this
we conclude that quantum mechanics should be a new extension of our logic inference
tool. This changes our point of view about quantum mechanics to a Instrumentalistic
one, changing the question of how classical world comes out from quantum rules?, to
how we extend classical inference rules to a quantum inference rules?. In Chapter 7 we
will present this new approach of quantum mechanics known as Quantum Bayesianism
and also our contributions in this line of research.






State discrimination

The purpose of this chapter is to give a brief introduction to the topic of quantum state
discrimination ' and the contributions of the thesis author within this topic.

Quantum state discrimination (QSD) is the following problem: given a quantum
system known to be prepared in one of a finite number of possible states {pl}f\i , with a
priori probabilities {pl}f\; 1, what is the best measurement to determine the actual state
in which the system was prepared?.

Perfect discrimination is only possible when the states are mutually orthogonal.
Just in this case is possible to find an observable operator A =3, 4 APx (as it was
described in subsection 1.1) whose spectral measure P = (Py), o(4) elements match

with the states to be discriminated (i.e. o (A4) = {pi}i\il ) because eigenstates are
always orthogonal sets, hence this spectral measure gives the desired PVM.

In the general (i.e. non-orthogonal set of states {p;}) case there are several figures of
merit which may be optimized, each leading to a different strategy to solve the problem.
QSD in particular is relevant to quantum key distribution (QKD) [27]; security of
QKD relies on the existence of states which cannot be perfectly discriminated by an
eavesdropper. Any quantum information protocol has a read-out stage, where the user
wishes to obtain some classical information about the result of the quantum information
task. This may be thought of as a problem in QSD.

3.1 Minimum error discrimination

The first criteria we are going to study for the problem of QSD is to minimize the
probability of making an error in identifying the state. We begin with the special case
where the state is known to be one of two possible pure states, |¢,) , [11), with associated
probabilities p,, p1 = 1 — p,. If outcome ¢ = 0, 1, associated with the effect II; is taken
to indicate that the state was [¢;), the probability of making an error in determining

!We use as a reference for the introduction to QSD the article [26]
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the state is given by

Perr =P(¢o) P(lhbo) -+ P(wl) P(l‘wl)
= Do (Yol IT1 [to) + p1 (1|11, [1h1) (3.1)
=Po — T [(Po [¥o) (to| — p1 [th1) (¥1]) ILo]

where in the last line we have used the completeness relation II, + II; = I. This
expression takes its minimum value when the second term reaches a maximum, which
in turns is achieved if II, is a projector onto the positive eigenstate of the operator
Do [o) (Yo — p1|91) (¥1]. Note that two pure states define a two dimensional space,
without loss of generality we can choose an orthogonal basis {|0), |1)} of this space
such that the components of each state in this basis are real. Thus we can express

1Y), |1) as follows:

[tho) = cos (6) |0) + sen (6) |1)

|91) =cos () |0) — sen (9) |1) (3.2)

and in this basis the operator p, [1,) (o] — p1|¥1) (¥1] has (in the computational
basis {|0), |1)}) the following matrix representation:

- (3082 COS Sen
Po o) (Yol = pr[vn) (| = ((po(iopﬂ]z:lo)s () s(e€n>(9) (po(;opi)pl) S(egr32 (9)(9)>
(; (Po — 1) (1 + cos (26)) 2sen (20) )
Zsen (26) 3 (Po — p1) (1 = cos (26))
(3.3)

The eigenvalues of p, [10) (10| — p1 [11) (¥1] can be calculated directly from equation
(3.3), whose characteristic equation:

B (po — p1) (1 + cos (20)) — )\] B (po — p1) (1 — cos (260)) — A| — iserﬂ (20) = 0

has solutions:

1
Ae =3 (pa —p1 £ /1 — 4pyp; cos? (29)>

From this, the minimum probability of making an error is then given by the so called
Helstrom bound [30]:

Par =10 =2 = 5 (1= V1= apan [0l (3.0

and the optimal measurement is simply a PVM on the eigenvectors of (3.3).
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3.1.1 Minimum error conditions

In the general case of N possible states {p;} with associated a priori probabilities {p;},
the aim is to minimize the expression:

N
Perr = Zpi ZT’F (pZHJ) (35)

i=1 i

or equivalently to maximize

Peorr =1 = Perp = ZpiTT (p’LHl) (36)
i

Necessary and sufficient conditions for realizing a minimum error measurement were
originally given by Holevo [28], and by Yuen, Kennedy and Lax [29], see also [30, 31].
One way of proving the conditions is by using semi-definite programming techniques.
The conditions for minimum error are:

I1; (pjp; — prpr) I, = 0V, k
> pipill; —pjp; = 0Yj (37)

For any set of states and preparation probabilities there will exist at least one min-
imum error measurement with effects satisfying this conditions. These conditions allow
us to verify whether a given measurement is optimal for discriminating a given set of
states. Unfortunately they do not give the optimal measurement in an arbitrary case,
which is not known in general. However, minimum error discrimination is a semi-definite
program problem and may be solved efficiently numerically. Further, several bounds on
the minimum probability of error are known.

3.2 Unambiguous state discrimination

Suppose again that we wish to discriminate between the two pure states given by equa-
tion (3.2), occurring with a priori probabilities p,, p;. Consider the PVM:

s = [¢1) (¢1]

IT, = (sen (0) |0) + cos (6) |1)) (sen (0) (0| + cos (0) (1]) (3:8)

If outcome U, associated with the operator Il is realized, we cannot say for sure
what state was prepared. However, note that (¢1|Il,|¢1) = 0, and thus when outcome
0 corresponding to the POVM element II,, is realized, we can say for certain that
the state was |¢,). Thus, by allowing for measurement outcome U, which does not
lead us to identify any state, we can construct a measurement which sometimes allows
us to determine unambiguously which state was prepared, that’s why this method is
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known as unambiguous state discrimination (USD). This measurement however only
ever identifies state [1),), ideally we would like to design a measurement which can
identify either state unambiguously, at the cost of sometimes giving an inconclusive
result. This kind of measurement is indeed possible and the generalized formalism was
developed by Ivanovic [32], Diecks [33] and Peres [34].

Consider therefore the operators

I1, =a, (sen (0) |0) + cos (A) 1)) (sen (8) (0] + cos (8) (1])
IT; =a; (sen (6) [0) — cos (0) |1)) (sen (A) (0] — cos (0) (1])

chosen such that (o| I [¢o) = (¢1| 11, [¢01) = 0, and where 0 < a,, a; < 1. Thus
when outcome 7 = 0, 1 is realized, we can say for sure that the corresponding state was
|1;) with certainty. But, unless [1),), |11) are orthogonal, there is no choice of a,, a1
such that these form a complete measurement, and thus an inconclusive outcome is
needed, associated with the operator:

(3.9)

My =110, — 11, (3.10)

The probability of occurrence of the inconclusive result is given by

P (0) = po (ol s |1bo) + p1 (1| s 1)
=Po (1 = (tho| o [tho)) + p1 (1 — (sh1| Iy |h1)) (3.11)
=1 —sen® (20) (poao + pras)
and the unambiguous discrimination strategy may be further optimized by mini-
mizing this probability, subject to the constraints a,, a3 > 0, II;; > 0. P (U) is a
monotonically decreasing function of a, and aj, thus the minimum value lies at the

boundary of the allowed domain, defined by II;s > 0. In the computational basis, Il
has the matrix representation:

(1= (ap+a1)sen?d (a1 — a,) cosfsend
s = ((a1 —a,)cosfsenf 1 — (a, + ay)cos? 0 (3.12)
The optimal P (U) was first given by Jaeger and Shimony [35]. The optimal mea-
surement is given by equations (3.9, 3.10) with:
1— /P cos (20)
o= sen? (0) (3.13)
1— /B2 cos (20)
“= sen? (6)
giving

P (U) = 2/pop1 cos (20) (3.14)
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without loss of generality we can choose p, > p1, so when ,/%‘1’ cos (20) > 1 (3.9)

and (3.10) no longer defines a physical measurement; the optimal measurement then is
simply the PVM given by (3.8). In this case [¢)1) always gives the inconclusive result,
and the probability of failure is P () = po |(1ho]th1)|? +p1. Thus for p, much bigger than
p1, the optimal strategy is the one which rules out the less probable state, in contrast
to the minimum error measurement, which in this regime approximately identifies or
rules out the more probable state.

3.2.1 Ancillary USD

A different USD scheme can be implemented by the use of ancillary systems. Consider
again the states given by equation (3.2), occurring with a priori probabilities p,, p1 and
an ancillary two dimensional system of orthonormal basis {|u), |[v)}. We consider the
ancillary system in a known state |A), then by coupling and applying a unitary U over
the composed system:

Wo)ap =U ([t00) [A)) = 08 (@o) [0), [1)y + sen (o) |9), 1)y
W) ap =U ([¢1)4 M) = cos(an) [1), [y, + sen (1) [6), [v),

Where |¢) is a state in the first Hilbert space and its components depend on the states
under discrimination and the unitary operation. First we notice that since U is a unitary
operator, inner product must be preserved:

cos (20) = (vo[th1), (A[A)y = (V0| W1),;, = sen (ao) sen (1)

zg (3.15)

cos (20) = sen (o) sen (o) (3.16)

The USD scheme must discriminate between states |¥,),, , |¥1),, because unitary
U transforms |¢y), |A), into |¥y) ,, so finding state |¥y),, on the composite system will
imply state |1), on the first system. We apply the PVM:

I, =I®
" [1) (el (3.17)
I, =I®[v) (v|
If effect 11, gives the “yes” answer, then we apply the PVM:
I, =0) (0| ® I
I =) (1|el

Where effect II;, allow us to identify state |Wy),, because just this state has pro-
jections on state |k),. Since effect II, gives the inconclusive result the probability of
failure is:

P(U) =DPo <‘1Jo| HV ‘\I’o> + p1 <‘1]1’ HV |\IJ1>

3.19
=posen’ (o) + prsen? (1) ( )
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optimizing P (U) under the constraint (3.16) we find that the optimum «,, a; are
given by:

sen (ay,) =4/ cos (26) i‘/g
sen (a1) =4/ cos (20) ¢ i—j

with the probability of failure

(3.20)

P (U) = 2/pop1 cos (20) (3.21)

The method can be resume as follows: 1) we couple a known two dimensional
ancillary system, 2) we apply a unitary operation such that each state has a projection on
a orthonormal basis that uniquely determines it and a common inconclusive projection,
3) we apply a PVM (3.17) that discriminates between conclusive and inconclusive spaces
and 4) we apply a PVM (3.18) that discriminates among the corresponding orthonormal
basis. Also we can mix both PVM in one POVM:

I, =0} (0] @ |u) (s
I =[1) (1 @ [u) {ud (3.22)
I, =1 ® |v) (v]

3.3 Equidistant states

In our paper Conclusive discrimination among N equidistant states [33] we introduce a
novel set of states suitable for theoretical research (due to the few parameters involved
in its definition). This set have been the starting point for research of different authors
[39, 10], being a useful theoretical tool in QSD, Quantum Cloning and Quantum To-
mography. In [38] the states where introduced showing their usefulness for QSD, but
they will show to be of importance also for one of the last research proposals of this
thesis (Chapter 6).

Following [38, 39], a set of equidistant states Ay («) is a set of N normalized pure
states such that:

Ay (a) = {|a1),|a2) ..., |an) © (oglow) =aVE <K'} (3.23)

Since the inner product between pure states is a measure of the distinguishability
between this states, we say that two pairs of states with the same inner product are
equally distant *> and since our set is characterized for having the same inner product
pairwise is that we call them a set of equidistant states.

2 Here the right concept is distinguishability and not distance, but we mint the term equidistant because
it keeps the intuitive idea of the set while being more economic than equidistinguishable.
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But distinguishability for a set of more than two states is not completely character-
ized by their inner products, but for their linear independence [37, 36]. The set Ay («)
is linearly independent (LI) iff the equation:

N
> Aglay) =0 (3.24)
k=1

implies that all the N coefficient Ay = 0, otherwise is a linearly dependent (LD) set
of states. If we apply each (a;| on equation (3.24) we get a system of equations:

Ap (ojlag) =0Vj=1,...,N (3.25)

WE

k=1

in the Ag. If this system is invertible then all Ay = 0, this is so when the Gram
determinant:

(.l (3.26)

a— af

is non zero (det (Dyxn) is always higher or equal to zero). So if det (Dnxn) > 0,
Ay () is LT and if det (Dyxn) = 0, Ay () is LD. In general the overlap a = |a|e? of
N LI equidistant states must satisfy the constraint:

0 < |a| < |ag] (3.27)
with
w—0
sen | ——
lg| = sen () (3.28)

sen (9 + ”T_e)

Here the angle # must be evaluated within the interval [0, 27| and we have the results
of the case @ € R taken the limits § = 0 and 6 = 7, where the states Ay («) are L.I. iff:

1 3.29
v <oc< (3.29)
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For a = 1 all the states are the same and when o« = —1/ (N — 1) they are LD. For
the general case the contour defined by |a| = || the set of states is LD and within it
(i.e. the convex region defined by the contour) is LI.

In [38] a constructive method for representing the equidistant states associated with
an overlap a = |a|e? was presented, but in [39] a more compact representation was
introduced and it will be stated as the canonical representation of equidistant states.
This is:

1Nl
VN S

The coeflicients A\ are eigenvalues of the matrix Dy« and are given by:

o) =

V% ( ) k) (3.30)

sen (9 + k= 9)

A =1—|a 3.31
e ) .
and fulfill the identity,
N-1
k=0

Also, the complex phases wj, are the coefficients entering in the matrix which diag-
onalizes Dy« . These phases are given by

wyy = en @k (3.33)

In [38] we studied the USD of N equidistant states, finding the probability of success
in the case of equal a priori probabilities for each state preparation by an ancillary USD.
The success probability under the ancillary USD P, 44 in this case is:

sen (T2

We found also that the inconclusive effect associated with such USD measurement
projects the set of LI equidistant states into the set of LD equidistant states with
an overlap of the same phase 0 (# 0) as that of the LI set. Hence, we can prepare a
minimum error discrimination protocol for the LD equidistant states in the case of an
inconclusive result on the USD measurement. The probability of success under minimal
error protocol P, for the inconclusive space is:

P = (3.35)
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Taking both into account, the success probability P.s for the complete scheme is:

Pcs - Pusd+(1_Pusd)Pme

a\(N—1)<m>3

N
w—6
N

o —

Pcs = 1-

sen( ——

L+(N=1) (5@“(“&)>2

In this way, for N equidistant LI pure states with overlap phase different from zero
and equal a priori preparations probabilities we apply a complete states discrimination
obtaining all the possible information about the prepared state of the system of interest.

D —

3.4 Remarks on our results in QSD
In this thesis our contributions to QSD are:

e The characterization of a new set of states (the equidistant states), useful for QSD
and any research area where a set of non-orthogonal states is required, because of
their simplicity.

e The joint application of Ancillary USD and Minimum error protocols in their QSD
of the equidistant states.






State Tomography

State tomography is the process of constructing the state of a physical system from
the measurements of observables of the system. In particular we are interested in
quantum state tomography i.e. the state tomography of quantum systems. This is
a fundamental tool of not just quantum information, but of quantum mechanics in
general, since on quantum tomography relies all the knowledge and predictions we can
get from a quantum system. In this chapter we briefly review the methods used to make
the state assignment from the measurements and then we explain a novel method that
is other of our contributions to this field.

4.1 Linear inversion

The basic idea of this method consist in the use of Born s rule to state a linear system
of equations relating the probabilities outcomes from the measurement of observables
with the coefficients of the state density matrix associated with the quantum system
and then solve the system by inversion.

Born “s rule:

pi = Tr (Eip) (4.1)

gives, as remarked on Chapter 1, the probability p; of a “yes” outcome when an
effect F; is measured on a quantum system described by the state p. Thus from a
POVM {FEi, Es,..., E,} on such a system follows:

Tr (Evp) p1
" Tr (Ezp) D2 .
Ap = : =1 .|=P (4.2)
Tr (Enp) Pn

Here, p'is a vector representation of the coefficients of the density matrix associated
with the state p. Fixing p' we have A as the matrix elements of the system 4.2. If we

35
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apply the same vector representation as in p to the POVM elements, we have:

E|
E}
A= . (4.3)
Ef
Since A is not square in general, to solve the system we need to multiply by its
transpose A’ and hence we have:

p=(AA) T Al (4.4)

as solution to the system. This is possible only when the POVM is chosen such
that (AtA) is invertible, in this case we say that the POVM is informational complete
(IC-POVM). Hence when a IC-POVM is measured on the system the tomographic
construction of the state is given by 4.4.

4.2 State estimation

This method consist in searching for a density matrix p within a subset S’ C S (H) such
that optimizes a certain likelihood function L (p) i.e. a function that measures how close
a state is to characterize a given (from the experiments) probability distribution. The
parametrization of &’ must assure that the estimator p is always within an open ball
that is also a subset of S (). The most popular likelihood function is the probability
that would be assigned to the observed results if the system is characterized by the
estimator of the state. If we have a POVM {P;, P»,..., P,} and each effect P; has
been observed with frequency f; the likelihood function we should maximize is:

L(p)=1[rr @) (4.5)

Jj=1

Also is very common to minimize its negative logarithm —log L (p). Since L (p)
usually have local maxims, is also usual to demand the simultaneous optimization of
other function, like the Von Neumann entropy:

S () = ~Tr [plog (p) (4.6)

to get one global maxim as is done in [13, 12]. One also can improve the method
by choosing the POVM such that minimizes the Hilbert-Schmidt distance between the
state given by linear inversion and the estimator, this will be analyzed in chapter 5.

As an example of this method we will show the tomography of a single qubit [41].
The parametrization of &’ will be:

TiT

p= Tr (T7T) (4.7)
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with T :

T (t) = ( i 0) (4.8)

ts + ity to

and ¢t = (f1,...,ts). By choosing the parametrization (4.7) we ensure that p will
satisfy all the requirements of a density matrix, while (4.8) is tridiagonal because this
is useful to be able to invert relation (4.7) and it has 4 parameters (being only 3 for a
qubit) because is better in order to fit the intensity of the data.

The likelihood function, will in general depend on the specific measurement appa-
ratus used and the physical implementation of the qubit as these will determine the
statistical distribution of counts, and therefore their relative weightings, so to keep with
this example we will assume both Gaussian counting statistics and that each of our
measurements is taken for the same amount of time, then we can provide a suitable
likelihood function.

Let ng4 be the ¢g-th measurement, out of a total of & measurements. The expected val-
ues for these measurements on an uncharacterized system are given by 7y = N'T'r [Py].
Here N is a normalization parameter corresponding to the total size per measurement
of the ensemble and so we have for the probability of the outcome p, = ny/N. It is
not always possible to know the size of a measured ensemble, and so the counts rather
than the probabilities are used in the likelihood function. Given these definitions, the
probability of obtaining the observed experimental counts n, from the density matrix

p is:

= P’
P(ni,...,ng) = ./\}‘g Hexp [_M] (4.9)

where o, is the standard deviation of the g-th measurement and Ng is the normal-
ization constant of the distribution. For our estimator p. (t) density matrix the number
of counts expected for the ¢-th measurement is:

g (t) = NTr [Pype (1) (4.10)
Thus the likelihood that the matrix j () could produce the measured data {ni,...,nxg}

1s:

o (NTr [Pype (B)] — ny)?
P(nl,...,nK)__N'gE[eXp - 2NT:«[Pqﬁe(t)]q

(4.11)

Here we approximated o4 &~ /T, and assumed that N is the same for each measure-
ment (for simplicity, since in practice this may not necessarily be the case). Then, rather
than find the maximum value of P (t), it is numerically simpler to find the maximum of
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its logarithm which is equivalent since this is a monotonically increasing function. Also,
because N is unknown we absorb it into the 7' matrix, by setting:
t; = Nt; (4.12)

Thus the optimization problem reduces to finding the minimum of the following
function:

Z [Pype (t )]_nq)z (4.13)
o (7 )

The final part of the maximum likelihood technique is an optimization routine, of
which there are many available in the literature [11, 12].

4.3 Quantum state tomography by quantum state discrimina-
tion

A different tomographic scheme using QSD is proposed by us in our paper Quantum
tomography via unambiguous state discrimination [11]. We show that the inverse process
of Ancillary USD, i.e. the mapping from orthogonal states onto linearly independent
non-orthogonal states, which is implemented by concatenating a unitary transformation
acting jointly onto the system of interest with an ancillary and then a PVM on the
ancillary system, can be employed to implement quantum tomography. Here we develop
in detail the single qubit case, because this way we simply focus on the main features
of this new method. We also generalize the method to single qudits and in the next
section we will outlined briefly since there is nothing conceptually different from the
qubit case.

Let us start by considering a density matrix () of a two-dimensional uncharacterized
I quantum system s . This is given by:

PO = > pisli), Gl (4.14)

i,j=0,1

where the states |0), and |1), form an orthonormal base of the Hilbert space of
system s. To determine these coefficients we resort to the unitary transformation U
whose action onto states |i), is defined by

U(19)s 1A)a) = vPiBi)s [0)g + V1 = pi1vi)s 1), (4.15)

!Since we still need to perform the tomography to make the corresponding assignments to the
coefficients of [)(5), This is usually called a unknown density matrix. We will avoid this term because
if quantum states correspond to a state of knowledge, talking of an unknown state is an oxymoron.
This problem and the justification of actual tomographic methods find a reasonably solution through
Quantum de Finetti’s Theorem, a more detailed exposition of this point is given in Chapter 7.
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with ¢ = 0, 1. In order to implement this transformation an ancillary system a in the
initial arbitrary state |A), is necessary. Pure states of this system are spanned by the
orthogonal states |0), and |1),. A projection of system a onto the state |0), transform
states {|0),,]1),} into states {|B,),,|B1),} with probabilities p; and py respectively.
Similarly, a projection of system a onto the state |1), transform states {|0),,|1),} into
states {|70),|71)s} with probabilities 1 — p; and 1 — po, correspondingly. Thereby the
transformation U together with a projective measurement onto the ancillary allow a
map of the initially orthogonal states onto states with a non-vanishing inner product.

In general, states |3;), and |;) ,do not need to be mutually orthogonal as far as the
unitary U preserves the orthogonality of the states |0), and |1),, that is

v PoP1 </60|B1> + \/(1 - po) (1 _pl) <’YO|71> =0 (4'16)

For the sake of simplicity we will assume p, = p;1 = p. This, together with the
polar decompositions (B,|51) = |B|e?® and (y,|71) = |y]e? leads to the value of p as a
function of the absolute value of the inner products

_ N 417
P= B+ (.17)

with the constraint 63—, = £7. Let us note that the probability p does not depend
on 95.

We now apply the transformation U onto the uncharacterized system (described by
density matrix /3(5)) and the ancillary system a, which is in the initial arbitrary state
|A), (A, to generate the new density matrix (5 given by

560 =y (,a<s) IA), <A|) Ut (4.18)

This new density matrix describes the state of the four-dimensional bipartite system
Hs ® H,. The state &(59) can be cast in the form:

560 =369 i), (jl (4.19)
1,J

(s)

The elements &i] are operators acting onto the Hilbert space of system s given the

four expressions:

55 =V p ) pijlui), Wil (4.20)
i

¢
‘ (4.21)
¢
¢
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After applying the unitary transformation U the probability P, of projecting the
ancillary system a onto state |0), becomes:

P,=p [POO + p11 + 2|ﬁHp01’ CcOos (901 — 95)] (4.22)

0o1

where we have used the polar decomposition pg; = |po1|e’?'. Considering the nor-

malization condition of the density matrix p we obtain

Po = p[1+2[B||po1| cos (o1 — bs)] (4.23)

Analogously, the probability P of projecting the ancillary system a onto state |1),
is:

Py = (1—p)[1 = 2]7[|po1] cos (601 — O3)] (4.24)

Fach one of the latter two equations allows us to determine directly the real part of
the coefficient pg; with the choice 63 = 0, that is:

Py =p[1 +2|8]|po1| cos (6o1)]
Py =(1-p)[1—2[|v[|po1| cos (fo1)]

The imaginary part of pg; is obtained with a similar procedure. In this case we
need to consider a second unitary transformation U analogous to U but with the choice
0g = /2, but otherwise the same as in U. Thereby, the value of p stays unchanged.
After this second transformation onto the uncharacterized system (density matrix 5%
) the probabilities for projecting onto states |0), and [1), the ancillary system are:

(4.25)

Fo =p 1+ 2[B]|po1[sen (6o1)]

. (4.26)
Pp =(1—p)[L—2]v||poi|sen (6o1)]
respectively. In a more compact form:
1 .
- P, — (P, — 4.2
po1 2015 [( p)+i ( p)] (4.27)

Since the knowledge of the non-diagonal coefficient pg; univocally defines a two-
dimensional pure quantum state, this result is enough to characterize pure quantum
system.

The reconstruction of an uncharacterized mixed quantum system requires addition-
ally the determination of the diagonal coefficients ppg and p1;. This can be carried out
by applying onto the uncharacterized system ) the transformation oy defined by

1
’ ‘? (4.28)
oyl1)y === (10), —i|1),)

S

2
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The new density matrix §(5) = &yﬁ(s)&gﬂ becomes:

ss) _ 1 poo + p11 + 2|po1| cos (Bo1) 7 [poo — p11] — 2|po1]sen (Bo1)
o = / (4.29)
2\ —i[poo — p11] — 2|po1lsen (Go1)  poo + p11 — 2|po1| cos (fo1)

Onto this new density matrix we apply the procedure described in the previous
paragraphs based on the transformation U. This way we determine the imaginary
part of the coefficient gg1 which is proportional to pgg — p11. This, together with the
normalization condition allow us to obtain the value of the coefficients pgg and p11.

An important feature of the scheme here proposed is the fact that all the information
needed for the reconstruction is obtained through the ancillary system. Consequently,
the system s does not undergo a measurement process. it seems thus feasible to recover
the initial state p(8). After the application of transformation U and a projection of the
ancillary system onto state |0), normalized post-measurement density matrix &(()f)) of
system s is given by

~(s Pij
o5 = > <L 18, (Bl (4.30)
ij ¢
with
No =1+ 2|8||po1| cos (Go1) (4.31)

Now, to transform &(()f)) into ﬁ(s) we must undo the quantum state separation process

applied on system s, that is the transformation of states |3;), into states |i),. For this
purpose we resort to optimal state discrimination and apply it to the states |3;),. This
discrimination strategy is based in the following transformation

Dg (181, 1Ag),) = vmg i), 10), + /T —mg ¢, 1), (4.32)

where [Ag), is an arbitrary state of the ancillary system and mg is the optimal
success discrimination given by the Ivanovic-Dieks-Peres limit [32, 33, 34]:

1—1p] (4.33)

This limit is obtained assuming that the states |3;), are generated with the same a
priori probabilities and states |¢;) are linearly dependent. A projection of the ancillary
system onto state |0), maps states |3;), onto i), with probability mg. Otherwise, states
|Bi), are mapped onto |¢;),.

We see that transformation Dg works in the desired way, since its application to the

(s)

state gy gives:

~(s Pij . .
Dy (563 1A5), (A1) Db = ms >~ B2 i), (30}, (0] + ..
ij
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as guessed, the projection of ancillary system onto state |0), maps system s onto
state p(®) with probability

mgs 1— B
Py = = 4.34
PN, 1+ 2|B]|po1| cos (6o1) (4.34)
Which can be large as required by minimizing the value of |3].
Analogously, it is also possible to recover the state, it is also possible to recover the
state p®) from the state &S)’ which is obtained after applying transformation U and
projecting the ancillary system onto state |1),. This state is given by

) pii
o)=Y s (il (4.35)
ij !
with
N1 =1=2|v[[po1| cos (6o1) (4.36)

The recovery of p(®) succeed in this case with the help of the transformation

Dy (1 1A1)a) = vy [0)510)q + /1 =y [6i) 1), (4.37)

where all quantities are defined in analogy to equation (4.32) and m, =1 — |7|.

In this case the probability P, of recovering the state p®) from the state &ﬁ) is given

m 1— |y
P =2 — 4.38
"= N T T2 lpot] cos (Gor) (4.38)

We can now compute the total probability Ppe. of recovering state p(¥) from the

(s) (s)

A ~AlS . . .
post-measurement states 6, and ¢, .This is given by

Prec:PoPﬁ+P1P :pmﬁ+(1—p)m7 (4.39)

or equivalently

1817
Proo =1 —2 20T (4.40)
1B+ |7

This probability turns out to be a symmetric function of the inner products |3| and
7], which define the transformation U, and does not depend on the particular state p(*)

to be recovered. This probability approach the maximum value as |3| or |y| vanish. In
this limit the contribution of the real part of pg; to probabilities P, and P; diminishes
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since this real part is multiplied by one of the inner products |3| or || respectively.
Thereby, exist a trade-off between the difficulty to estimate the real part of pp; and the
probability of retrieving the initial state p(*) after this process.

The state 5(®) can also be recovered from the states of system s generated by our
procedure to estimate the imaginary part of pg; and the diagonal coefficients pgy and
p11. In each of this stages the probability of recovering p(®) is given by probability Prec.

We can now consider to concatenate each one of the three stages of the tomographic
scheme with a recovery stage and use the output state of one stage as the input state
for the next stage. The combined probability Ps,. of successfully recovering the state
ﬁ(s) after the three successive stages of the tomographic scheme is thus Py, = (Prec)3.
A simpler expression for P, is found for the case || = |y|. In this case p = 1/2
and P, = 1 — |B], which is the Ivanovic-Dieks-Peres limit. Thus, our capability for
recovering the initially uncharacterized system in the state p(*) of the preparation after
the application of the tomographic scheme is limited by our ability to unambiguously
discriminate among non-orthogonal states.

4.4 The Qudit case

The generalization to the qudit case goes simply by several uses of ancillary systems
with unitary transformations as 4.15, whose action is over all the possible pairs of the
canonical basis, i.e. taking ¢ = {k,n} with k,n € {0,...,d}. The d(d — 1)/2 different
combinations of this tomography scheme for i = {k,n} gave us the non-diagonal coeffi-
cients.

For a mixed state we should apply the analogous transformation of o, with action
over {|k),,|n),} at least (d — 1) times, this with the normalization condition allow for
the calculation of the diagonal coefficients. If we want to recover the state from the
post-measurement states, the unitary transformations analogous to Dg and D, should
be performed.

This method requires 2d? — d projectors in the general case and 5d — 4 projectors
for a pure state. This requires d order of projectors less than standard tomography and
more projectors than MUB state tomography but of the same order in d.

4.5 Remarks on our method

This new tomographic scheme we have proposed has three main features:

e The coefficients defining the quantum state are obtained directly from the mea-
sured quantities, no inversion procedure is required.

¢ The information about the coefficients is obtained through transition probabilities
arising from a PVM carried out onto the ancillary system.

e The system described by the state does not undergo a measurement process.
Therefore, it is possible to recover the initial state of this system from the post-
measurement states.
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The third feature prevent us from changing the quantum state of the system while still
measuring, something that has been though impossible.

This is achieved with the help of an optimal unambiguous state discrimination
process, albeit with a certain probability which can be large. The unitary transfor-
mations required in our scheme have been successfully performed experimentally via
polarization-dependent absorption in a fiber [15] or with the help of polarizing beam-
splitters [40].



Tight Informational complete POVMs

In the previous chapter we showed the construction of a quantum state from its mea-
surement statistics. In this chapter we will investigate a class of I[C-POVM which share
a particularly simple tomographic formula. To this end, first we introduce the basic
concepts of frame theory and then we rewrite IC-POVM definition in this context '.
Finally we review the contributions of the author in the research of one of the more
relevant of this IC-POVMs; the existence conditions of the so called SIC-POVM.

5.1 Super operator algebra

Frame theory [17, 48, 19] provides a useful setting for the study of IC-POVMs [75]. In
this section we will introduce some of the basic concepts of super operator algebra and
frames.

Following [59] we will write a linear operator A in vector notation as |A). The
vector space of all such operators, B ((Cd) = CdQ, equipped with the Hilbert-Schmidt
(H-S) inner product (A|B) = Tr(A'B) is a Hilbert space. The usefulness of this notation
becomes clear when we consider linear maps on operators, i.e. superoperators. given
an orthonormal operator basis {Mk}zil C B(CY), (M;|M;) = 6,5, a superoperator
S € B(B(C?)) = C4" may be written in two different ways:

S = sy © M{ =3 sjx|Mj)(My| (35 € C) (5.1)
gk gk
The first representation illustrates the ordinary action of the superoperator,

S(A) =" s M;AM] (5.2)
7.k

!The introduction to frame theory has been taken from [65]

45
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which amounts to inserting A into the location of the ® symbol. The second reflects
the left-right action,

SIA) =37 sl M) (Mi|A) = 0| M) Tr(M] A) (5.3)
Jik g,k

where the superoperator acts on operators just like an operator on vectors. The
identity superoperators relative to the ordinary and left-right actions are, respectively
IT=I101IandlI =), |M;)(Mg|. Further results on superoperators in the current

notation can be found in [65].
Frames generalize the notion of bases. We call a countable family of operators
{Actec CB (Cd) an operator frame if there exist constants 0 < a < b < oo such that

a(C10) < Y [(AJO)F < b(ClO) YO eB (cd) (5.4)

ekl
When a = b the frame is called tight [50]. Tight frames which are most like or-
thonormal bases [62]. An operator frame with cardinality |IC| = d?, i.e. an operator

basis, is tight iff is an orthonormal basis. For every frame {A;}_ ., there is a dual frame
{Bz},excs such that

Z ‘Bw)(A:v’ =1 (5.5)

zek
When || > d? there is different choices for the dual frame [63], but there is one
known as the canonical dual frame {flz} 3
zekC
|4z) = A7V AL) (5.6)

where A is the frame superoperator :

A=) |A) (Al (5.7)

el
Note that the inverse of A is taken with respect to left-right action and exist when-
ever {Az} cx is an operator frame. A tight operator frame is one with A = al i.e. a
resolution of unity, and thus |4,) = 114;). In general, however, inverting the frame
superoperator will be a difficult analytical task. Also, because tight frames are by

themselves a resolution of unity and the following inequality [62]:
THEOREM 5.1: Let {Az} o € B ((Cd) be an operator frame. Then

2
S ladayp > T 5.9

z,yeX

with equality iff {As},cxc is a tight operator frame.
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which is called the frame bound, that they are as close as possible to orthonormal
bases. Theorem 5.1 shows that tight frames are those which minimize the average
correlation amongst the frame elements. In fact, explicit examples of tight unitary
operator frames are known for all d and |K| > d? [64].

5.2 Informational complete POVMs

In this section we are going to relate the concept of IC-POVMs with those of frame
theory.

As explained in Chapter 4 an informational complete quantum measurement {Fy}
is one that uniquely determines each quantum state p € B* (H) from its measurement
statistics pr = Tr[Ekp]. Consequently, given multiple copies of an uncharacterized
system, a sequence of measurements will give an estimate of the statistics, and hence,
allow us to make a state assignment for the corresponding preparation of the system.
The measurement {Ey} is then called an informational complete POVM (IC-POVM).

DEFINITION 5.2: A POVM {Ey}is called informational complete if for each pair of
distinct quantum states p # o € B* (H)
there exist an effect E,, such that Tr (Epp) # Tr (E,0).

For an arbitrary POVM {F,} i, define the superoperator:

F= Z [Tr (Fx)]il | Fy) (£l (5.9)
zek

This superoperator is positive an bounded under left-right action:

0 < (A| F|A) < d(A]A) VA e B (Cd) (5.10)

Also we have the following result:

PROPOSITION 5.3: Let {F.} x be a POVM. Then {Fy}, is informational complete
iff there exist a constant a > 0 such that (A| F |A) > a (A|A) for all A € B (C?).

so, this means that {F,} .. is a IC-POVM when F has full rank with respect
to the left-right action. If we take as an operator frame the normalization |P;) =
[Tr (F,)] " |F,) of some IC-POVM {F:},cxc, then the canonical dual frame defines a
reconstruction operator:

|Ry) = F 1| Py) (5.11)

where the inverse of F, which we now call the POVM superoperator, is taken with
respect to the left-right action.
The identity

Z [TT (Fx)] | Rz) (Px| = Z [TT (F:L’)] ‘Fﬁl‘PzL’) (P:L’| =F'F=1 (5.12)

ze e
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then allows state reconstruction in terms of the measurement statistics:

p= Z [TT (Fa:)] |R:L‘) (Pa:|p) = Z Fy ‘p |R pr x (5'13)

zelkl zelkl ekl

Notice that we need |K| > d? for {F,}, . to be informational complete, since
otherwise F could not have full rank. An IC-POVM with |K| = d? is called minimal.
In this case the reconstruction operator frame is unique.

5.3 Tight IC-POVMs

For the POVM superoperator we have the decomposition:

e + > (Tr (Fy)] | Py — I/d) (P, — I/d)] (5.14)
el

The superoperator Z/d = |I) (I| /d is in fact an eigenprojector. It left-right projects
onto the subspace spanned by the identity, whose orthogonal complement I+ (Cd) =

del, the subspace of traceless operators, is F-invariant. Define = =1 — 7Z/d , which
left-right projects onto this latter subspace. The action of Z on a quantum state then
realizes the above embedding into I+ ((Cd):

= o) = p — I/d) (5.15)

Let Iz denote the identity superoperator for I-- (Cd) under left-right action, we are
now ready to define a tight IC-POVM:

DEFINITION 5.4: Let {F.}, . be a POVM, with POVM superoperator F. Then
{Fy},ex 15 called tight IC-POVM if the embedding of its normalization { Py} ,c,c POVM,
Z|P,) = |P, — I/d) forms a tight operator frame in I+ ((Cd), e

> (Tr (Fo)]|Py = I/d) (P, — I/d] = alz (5.16)

ek

or equivalently ZF= = aZ for some constant a > 0.

The constant a can be found by taking the superoperator trace of 5.16:

a:ﬁZ[TT(Fx)] (Pp —I/d|Py — I/d)
xek

- (Zm( (PP - )

e

(5.17)
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The POVM superoperator of a tight IC-POVM satisfies the identity:

z 1-—
.F:E—FCL::CLI—F da

Since a > 0 by definition, this superoperator has full rank and its inverse is:

I (5.18)

1 1—a
Fl=-I-
a ad

I (5.19)

and thus the reconstruction operator takes the form:

R, =-P, —
a ad

I (5.20)

A tight IC-POVM then has a simple state-reconstruction formula?:

1 1—a
p_aszpx_ b I (5'21)
zell

The above formula simplify further in the important special case of a tight rank-one
IC-POVM. The frame constant then takes its maximum possible value:

__ 1 (5.22)
a= d .
which gives for a tight rank-one IC-POVM the superoperator:
I1+7
_ 5.23
d+1 (5:23)

and the state-reconstruction formula for a tight rank-one IC-POVM also takes an
elegant form:

p=(d+1) p.Il, —1I (5.24)
zek

where we have set the POVMs to P = II, to keep the notation most used in the
literature.

A tight rank-one IC-POVM which is minimal i.e. |K| = d?, is defined by the property

[51]:

1+ doyy

(IL,/11,) = |(aly)* = (5.25)

2Remember that from the Born rule pe = (Fz|p), because P, is only the normalization of the POVM
element F.
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Since their overlap is the same between each one of the propositions is that they
are known as symmetric IC-POVM (SIC-POVM). Although analytical constructions
are known only for d < 10, d = 12,13,19 [51, 54, 55, 56, 57, 58] and numerically until
d < 67 [70], SIC-POVMs are conjectured to exist in all dimensions [51, 54].

Another relevant example of a tight rank-one IC-POVM is a complete set of mutually
unbiased bases (MUBs) [52, 53]. That is, a set of d + 1 orthonormal bases for C¢ with
the same overlap of 1/d between elements of different bases:

2 0; l=m
Lirpm ) — Ly, m — Jk>
(Hﬂmk ) ‘<6J|ek >‘ { 1/d, 1#m (5.26)
Such IC-POVMs allow state determination via orthogonal measurements. Although
constructions are known for prime-power dimensions [52, 53], a complete set of MUBs

is unlikely to exist in all dimensions.

5.4 SIC-POVMs existence conditions

To get a useful parametrization of the state space first we represent B* ((Cd) as a de-
composition between what is expanded by the identity and its orthocomplement:

B ((Cd) —IeIt (Cd) (5.27)
Since Tr (p) = 1 the component of states in I(C?) is I/d, and for I+ (C?) we
choose a linear combination of the d> — 1 generators T}, of the su(d) algebra. In the

following we consider a traceless Hermitian representation of the generators T3, such as
the generalized Gell-Mann basis [09], given by:

b
7=\ 3.3l = bl +2) (1 (5.25)

withb=1,...,d—1,

Ty = |k) (m| + |m) (k| (5.29)

withb=d,...,(d*+d—2)/2,k=2,...,dand m=1,...,k—1,

Ty, = |—ik) (m| + i |m) (k| (5.30)

with b = (d2+d)/2,...,d2—1, where k =2,...,dand m =1,...,k— 1. Note that
the indexes (k, m) are connected with the index b by the equation b = k?/2+3k/2+m+1.
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Thereby, an arbitrary state p can be cast in the form

d?—1
I d—1
— P T 31
p=2t\ "5 Zrbb (5.31)

b=1

Furthermore, considering Hermitian generators 7} the (d2 — 1)—dimensional vector

7 has real coeflicients, that is 7 € R¥-1 Consider again the Hilbert-Schmidt product
{p,0) = Tr(p*c), but now on B* (C%). Using the representation 5.31 the H-S product
between states takes the form:

1 d—1
Tr(p*c) =Tr (po) = i <d> Ty Ty (5.32)

Thus, the H-S product of states is given by the scalar product between the real
vectors representing the states. In particular the case p = o allow us to study the
purity of the operators:

Tr (p*) = % + (1 - %) |7, (5.33)

clearly Tr (p?) <1 = (Fplz < 1. Consequently pure states, which satisfy Tr (p*) =
1, are on the surface of a unitary hypersphere and mixed states (i.e. Tr (,02) < 1) are
within the hypersphere. This hypersphere is known as the Bloch sphere and this is why
the 7, representation of a d-dimensional state p is known as Bloch representation. This
maps states into a ball in I+ ((Cd), such a map is surjective when d = 2, but is otherwise
only injective.

By the same procedure we can achieve a Bloch representation of operators in 5 ((Cd),
such that rank-one operators are in the surface of the Bloch sphere and higher ranks are
inside. In this picture equations 5.25 and 5.26 give us the geometrical structure of a SIC-
POVM and MUBs respectively. The elements of a SIC-POVM correspond to unitary
vectors pointing to the vertices of a regular simplex, while each MUB correspond to
unitary vectors pointing to the vertices of a regular simplex in the (d — 1)-dimensional
subspace which they span and a complete set of MUBs correspond to a maximal set of
d + 1 mutually orthogonal MUB subspaces.

In our paper Constructing symmetric informationally complete positive-operator-
valued measures in Bloch space [66] the problem of finding the necessary and sufficient
conditions for the existence of SIC-POVM in arbitrary finite dimensions was solved.
Since in general the map induced by the Bloch representation is only injective (i.e.
some points into the Bloch sphere do not correspond to positive semidefinite operators
in 5.31) we need other conditions to that vectors in the Bloch sphere must satisfy in
order to represent states or operators. It was found that to ensure operators to be
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Hermitian rank-one positive semidefinite we just need to satisfy the conditions:

1
i) Tr (I1*) = 1 (5.34)
1

<.
<.
N
~
S
<
—~
=
w
~
I

Conditions i) and ii) are satisfied by any unitary vector in the bloch sphere. Hence,
a SIC-POVM is a set of d? rank-one POVMs satisfying 5.25 i.e. unitary vectors pointing
to the vertex of a regular simplex in the Bloch sphere that also satisfy iii).

First we notice that generators Ty, , iT}p, I and il together span Mgy 4 (C), it follows
that we have a multiplication law of the type [(67]:

d2—1
2 .
1Ty = gwij + ; {gijr +ifiji} Tk (5.35)

were g;j}, are the symmetric structure constant and f;;, the antisymmetric structure
constant, of the algebra of generators. Now, condition iii) in the Bloch sphere is:

d—2 | 2d
Zgijkrirjrk = T ﬁ (536)

ijk

if we define n (d) = [(d — 2) /d] \/2d/ (d — 1), then we also can define the vectors:

q; (F) = 7’L(1d) %: gz‘jkrjrk (537)

and iii) can be rewritten as:

7o) =1 (5.38)

Now, from 5.34 we have p = p?, Tr(p") = 1 and in particular Tr(p?) = 1:

= Y[ () 4 (450) (552) o (450 (452)

Thus replacement of condition i) and iii) i.e. |> = 1 and 7- ¢(7) = 1 in 5.39
implies:

7 =1 (5.40)
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Because 7 and ¢ are unitary vectors, equation 5.38 forces them to be parallel, and
then:

= () (5.41)
This shows that under assumptions i) and ii) condition 5.38 is equivalent to 5.41,
because for the converse 7+ ¢ (7) = 7-7 = |F]> = 1. In this way 5.41 defines the geometry
of our projectors®.
In the case of SIC-POVM we must require:

d?0,p5 — 1
2 —1
This defines a system of quadratic and cubic polynomial equations in the components
of the Bloch vectors representing SIC-POVMs and thus the existence of SIC-POVMs in
a finite dimension d is defined by the existence of solutions to the corresponding system
of equations:

— —

Ty Ty =

(5.42)

Tp 5(@) =1

25,1 (5.43)
a2 —1

for p,o=1,...,d% or

—

Ty To =

7o =q(7p)

R | (5.44)
TP Ty = ﬁ
In [66] a solution for d = 3 was obtained by solving a system of the form 5.44 and

leads to projectors II; j, = | i) (i 1| onto the following normalized pure states

k) = \}5<|1>+e@'<9°+“3’“>|2>>,
i) = \}§<|1>+e“91+2?“>|3>>,
ok) = —=(|2) + e 03 3)), (5.45)

V2
with k£ =0, 1,2 and where each angle 6; with i = 1,2, 3 belongs to the interval [0, 27).
But a generalization of the procedure has been difficult because the analytic value
of the symmetric structure constant g;;;. By changing the Gell-Mann diagonal matrices
for those of the Cartan subalgebra generators, i.e. :

Ty=b) (| —[pb+1)(b+1] b=1,...d—1 (5.46)

we solve that problem keeping all the other results and this development will be
explored in future research.

3Is clear that the same calculations hold for pure states and thus we have also characterized the
geometry of pure states in the Bloch sphere.
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5.5 Characterization of SIC-POVMs using MUBs

In this section we reproduce our main results presented in our article Characterization
of fiducial states in prime dimensions via mutually unbiased bases [08]. In our research
we explore the existence conditions for SIC-POVMs in the particular case of prime
dimensions, by applying the generators of the Weyl-Heisenberg group onto a special
fiducial pure state.

5.5.1 Displacement operators

For every k,s = 0,...,d> — 1. Considering the projecting directions we can study the
problem to find d? pure quantum states |¢) instead of d> SIC-POVM projectors. That
is, assuming that Il = |¢x)(¢x| then the inner product between two arbitrary states
must fulfill the property

Aoy, s + 1
2 _ UC%ks
[(@xlon) P = =2

There is a strong conjecture that simplifies the way to construct SIC-POVMs. In
order to introduce this conjecture let us define first the displacement operators in finite

Vik,s=0,...,d—1. (5.47)

dimension, given by

Dy =72 X" 77, (5.48)

where r = (ry,r2) € Z2 and 7 = —e'™/4. The operators X and Z are the shift and
phase operators, defined by

X|k) = |k +1), Z|k)=w|k), (5.49)

where w = e*™/4 k. =0,...,d — 1 and {|k)} is the canonical (computational) base.
If d = 2, the displacement operators are the Pauli matrices plus the identity. These
operators form, up to a multiplicative constant factor, the generalized Pauli group or
Weyl-Heisenberg group. Their commutation rule is given by

DyDy = rira—ar p_p,. (5.50)

where (r,q) = r2q1 — gor1 is a symplectic form. As we can see in the above equation,
two displacement operators commute if and only if (r,q) = (q,r). Let us now assume
that d is a prime number. It is easy to show that

ra—rir2 (DL)T1
D, — { T (Dz)™ when r; # 0, (5.51)

(D)™ whenr =0,

where T = (1, 7"27“‘11_2) and all operations are modulo d. Notice that the d* displace-

ment operators can be written as a function of d 4+ 1 of them. Of course, the functions
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must be non linear, because all the operators are linearly independent. The eigenvector
basis of the displacement operators in prime dimensions are a maximal set of d +1 MU
bases. [71].

Zauner’s conjecture [54] states that in every dimension d there exists a fiducial state
|¢) such that {Dy|¢)} determines a SIC-POVM. That is,

9 dénﬁ—%l 9
(oID:|9) " = — 3~ VreZg (5.52)

If a pure quantum state |¢) satisfies the previous condition, then the SIC-POVM is
given by {Dy|¢), r € Zg}. If such a construction is possible we say that the SIC-POVM
is covariant under Weyl-Heisenberg group.

5.5.2 Fiducial states in MU bases decomposition

Any quantum state p acting on a prime dimensional Hilbert space H can be written as
a linear combination of rank-one projectors related to a complete set of d + 1 mutually
unbiased bases. That is,

d d-1
. 1 )
— J )
p= 335 (v gy ) (5:53)

Pl = Tr(plR), (5.54)

with j the index of the MU bases family and &k the index within the family. We
consider that j = d corresponds to the canonical base (eigenvectors of Z). Sometimes,
this base is denoted with the index j = oo (see [72]) and this choice is justified by
arguments about the discrete affine plane picture [73]. Every operator H?{ is a rank one
projector, namely

I} = [eh) el (5:55)

where {\goi)} satisfy the relationship

when j # [,

when j =1, (5.56)

1
1.V 12 — d
el ={ g1

that is, they form a complete set of d+1 MU bases. It is also possible to decompose
a quantum state as a linear combination of the displacement operators

p=Y_arDy, (5.57)

2
rez;



56 5.5. Characterization of SIC-POVMs using MUBs

where ar € C and ag = 1/d. Zauner’s conjecture given in Equation (5.52) can be
cast now in the form

dd =
|Tr(pDy)|* = 1 Vr € Z2. (5.58)

Considering Equations (5.57) and (5.58) and the fact that set {D,} of displacement
operators form an orthogonal base we obtain

é when r = 0, (5.59)
ay = .
r d\/}j?wﬁr when r # 0.

for a given set of real parameters B, € [0,d). It is easy to show that the following
completeness relation holds

1
> DDl =1, (5.60)

2
rez;

for any set {f8;}. In order to deduce a relationship between the set of coefficients
{p?ﬁ} given by Equation (5.53) and the set of coefficients {a,} given by Equation (5.57)
we need an expression of the displacement operators as a function of the MU bases
projectors. Taking into account that every operator D, has the same set of eigenvalues
{wk} (with k =0,...,d — 1) we obtain

b FT2=T1T2 Zi;(l) wkrlﬂ’,? when ry # 0, (5.61)
r i;(l) wkmﬂg when 71 = 0. ‘

Putting Equations (5.61) into Equation (5.57) and considering Equation (5.59) we
have

d
1
= SR (¢
P 2 dld+1) *
d 2
+ Z a(m,7”11”2)Thrz_TITQC"}]WlHz2

k
d—1 1 d—1
+ (d(d—l—l) + Z arwk”) Hg (562)
k=0

From the last result and considering Equation (5.59), we have the following rela-
tionship

d—1
) 1 1 aj—l-ks
pl== 4 —— § s 5.63

k d+d\/d+ls:1w ’ (5.63)
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for every j =0,...,d and k =0,...,d — 1, where the d*> — 1 phases have the form

. ce o2 3
wOég = { WB(SJS)T]S " When '] # 0)

wP0.9) when j = 0, (5.64)

Given that every probability ng is a real number and considering that d is an odd
prime number we find the symmetry

al = —ad_ . (5.65)

for every j =0,...,dand s =1,...,d — 1. Therefore, Equation (5.63) is reduced to

(d-1)/2
P12 1 ;
— 42— J
A 2t gV a1 SEZI cos(a + 2mkr/d). (5.66)

This characterization of the probability distributions for fiducial operators in MU
bases decomposition is our first result in the corresponding article.
5.5.3 Existence conditions for a fiducial state in prime dimensions

Let us note that if Tr(p) = 1 and Tr(p?) = 1 the only way to have a positive semidefinite
operator p is that Tr(p?) = 1. If this does not hold, then p has one negative eigenvalue, at
least. This fact is easy to understand because the only quantum states having Tr(p?) = 1
are the pure states. In our case, Tr(p) = 1 is implicit in the MUBs decomposition given
in Equation (5.53). We can also easily deduce from Equation (5.63) that

> ) =2, (5.67)
i,k

for every value of the phases {emi}. On the other hand, it is known a general
property relating probabilities in MUBs decomposition with the purity of a quantum
state [74], namely:

> (0])? = Te(p®) + 1. (5.68)
7.k

Combining the last two equations we obtain

Tr(p?) = 1. (5.69)

Therefore, we only need to impose the condition

Tr(p®) =1, (5.70)
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in order to have a pure state. Taking into account Equation (5.70) and the MU
bases decomposition given in Equation (5.62) we obtain

> plph, vy, Tr (T 1T, T15) = Tr (p*) + d + 6, (5.71)
o
which must be satisfied by the probability distributions {p‘,i} (depending on {ai})
to guarantee that they represent a physically admissible fiducial pure state. Equation
(5.71) indicates that the problem of the existence of Weyl-Heisenberg covariant SIC-
POVMs is equivalent to demonstrate that the function

F({pl}) = D iy Te (.11, 1T;) (5.72)
Lo

reaches a maximum value of d 4+ 7 for some p. We can affirm that the maximum
value belongs to the interval [d + 5,d + 7], but so far we have not been able to proof
that F' = d + 7 is reached for every prime dimension d. Numerical evidence tells us that
this maximal number is reached in every dimension d < 67 [70] and, consequently, we
have a strong evidence of its existence in every prime dimension. Let us establish an
upper bound for the probabilities pj.. From Equation (5.66) we can bound the cosines,

obtaining

1 d-1 1
p]<7+7 _— .
k=d d Vd+1 (5.73)

for every £k = 0,...,d—1 and 5 = 0,...,d. This bound is highly non-trivial and
it may be useful to reduce computational time in order to find numerical solutions in
higher dimensions.

5.6 Remarks on our results concerning SIC-POVM

Our achievements with our two strategies to prove the existence of SIC-POVM in finite
dimensions are:

e Complete characterization of the necessary and sufficient conditions for SIC-
POVM existence in a Geometrical style, for all finite dimension.

e Construction of a solution in d = 3 using our geometrical conditions.

e Characterization of fiducial state necessary and sufficient conditions to generate
a SIC-POVM in prime dimensions

e A non-trivial upper bound for fiducial state parameters in prime dimensions



Generalization of IC-POVMs

In this chapter we show in what sence tight rank one IC-POVMs are optimal for quantum
tomography and as well a generalization of them that keeps the same sence of optimality.
Also we propose a generalization of MUBs making use of equidistant states in the
construction.

6.1 Optimal linear QST

Optimal QST is achieved by choosing a IC-POVM that minimizes the statistical errors
for the tomography procedure. In Chapter 5 we introduced dual frames and the induced
recosntruction operators R, which gives rise to the tomography reconstruction:

P = meRw (6'1)

zell

If now we proceed to make an estimation p, of the probabilities p, this give us a
estimation of the state p as:

ﬁ = Zﬁsz (6'2)

e

we will call p the estimator of the state p, for a given reconstruction operator set.
In Chapter 4 we introduced the likelihood function for an estimator, that in this case
we can take as:

L) =1[» (6.3)

jex

withnj = > s 0. . If N is the total number of counts, the normalization constrain
only, gives by maximum-likelihood the estimation p; = n;/N = f;; which is the relative
frequency. Since p; is a linear function of the counts n;, this estimator is known as

59
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a linear estimator. A optimal QST using this particular linear estimator is also an
optimal linear QST because the normalization constrain is a linear constrain.

The statistical error measure for this optimization will be the average over the square
of the norm induced by the H-S product, of the difference between the reconstructed
state and the linear estimator:

E () = (llp—oll”) (6.4)

a direct calculation leads to:

(o=217) = 3 (e —52) 0y = 5y) (RelRy)

z,ye

1
= N Z (P20ay — Papy) (Ra| Ry)
z,yeX

- = (Z Po (Ro|Re) = Tr (92))

zell

1

S Y (Ap (R)=Tr (p2))

The error that we should minimize is:

B (p) = (8 (R) = Tr () (6.5)
Since we have no control over the purity of p, it is the quantity A, (R) in equation
(6.5) which is now of interest. The IC-POVM which minimizes A, (R) , and hence the
error, will in general depend on the quantum state under examination. We thus average
over all unitarily equivalent states by seting p = p(0,U) = UcUT, and removing this
dependence taking the Haar average over all U € U (d):

/U(d) dpm (U) Ay (R) /U o ()Y Tr (FUoU') (Ru|Ry)

el

— é > Tr(F,)Tr (o) (Re|Ry)
zeK

= T (R (ReR.)
el

_ éAF (R)

In the second step of this calculation we evaluate the integral:

Y (o) = / dpg (U)UoUT (6.6)
U(d)



6. Generalization of IC-POVMs 61

To evaluate this integral we notice first that for any projector P of rank one, T (P) =
C with C the same constant operator, because all projectors are unitarily equivalent.
Also we have that Z?:1 P, =1, then

d
daC=>"T(P)=1I
i=1

and we have C' = LI. Therefore for A = Zle i P; we have,

d d
1
(4) = AT (P) = 3N = 3T (4)
So, the evaluation of the integral for the required case is

1
T (o) = gTT (o)1 (6.7)
We will now minimize Ap (R) over all choices for R, while keeping the IC-POVM
F fixed. Our only constraint is that {R;} ., remains a dual frame to {P,} ., so that
the reconstruction formula (6.1) remains valid for all p. The following Theorem shows

that the reconstruction defined in (6.1) is the optimal choice for the dual frame.

THEOREM 6.1: Let {Az}
{Bm}xEIC’

ek © B ((Cd) be an operator frame. Then for all dual frames

Ap(B)= Y Tr(F) (BB) = Y. Tr(F,) (A4, ) = Ar (4) (6.8)

e e
with equality only if B = A, where {flx} . 1s the canonical dual frame.
xE
To prove it we define D = B — A, which satisfies:

Z Tr (Fy) ‘Az) (Ds| = Z Tr(Fy) ’A$> (Ba| — Z Tr (Fy) ‘Az)(jlx‘

zEK zelkl zell
= > Tr(F) AN Ay) (Bo| = Y Tr(Fa) A7 Ag) (A A7
zelC zeK
= A'1-AtAAT?
= 0

when {B;}, i is the dual frame to {A;},cc and {flx} . is the canonical dual
TE

frame. Thus,

SN Tr(F) (le|Dx) ~0 (6.9)
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Now, since B=D + fl,

ST (E) (BoBy) = YT (B (AdlAL) + Y0 T (5) (D)

- " “Z'Cm) (Da:\flx)JrEEKTT’(Fx) (Dal D)
_ fT (F2) (Aul4, ) + MTT (F2) (Dz| D)
> “Smm (A.14,) b

with equality only if D = 0. (I
We also can see that:

ZTT (F) |Re) (Re| = ZTT (Fz)f_l |P;) (Pz|]:_1 = F!

zek ze

and then Ap (R) = Tr (F~1), This quantity will now be minimized over all IC-
POVMs. For this we will prove the following theorem:

THEOREM 6.2: Let {F,},.c € B(C?) be an IC-POVM. Then

Tr(F')>d(d(d+1)—1) (6.10)

with equality iff F' is a tight rank-one IC-POVM.

We will minimize the quantity

d2
1
Tr(FH=) — 6.11
rFD =205 (6.11)
k=1
where A1,..., g2 > 0 denote the left-right eigenvalues of F. These eigenvalues

satisfy the constraint

d2
SN =Tr(F) =Y Tr(F,)(Pu|Py) < Tr(F,) =d
k=1

zell ze

since T'r (PQ) < 1. We know, however, that the identity operator is always a left-
right eigenvector of F with unit eigenvalue. Thus we in fact have Ay = 1 say, and
then ZZ222 Ak < d — 1. Under this latter constraint it is straightforward to show that
the RHS of equation (6.11) takes its minimum value if and only if Ao = -+- = A2 =
(d—1)/(d*—1) =1/(d + 1), or equivalently,

7 1 1+7
R EL Ny Y

A2
d d+1 d+1 (612)
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with Ag the projector into the subspace of traceless operators. From what we have
seen in Chapter 5, this is also the case iff F' is a tight rank-one IC-POVM. So the
minimum of T (F 1) is attained iff F is a tight rank-one IC-POVM 0.

We have thus confirmed that it is optimal to use a tight rank-one IC-POVM for
quantum state tomography. Suppose now that we have a finite IC-POVM with |K| =
d?> + K possible measurement outcomes. We know that every POVM satisfies the
normalization constraint, ), F,, = I, which implies normalization of the statistics:
Y zei Pz = 1. Our previous estimate satisfies this constraint. It does not, however,
incorporate any additional constraints specific to the particular choice of IC-POVM.
Embedding the POVM in I+ ((Cd) shows that there will be a further K linear constraints
of the form:

S hF=0 > dp=0, (heR k=1, K) (6.13)
ze ze

The intersection of the probability simplex in R +K with the subspace perpendicu-
lar to the K vectors {c];}m ek forms the subset of statistics which are isomorphic, under
the mapping p = Tr(FA) — A, to the normalized Hermitian operators in B ((Cd).
Then, our estimator gives a full mapping only in the case of minimal IC-POVM, i.e.
when K = 0 and no other constraints than the normalization are needed. For this reason
minimal IC-POVMs (like the SIC-POVM) should be preferred over other IC-POVMs
for a linear estimation. Under both the normalization and additional constraints this
nonlinear optimization problem becomes difficult to solve analytically. One exception is
an IC-POVM consisting of d 4+ 1 MUBs, in which case the K = d additional constraints
[ck (eé) =(d+1)dk — 1] single out p (eg) X (eé-) / [(d+ 1) Zzzl n (eé)] [53] for
the maximum-likelihood estimate, and define a non-linear estimator when replaced in
equation (6.2).

6.2 Conditional SIC-POVMs

We start decomposing B ((Cd) to three orthogonal subspaces:

B (cd) —Cleoeka oy (6.14)

where CI = {al : a € C} and OF, ©¢ are the a priori known and unknown traceless
subspaces. This means that for a A € @]5 and a A, € Of we have:

1

P=a
being App the known traceless part of p and A,p the unknown traceless part of p.
We use the notation p, = p — Agp. Then, our goal is the tomography of p.. If the
dimension of ©f is m, then the dimension of OY is d®> —m — 1. For the state estimation
we have to use a POVM with at least D = d?> — m elements. To get a unique solution

I+ Agp+ Aup (6.15)
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we will use a POVM with exactly D elements {F1,..., Fp}. For obtaining the optimal
POVM we propose a reconstruction of the form:

pu= PusPe (6.16)
zeEK

the terms defined in analogy to those of the previous section. Also the optimization
is carried on the quantity E (ps) = <Hp* - ﬁ*\|2> . All quantities of the last section on

optimal linear QST can be *-defined (when needed), and the same calculations carried
on in exactly the same way until the stage of evaluating T'r (]: _1) where the eigenvalues
of F takes the values, A\j, = 1 and Aoy = -+ = A2, = (d—1) /(D — 1) because now
|| = D.

Now, this POVM is such that:

7 d—-1
F = g mAu (6.17)
From this:
I d—1
S [Tr ()] 1P2) (Pal = 5 5= A,

el
If we define |Qy) = |Py) — p|l) , p € R we have:
Z  d-A

Z [Tr (Fu)] (Qy| Py) (Pr|Qy) = (Qyl d + 5_—1Au 1Qy) (6.18)
ek

Since (Pr|Qy) = T'r (PyP,) — 1 the left hand side of (6.18) becomes:

D [T (FE) (QylPr) (Po]Qy) = [Tr (F)] (L = p)* + ) [T (Fo)] (Tr (PoPy) — p)?

e Ty

and the right hand side:

IS

17, = ulD)] = 31P) =0y = E[P) = Hn] + 4D -0 = (5= u) 1D,

2
%(Qy’%@y): (é_N)TT(Py_,UJ): d<:l—u>

Also in Chapter 5 we introduced a Bloch representation for states and normalized
operators. Using the Bloch representation of P, we have:

= d-
Au|Qy) = \/; Z rply — (Qy|Au|Qy) = <d1> Z Tl?

TE,G@S‘ Tb693
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So, (6.18) becomes:

[Tr (F, +Z;Iw | (Tr (PyPy) — ﬁ:d<;_¢y+(g—a><d;1>£%x%
(6.19)

but in our Bloch representation ZTbe@g r2 <1, this implies

[Tr(Fy>](1—u>2§d<;—u>2+(gj) <d;1> (6.20)

which is true for every value of u, so

1 2 d d—
fdG-mT+ (T) (“Z")
" (1—p)?

By differentiating we obtain that the right hand side is minimal if:

D—d D—1

F=4m-1) " D-1

with D = D/d. Then we get,

From Y, [T7 (F,)] = d, we have Tr (Fy) = Tr (F») = ... = Tr (Fp) = 1/D. By
replacement of this in (6.20) and an appropriate rearrangement of the terms, we have:

<g—_11> (dgl) 1= % 02 +EZ<MP$P@,>—§:1)2=0 (6.21)

T,e0y TH#Yy

Because d > 1, D > 1 and all terms on the left hand are strictly non-negative, the
only possible solution is when each term is zero. This implies that,

dorg=1 = n,=0ifT,e0; = Tr(T,P)=0,ifT, € 6
TbEG)g

Also that,

Tr(PyPy) = %1 ifx #y
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So the optimal IC-POVM for tomography, when there is a conditioning a priori
known part Agp of the density matrix is a tight rank one IC-POVM {F1,..., Fp} such
that!,

1 D-1
Fi = BH“ Tr (HZH]) = 7D —

ifi #4, Tr(TIL) =0 ifT,cOf  (6.22)
We have used the symbol I1; as in the case of SIC-POVM because this conditional IC-

POVM has the same symmetry of SIC-POVMs in the ©f subspace; also they generalize

SIC-POVMs, since in the case @’5 = null we have D = d?, D = d and in consequence

1 e
Tr (ILIT;) = i1 ifi # j

we have the SIC-POVMs as a special case. For this reason we call this conditional
IC-POVM, conditional SIC-POVM or CSI-POVM for shorter.

6.3 Existence of conditional SIC-POVM

In this section we examine some particular cases where is possible to prove the existence
of CSI-POVMs. As we stated at the end of the previous section, when @’5 = null the
CSI-POVMs existence is reduced to that of the SIC-POVMs, whose existence has been
proved analytically or numerically only for d < 67 and further research is going in this
field as we explained in Chapter 5.

Other option is to assume @’5 the off-diagonal elements of p, and we want to estimate
the diagonal entries (m = d? — d, D = d), then it follows that the CSI-POVM has the
properties:

F, =1I;, Tr(ILIL;) =0 ifi#j, II; is diagonal.

So, the diagonal matrix projectors Hj form the desired CSI-POVM and they exist
for all dimensions.

Take now the special case when 9’5’ are the diagonal terms of the density matrix,
this is:

d—1

Agp = Z (Pk - Cli) Hj, (6.23)

k=0

In this case m =d — 1 andD:dQ—cH-l,,u:%.
In what follows we reproduce the proof of Petz et. al. [70] of the following theorem:

LA common abuse of notation in literature is to identify the normalization II; of a SIC-POVM or CSI-
POVM element with the element itself. While the calculations and tomographic schemes be expressed
in terms of the II; one should not forget that only the F; are the proper POVM elements, since only
them satisfy in general the completeness relation.
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THEOREM 6.3: A CSI-POVM exist with respect to the diagonal part ofa density matriz
if d—1 is a power of a prime.
First we start with the fiducial state:

1 &l
|4) = \/&]Z;m

And the unitary operators:

s
—

d—1
X=>i+10Gl, U=> w9 )G w=em/P
j=0

i
o

were oj € Zp. A direct calculation shows that: X [¢) = Xt|p) = |4) and
‘<Uk¢7j>‘2 = |(¢,0>|2. From this:
e {|Ute) (U*o| (1) (il = 1/d) } =0
And thus the D projectors Iy, q = ‘Uk¢> (U k¢| are orthogonal to the diagonal

projections Hy (and in consequence to oy, ).
Now we prove that they satisfy a completeness relation:

3 <z Uk¢> <Uk¢, j> A ézk:waikwwk a %zk:wmjai)k _ Doy,

k
Then:
S ‘Uk¢> <U’“¢>‘ — DI (6.24)
k
Now we have to choose the numbers ag, a1, ..., aq—1 such that:

2

_B

oo ) = (020 0 - ;

S wli-dan

but we also have:

D=Tr |I;) T, | =) Tr{ILIL} = 1—|—(D—1)%
J J

This fixes § = d — 1. Let G := {0,1,...,D — 1} be an additive group mod D and
the subset W := {ag, a1, ...,aq-1} a difference set with parameters (D, d, A\)when the
difference set a;; — a; contains all non null elements of G exactly A\ times.
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When this happens we have:

d-1 2 g D—-1
I S S S
m=0 4,7=0 s=1

in our case we have A = 1. Then, if the appropriate difference set exist, the cor-
responding CSI-POVM also exist. The problem of existence of difference sets with
parameters (D, d, 1) is well known in the literature [78, 79]. Its known that a sufficient
condition for the existence of a difference set with parameters (d2 —d+1,d, 1) is that
d — 1 be the power of a prime p™ [79]00.

From this we see that CSI-POVM tomographic scheme is possible when the apriori
information is the diagonal elements of the density matrix and the dimension of the
state is d = p™ + 1.

6.4 Generalization of MUBs

In this section we use the previous results of this chapter, Chapter 3 and Chapter 5 to
propose a generalization of MUBs, which is still an open problem and a new research
line. This research proposal of us, is on the draft stage and we expect to submit for
publication soon.

6.4.1 Complementary decomposition

Let A and B be two subalgebras of My(C), they are never orthogonal because identity
is element of both subalgebras. They are called quasi-orthogonal if their traceless part
are orthogonal:

A L B™, where A-={AcA|]A- g -Tr(A)}. (6.25)

We call them complementary subalgebras [76, 77]. A complementary decomposition
to subalgebras is defined by a set of algebras A;, (i = 1,2,...,m) such that A; and A;
are quasi-orthogonal for all 7 # j (A; L AJ_) and the set satisfies:

My(C)=CI® A & A; &...0 A, (6.26)

If we have a state p then we denote its projection on to subalgebra A; with p;, and
its traceless part with p; = p; — I /d. Then, we can decompose a state with respect to
the complementary decomposition:

I _
p=tportpoytt g (6.27)

Let us assume, that we want to estimate the state only on subalgebra A;. If dim A; = d,
then {F1, Fy, ... Fy} produce the optimal linear estimation on p; according to section
(6.2), if it satisfies the following conditions:
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d d—d
F,=-T, Tr(ILI)=-———"_
T( ]) d(dl*l)

(t#7), ILieA
d

Which is the CSI-POVM just studied in this chapter, but proposed for a tomography
scheme on each of the subspaces defined for the corresponding subalgebra.

6.4.2 Mutually unbiased equidistant bases

At the end of Chapter 3 we defined the set of Equidistant states as the pure states such
that their vectorial representation {|a1), |az),...,|ag)} € C? has the property:

(ailoj) =a (i#j) aeC

Based on previous research [38, 39], we also shown that just from the knowledge of
« is possible to construct the set of equidistant states in a closed analytic form and also
the restrictions under which the equidistant states are a L.I. set and then a base for C%.

Now we assume the existence of a decomposition of M, (C) like in (6.26), but such
that all the quasi-orthogonal subalgebras are maximally abelian, i.e. they satisfy the
isomorfism:

A =2 Cd

now we assign a set of complex numbers «; to each A; such that the equidistant states
associated with each number form a base in the corresponding C%. We will call the
bases constructed in this way mutually unbiased equidistant bases (MUEBs). When all
the a; of a MUEBSs satisfy

d—d

4= (6.28)

leu]® =
then the set of MUEBs are equivalent to a CSI-POVM for the decomposition in maximal
abelian subalgebras. Because of this, when the set of MUEBs corresponding to the
decomposition satisfy (6.28) then they are an optimal POVM for linear estimation. It
must be notice that the allowed values of a; are restricted in the way we exposed in
Chapter 3, as well because of (6.28) we must take care to choose d; > d.

We will call the MUEBs constructed in this way, the canonical MUEBs optimal
POVM.

Ordinary MUBs are a special case of our canonical MUEBSs, because they are the
canonical MUEBs when a subalgebra decomposition can be choosen as A; = Ay =
.2 Ay = C% Is in this sense that MUEBs are an optimal POVM that generalize
that of MUBs.

Something interesting about the relation between canonical MUEBs and MUBs is
that the Bloch representation (previously exposed in Chapter 5) of canonical MUEBs
are orthogonal sets of vectors each of them in a real subspace of dimention d; — 1 such
that the scalar product between the unitary vectors is:
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1

forming a regular simplex in their subspaces and in this way they have the same
symmetry of MUBs in each subspace. We still work on the construction of a particu-
lar example of a MUEB, searching for appropriate decompositions in quasiorthogonal
maximally abelian subalgebras.

6.4.3 Conditional MUEBs

A next step in generalization is to define MUEBSs in the case when we need to make a
estimation in a set of quasiorthogonal subalgebras that are not necessarily a complete
decomposition. So in this case we assume we have a maximal abelian subalgebra (or
a set of them) quasiorthogonal to the rest of the decomposition of My (C) (let’s say
A; =2 C%) and for this subalgebra we apply the same kind of construction for a MUEB
and a canonical MUEB, being the canonical MUEB optimal and equivalent to a CSI-
POVM.

6.5 Remarks on this Chapter

In this chapter we have:

e Review in detail the proofs of optimality for the IC-POVMs known as SIC-POVM
and conditional SIC-POVM (CSI-POVM).

e Proposed a new generalization of MUBs that we named MUEBs and its conditional
form.

We are actually developing the MUEBs tomography, but their versatility and similar
optimal features to MUBs suggest that their use in QST will be in dimensions where
we lack a complete set of MUBs. One interesting example that we could research in
the future is dimension d = 6, where only three MUBs are known, which means that a
measurement in this bases fixes three complementary subalgebras each isomorphic to C°,
and to complete the tomography, at least we should find a complementary subalgebra
Ay =2 C?! which would define a conditional MUEB.

We conjecture that MUEBSs optimize a nonlinear estimator of the same structure as
that of MUBs. Is likely that this tomography improves CSI-POVM tomography because
this ones are implemented to optimize a linear estimator while MUEBs will optimize a
nonlinear estimator, which in the case of MUBs improves the tomography. We expect
a tomographic scheme with efficiency between that of SIC-POVM and MUBs.



Quantum Bayesianism

In this Chapter we discuss the fundamental results of Quantum Bayesianism in the field
of QST, first the de Finetti theorem and then the SIC-POVM probability assignment
formula. After this we show our contributions in the same line of research.

7.1 The meaning of Quantum states

The outcomes of Quantum Mechanics are the probabilities to get some experimen-
tal results every time a measurement is performed over a physical system. Quantum
Bayesianism consist in a reformulation program of quantum mechanics that is conse-
quence of giving to its probabilities outcomes a Bayesian interpretation [30, 88].

As we explained in Chapter 2 Bayesian interpretation of probabilities says that
probability is a measure of plausibility. As in formal logic that can not assure any set of
truth values of the propositions it manipulates, but instead only show whether various
truth values are inconsistent, In the same way the desiderata of consistency from which
the sum and product rules come out we have as a consequence that probability theory
is of the character of formal logic. A probability assignment is a tool an agent uses to
make decisions and inferences.

Quantum states, through the born rule, can be used to calculate probabilities and
because of this if one assigns probabilities for the outcomes of a well-selected set of
measurements (As we have stated in Chapters 4 and 5 this means a IC-POVM), then
this is mathematically equivalent to making the quantum-state assignment itself. Thus,
if probabilities are personal in the Bayesian sense, then quantum states must be too.

This last statement has consequences for our informational approach, since terms
as unknown quantum state make no sense at all. Because of this an answer is required
to questions like: Which is the operational meaning of quantum state tomography and
estimation?. In Chapter 4 and 5 we took care to avoid the concept of unknown quantum
state and always talk of an state assignment to a quantum uncharacterized system, but
the idea that we are trying to discover a true quantum state for each preparation
may have been implicitly assumed, specially in Chapters 5 and 6 when we talk of
reconstruction operators and make distinction between the state p and its estimator
p. Now we clarify this possible misunderstanding by exposing one of the results of

71
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Quantum Bayesianism: the Quantum de Finetti theorem.

7.1.1 Classical de Finetti theorem

In classical probability de Finetti theorem is a result that also explain the use of the con-
cept of true probabilities for the determination of probability distributions in repeated
experiments [36]. Here the individual trials are described for example by N discrete
random variables z,, that assume k discrete values, i.e. z, € {1,2,...,k},n=1,...,N.
In a frequentist theory, such an experiment has a standard formulation in which the
probability in the multi-trial hypothesis space is given by an independent, identically
distributed (i.i.d.) distribution:

p(T1,.. ., EN) =Dz, -+ Doy =D1' - DLE (7.1)

The number pj, j = 1...k describes the true probability that the result of a single
experiment will be j, while the variable n; is the number of times outcome j is listed in
the outcome vector (z1,...,xy). To the experimentalist, the true probabilities p - - - pg
will in general be unknown at the outset. Thus, a frequentist has the duty to estimate
the unknown probabilities by a statistical analysis of the experiment s outcomes.

In the Bayesian approach, it does not make sense to talk about estimating a true
probability. Instead, a Bayesian assigns a prior probability distribution p (z1,...,zxN)
on the multi-trial hypothesis space, which is generally not a i.i.d., and then uses Bayes”
theorem to update the distribution in the light of measurement results [7, 8]. As men-
tioned in Chapter 2, the task of choosing a prior distribution is not always trivial and
a field of actual research [32]. The de Finetti representation theorem makes also this
task more tractable.

In the present case, the key feature is contained in the assumption that an arbitrary
number of repeated trials are equivalent. This means that one has no reason to believe
there will be a difference between one trial and the next. In this case, the prior distri-
bution is judged to have a sort of permutation symmetry which de Finetti [30] called
exchangeability. The definition of exchangeability proceeds in two stages:

1. A probability distribution p (x1,...,zxN) is said to be finitely exchangeable (f.e.)
if is invariant under permutations of its arguments, i.e., if:

p(xw(l)y--wxﬂ(N)) :p(xla--'va) (72)

for any permutation 7 of the set{1,..., N}.

2. The distribution p (z1,...,2zx) is called exchangeable if it is f.e. and if for any
integer M > 0, there is a f.e. distribution pixiar) (T1,-- -, TN, TNG1, -+ TN M)
such that

p(xl)"'7$N): Z p(N+M) (‘Tl,...,ﬁN,JIN+1,...,.’EN+M) (73)

LINA415- s TN+M
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This last statement means the distribution p can be extended to a f.e. distribution of
arbitrary many random variables.
We are now prepared to enunciate the de Finetti theorem:

THEOREM 7.1 (DE FINETTI): If a probability distribution p(x1,...,xN) is exchange-
able, then it can be written uniquely in the form:

p(fm,-.-,wzv):/s P (P)pzy -+ Papdp = g P(p)pi*---pyrdp (7.4)
k k

where p = (p1,...,pk) and P (p) is a probability density function on the probability

simplex Sy.

Equation (7.4) comprises the classical de Finetti representation theorem for discrete
random variables, for a proof we suggest the references [35, 86, 87].

The content of this result is that an agent, making solely the judgment of exchange-
ability for a sequence of random variables x;, can proceed as if his state of knowledge
had instead come about through ignorance of an unknown, but objectively existent set
of probabilities p. His precise ignorance of p is captured by the probability density
P (p). This is in direct analogy to what we desire of a solution to the problem of the
unknown quantum state in quantum state tomography.

7.1.2 Quantum de Finetti theorem

In QST the equivalent element to an i.i.d. distribution of probabilities is the ensemble
of identically prepared systems, over which the different measurements take place. The
relevant point here is that there is no distinction between the systems the device is
preparing. In operational terms, this is the judgment that all the systems are and
will be the same as far as observational predictions are concerned. Because of this, if
the experimenter judges a collection of N of the device’s outputs to have an overall
quantum state p(N ), he will also judge any permutation of those outputs to have an
overall quantum state p(N ) Moreover, he will do this no matter how large the number
N is. This, complemented only by the consistency condition that for any N the state
pY) be derivable from pV+1) | makes possible a representation analogous to that of the
classical de Finetti theorem.

From this comes the definition of the quantum version of exchangeability which is
closely analogous to the classical definition. Again, the definition proceeds in two stages,

1. A joint state p(™) of N systems is said to be finitely exchangeable (f.e.) if it is
invariant under any permutation of the systems. If we expand p¥) with respect
to any orthonormal tensor product basis on H?N ,

N . . . .
PN = ST i lin) Gl il (7.5)
U1y s N3 5e eI N

Then the f.e. condition for p™) means:

(N) _ (V)
O (i1t (GN )i (G1) s m(GN) — Qitseensi N1 yeensdiN

for any permutation 7 of the set{1,..., N}.
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2. The state pV) is said to be exchangeable if it is f.e. and if, for any M > 0, there
is a f.e. state pNtM) of N + M systems such that the marginal density operator
for N systems is p(N), i.e.,

p(N) = T?“H?M (p(N+M)) (7.7)

where the trace is taken over the additional M systems.

Before the explicit statement of the quantum de Finetti theorem, we point out that the
above definition of exchangeable applies for the overall quantum state of the ensemble
of identical preparations for a QST in the light of the primarily given reasoning. Now
we have,

THEOREM 7.2 (QUANTUM DE FINETTI): If a state pN) of N systems is exchangeable,
then it can be written uniquely in the form:

pt") = P (p) p*Ndp (7.8)
HEN

where dp being a suitable measure on density operator space ’H?N , P (p) is a probability
distribution over the density operators.

For a proof see [35]. Now our Bayesian view of QST allow us to act as if p(N) = p®N
encoding our ignorance about p in P (p). In this way our procedure for QST start
by assigning a prior quantum state to the joint system composed of the N systems,
reflecting our prior state of knowledge, then we can update our density operator to reflect
information gathered from measurements by a quantum version of Bayes’ theorem.
Specifically, if measurements on K systems yield results Dy, then the state of additional
systems is constructed as in equation (7.8), but using an updated probability on density
operators given by,

P(p) P (Dklp)

(7.9)

Here P (Dg|p) is the probability for the measurement results Dy given the state
p and P (D) a normalization constant as in the classical case. We can think now
the process of QST as an updating of our knowledge of the whole joint system pN) .
In the hope that different experimenters with different a priori knowledge achieve an
agreement over future probabilistic predictions for a sufficiently large data Dg input.
This is such that for different priors P; (p) i = 1,2, the measurement results force a
common state of knowledge in which any number N of additional systems are assigned
the product state p%];, ie.,

[ P 01DR) 0V dp = 5 (7.10)

d

independent of i, for K sufficiently large.
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Accordingly, quantum de Finetti theorem shows how our new view of quantum states
gives a new insight into QST process, that justifies all previous procedures and tecniques
for reconstruction and estimation, but also includes the full power of Bayesian update
of probabilities and prior information knowledge in the field (as we notice in Chapter
2 this implies an improvement in prediction power for data with a high signal-to-noise
ratio.) within a consistent approach.

7.2 Seeking a new Bayes probability law

Since Bayes” theorem is of fundamental relevance in Bayesian analysis, an analogous
representation for the probability assignments of quantum mechanics will strengthen
the Quantum Bayesianism approach by the same reasons as in classical Bayesianism.

In this same line of thought, it was noticed by C. Caves [21] that SIC-POVM provide
a simple tomographic reconstruction formula:

d2

p=>_ldd+1)py — 1] Fy, (7.11)
k=1

where {pi} is the set of probabilities associated to the elements of the SIC-POVM F}, =
{Il}/d} acting on a quantum system described by the state p. This latter expression
together with the Born’s rule allow us to cast the set of probabilities {¢,,} associated
to a different POVM {E,,} as an affine mapping (or rescaling) of the Bayes law of total
probability, that is

d2
Q(En) = [d(d+1)P(Fg) — 1] P(Ep|Fy), (7.12)
k=1

were we have rewritten py as P(Fy), qm as Q(E,,) and P(E,|Fy) = Tr(E,Fy) is
the conditional probability of a measurement result associated to the operator F,, given
the measurement result associated to the operator Fj = Il /d. Quantum bayesianism
proposes Eq. (7.12) as the quantum rule for assigning probabilities, replacing Born’s
rule, and changing quantum states and operators for sets of probabilities { P(F})} and
sets of conditional probabilities { P(E,,|F)}. From what we have discussed it comes out
that such a prescription for calculating the probabilities of measurement processes will
be equivalent to the orthodox formulation of quantum mechanics every time our rule to
specify the outcomes that give rise to probabilities P(F}) gives the same outcomes as a
SIC-POVM.

Also, in this scheme prior distributions are introduced directly in the tomography by
taking P (Fy) = P (Fi|I) and P (Ey,|Fy) = P (Ep|Fy, I) (here I is the prior information
as described in Chapter 2) which is one of the most debated issues in the quantum
tomography researchers community [32, 83, 84]. In the present work we provide a way
to specify such outcomes (related to P (F})) that don 't require Fj, to be part of a SIC-
POVM, but of a CSI-POVM. This new Bayes law of total probability also requires a
different rescaling.
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7.3 New route in the Bayesian ocean

In Chapter 6 we introduced the generalization of SIC-POVMs known as CSI-POVMs.
In this section we use CSI-POVMs for showing that a new variety of Bayes law of total
probability can be constructed for quantum probability assignments, giving the general
formulation for some prior known coefficients of the density matrix and then showing
the law for some CSI-POVMs whose existence has already been prove. This is a result
we will publish soon in an article that is under development.

We now proceed to define the superoperator G =), |T1;,) (IT;| where the IIj, are the
proyectors proportional to the Fj, elements of the CSI-POVM ! and satisfy Eq. (6.22).
Then,

GITL,) = (1 — w)IL)) + uD|1), (7.13)

with D = D/d and pu = (D — d)/d(D — 1) = (D —1)/(D — 1) is the Hilbert-Schmidt
product between different elements of the CSI-POVM. Defining the auxiliary constant
a = (1 — ud) we can write the superoperator G as

G=D (aI—l—(l—a) (5)) (7.14)

The inverse of this superoperator is then given by

G l= ;D (I —(1-a) (g)) : (7.15)

We have then that the identity superoperator can be cast as

1= 5 i - i) (7.10

k

Using this identity we can write a reduced state p as p = I|p) or equivalently

5= 1Z{ﬁk (1:{04)[} Tr(Fp). (7.17)

k

From this latter equation we obtain finally

p= IZ{DP(Fk)— (lga)}pk, (7.18)

(07
k

Which is the CSI-POVM tomographic reconstruction formula analogue to Eq. (7.11).
This latter equation can be recovered from Eq. (7.18) considering the case D = d®.

Upon Eq. (7.18) we build the analogy to the Bayes law. In order to do this we
need first to specify the known part of the state Axp which defines the CSI-POVM. In
our case we take into account the diagonal traceless part of p as in equation 6.23 where
pr = Tr(pHy) = P(Hy) with {Hy = |k)(k|} a POVM formed by normalized projectors

!To avoid any misunderstanding, in this chapter we will use the (~) hat to identify CSI-POVM
probabilities and operators, since they are used to expand the reduced state p.
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onto the canonical base {|k)} (with k =1,...,d). This choice of a priori information is
motivated by the fact that Agp clearly implies a Bayes law plus a constant. Let us now
examine the CSI-POVM when the a priori information are the diagonal terms of the
traceless part of the density matrix. In this case we have m =d—1, D = d? —d+1 and
p = (d—1)/d*. As we proved in Chapter 6, in this case CSI-POVM exists whenever
the dimension of the Hilbert space is given by a positive integer power n of an arbitrary
prime number p plus one, that is d = p"™ + 1. For this values the tomographic formula
for p becomes

ﬁ:Z{(dQ—dH)pk—d;l}Fk. (7.19)

k

From this we see that CSI-POVM tomographic scheme is possible when the a priori
information is the diagonal elements of the density matrix, which are clearly experimen-
tally measurable from the projectors Hy, and the dimension of the state is d = p™ + 1.
The complete tomographic formula for an arbitrary state p is in this case

p=> P(Hy)H,+) (DP(Fk) - é_—l) Fy, (7.20)

were we have replaced Eqgs. (6.23) and (7.19) into Eq. (6.15) and the auxiliary variable
a takes the value & = 1/d in this case. Eq. (7.20) allow us to write the quantum
analogue of Bayes law for the assignment of probabilities, that is

Q(Em) = ) P(Hy)P (Ful|Hy)
k=0

d2
+ {DP(Fk) - dgl} P(Epl|F). (7.21)

i
U

We remark that the optimality of this choice of conditional parameters is symmetric,
since as we show in Chapter 6 is also proved that the CSI-POVM when all non-diagonal
elements of the density matrix are known, is the set of diagonal projectors Hy.

Our Eq. (7.21) is of great relevance since it shows how the procedure introduced
in this article allows to get new results and insights into the new rescalings of the
total probability law proposed for probability assignments in quantum mechanics. For
example, in Eq. (7.21) we have separated the probability law into two parts. The first
part related to the projectors Hy is exactly the usual probability law used in the classical
case, which is consistent with the fact that Hj form a basis for the diagonal states which
are those with the most classical behavior. The second term in Eq. (7.21) includes the
contributions obtained from the measurement of the members F}, of the CSI-POVM
that in this case represent the contributions from the non-diagonal terms of p. We can
interpret Eq. (7.21), which provides the quantum probability assignment @ (E,,), as
a combination of a classical term, represented by the usual law of probabilities, and
a quantum term, represented by a rescaling of the total law of probabilities for the
interference terms.
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Our formula (7.18) is very general and open new possibilities for the Quantum
bayesianism program. This equation proves that the existence of SIC-POVM is a suffi-
cient but not necessary condition for completing the program and indicates a procedure
to find an alternative quantum bayesian rule. The tomographic scheme due to this
formula can be performed experimentally with the help of programable spatial light
modulators (SLM) based on liquid crystal displays [91]. These are capable of amplitude
and phase-modulation of light beams and can be easily controlled by software. A par-
ticular application of these devices has been the tomographic reconstruction of a single
spatial qudit in dimensions 7 and 8 [92, 93].Due to the high degree of control of the SLM
it is possible to generate a large class of initial states, pure or mixed, and to project them
onto states whose projectors are the normalization of the CSI-POVM like the U¥|¢) of
Chapter 6. Thereby, an experimental implementation of a tomographic reconstruction
based on Eq. (7.18) is well within reach of current experimental techniques.

The error propagation of this scheme is linear and thus it gives better quality of
results than linear inversion, also in Chapter 6 we proved that maximizes the likelihood
function for a linear estimator, thus on any sense the CSI-POVM tomography here
proposed improves the data analysis of experimental results.

Since we can directly rearrange the terms of Eq. (5.21) to take the same form as
Eq. (7.18), is that our formula suggest me that the addition of QBism to classical
Bayesianism lies in the rescaling constant o = (1 — pud) and the minus sign in the
second term, rather than the particular value of dimension d as expected by C. Fuchs
[80]. This encourages me to lead my research towards a critical review of Bayesian
desiderata (Chapter 2), from which I hope to reveal the QBism rules true origin. In
analogy to the work of E. T. Jaynes for classical probabilities, this research program
should lead to suitable desiderata and clear principles which result in a probability
theory with the same statistics as quantum mechanics but without the Hilbert space
formalism.

7.4 Final remarks

While still writing this thesis many advances on our research and quantum bayesianism
have come to light.

There is actually a very advanced draft about the CSI-POVM rule for quantum
assignment and a preliminary draft for the MUEBs introduced in Chapter 6. New ideas
and research projects based on the tomography scheme proposed in Chapter 4 are under
discussion.

Also through personal communication M. Appleby, C. Fuchs and H. Zhu have intro-
duced me to their actual research on the restrictions induced by the QBism rule in the
probability space [89, 90] They proposed a new approach to that problem by focusing
in the symmetries ( Like Klein in his Erlangen program [94] about geometry) of the
allowed probabilities in the probability space.

Also G. Gour has show recently that SIC-POVMs of arbitrary rank (only rank one
SIC-POVMs are optimal for reconstruction) exist in all dimensions [95]. This general
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SIC-POVM lose some of the properties of rank one SIC-POVMSs, but still allow for a
QBism rule (dependent of the rank of the SIC-POVM) that also has the same structure
of (7.18). This generalization and its consequences over the restrictions of probability
space still require more research.
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