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Abstract

This thesis deals with a geometrical formulation of diverse Supergravity theories.

In particular, the construction of Supergravity actions in four and three dimensions are

considered in different frameworks with interesting physical implications.

Before approaching supersymmetry, we briefly review some gravity theories in the

Cartan formalism. The formalism used in the introductory chapter is crucial in order

to understand the development of the present thesis. Some interesting results are

presented in chapter 2 using the semigroup expansion method in the Chern-Simons

(CS) and Born-Infeld (BI) gravity theories. Subsequently, a brief introduction of

supersymmetry and some supergravity models are considered in chapter 3.

Chapters 4, 5, 6 and 7 contain the main results of this thesis which are based on

five articles written during the cotutelle research process.

Initially, we present a family of superalgebras using the semigroup expansion of

the Anti-de Sitter superalgebra. In the MacDowell-Mansouri approach, we study the

construction of diverse four-dimensional supergravity theories for different superalge-

bras. Interestingly, we show that the pure supergravity action can be obtained as

a MacDowell-Mansouri like action using the Maxwell symmetries. Additionally, a

generalized supersymmetric cosmological constant term can be included to a super-

gravity theory using a particular supersymmetry, called AdS-Lorentz. Furthermore,

we present a supergravity model in three dimensions using the CS formalism and the

Maxwell superalgebras.

Subsequently, the thesis is focused on a supergravity model with partial breaking of

N = 2 to N = 1 supersymmetry which, in the low energy limit, gives rise to a N = 1

supersymmetric theory.

Eventually, the thesis ends with some comments about possible developments.
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Introduction

The observers are crucial in order to describe Physics. They can measure and

define mathematical objects in order to represent physical concepts. However, following

the Copernican principle, there are not privileged observers of the universe. Thus, the

Physics has to be observer-independent. Interestingly, the diverse results obtained

by different observers can be related by symmetry transformations. In particular,

the symmetry of a physical system is a feature which remains unchanged under some

transformation. Ones of the symmetries of nature are the space-time symmetries

successfully described by the General Relativity (GR) theory. On the other hand, the

internal symmetries are understood through gauge theories described by the Standard

Model.

Nowadays, three of the four forces of nature are successfully described by the Stan-

dard Model as Yang-Mills theories. They are elegantly related to gauge symmetries

allowing renormalizability and ensuring a viable quantum theory. On the other hand,

gravity described by General Relativity, resists to the quantization. In spite of the huge

success of the General Relativity theory, there is not a consistent quantum description

of gravity which prevents a possible unification of gravity to the other interactions.

The fundamental interactions of nature and their coupling to matter are based on

the invariance under local transformations of some gauge group. In particular, the

local symmetry is achieved if matter is coupled to bosonic gauge fields which are the

mediators of an interaction. The coupling of matter to the electromagnetic fields

described by the Quantum-electrodynamics (QED) is seen as a U (1)-gauge theory.

While the Weak and electromagnetic interactions are unified in the Standard model as

local SU (2)×U (1)-gauge theory. On the other hand, the SU (3) gauge group describe

the strong interactions (QCD). In the same way, General Relativity can be seen as the
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”gauge” theory of the Poincaré group whose gauge boson is associated with the local

space-time translation generators Pa.

In order to unify gravity with the other interactions in a unique theory, it is neces-

sary to put together the internal symmetries with the space-time symmetries. A good

candidate for this purpose is the supersymmetry. Supersymmetric theories are remark-

able theories since they unify space-time with internal symmetries relating bosonic and

fermionic particles in an elegant way. Indeed, the particles of different spin can be as-

sociated in a bigger group called the supersymmetry group or supergroup. This allows

to introduce a new algebraic structure known as the Lie superalgebra. In particular,

the supersymmetric generalization of the Poincaré algebra can be obtained introduc-

ing in addition to the bosonic generators, the fermionic generators Q which satisfy the

Poincaré (anti)commutation relations.

The supersymmetric extension of gravity, described by General Relativity, corre-

sponds to the supergravity theory. Thus, the simplest supergravity theory can be

viewed as the “gauge” theory of the Poincaré superalgebra where the fermionic gener-

ators Q are gauged by the superpartner of the graviton (spin-2), which corresponds to

a spin-3/2 field ψ called the gravitino. There is a particular interest in superalgebras

going beyond the superPoincaré one, in order to study richer supergravity theories. Fur-

thermore, there are several models depending on the amount of supersymmetry charges

N and on the choice of the space-time dimension D. The larger N and the larger D,

more constraints are presents in the theory. It is known that increase N beyond 8 or

the dimension D beyond 11 makes difficult a consistent coupling to gravity.

Interestingly, other features can be incorporated to supergravity theories like matter

couplings and the presence of cosmological constant. The inclusion of matter in a

supergravity theory has important consequences in the geometrical structure leading to

a vast variety of supergravity theories with diverse physical implications. In particular,

pure supergravity models can be coupled to matter multiplets in order to obtain more

realistic theories. The models of particular relevance are the supergravity theories in

ten and eleven dimensions since they describe the low-energy dynamics of superstring

and M-theory, on flat space-time, respectively. Besides with the well celebrated duality

between superstring theory realized on an AdS space-time and the conformal field theory

on its boundary (AdS/CFT duality) made supergravity a useful tool for studying non-

xi



perturbative properties of gauge theories.

The purpose of the present thesis to study diverse features of supergravity models

using different geometric formalisms. First, we shall approach enlarged supersym-

metries using a Lie algebra expansion (S-expansion) method in order to analyze and

construct four-dimensional supergravity theories. We shall see that the pure super-

gravity action can be obtained as a MacDowell-Mansouri like action using the Maxwell

symmetries. Additionally, we shall present an alternative way to introduce a gener-

alized cosmological term to a supergravity action à la MacDowell-Mansouri using the

AdS-Lorentz superalgebra.

Subsequently, we will study, in the Chern-Simons formalism, the construction of

a three-dimensional supergravity action using a minimal Maxwell superalgebra. In

particular, a supersymmetric theory for the usual Maxwell superalgebra can be obtained

combining the expansion and contraction procedures. Eventually, we shall present

the multi-vector generalization of the partially broken N = 2 rigid supersymmetric

theory as a rigid limit of a N = 2 supergravity theory. Our purpose is to elucidate

the supergravity origin of the multifield Born-Infeld supersymmetric theory and to

understand the origin of the electric and magnetic Fayet-Iliopoulos terms.
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Chapter 1

Differential geometry and gravity

1.1 Introduction

It is well known that gravity described by General Relativity theory can be formu-

lated from a variational principle,

Sg =

∫
L d4x = κ

∫ √
−gLg d4x. (1.1)

The scalar Lg can be obtained considering that the Einstein field equations,

Rµν −
1

2
gµνR = κTµν , (1.2)

are second order in the metric gµν . This restricts the scalar Lg to contain only the

metric and their first derivatives through the connection

Γγµν =
1

2
gγλ (∂µgλν + ∂νgµλ − ∂λgµν) . (1.3)

However there is no way to construct an invariant scalar only with these ingredients.

The problem was elegantly solved in 1915 by D. Hilbert proposing that Lg must also

contain second order derivative of the metric through the Riemann curvature tensor

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (1.4)

In four dimensions, there are 14 invariant scalars which can be constructed from the

metric coefficients, theirs first and second derivatives. Nevertheless, only the curvature
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scalar R = gµνRµν is lineal in the second derivatives of gµν . Then the Einstein field

equations can be derived from the Einstein-Hilbert (EH) action

S = κ

∫ √
−gR d4x. (1.5)

It remains an open problem to find an action which describes the unification of

gravity with the others interactions. Along the thesis we will try to approach this

problem generalizing the Einstein theory to diverse gravity theories.

1.2 First order formulation for gravity

The differential forms are an useful tool in order to describe a gravity theory beyond

General Relativity. Before to study (super)gravity in this formalism it is necessary to

introduce some useful concepts for the understanding of the thesis.

Let us consider the space-time as a four-dimensional differential manifold M .

For each point P of the manifold we can define a tangent space built from all the

tangent vectors defined on P . Let xµ be a coordinate system defined on the tangent

space which contains P . Then the vectors ∂i = ∂µ (P ) define a coordinate basis of the

tangent space in P . This basis is not necessary orthonormal but rather

∂i · ∂k = gik, (1.6)

where gik = gµν (P ) corresponds to the metric components in the coordinate basis.

However, an orthonormal basis can be defined using a tetrad (also known as vierbein)

ea = eia∂i,

ea · eb = eiae
k
bgik = ηab, (1.7)

where ηab is the Minkowski metric. The inverse matrix eai allows to relate the

Minkowski metric to the metric gik,

gik = eai e
b
kηab. (1.8)

Thus the space-time metric can be directly derived if we know the local orthonormal

frame eai . Nevertheless, the choice of the eai is not unique since they transform as a

contravariant vector under local Lorentz SO (3, 1) rotations

eai → eāi = Λā
be
b
i , (1.9)
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where the matrices Λ form the Lorentz group and satisfy

Λa
cΛ

b
dηab = ηcd. (1.10)

Although the vierbein ea behave as a vector under local Lorentz transformations, the

exterior derivative dea does not. A covariant exterior derivative D has to be introduced

such that Dea transforms covariantly under local Lorentz rotations,

Dea → Deā = Λā
bDe

b. (1.11)

The covariant exterior derivative D required the presence of a gauge field ω

Dea ≡ dea + ωabe
b, (1.12)

where ωab is known as the one-form spin connection and obeys the following transfor-

mation law

ωab = Λd
bΛ

a
cω

c
d − Λc

bdΛa
c. (1.13)

Analogously to the Yang-Mills theory, a field strength can be associated to the gauge

potential ω,

Ra
bik = ∂iω

a
bk − ∂kωabi + ωaciω

c
bk − ωackωcbi, (1.14)

which allows to define the curvature 2-form

Ra
b = dωab + ωacω

c
b =

1

2
Ra

bikdx
i ∧ dxk. (1.15)

On the other hand, we introduce the torsion 2-form as

T a = Dea =
1

2
T aikdx

i ∧ dxk, (1.16)

with

T aik = ∂ie
a
k − ∂keai + ωabie

b
k − ωabkebi. (1.17)

The equations (1.15)− (1.16) are the structure equations and describe the geometrical

structure of the manifold. These 2-forms satisfy the first and the second Bianchi

identity

DT a = Ra
be
b, (1.18)

DRa
b = 0. (1.19)
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In the Cartan formalism, the Einstein-Hilbert action (without cosmological

constant) can be written in terms of the vierbein ea, the spin connection ωab and their

respective fields strengths
(
T a, Rab

)
as

SEH =

∫
εabcdR

abeced. (1.20)

The field equations can be obtained in this formalism varying the action with respect

to the vierbein and the spin connection

δSEH =

∫
εabcd

(
δRabeced + 2Rabecδed

)
. (1.21)

Then δS = 0 requires the following field equations

εabcdR
abec = 0, (1.22)

εabcdT
ced = 0. (1.23)

which correspond to the Einstein field equations in the Cartan formalism. Let us note

that the second equation express the vanishing of the torsion. This allows to write ωab

in terms of ea from a variational equation and does not correspond to a priori constraint.

1.3 Poincaré symmetries

A gauge symmetry is a crucial ingredient in order to have a Yang-Mills theory and

ensure renormalization. However, gravity described by General Relativity have only

a diffeomorphism invariance which makes difficult the unification with the other three

interactions.

In this section we will briefly discuss the invariance of the EH action under the

Poincaré symmetries. This discussion will be fundamental for a correct understanding

of the thesis and will be generalized to other (super)symmetries.

One of the simplest gauge symmetries in order to describe gravity corresponds to

the Poincaré group ISO (3, 1). The generators of the Poincaré Lie algebra are given by

TA = (Pa, Jab) , (1.24)

4



where Jab are the Lorentz transformations and Pa correspond to the four-dimensionañ

translational generators. These generators satisfy the following commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (1.25)

[Jab, Pc] = ηbcPa − ηacPb, (1.26)

[Pa, Pb] = 0. (1.27)

The corresponding gauge fields are the one-form vierbein ea and the one-form spin

connection ωab. These gauge fields can be viewed as a single multiplet in the adjoint

representation of the Poincaré group. Then the one-form gauge connection A can be

written as

A = AATA =
1

l
eaPa +

1

2
ωabJab. (1.28)

The introduction of the length scale l is necessary in order to interpret the gauge field

as the vierbein. In fact, one can always choose the generators TA to be dimensionless

so that the one-form connection A must also be dimensionless. However, the vierbein

ea = eai dx
i must have length dimensions since it is related to the spacetime metric

gik = eai e
b
kηab. This means that that the true gauge field must be of the form ea/l.

The field strength F = dA+ A2 is defined as

F = FATA =
1

l
T aPa +

1

2
RabJab,

where the corresponding Poincaré Lie algebra-valued curvature 2-forms are

Rab = dωab + ωacω
cb, (1.29)

T a = dea + ωabe
b ≡ Dea. (1.30)

Thus the Lorentz curvature Rab corresponds to the field strength of the the spin con-

nection while the torsion T a is the field strength of the vierbein. The formalism used

here shows explicitly the relation between the algebraic structure of a symmetry group

and the geometrical structure of a manifold.

In order to have a true gauge theory of gravity the action has to be invariant under

the whole gauge algebra. Nevertheless the Einstein-Hilbert action (1.20) is not a Yang-

Mills action so that the EH action is not invariant under the Poincaré algebra iso (3, 1),

but only under the Lorentz subalgebra so (3, 1).
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The non invariance of the EH action (1.20) under the Poincaré algebra can be viewed

using the Poincaré gauge transformations

δgaugeA
A = ∇λA, (1.31)

where λA is the gauge parameter λa ≡
(
ρa, κab

)
and ∇ is the Poincaré covariant deriva-

tive. Then the transformation laws of the gauge fields are

δea = Dρa + ecκ
ca, (1.32)

δωab = Dκab. (1.33)

In particular, the translational transformations correspond to

δea = Dρa, (1.34)

δωab = 0. (1.35)

It is straightforward to see that the EH action is not invariant under (1.34) − (1.35).

In fact, if we consider the variation of the action (1.20) under local transformations, we

find

δSEH = 2

∫
εabcdR

abecδed = 2

∫
εabcdR

abT cρd 6= 0. (1.36)

Beside, the constraint T a = 0 is not invariant under Poincaré transformations,

δT a = Rabρb 6= 0. (1.37)

The non invariance of the EH action seems strange since a translation can be though

as a coordinate transformation. However, a coordinate transformation is not a gauge

translation but a Lie derivative. Then we said that the EH action is invariant under

diffeomorphisms.

The situation is completely different in odd dimensions where the D = 2n − 1 EH

action is truly invariant under the Poincaré algebra. Interestingly the inclusion of the

cosmological constant in the EH action leads to an anti-de Sitter ( AdS ) invariance.

The generalization of General Relativity to higher dimensions and to other symmetries

will be discussed along the thesis.
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Chapter 2

Beyond General Relativity

2.1 The Lanczos-Lovelock theory

It is an accepted assumption in Physics that the spacetime may have more than four

dimensions. This requires a generalization of General Relativity theory of gravity that

includes general covariance and second order field equations for the metric. Although

the Einstein-Hilbert action can be generalized to higher dimensions, it is interesting to

analyze a more general gravity theory.

The most general metric theory of gravity satisfying the criteria of general covariance

and second order field equations is a polynomial of degree [D/2] in the curvature known

as the Lanczos-Lovelock gravity theory (LL) [1, 2]. The LL action can be written as

the most general D-form invariant under local Lorentz transformations, constructed

out of the vielbein ea, the spin connection ωab and their exterior derivatives without

using the Hodge dual [3, 4],

S =

∫ [D/2]∑
p=0

αpL
(p), (2.1)

where αp are arbitrary constants and they are not fixed from first principles, and

L(p) = εa1a2···aDR
a1a2 · · ·Ra2p−1a2pea2p+1 · · · eaD . (2.2)

Although the EH action is contained in the LL action, the action with higher powers of

curvature are dynamically different from General Relativity and are not perturbatively

related.
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It was shown in ref. [5] that requiring the LL theory to have the maximum possible

number of degrees of freedom, fixes the αp’s coefficients in terms of the gravitational

and the cosmological constants.

In odd dimensions, the parameters are given by

αp = α0
(2n− 1) (2γ)p

(2n− 2p− 1)

(
n− 1

p

)
, (2.3)

with

α0 =
κ

DlD
, (2.4)

γ = −sgn (Λ)
l2

2
, (2.5)

where l is a length parameter related to the cosmological constant by

Λ = ±(D − 1) (D − 2)

2l2
, (2.6)

and the gravitational constant G is related to κ through

κ−1 = 2 (D − 2)!ΩD−2G. (2.7)

With these coefficients, the LL Lagrangian is a Chern-Simons (CS) (2n− 1)-form

LCS = κεa1a2···a2n−1

n∑
p=0

l2(p−n)+1

2 (n− p)− 1

(
n− 1

p

)
Ra1a2 · · ·Ra2p−1a2pea2p+1 · · · ea2n−1 . (2.8)

The Lagrangian (2.8) is invariant not only under local Lorentz rotation, but also under

a local AdS boost,

δea = −Dρa, (2.9)

δωab =
1

l2
(
ρaeb − ρbea

)
. (2.10)

Meanwhile in even dimensions, the coefficient are given by

αp = α0 (2γ)p
(
n

p

)
, (2.11)

With these coefficients the LL Lagrangian takes the form [5]

L =
κ

2n
εa1a2···a2nR̄

a1a2 · · · R̄a2n−1a2n , (2.12)
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which is the Pfaffian of the 2-form R̄ab = Rab+ 1
l2
eaeb and can be written as a Born-Infeld

like form [5, 6],

L = 2n−1 (n− 1)!κ

√
det

(
Rab +

1

l2
eaeb

)
. (2.13)

The corresponding Born-Infeld (BI) gravity Lagrangian is given by

LBI = κεa1a2···a2n

n∑
p=0

l2p−2n

2n

(
n

p

)
Ra1a2 · · ·Ra2p−1a2pea2p+1 · · · ea2n , (2.14)

which is off-shell invariant under the Lorentz Lie algebra so (2n− 1, 1).

The Levi-Civita symbol εa1a2···a2n in (2.14) can be viewed as the only non-vanishing

component of the SO (2n− 1, 1) invariant tensor of rank n, namely

〈
Ja1a2 · · · Ja2n−1a2n

〉
=

2n−1

n
εa1a2···a2n . (2.15)

Let us note that this choice of the invariant tensor breaks the AdS group to their

Lorentz subgroup. If 〈TA · · ·TB〉 is an invariant tensor for the so (D − 1, 2) algebra

then the Lagrangian corresponds to a topological invariant.

If the Lovelock gravity theory is the appropriate theory to provide a framework for

the gravitational interaction, then it must satisfy the correspondence principle, namely

it must be related to General Relativity theory. Nevertheless, from the Lovelock action,

it is apparent that neither the l→ 0 nor the l→∞ limit allows to recover the Einstein-

Hilbert term. In the following sections, we will discuss a particular choice of symmetry

that permits to establish a relation between General Relativity and the Lovelock gravity

theory.

2.2 Maxwell symmetries and General Relativity

It is known that the Maxwell algebra1 M corresponds to a modification of the

Poincaré algebra, where a constant electromagnetic field background is added to the

Minkowski space [7, 8]. In four dimensions, this algebra is obtained by adding to

1Also known as B4 algebra.
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the Poincaré generators (Jab, Pa) the tensorial central charges Zab. This enlarges the

Poincaré algebra and modifies the commutation relations as follows

[Pa, Pb] = Zab, [Jab, Pc] = ηbcPa − ηacPb, (2.16)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (2.17)

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (2.18)

[Zab, Zcd] = 0, [Zab, Pc] = 0. (2.19)

Recently, it was shown in ref. [9] an alternative way of introducing the cosmological

constant term using the Maxwell symmetries. In particular, the Maxwell type algebras
2 allow to recover the Einstein equations from a Lovelock gravity theory in a certain

limit of a coupling constant [10, 11, 12, 13]. In the next section we will briefly review the

relation between General Relativity and the Maxwell algebras type using the abelian

semigroup expansion approach.

2.2.1 Standard General Relativity from Chern-Simons gravity

In this section, following ref. [10] we discuss how to recover General Relativity

from a Chern-Simons gravity theory using a Lie algebra expansion procedure.

A Generalization of the odd-dimensional General Relativity theory corresponds to

the AdS Chern-Simons gravity theory. The CS theory has the advantage to describe

a gauge gravity theory in a odd-dimensional spacetime.

In (4 + 1) dimensions, the general expression of the Chern-Simons Lagrangian is

given by [14, 15]

L
(4+1)
CS = κ

〈
A (dA)2 +

3

2
A3dA+

3

5
A5

〉
, (2.20)

where 〈· · · 〉 denotes a symmetric invariant tensor. Then in order to write down a

CS Lagrangian for the AdS algebra, we start from the AdS-valued one-form gauge

connection

A =
1

2
ωabJ̃ab +

1

l
eaP̃a, (2.21)

2Also known as generalized Poincaré algebra.
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where the so (4, 2) generators satisfy the following commutation relations[
J̃ab, J̃cd

]
= ηbcJ̃ad − ηacJ̃bd − ηbdJ̃ac + ηadJ̃bc, (2.22)[

J̃ab, P̃c

]
= ηbcP̃a − ηacP̃b, (2.23)[

P̃a, P̃b

]
= J̃ab. (2.24)

The Levi-Civita symbol εabcde corresponds to the only non-vanishing component of the

so (4, 2)-invariant tensor. Therefore, the D = 5 Chern-Simons Lagrangian invariant

under the AdS algebra can be written as

L
(5)
AdS = κεabcde

(
1

5l5
eaebecedee +

2

3l3
Rabecedee +

1

l
RabRcdee

)
. (2.25)

One can see that neither the l → ∞ nor the l → 0 limit allows to recover the EH

Lagrangian alone. Nevertheless, the AdS Lie algebra is not the only possible choice

in order to describe a gravity theory. In particular, a family of Maxwell type algebras

M2m+1 can be defined using the abelian semigroup expansion procedure.

The S-expansion method is a powerful tool in order to derive new lie (super)algebras

and construct new (super)gravity theories [See Appendix A]. Basically it consists on

combining the multiplication law of a semigroup S with the structure constants of a

Lie (super)algebra g [16].

Following ref. [10], let S
(3)
E = {λ0, λ1, λ2, λ3, λ4} be the relevant finite abelian semi-

group with the following multiplication law

λαλβ =

{
λα+β, when α + β ≤ 4,

λ4, when α + β > 4.
(2.26)

Here λ4 plays the role of the zero element of the semigroup S
(3)
E , so we have for each λα ∈

S
(3)
E , λ4λα = λ4 = 0s. Let us consider the S

(3)
E -expansion of the so (4, 2) Lie algebra.

The Maxwell type algebra3 M5 is obtained after extracting a resonant subalgebra and

performing its 0s-reduction [10]. The new algebra is generated by {Jab, Pa, Zab, Za}
3Also known as B5 algebra.
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which are related to the so (4, 2) generators through

Jab = λ0 ⊗ J̃ab, (2.27)

Zab = λ2 ⊗ J̃ab, (2.28)

Pa = λ1 ⊗ P̃a, (2.29)

Za = λ3 ⊗ P̃a. (2.30)

The M5 generators satisfy the following commutation relations

[Pa, Pb] = Zab, [Jab, Pc] = ηbcPa − ηacPb, (2.31)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (2.32)

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (2.33)

[Zab, Pc] = ηbcZa − ηacZb, (2.34)

[Jab, Zc] = ηbcZa − ηacZb, (2.35)

[Zab, Zcd] = [Zab, Zc] = [Pa, Zb] = [Za, Zb] = 0. (2.36)

Let us note that the Pa generators are no longer AdS boost, nevertheless the vielbein

ea still transforms as vector under Lorentz transformations.

A very useful advantage of the S-expansion method is that it provides with an

invariant tensor for the S-expanded (super)algebra G = S × g in terms of an invariant

tensor for the original (super)algebra g. Using Theorem VII.2 from ref. [16], one can

see that the only non-vanishing components of a M5 invariant tensor are given by

〈JabJcdPe〉M5
= α1

〈
J̃abJ̃cdP̃e

〉
AdS

=
4

3
l3α1εabcde, (2.37)

〈JabJcdZe〉M5
= α3

〈
J̃abJ̃cdP̃e

〉
AdS

=
4

3
l3α3εabcde, (2.38)

〈JabZcdPe〉M5
= α3

〈
J̃abJ̃cdP̃e

〉
AdS

=
4

3
l3α3εabcde, (2.39)

where α1 and α3 are arbitrary constants of dimension [length]−3.
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The one-form gauge connection for the Maxwell type algebra M5 is

A =
1

2
ωabJab +

1

l
eaPa +

1

2
kabZab +

1

l
haZa. (2.40)

Inserting the one-form connection (2.40) into the general expression of the CS action

(2.20) and using the invariant tensor (2.37− 2.39), we can write explicitly the Chern-

Simons gravity action for the Maxwell algebra type M5 [10],

L
(5)
CS = α1l

2εabcdeR
abRcdee+α3εabcde

(
2

3
Rabecedee + 2l2kabRcdT e + l2RabRcdhe

)
. (2.41)

The Lagrangian (2.41) is split into two independent pieces proportional to α1 and α3.

The first term corresponds to the CS Lagrangian invariant under the Poincaré algebra

iso (4, 1). Meanwhile the term proportional to α3 contains the EH Lagrangian and the

coupling between the curvature and the new Maxwell fields kab and ha.

Interestingly, when the coupling constant l equals zero, we obtain only the EH term,

L
(5)
l→0 =

2

3
α3εabcdeR

abecedee. (2.42)

Analogously, the limit l → 0 in the variation of the Lagrangian leads to the Einstein

equations in vacuum,

δL
(5)
CS = 2α3εabcdeR

abecedδee + 2α3εabcdeδω
abecedT e. (2.43)

This result can be generalized to every odd dimension using a bigger semigroup leading

to a bigger Maxwell algebra type. However we have pointed out in Theorem 4 of ref.

[12] that only some Maxwell type algebras allow to recover General Relativity from a

Chern-Simons gravity theory.

Theorem 1 Let M2m+1 be the Maxwell type algebra, which is obtained from the AdS

algebra by a resonant reduced S
(2m−1)
E -expansion. If L

(2p+1)
CS is a (2p+ 1)-dimensional

Chern-Simons Lagrangian invariant under theM2m+1 algebra, then the CS Lagrangian

leads to the Einstein equations in a certain limit of the coupling constant l, if and only

if m ≥ p.
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2.2.2 Even-dimensional General Relativity from Born-Infeld

gravity

In this section, following ref. [11] we discuss how to recover General Relativity

from a Born-Infeld gravity theory using the semigroup expansion method.

The four-dimensional Lovelock Lagrangian corresponds to the Born-Infeld grav-

ity Lagrangian and can be seen as the bosonic MacDowell-Mansouri Lagrangian [17].

Then, the BI Lagrangian can be constructed from the 2-form curvature as

LBI = κ 〈F ∧ F 〉 = κFA ∧ FB 〈TATB〉 . (2.44)

Let us note that if we choose 〈TATB〉 as an invariant tensor for the so (3, 2) group, the

the action (2.44) is a topological invariant and does not contribute to the dynamics.

However, with the following choice of the invariant tensor

〈TATB〉 = 〈JabJcd〉 = εabcd, (2.45)

the action (2.44) becomes

LBI =
κ

4
RabRcdεabcd, (2.46)

with

Rab = Rab +
1

l2
eaeb. (2.47)

The choice of the invariant tensor, which is necessary in order to reproduce a dynamical

action, breaks the so (3, 2) symmetry to its Lorentz subgroup.

One can note that, although the Einstein equations (with cosmological constant)

can be obtained from a BI gravity theory, it is not possible to recover General Relativity

in higher even dimensions. However, there is a particular choice of symmetry that allow

to relate even-dimensional BI gravity theory and the Einstein dynamic.

Following ref. [11], let S
(2)
E = {λ0, λ1, λ2, λ3} be an abelian semigroup with the

following multiplication law

λαλβ =

{
λα+β, when α + β ≤ 3,

λ3, when α + β > 3,
(2.48)

where λ3 plays the role of the zero element of the semigroup S
(2)
E . Let us consider

the S
(2)
E -expansion of the so (3, 2) Lie algebra. The Maxwell algebra M (M =M4)is
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obtained after extracting a resonant subalgebra and performing its 0s-reduction [11].

The expanded algebra is generated by {Jab, Pa, Zab} whose generators are related to

the so (4, 2) generators through

Jab = λ0J̃ab, (2.49)

Zab = λ2J̃ab, (2.50)

Pa = λ1P̃a, (2.51)

and satisfy the commutation relations given by eqs. (2.16) − (2.19). In particular,

as in the so (3, 2) symmetry, the Maxwell algebra has a Lorentz like subalgebra LM
given by {Jab, Zab} which can be obtained directly as a reduced S

(2)
0 -expansion of the

Lorentz algebra ∫ o (3, 1). Using Theorem VII.2 from ref. [16], one can see that the only

non-vanishing components of an invariant tensor for the LM subalgebra are given by

〈JabJcd〉LM = α0

〈
J̃abJ̃cd

〉
L

= α0εabcd, (2.52)

〈JabZcd〉LM = α2

〈
J̃abJ̃cd

〉
L

= α2εabcd. (2.53)

where α0 and α2 are arbitrary constants. Interestingly, The invariant tensor breaks

the Maxwell symmetry to its Lorentz like subgroup.

The curvature 2-form for the Lorentz like algebra LM is given by

F =
1

2
RabJab +

1

2

(
Dωk

ab +
1

l2
eaeb

)
Zab, (2.54)

where kab corresponds to the bosonic field associated to the abelian generator Zab and

Rab is the usual Lorentz curvature Rab = dωab +ωacω
cb. Inserting the 2-form curvature

(2.54) into the general expression of the BI expression (2.44) and using the invariant

tensor (2.52− 2.53), we can write explicitly the Born-Infeld gravity Lagrangian for the

Lorentz like LM algebra [11],

LLMBI =
α0

4
εabcdR

abRcd +
α2

2
εabcd

(
Rabeced +Dωk

abRcd
)
. (2.55)

Here we can note that the Lagrangian (2.55) is split into two independent terms.

The piece proportional to α0 corresponds to a topological boundary term known as the
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Gauss Bonnet term. While the term proportional to α2 contains the Einstein-Hilbert

term and the coupling between the new gauge field kab and the Lorentz curvature Rab

which corresponds to a Gauss Bonnet like term. Although the topological Euler-Gauss-

Bonnet term do not contribute to the field equations, it permits to regularize the action

and the related conserved charges [18, 19, 20, 21, 22].

Interestingly, the variation of the Lagrangian, modulo boundary terms, leads to

General Relativity equations when a solution without matter
(
kab = 0

)
is considered.

δLLMBI = α2εabcd
(
Rabec

)
δed + α2εabcdδω

ab
(
T ced

)
. (2.56)

Nevertheless as was shown in ref. [11], in higher even dimensions (D ≥ 6), an appro-

priate limit of the coupling constant l has to be considered in order to recover the field

equations of General Relativity. In particular, it was pointed out in Theorem 5 of ref.

[12] that only some Lorentz like algebras allow to recover General Relativity from a

Born-Infeld type gravity theory.

Theorem 2 Let LM2m be the Lorentz like algebra obtained from the Lorentz algebra

by a reduced S
(2m−2)
0 -expansion, which corresponds to a subalgebra of the Maxwell type

algebra M2m. If L
(2p)
BI is a (2p)-dimensional Born-Infeld type Lagrangian constructed

from the 2-form curvature of the LM2m algebra, then the BI Lagrangian leads to the

Einstein equations in a certain limit of the coupling constant l, if and only if m ≥ p.

2.3 Einstein-Lovelock-Cartan gravity theory

In the previous section we have seen that the S-expansion method permits to relate

General Relativity with the Chern-Simons and Born-Infeld gravity theories using the

Maxwell symmetries. This suggests a generalized formulation of the Lovelock-Cartan

gravity action (2.1) which allows to recover the Einstein equations under a certain limit

of a coupling constant l.

A generalized Lovelock action can be obtained considering the most general D-form

invariant under a local lorentz type transformation constructed out of the vielbein ea,

the spin-connection ωab and the expanded fields [13]. The new action is given by

SGL =

∫ [D/2]∑
p=0

µiαpL
(p,i)
GL , (2.57)

16



where αp and µi, with i = 0, . . . , D − 2, are arbitrary constants and L
(p,i)
GL is given by

L
(p,i)
GL = ld−2δii1+···+iD−p

εa1a2···aDR
(a1a2,i1) · · ·R(a2p−1,a2p,ip)e(a2p+1,ip+1) · · · e(aD,iD−p), (2.58)

with

R(ab,2i) = dω(ab,2i) + ηcdω
(ac,2j)ω(db,2k)δij+k. (2.59)

The expanded fields
{
ω(ab,2i), e(a,2i+1)

}
are related to the so (D − 1, 2) fields

{
ω̃ab, ẽa

}
through

ω(ab,2i) = λ2i ⊗ ω̃ab, (2.60)

e(a,2i+1) = λ2i+1 ⊗ ẽa, (2.61)

where λα ∈ S(D−2)
E obeys the following multiplication law

λαλβ =

{
λα+β, when α + β ≤ D − 1,

λD−1, when α + β > D − 1.
(2.62)

Interestingly, there are different choices for the coefficients αp leading to different

theories with diverse numbers of degrees of freedom. In particular, as in ref. [5],

it is possible to choose the αp’s coefficients according that the fields attain the max-

imum number of degrees of freedom. This fixes the αp’s parameters in terms of the

gravitational and the cosmological constants [13].

In odd dimensions, the coefficients are given by

αp = α0
(2n− 1) (2γ)p

(2n− 2p− 1)

(
n− 1

p

)
, (2.63)

with

α0 =
κ

DlD
, (2.64)

γ = −sgn (Λ)
l2

2
, (2.65)

where l is a length parameter related to the cosmological constant as in eq. (2.6). As

in the original Lovelock gravity theory, the Lagrangian (2.57) may be written as the
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Chern-Simons form4

L
(2n−1)
CS =

n−1∑
p=1

l2p−2cpµiδ
i
i1+···+i2n−1−p

εa1a2···a2n−1R
(a1a2,i1) · · ·R(a2p−1a2p,ip)

×e(a2p+1,ip+1) · · · e(a2n−1,i2n−1−p), (2.66)

where

cp =
1

2 (n− p)− 1

(
n− 1

p

)
. (2.67)

The Lagrangian (2.66) corresponds to the Einstein-Chern-Simons Lagrangian and it is

invariant not only local Lorentz type rotation but also under the Maxwell type algebra

M2n−1. In particular, the l→ 0 limit permits to recover General Relativity dynamics

as was shown in refs. [10, 12].

Meanwhile, in even dimensions the coefficients satisfying the requirement to have

the maximum possible number of degrees of freedom are given by

αp = α0 (2γ)p
(
n

p

)
. (2.68)

With these coefficients the Lagrangian (2.66) take a Born-Infeld form,

L
(2n)
BI =

n∑
p=1

κ

2n
l2p−2

(
n

p

)
µiδ

i
i1+···+i2n−p

εa1a2···a2nR
(a1a2,i1) · · ·R(a2p−1a2p,ip)

×e(a2p+1,ip+1) · · · e(a2n,i2n−p). (2.69)

The Lagrangian (2.69) is invariant under a local lorentz type algebra and corresponds to

the Einstein-Born-Infeld Lagrangian found in ref. [11]. General Relativity is recovered

when the l→ 0 limit is considered.

Unlike the Lanczos-Lovelock theory, the generalized Einstein-Lovelock gravity action

allows to recover Einstein-Hilbert dynamics in a particular limit of the coupling constant

l both in even and odd dimensions. Interestingly, as in ref. [5], torsional terms can

be added to the Einstein-Lovelock Lagrangian leading to Pontryagin-Chern-Simons

Lagrangians in 4k − 1 dimensions [13].

4The term with p = 0 does not contribute to the sum because δii1+···+i2n−1
= 0 for any value of i

and n.
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Chapter 3

Supersymmetry and supergravity

3.1 Why Supersymmetry?

Three of the four forces of nature are successfully described by the Standard Model

as a Yang-Mills theory. They are elegantly related to gauge symmetries allowing

renormalizability and ensuring a viable quantum theory. On the other hand, gravity

described by General Relativity, resists to the quantization. In spite of the huge success

of the General Relativity theory, there is not a consistent quantum description of gravity

which prevents a possible unification of gravity to the other interactions.

In order to unify gravity with the other interactions in a unique theory, it is nec-

essary to put together the internal symmetries with the space-time symmetries. A

good candidate for this purpose is the supersymmetry1. The presence of supersym-

metry offers the possibility to solve the ultraviolet divergences cancelling the fermionic

and bosonic contributions to divergent loop integrals. One of the phenomenological

advantages of this theory is that it solves the hierarchy problem present in the Stan-

dard Model. In particular, supersymmetry requires the existence of super-partner for

each particle, whose contributions allows to cancel quadratic divergences in quantum

corrections to the Higgs mass.

Supersymmetry theories are remarkable theories since they unify space-time with

internal symmetries relating bosonic and fermionic particles in an elegant way. The

supersymmetry transformations generated by quantum operators Q have the interesting

1A general introduction to supersymmetry can be found in ref. [23].
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property of mapping bosons into fermions and vice versa

Q |boson〉 = |fermion〉 ; Q |fermion〉 = |boson〉 . (3.1)

Interestingly, a new algebraic structure known as the Lie superalgebra2 is required in

order to describe a supersymmetry theory. This permits to generalize the Poincaré al-

gebra introducing besides the bosonic generators B, the fermionic generators Q. Thus

the simplest supersymmetry extension of gravity corresponds to the Poincaré super-

gravity theory and can be viewed as the “gauge” theory of the Poincaré superalgebra.

In the next section, we will briefly introduce the Lie superalgebra concept and review

the simplest supersymmetric extension of General relativity.

3.2 Lie superalgebras

In the 1960s, there were various attempts to find a symmetry group which would

relate different strongly interacting particles of different spins in a relativistic quantum

theory. Nevertheless, Coleman and Mandula showed in their no-go theorem that the

only possibility to unify the Poincaré symmetry and internal symmetries is given by

the Lie algebra g = p⊕ s, where p and s correspond to the Poincaré and internal sym-

metry algebras, respectively [24]. A way to circumvent the no-go theorem is through

supersymmetry using not only bosonic generators B, but also fermionic generators Q.

Particularly, having both commutation and anticommutation relations forming a Lie

superlgebra.

The Lie superalgebra L can be decomposed in subspaces as

L = L0 ⊕ L1, (3.2)

where L0 is the subspace generated by the bosonic generators and L1 corresponds to

the subspace generated by the fermionic ones . Then the product ◦ defined by

◦ : L× L→ L (3.3)

satisfies the following properties [25]:

2Also known as a graded Lie algebra.
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• Grading: ∀xi ∈ Li; i = 0, 1; xi ◦ xj ∈ Li+j mod(2) then L is a graded Lie algebra.

• Supersymmetrization: ∀xi ∈ Li, ∀xj ∈ Lj; i, j = 0, 1; xi ◦ xj = − (−1)ij xj ◦ xi =

(−1)1+ij xj ◦ xi.

• Generalized Jacobi identites: ∀xk ∈ Lk, ∀xm ∈ Lm,∀xl ∈ Ll; k, l,m ∈ {0, 1};

xk ◦ (xl ◦ xm) (−1)km + xl ◦ (xm ◦ xk) (−1)lk + xm ◦ (xk ◦ xl) (−1)ml = 0. (3.4)

Thus, the generators of a Lie superalgebra are closed under the (anti)commutation

relations,

[B,B] = B, (3.5)

[B,F ] = F, (3.6)

{F, F} = B. (3.7)

One of the simplest supersymmetry algebras corresponds to the super Poincaré. In

particular, the four-dimensional Poincaré superalgebra is given by the Lorentz trans-

formations Jab, the space-time translations Pa and the 4-component Majorana spinor

charge Qα. The super Poincaré (anti)commutation relations read

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (3.8)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = 0, (3.9)

[Jab, Qα] = −1

2
(γabQ)α , [Pa, Qα] = 0, (3.10)

{Qα, Qβ} = (γC)αβ Pa. (3.11)

Interestingly, this implies that the combination of two supersymmetry transformations

corresponds to a space-time translation. On the other hand, the commutativity of

the fermionic generators Q with the bosonic P implies that the supermultiplets contain

one-particle states with the same mass but different spins. This particularity is crucial

in order to unify the interactions with matter. In fact, gravity is described by the

spin-2 particle known as the graviton while the matter is made of spin-1/2 particles.

It is important to clarify that given a Lie algebra, it is not always possible to ex-

tend into a closed superalgebra. As we have said, the generators have to satisfy the
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generalized Jacobi identity (3.4). In some cases, the introduction of a new set of

bosonic generators and N fermionic generators are required in order to close the super-

algebra. Along the thesis we will present diverse superalgebras and their geometrical

consequences in the construction of a supergravity action. However, before to ap-

proach different superalgebras, it is useful to review one of the simplest models of a

supergravity theory based on the Poincaré superalgebra.

3.3 Poincaré supergravity theory

In a supersymmetric extension of gravity, the invariance of the theory is generalized

to an invariance under local supersymmetry transformations. Interestingly, there are

several models3 depending on the amount of supersymmetry charges N and on the

choice of the space-time dimension D. The larger N and the larger D, more constraints

are presents in the theory. It is known that increase N beyond 8 or the dimension D

beyond 11 leads to spins higher than two which makes difficult a consistent coupling to

gravity.

In the simplest version, a supergravity action consists of the coupling of the spin-

3/2 field to gravity. This can be done considering the Einstein-Hilbert term plus a

Rarita-Schwinger term [27, 28, 29]. The Rarita-Schwinger Lagrangian is given in term

of forms by

LRS =
1

l2
ψ̄eaγaγ5Dψ, (3.12)

where ψ is a Majorana spinor (gravitino) which satisfies ψ̄ = ψTC, with C the charge

conjugation matrix. This implies that ψ and ψ̄ are not independent fields.

Then, the supergravity action describing the coupling of spin-2 and spin-3/2 fields

is given by

S =
1

l2

∫
εabcdR

abeced + 4ψ̄eaγaγ5Dψ. (3.13)

In a very similar way to the Einstein-Hilbert theory, the complete action (3.13) is

not invariant under the Poincaré superalgebra. The non invariance of the supergravity

3An extended study of diverse supergravity theories in a geometrical formulation can be found in

ref. [26].
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action (3.13) under the Poincaré superalgebra can be viewed using the Poincaré gauge

supersymmetry transformations

δgaugeA
A = ∇λA, (3.14)

where λA is the gauge parameter λa ≡
(
ρa, κab, εα

)
and ∇ is the Poincaré covariant

derivative. Then, using

δ
(
AATA

)
= dλ+

[
ABTB, λ

CTC
]
, (3.15)

the Poincaré gauge supersymmetry transformations are given by

δea = Dρa + ecκ
ca + ε̄γaψ, (3.16)

δωab = Dκab, (3.17)

δψ = dε+
1

4
ωabγabε = Dε, (3.18)

where D corresponds to the Lorentz covariant exterior derivative D = d + ω. It is

straightforward to see that the supergravity action (3.13) is not invariant under gauge

supersymmetry. In fact, if we consider the variation of the action (3.13) under gauge

supersymmetry, we find

δsusyS = − 4

l2

∫
RaDψ̄γaγ5ε, (3.19)

where Ra = Dea − 1
2
ψ̄γaψ is the super torsion. Then, the invariance is obtained

imposing the super torsion constraint

Ra = 0. (3.20)

This leads to write the spin connection ωab in terms of the veilbein and the gravitino

fields yielding to the second order formalism. This may be solved considering the

following decomposition,

ωab = ω̊ab + ω̃ab, (3.21)

where ω̊ab is the solution of Dea = 0 and it is given by

ω̊ab =
(
ecλ∂[µe

d
ν]ηcd + ecν∂[λe

d
µ]ηcd − ecµ∂[νe

d
λ]ηcd

)
eλ|aeν|b.

Then,

Dea = dea + ω̊abeb + ω̃abeb =
1

2
ψ̄γaψ, (3.22)
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implies

ω̃ab[µeν]b =
1

2
ψ̄µγ

aψν , (3.23)

which permits to solve ω̃ab in terms of the two other fields,

ω̃abµ =
1

4
ea|λeb|ν

(
ψ̄µγλψν + ψ̄λγνψµ − ψ̄νγµψλ − ψ̄µγνψλ − ψ̄νγλψµ + ψ̄λγµψν

)
. (3.24)

Thus, the spin connection ωab is completely determined in terms of eaµ and ψαµ and does

not carry additional physical degrees of freedom.

Alternatively, the supersymmetry invariance can be recovered in the first order

formalism modifying the supersymmetry transformation for the spin connection ωab.

Indeed, considering the variation of the supergravity action (3.13) under an arbitrary

ωab we have

δωS =
2

l2

∫
εabcdR

aebδωcd, (3.25)

Following ref. [30], it is possible to modify δωcd adding an extra piece such that the

variation of the action have the following form

δS = − 4

l2

∫
Ra

(
Dψ̄γaγ5ε−

1

2
εabcde

bδextraω
cd

)
. (3.26)

The supersymmetry invariance of the action (3.13) is ensured when δextraω
cd has the

following value

δextraω
cd = 2εabcd

(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (3.27)

with Ψ̄ = Ψ̄abe
aeb.

Thus the supergravity action (3.13) is invariant under the following supersymmetry

transformations:

δea = ε̄γaψ, (3.28)

δωab = 2εabcd
(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (3.29)

δψ = Dε. (3.30)

It is important to emphasize that the action supersymmetry is not a gauge super-

symmetry. In particular, one can see that the action (3.13) does not correspond to a
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Yang-Mills action nor a topological invariant. Besides, the supersymmetry transfor-

mations leaving the action (3.13) invariant do not close off-shell. Meanwhile, the super

Poincaré gauge variations close off-shell by construction.

The situation is completely different in three dimensions where the supergravity

action is truly invariant under the Poincaré superalgebra. This occurs, of course, us-

ing the Chern-Simons formalism. A supersymmetry group of particular interest is the

AdS supergroup since it allows to include the cosmological constant to the supergravity

action. We will see that others superalgebras can be derived from the AdS superal-

gebra using the semigroup expansion procedure with interesting consequences in the

construction of supergravity actions.

3.4 Geometric supergravity theory à la MacDowell-

Mansouri

In this section, we briefly review the geometric formulation of the four-dimensional

N = 1 supergravity theory presented in ref. [17]. In this unified geometric approach,

the relevant gauge fields of the theory correspond to those of the osp (4|1) superalgebra.

The generators of this superalgebra satisfy the following (anti)commutation relations[
J̃ab, J̃cd

]
= ηbcJ̃ad − ηacJ̃bd − ηbdJ̃ac + ηadJ̃bc, (3.31)[

J̃ab, P̃c

]
= ηbcP̃a − ηacP̃b, (3.32)[

P̃a, P̃b

]
= J̃ab, (3.33)[

J̃ab, Q̃α

]
= −1

2

(
γabQ̃

)
α
,

[
P̃a, Q̃α

]
= −1

2

(
γaQ̃

)
α
, (3.34){

Q̃α, Q̃β

}
= −1

2

[(
γabC

)
αβ
J̃ab − 2 (γaC)αβ P̃a

]
, (3.35)

where J̃ab correspond to the Lorentz transformations, P̃a are the AdS boost generators

and Q̃α corresponds to the 4-component Majorana spinor generator.

The one-form gauge connection A is given by

A = ABTB =
1

2
ωabJ̃ab +

1

l
eaP̃a +

1√
l
ψαQ̃α, (3.36)
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and the associated curvature two-form F = dA+ A ∧ A is

F = FATA =
1

2
RabJ̃ab +

1

l
RaP̃a +

1√
l
ραQ̃α, (3.37)

where

Rab = dωab + ωacω
cb +

1

l2
eaeb +

1

2l
ψ̄γabψ, (3.38)

Ra = dea + ωabe
b − 1

2
ψ̄γaψ, (3.39)

ρ = dψ +
1

4
ωabγ

abψ +
1

2l
eaγaψ = Dψ +

1

2l
eaγaψ. (3.40)

Here, the one-forms ωab, ea and ψ are respectively the spin connection, the vierbein and

the gravitino field (Majorana spinor). It is important to clarify that, since we have

choosen the Lie algebra generators TA and the one-form connection A dimensionless,

the ”true” gauge fields must be considered as ea/l and ψ/
√
l.

The supergravity action can be constructed only with the 2-form curvatures (3.37)

as

S = 2

∫
〈F ∧ F 〉 = 2

∫
FA ∧ FB 〈TATB〉 . (3.41)

In particular, if 〈TATB〉 is an invariant tensor for the Osp (4|1) supergroup then the

action (3.41) corresponds to a topological invariant and does not contribute to the

equations of motion. However, with a particular choice of the components of an

invariant tensor

〈TATB〉 =

{
〈JabJcd〉 = εabcd

〈QαQβ〉 = 2 (γ5)αβ
(3.42)

the action (3.41) takes the following form

S = 2

∫
1

4
RabRabεabcd +

2

l
ρ̄γ5ρ. (3.43)

The action (3.43) corresponds to the MacDowell-Mansouri supergravity action [17]

whose bosonic part is equivalent to the four-dimensional Born-infeld gravity action

(see eq. (2.46)). Let us note that this choice of the components of the invariant ten-

sor reproduces not only a dynamical action but also breaks the Osp (4|1) supergroup
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to its Lorentz subgroup. Considering the components of the curvature 2-form F the

supergravity action can be written explicitly as

S =

∫
1

2
εabcd

(
RabRcd +

2

l2
Rabeced +

1

l4
eaebeced +

2

l3
ψ̄γabψeced

)
+

4

l2
ψ̄eaγaγ5Dψ +

4

l
d
(
ψ̄γ5Dψ

)
. (3.44)

Then, modulo boundary terms, we have

S =

∫
1

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dψ
)

+
1

2
εabcd

(
1

l4
eaebeced +

2

l3
ψ̄γabψeced

)
. (3.45)

The supergravity action (3.45) is the MacDowell-Mansouri supergravity action for the

osp (4|1) superalgebra [17]. As in the Poincaré supersymmetries, the four-dimensional

N = 1 supergravity action is not invariant under supersymmetry gauge transformations

for the Osp (4|1) supergroup. Nevertheless, the supersymmetry invariance of the action

(3.45) can be obtained modifying the spin connection supersymmetry transformation

[30].

Along this thesis, we will present diverse supergravity actions à la MacDowell-

Mansouri using different superalgebras. In particular, following our results obtained

in refs. [31, 32, 33], we will present in the next sections the geometric consequences

of using different superalgebras in the construction of a N = 1 supergravity action.

The generalization to N -extended supergravity theory using the MacDowell-Mansouri

formalism will not be approached in this thesis.
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Chapter 4

Geometric theory of Supergravity

and Maxwell superalgebras

4.1 Introduction

A well-known enlargement of the Poincaré algebra is the Maxwell algebraM where

a constant electromagnetic field background is added to the Minkowski space [7, 8].

This algebra can be obtained by adding tensorial central charges Zab to the Poincaré

generators (Jab, Pa) modifying the commutation relation of the translation generators

Pa,

[Pa, Pb] = Zab. (4.1)

As shown in refs. [34, 35], the Maxwell algebra can be derived as an expansion

of the AdS Lie algebra so (3, 2). Particularly in ref. [35], the Maxwell algebra can

be obtained using the semigroup expansion method using S
(2)
E = {λ0, λ1, λ2, λ3} as

the relevant abelian semigroup. Subsequently, the procedure was generalized to all

Maxwell type algebra1 Mm which can be derived as an S
(N)
E -expansion of the AdS

Lie algebra [12]. As we have seen previously, the Maxwell type algebras are useful

in order to recover General Relativity from a Chern-Simons and Born-Infeld gravity

theory [10, 11, 12, 13].

As shown in ref. [36], a supersymmetric extension of the four-dimensional Maxwell

1Also known as generalized Poincar algebras Bm.
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algebra can be derived as an enlargement of the Poincaré superalgebra. Interestingly,

the N = 1, D = 4 Maxwell superalgebra sM describes the geometry of a N = 1,

D = 4 superspace in the presence of a constant abelian supersymmetric field strength

background. Recently, it was pointed out in ref. [34] that the minimal Maxwell super-

algebra sM can be obtained from the AdS algebra using the Maurer-Cartan expansion

method.

In the next section, following our results found in ref. [31], we show that the

abelian semigroup expansion procedure can be used in order to derive the Maxwell

superalgebras and its generalization using bigger semigroups. The construction of a

supergravity action using a geometrical formulation is also considered.

4.2 Maxwell superalgebras and abelian semigroup

expansion

In this section, we shall consider the AdS superalgebra osp (4|1) as a starting point

and present new interesting four-dimensional superalgebras using the semigroup expan-

sion method. Before to apply the expansion procedure to the osp (4|1) superalgebra, it

is necessary to study the subspace decomposition of the original lie superalgebra g. In

particular, the osp (4|1) superalgebra g can be decomposed as a direct sum of subspaces

Vp as

g = osp (4|1) = so (3, 1)⊕ osp (4|1)

sp (4)
⊕ sp (4)

so (3, 1)

= V0 ⊕ V1 ⊕ V2, (4.2)

where V0 is the Lorentz subspace generated by the Lorentz transformations J̃ab, V1

corresponds to the supersymmetry translation generated by a 4-component Majorana

spinor charge Q̃α and V2 is generated by P̃a. The osp (4|1) generators satisfy the

29



following (anti)commutation relations[
J̃ab, J̃cd

]
= ηbcJ̃ad − ηacJ̃bd − ηbdJ̃ac + ηadJ̃bc, (4.3)[

J̃ab, P̃c

]
= ηbcP̃a − ηacP̃b, (4.4)[

P̃a, P̃b

]
= J̃ab, (4.5)[

J̃ab, Q̃α

]
= −1

2

(
γabQ̃

)
α
,

[
P̃a, Q̃α

]
= −1

2

(
γaQ̃

)
α
, (4.6){

Q̃α, Q̃β

}
= −1

2

[(
γabC

)
αβ
J̃ab − 2 (γaC)αβ P̃a

]
, (4.7)

where γa are the Dirac matrices and C stands for the charge conjugation matrix. Then,

the subspace structure may be written as

[V0, V0] ⊂ V0, [V1, V1] ⊂ V0 ⊕ V2, (4.8)

[V0, V1] ⊂ V1, [V1, V2] ⊂ V1, (4.9)

[V0, V2] ⊂ V2, [V2, V2] ⊂ V0. (4.10)

Now, we have to find a subset decomposition of a semigroup S ”resonant” with

respect to (4.8) − (4.10). As shown in ref. [31], the choice of the semigroup leads to

various superalgebras with interesting properties.

4.2.1 Minimal D = 4 Maxwell superalgebra sM

In this section we show, following ref. [31], that the four-dimensional minimal

Maxwell superalgebra can be derived from the osp (4|1) superalgebra using the abelian

semigroup expansion method.

Let S
(4)
E = {λ0, λ1, λ2, λ3, λ4, λ5} be the relevant finite abelian semigroup with the

following multiplication law

λαλβ =

{
λα+β, when α + β ≤ 5,

λ5, when α + β > 5.
(4.11)

Here, λ5 plays the role of the zero element of the semigroup S
(4)
E so that for each

λα ∈ S(4)
E , λ5λα = λ5 = 0S. Let us consider the subset decomposition S

(4)
E = S0∪S1∪S2,
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with

S0 = {λ0, λ2, λ4, λ5} , (4.12)

S1 = {λ1, λ3, λ5} , (4.13)

S2 = {λ2, λ4, λ5} . (4.14)

One sees that this decomposition is said to be resonant since it satisfies the same

structure as the subspaces Vp [compare with eqs (4.8)− (4.10)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2, (4.15)

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1, (4.16)

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0. (4.17)

Following theorem IV.2 of ref. [16], we can say that the superalgebra

GR = W0 ⊕W1 ⊕W2, (4.18)

is a resonant super-subalgebra of S
(4)
E × g, where

W0 = (S0 × V0) = {λ0, λ2, λ4, λ5} ×
{
J̃ab

}
=
{
λ0J̃ab, λ2J̃ab, λ4J̃ab, λ5J̃ab

}
,

W1 = (S1 × V1) = {λ1, λ3, λ5} ×
{
Q̃α

}
=
{
λ1Q̃α, λ3Q̃α, λ5Q̃α

}
,

W2 = (S2 × V2) = {λ2, λ4, λ5} ×
{
P̃a

}
=
{
λ2P̃a, λ4P̃a, λ5P̃a

}
.

As was pointed out in ref. [16], a smaller superalgebra can be extracted from the

resonant super-subalgebra GR. To this aim we have to apply the reduction procedure.

Let us consider a decomposition of the semigroup Sp = Ŝp ∪ Šp where Ŝp ∩ Šp = ∅,

Š0 = {λ0, λ2, λ4} , Ŝ0 = {λ5} ,
Š1 = {λ1, λ3} , Ŝ1 = {λ5} ,
Š2 = {λ2} , Ŝ2 = {λ4, λ5} .

(4.19)

In particular, the partition of the subsets Sp ⊂ S satisfies [compare with eqs. (4.8) −
(4.10)]

Š0 · Ŝ0 ⊂ Ŝ0, Š1 · Ŝ1 ⊂ Ŝ0 ∩ Ŝ2, (4.20)

Š0 · Ŝ1 ⊂ Ŝ1, Š1 · Ŝ2 ⊂ Ŝ1, (4.21)

Š0 · Ŝ2 ⊂ Ŝ2, Š2 · Ŝ2 ⊂ Ŝ0. (4.22)
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Then, we have

ǦR =
(
Š0 × V0

)
⊕
(
Š1 × V1

)
⊕
(
Š2 × V2

)
, (4.23)

ĜR =
(
Ŝ0 × V0

)
⊕
(
Ŝ1 × V1

)
⊕
(
Ŝ2 × V2

)
, (4.24)

where [
ǦR, ĜR

]
⊂ ĜR, (4.25)

and therefore
∣∣ǦR

∣∣ corresponds to a reduced algebra of GR.

The new superalgebra obtained is generated by
{
Jab, Pa, Z̃ab, Zab, Qα,Σα

}
whose

generators are related to the osp (4|1) generators as

Jab = λ0J̃ab, Pa = λ2P̃a,

Z̃ab = λ2J̃ab, Zab = λ4J̃ab,

Qα = λ1Q̃α, Σα = λ3Q̃α.

The (anti)commutation relations read

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (4.26)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (4.27)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (4.28)

[Pa, Qα] = −1

2
(γaΣ)α , (4.29)

[Jab, Qα] = −1

2
(γabQ)α , (4.30)

[Jab,Σα] = −1

2
(γabΣ)α , (4.31)

{Qα, Qβ} = −1

2

[(
γabC

)
αβ
Z̃ab − 2 (γaC)αβ Pa

]
, (4.32)

{Qα,Σβ} = −1

2

(
γabC

)
αβ
Zab, (4.33)

[
Jab, Z̃ab

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (4.34)[

Z̃ab, Z̃cd

]
= ηbcZad − ηacZbd − ηbdZac + ηadZbc, (4.35)[

Z̃ab, Qα

]
= −1

2
(γabΣ)α , (4.36)

others = 0, (4.37)
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where we have used the (anti)commutation relations of the original superalgebra osp (4|1)

and the multiplication law of the semigroup (4.11). The superalgebra obtained after a

reduced resonant S
(4)
E -expansion of the osp (4|1) superalgebra corresponds to a general-

ized minimal four-dimensional Maxwell superalgebra sM4. In particular, the minimal

Maxwell superalgebra sM introduced in ref. [36] can be recovered imposing Z̃ab = 0.

Set Z̃ab equals to zero does not violate the Jacobi identities (JI) for spinors generators.

Indeed, the JI are satisfied due to the gamma matrix identity (Cγa)(αβ (Cγa)γδ) = 0

(cyclic permutations of α, β, γ).

It is interesting to note the presence of a new Majorna spinor charge Σ. The

introduction of a second abelian spinor generator is not new in the literature and has

been already proposed in ref. [37] in the context of D = 11 supergravity theory and

subsequently in ref. [38] in the superstring theory context. On the other hand, the

minimal Maxwell superalgebra contains the Maxwell algebra M = {Jab, Pa, Zab} and

the Lorentz type LM = {Jab, Zab} as a subalgebras.

4.2.2 Minimal D = 4 Maxwell type superalgebras sMm+2

The procedure presented previously can be generalized to a family of Maxwell

superalgebras. In this section, following ref. [31], we show that a minimal four-

dimensional Maxwell type superalgebra sMm+2 can be defined from the osp (4|1) su-

peralgebra using the abelian semigroup expansion method.

Let S
(2m)
E = {λ0, λ1, λ2, · · · , λ2m+1} be the relevant finite abelian semigroup with

the following multiplication law

λαλβ =

{
λα+β, when α + β ≤ λ2m+1,

λ2m+1, when α + β > λ2m+1.
(4.38)

Here λ2m+1 plays the role of the zero element of the semigroup S
(2m)
E . As in the previous

section, let us consider the decomposition S
(2m)
E = S0 ∪ S1 ∪ S2 where the subsets Sp

are given by

Sp =

{
λ2n+p, with n = 0, · · · ,

[
2m− p

2

]}
∪ {λ2m+1} , p = 0, 1, 2. (4.39)

In particular, we said that this decomposition is said to be resonant since it satisfies
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[compare with eqs. (4.8)− (4.10)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2, (4.40)

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1, (4.41)

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0. (4.42)

Then, according to theorem IV.2 of ref. [16], we have that

GR = W0 ⊕W1 ⊕W2, (4.43)

with

Wp = Sp × Vp, (4.44)

is a resonant subalgebra of G = S
(2m)
E × g.

In order to extract a smaller superalgebra from the resonant one GR we have to

apply the reduction procedure. Let us consider Sp = Ŝp ∪ Šp a partition of the subsets

Sp ⊂ S where Ŝp ∩ Šp = ∅,

Š0 = {λ2n, with n = 0, · · · , 2 [m/2]} , Ŝ0 = {(λ2m) , λ2m+1} ,
Š1 = {λ2n+1, with n = 0, · · · ,m− 1} , Ŝ1 = {λ2m+1} ,
Š2 = {λ2n+2, with n = 0, · · · , 2 [(m− 1) /2]} , Ŝ2 = {(λ2m) , λ2m+1} ,

(4.45)

and where

λ2m ∈

{
Ŝ0 if m is odd

Ŝ2 if m is even.

Then, one can see that the partition satisfies [compare with eqs. (4.8)− (4.10)]

Š0 · Ŝ0 ⊂ Ŝ0, Š1 · Ŝ1 ⊂ Ŝ0 ∩ Ŝ2, (4.46)

Š0 · Ŝ1 ⊂ Ŝ1, Š1 · Ŝ2 ⊂ Ŝ1, (4.47)

Š0 · Ŝ2 ⊂ Ŝ2, Š2 · Ŝ2 ⊂ Ŝ0. (4.48)

Then, following the definitions of ref. [16], we have that

ǦR = W̌0 ⊕ W̌1 ⊕ W̌2, (4.49)
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corresponds to a reduced superalgebra of GR, where

W̌0 =
(
Š0 × V0

)
= {λ2n, with n = 0, · · · , 2 [m/2]} ×

{
J̃ab

}
,

W̌1 =
(
Š1 × V1

)
= {λ2n+1, with n = 0, · · · ,m− 1} ×

{
Q̃α

}
,

W̌2 =
(
Š2 × V2

)
= {λ2n+2, with n = 0, · · · , 2 [(m− 1) /2]} ×

{
P̃a

}
.

Then, the new superalgebra obtained by the S-expansion procedure is generated by{
Jab,(k), Pa,(l), Qα,(p)

}
, (4.50)

where these new generators are related to the osp (4|1) generators as

Jab,(k) = λ2kJ̃ab,

Pa,(l) = λ2lP̃a,

Qα,(p) = λ2p−1Q̃α,

with k = 0, . . . ,m − 1; l = 1, . . . ,m; p = 1, . . . ,m when m is odd and k = 0, . . . ,m;

l = 1, . . . ,m − 1; p = 1, . . . ,m when m is even. The new generators satisfy the

(anti)commutation relations[
Jab,(k), Jcd,(j)

]
= ηbcJad,(k+j) − ηacJbd,(k+j) − ηbdJac,(k+j) + ηadJbc,(k+j), (4.51)[

Jab,(k), Pa,(l)
]

= ηbcPa,(k+l) − ηacPb,(k+l), (4.52)[
Pa,(l), Pb,(n)

]
= Jab,(l+n), (4.53)[

Jab,(k), Qα,(p)

]
= −1

2
(γabQ)α,(k+p) , (4.54)[

Pa,(l), Qα,(p)

]
= −1

2
(γaQ)α,(l+p) , (4.55){

Qα,(p), Qβ,(q)

}
= −1

2

[(
γabC

)
αβ
Jab,(p+q) − 2 (γaC)αβ Pa,(p+q)

]
. (4.56)

The superalgebra obtained after a reduced resonant S
(2m)
E -expansion of the osp (4|1)

superalgebra corresponds to the four-dimensional minimal Maxwell type superalgebra

sMm+2. Naturally, when k + j > m, the generators T
(k)
A and T

(j)
B become abelian. It

is important to clarify that the indices p and q of the spinor charges correspond to the

expansion labels and they do not define an N -extended superalgebra. In particular,
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the (anti)commutation relations of ref. [31] can be written explicitly if we redefine the

generators as

Jab = Jab,0 = λ0J̃ab, Pa = Pa,2 = λ2P̃a,

Z
(i)
ab = Jab,4i = λ4iJ̃ab, Z

(j)
a = Pa,4j+2 = λ4j+2P̃a,

Z̃
(i)
ab = Jab,4i−2 = λ4i−2J̃ab, Z̃

(j)
a = Pa,4j = λ4jP̃a,

Qα = Qα,1 = λ1Q̃α, Σ
(i)
α = Qα,4i−1 = λ4i−1Q̃α,

Φ
(j)
α = Qα,4j+1 = λ4j+1Q̃α,

with i = 1, . . . , [m/2] , j = 1, . . . ,
[
m−1

2

]
. A bosonic subalgebra of the sMm+2 su-

peralgebra is the Maxwell type algebra Mm+2 =
{
Jab, Pa, Z

(i)
ab , Z

(j)
a

}
whose generators

satisfy [10, 12],

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (4.57)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Z
(1)
ab , (4.58)[

Jab, Z
(i)
cd

]
= ηbcZ

(i)
ad − ηacZ

(i)
bd − ηbdZ

(i)
ac + ηadZ

(i)
bc , (4.59)[

Z
(i)
ab , Pc

]
= ηbcZ

(i)
a − ηacZ

(i)
b ,

[
Jab, Z

(j)
c

]
= ηbcZ

(j)
a − ηacZ

(j)
b , (4.60)[

Z
(i)
ab , Z

(j)
c

]
= ηbcZ

(i+j)
a − ηacZ(i+j)

b , (4.61)[
Z

(i)
ab , Z

(k)
cd

]
= ηbcZ

(i+k)
ad − ηacZ(i+k)

bd − ηbdZ(i+k)
ac + ηadZ

(i+k)
bc , (4.62)[

Pa, Z
(j)
c

]
= Z

(j+1)
ab ,

[
Z(j)
a , Z(l)

c

]
= Z

(j+l+1)
ab , (4.63)

with i, k = 1, . . . , [m/2]; j, l = 1, . . . ,
[
m−1

2

]
. As was pointed out in refs. [10, 11, 12, 13],

the Maxwell type algebras are useful in order to recover the Einstein equations from

Chern-Simons and Born-Infeld gravity theories in a certain limit of a coupling constant.

Interestingly, when we consider the S
(4)
E as the relevant abelian semigroup (m = 2)

and imposing Z̃
(1)
ab = 0, we recover the minimal Maxwell superalgebra sM. The case

m = 1 is the most trivial case corresponding to the four-dimensional Poincaré super-

algebra sP = {Jab, Pa, Qα} whose generators satisfy the following (anti)commutation
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relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (4.64)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = 0, (4.65)

[Jab, Qα] = −1

2
(γabQ)α , [Pa, Qα] = 0, (4.66)

{Qα, Qβ} = (γC)αβ Pa. (4.67)

This result is not a surprise since the Inönü-Wigner contraction of the four-dimensional

AdS superalgebra can be seen as a reduced resonant S
(2)
E -expansion of the osp (4|1)

superalgebra.

One can see that the minimal Maxwell type superalgebra sMm+2 contains addi-

tional Majorana spinors generators Qα,(p) which transform as spinors under Lorentz

transformations. In particular, all the anticommutators of fermionic generators sat-

isfy the Jacobi identities by virtue of the gamma matrix identity (Cγa)(αβ (Cγa)γδ) =(
Cγab

)
(αβ

(Cγab)γδ) = 0 (cyclic permutations of α, β, γ). In fact, the JI are satisfied

for all the generators since they correspond to an S-expansion of the original JI of the

osp (4|1) superalgebra.

The introduction of additional Majorana spinors charges in the minimal Maxwell

type superalgebra sMm+2 can be seen as a generalization of the D’auria-Fré super-

algebra and the Green algebras introduced in refs. [37, 38], respectively. Naturally,

in presence of only one 4-component Majorana spinor generator (m = 1) the Maxwell

superalgebra sM3 corresponds trivially to the superPoincaré one sP .

The construction of a four-dimensional supergravity action using the minimal Maxwell

type superalgebra will be considered later. In the next section, following ref. [31], we

will approach the N -extended Maxwell superalgebra using the semigroup expansion

procedure.

4.2.3 N -extended Maxwell superalgebras

In the previous section, we have shown that the S-expansion of the AdS superalge-

bra osp (4|1) allows to derive diverse minimal Maxwell superalgebras. Then, it seems

natural to consider the osp (4|N ) superalgebra as a starting point in order to obtain

the four-dimensional N -extended Maxwell superalgebra [31].
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Before to apply the semigroup expansion procedure it is necessary to consider a

decomposition of the original superalgebra osp (4|N ) =
{
J̃ab, P̃a, T

ij, Q̃i
α

}
as a direct

sum of subspaces Vp,

g = osp (4|N ) = (so (3, 1)⊕ so (N ))⊕ osp (4|N )

sp (4)⊕ so (N )
⊕ sp (4)

so (3, 1)

= V0 ⊕ V1 ⊕ V2, (4.68)

where V0 is the subspace generated by Lorentz transformations J̃ab and by N (N−1)
2

internal symmetry generators T ij, V1 corresponds to the supersymmetry translation

generated by N Majorana spinor generators Q̃i
α (i = 1, · · · ,N ; α = 1, · · · , 4) and V2

is associated to the P̃a generators. The osp (4|N ) generators satisfy the following

(anti)commutation relations[
J̃ab, J̃cd

]
= ηbcJ̃ad − ηacJ̃bd − ηbdJ̃ac + ηadJ̃bc, (4.69)[

T ij, T kl
]

= δjkT il − δikT jl − δjlT ik + δilT jk, (4.70)[
J̃ab, P̃c

]
= ηbcP̃a − ηacP̃b, (4.71)[

P̃a, P̃b

]
= J̃ab, (4.72)[

J̃ab, Q̃
i
α

]
= −1

2

(
γabQ̃

i
)
α
,

[
P̃a, Q̃

i
α

]
= −1

2

(
γaQ̃

i
)
α
, (4.73)[

T ij, Q̃k
α

]
=
(
δjkQ̃i

α − δikQ̃i
α

)
, (4.74){

Q̃i
α, Q̃

j
β

}
= −1

2
δij
[(
γabC

)
αβ
J̃ab − 2 (γaC)αβ P̃a

]
+ CαβT

ij, (4.75)

where i, j, k, l = 1, . . . ,N ; γa are the Dirac matrices and C stands for the charge

conjugation matrix. Then, the subspace structure may be written as

[V0, V0] ⊂ V0, [V1, V1] ⊂ V0 ⊕ V2, (4.76)

[V0, V1] ⊂ V1, [V1, V2] ⊂ V1, (4.77)

[V0, V2] ⊂ V2, [V2, V2] ⊂ V0. (4.78)

Following ref. [31], let S
(4)
E = {λ0, λ1, λ2, λ3, λ4, λ5} be the relevant finite abelian

semigroup with the following multiplication law

λαλβ =

{
λα+β, cuando α + β ≤ 5,

λ5, cuando α + β > 5.
(4.79)
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Here λ5 corresponds to the zero element of the semigroup S
(4)
E . Let us consider the

decomposition S
(4)
E = S0 ∪ S1 ∪ S2 where

S0 = {λ0, λ2, λ4, λ5} , (4.80)

S1 = {λ1, λ3, λ5} , (4.81)

S2 = {λ2, λ4, λ5} . (4.82)

Such decomposition is said to be resonant since it satisfies [compare with eqs. (4.76)−
(4.78)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2, (4.83)

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1, (4.84)

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0. (4.85)

Then, according to the definitions of ref. [16], we have that

GR = W0 ⊕W1 ⊕W2, (4.86)

is a resonant super-subalgebra of S
(4)
E × g, where

W0 = (S0 × V0) = {λ0, λ2, λ4, λ5} ×
{
J̃ab, T

ij
}

=
{
λ0J̃ab, λ2J̃ab, λ4J̃ab, λ5J̃ab, λ0T

ij, λ2T
ij, λ4T

ij, λ5T
ij
}
,

W1 = (S1 × V1) = {λ1, λ3, λ5} ×
{
Q̃α

}
=
{
λ1Q̃α, λ3Q̃α, λ5Q̃α

}
,

W2 = (S2 × V2) = {λ2, λ4, λ5} ×
{
P̃a

}
=
{
λ2P̃a, λ4P̃a, λ5P̃a

}
.

The 0S-reduced resonant superalgebra is obtained imposing the reduction condition

λ5TA = 0. The resulting superalgebra is then generated by
{
Jab, Pa, Zab, Z̃ab, Z̃a, Q

i
α,Σ

i
α, T

ij, Y ij, Ỹ ij
}

whose generators are related to the osp (4|N ) ones through

Jab = λ0J̃ab, Qi
α = λ1Q̃

i
α,

Pa = λ2P̃a, Σi
α = λ3Q̃

i
α,

Zab = λ4J̃ab, T ij = λ0T
ij,

Z̃ab = λ2J̃ab, Y ij = λ4T
ij,

Z̃a = λ4P̃a, Ỹ ij = λ2T
ij.
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In particular, the bosonic generators
{
Jab, Pa, Zab, Z̃ab, Z̃a, T

ij, Y ij , Ỹ ij
}

satisfy the fol-

lowing commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (4.87)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (4.88)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (4.89)[
Jab, Z̃cd

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (4.90)[

Z̃ab, Z̃cd

]
= ηbcZad − ηacZbd − ηbdZac + ηadZbc, (4.91)[

Jab, Z̃c

]
= ηbcZ̃a − ηacZ̃b,

[
Z̃ab, Pc

]
= ηbcZ̃a − ηacZ̃b, (4.92)[

T ij, T kl
]

= δjkT il − δikT jl − δjlT ik + δilT jk, (4.93)[
T ij, Y kl

]
= δjkY il − δikY jl − δjlY ik + δilY jk, (4.94)[

T ij, Ỹ kl
]

= δjkỸ il − δikỸ jl − δjlỸ ik + δilỸ jk, (4.95)[
Ỹ ij, Ỹ kl

]
= δjkY il − δikY jl − δjlY ik + δilY jk, (4.96)

others = 0. (4.97)

Meanwhile the fermionic generators {Qi
α,Σ

i
α} satisfy the following (anti)commutation

relations[
Jab, Q

i
α

]
= −1

2

(
γabQ

i
)
α
,

[
Z̃ab, Q

i
α

]
= −1

2

(
γabΣ

i
)
α
, (4.98)[

Jab,Σ
i
α

]
= −1

2

(
γabΣ

i
)
α
,

[
T ij, Qi

α

]
=
(
δjkQi

α − δikQi
α

)
, (4.99)[

T ij,Σk
α

]
=
(
δjkΣi

α − δikΣi
α

)
,

[
Ỹ ij, Qk

α

]
=
(
δjkΣi

α − δikΣi
α

)
, (4.100)[

Pa, Q
i
α

]
= −1

2

(
γaΣ

i
)
α
, (4.101){

Qi
α, Q

j
β

}
= −1

2
δij
[(
γabC

)
αβ
Z̃ab − 2 (γaC)αβ Pa

]
+ CαβỸ

ij, (4.102){
Qi
α,Σ

j
β

}
= −1

2
δij
[(
γabC

)
αβ
Zab − 2 (γaC)αβ Z̃a

]
+ CαβY

ij, (4.103)

others = 0. (4.104)

These (anti)commutation relations can be obtained using the commutation relations of

the osp (4|N ) superalgebra and the multiplication law of the semigroup S
(4)
E . In partic-

ular, the 0S-reduced resonant S
(4)
E -expansion of the osp (4|N ) superalgebra leads to the
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four-dimensional N -extended Maxwell superalgebra sM(N )
4 [31]. This superalgebra

contains the generalized Maxwell algebra gM =
{
Jab, Pa, Zab, Z̃ab, Z̃a

}
as a bosonic

subalgebra ( see eqs. (4.87) − (4.92)). One can see that the presence of additional

bosonic generators modifies the anticommutator of the minimal Maxwell superalgebra.

Interestingly, it is possible to recover the simplest four-dimensionalN -extended Maxwell

superalgebra sM(N ) = {Jab, Pa, Zab, Qi
α,Σ

i
α, T

ij} imposing Z̃a = Z̃ab = Ỹ ij = Y ij = 0.

Naturally, the minimal Maxwell superlgebra sM is recovered when T ij = 0. It is

important to clarify that, due to properties of the gamma matrices in four dimensions,

impose some generators equals to zero does not break the Jacobi identity.

As in the minimal case, this procedure can be generalized in order to derive the

N -extended Maxwell type superalgebra sM(N )
m+2 from the osp (4|N ) superalgebra. Fol-

lowing ref. [31], let us consider the S
(2m)
E = {λ0, λ1, λ2, . . . , λ2m+1} as the relevant

abelian semigroup. Let S
(2m)
E = S0∪S1∪S2 be a resonant subset decomposition where

Sp =

{
λ2n+p, with n = 0, · · · ,

[
2m− p

2

]}
∪ {λ2m+1} , p = 0, 1, 2, (4.105)

and let Sp = Ŝp ∪ Šp be a partition of the subsets Sp ⊂ S with

Š0 = {λ2n, with n = 0, · · · , 2 [m/2]} , Ŝ0 = {(λ2m) , λ2m+1} , (4.106)

Š1 = {λ2n+1, with n = 0, · · · ,m− 1} , Ŝ1 = {λ2m+1} , (4.107)

Š2 = {λ2n+2, with n = 0, · · · , 2 [(m− 1) /2]} , Ŝ2 = {(λ2m) , λ2m+1} , (4.108)

where

λ2m ∈

{
Ŝ0 if m is odd

Ŝ2 if m is even.

This partition satisfies the resonant conditions for any value of m and Ŝp ∩ Šp = ∅.

Then, according to the definitions of ref. [16],

ǦR =
(
Š0 × V0

)
⊕
(
Š1 × V1

)
⊕
(
Š2 × V2

)
, (4.109)

corresponds to a reduced resonant superalgebra. The new superalgebra obtained is

generated by {
Jab,(k), Pa,(l), Q

i
α,(p), Y

ij
(k)

}
, (4.110)
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whose generators are related to the osp (4|N ) generators as

Jab,(k) = λ2kJ̃ab,

Pa,(l) = λ2lP̃a,

Qα,(p) = λ2p−1Q̃α,

Y ij
(k) = λ2kT

ij,

with k = 0, . . . ,m − 1; l = 1, . . . ,m; p = 1, . . . ,m when m is odd and k = 0, . . . ,m;

l = 1, . . . ,m − 1; p = 1, . . . ,m when m is even. The new generators satisfy the

(anti)commutation relations[
Jab,(k), Jcd,(j)

]
= ηbcJad,(k+j) − ηacJbd,(k+j) − ηbdJac,(k+j) + ηadJbc,(k+j), (4.111)[

Y ij
(k), Y

gh
(j)

]
= δjgY ih

(k+j) − δigY
jh

(k+j) − δ
jhY ig

(k+j) + δihY jg
(k+j), (4.112)[

Jab,(k), Pc,(l)
]

= ηbcPa,(k+l) − ηacPb,(k+l), (4.113)[
Pa,(l), Pb,(n)

]
= Jab,(l+n), (4.114)[

Jab,(k), Qα,(p)

]
= −1

2
(γabQ)α,(k+p) , (4.115)[

Pa,(l), Qα,(p)

]
= −1

2
(γaQ)α,(l+p) , (4.116)[

T ij(k), Q
g
α,(p)

]
=
(
δjgQi

α,(k+p) − δigQi
α,(k+p)

)
, (4.117){

Qα,(p), Qβ,(q)

}
= −1

2

[(
γabC

)
αβ
Jab,(p+q) − 2 (γaC)αβ Pa,(p+q)

]
+ CαβY

ij
(p+q). (4.118)

The superalgebra obtained after a reduced resonant S
(2m)
E -expansion of the osp (4|N )

superalgebra corresponds to the four-dimensional N -extended Maxwell type superal-

gebra sM(N )
m+2 [31]. Naturally, when k + j > m, the generators T

(k)
A and T

(j)
B become

abelian. As in the minimal case, this N -extended superalgebra contains additional

Majorana spinors generators Qi
α,(p) which transform as spinors under Lorentz trans-

formations. Interestingly, the sM(N )
3 superalgebra obtained after a reduced resonant

S
(2)
E -expansion of the osp (4|N ) superalgebra corresponds to the four-dimensional N -
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extended Poincaré superalgebra sP(N ) = {Jab, Pa, Qi
α, T

ij} whose generators satisfy

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (4.119)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = 0, (4.120)[
Jab, Q

i
α

]
= −1

2

(
γabQ

i
)
α
,

[
Pa, Q

i
α

]
= 0, (4.121)[

T ij, T kl
]

= δjkT il − δikT jl − δjlT ik + δilT jk, (4.122)[
T ij, Qi

α

]
=
(
δjkQi

α − δikQi
α

)
, (4.123){

Qi
α, Q

j
β

}
= δij (γaC)αβ Pa. (4.124)

This result is not a surprise since the Inönü-Wigner contraction of the four-dimensional

N -extended AdS superalgebra can be seen as a reduced resonant S
(2)
E -expansion of the

osp (4|N ) superalgebra.

The construction of an four-dimensional N -extended supergravity action based on

the N -extended Maxwell type superalgebras remains an open problem and will not be

considered in the present thesis.

4.3 D = 4 supergravity from minimal Maxwell su-

peralgebra sM4

In this section, following ref. [32], we present a geometric construction of a super-

gravity action using the minimal Maxwell superalgebra sM4.

In the previous section, we have shown that after extracting a reduced resonant

S
(4)
E -expansion of the osp (4|1) superalgebra we find the minimal Maxwell superalge-

bra sM4 =
{
Jab, Pa, Zab, Z̃ab, Qα,Σα

}
whose generators satisfy the (anti)commutation

relations (4.26)− (4.37).

The one-form gauge connection for the sM4 superalgebra is given by

A =
1

2
ωabJab +

1

2
k̃abZ̃ab +

1

2
kabZab +

1

l
eaPa +

1√
l
ψαQα +

1√
l
ξαΣα, (4.125)

where the one-form gauge fields can be written in terms of the components of the
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osp (4|1) connection as

ωab = λ0ω̃
ab, ea = λ2ẽ

a,

k̃ab = λ2ω̃
ab, ψα = λ1ψ̃

α,

kab = λ4ω̃
ab, ξα = λ3ψ̃

α.

The associated curvature two-form F = dA+ A ∧ A is given by

F = FATA =
1

2
RabJab +

1

l
RaPa +

1

2
F̃ abZ̃ab +

1

2
F abZab +

1√
l
ΨαQα +

1√
l
ΞαΣα, (4.126)

where

Rab = dωab + ωacω
cb,

Ra = dea + ωabe
b − 1

2
ψ̄γaψ,

F̃ ab = dk̃ab + ωack̃
cb − ωbck̃ca +

1

2l
ψ̄γabψ,

F ab = dkab + ωack
cb − ωbckca + k̃ack̃

cb +
1

l2
eaeb +

1

l
ξ̄γabψ,

Ψ = dψ +
1

4
ωabγ

abψ = Dψ,

Ξ = dξ +
1

4
ωabγ

abξ +
1

4
k̃abγ

abψ +
1

2l
eaγaψ

= Dξ +
1

4
k̃abγ

abψ +
1

2l
eaγaψ.

The one-forms ωab, ea, ψ and ξ are the spin connection, the vielbein, the gravitino field

and an additional Majorana fermionic field2, respectively. While the kab and k̃ab fields

describe bosonic ”matter” fields.

On the other hand, the Lorentz covariant exterior derivatives D = d + ω of the

curvatures can be derived from the Bianchi identity ∇F = 0 ( where ∇ is the gauge

2A Majorana spinor ψ satisfies the Majorana condition ψ̄ = ψC, where C is the charge conjugation

matrix.
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covariant derivative given by ∇ = d+ [A, ·] ) leading to

DRab = 0, (4.127)

DRa = Ra
be
b + ψ̄γaΨ, (4.128)

DF̃ ab = Ra
ck̃
cb −Rb

ck̃
ca − 1

l
ψ̄γabΨ, (4.129)

DF ab = Ra
ck
cb −Rb

ck
ca + F̃ a

ck̃
cb − F̃ b

ck̃
ca +

1

l2
Raeb − 1

l2
eaRb (4.130)

+
1

l
Ξ̄γabψ − 1

l
ξ̄γabΨ, (4.131)

DΨ =
1

4
Rabγ

abψ, (4.132)

DΞ =
1

4
Rabγ

abξ − 1

4
k̃abγ

abΨ +
1

4
F̃abγ

abψ +
1

2l
Raγaψ −

1

2l
eaγaΨ. (4.133)

Then, using the MacDowell-Mansouri geometrical formalism [17] and following ref.

[32], a supergravity action can be constructed out of the 2-form curvatures of the

minimal Maxwell superalgebra sM4 as

S = 2

∫
〈F ∧ F 〉 = 2

∫
FA ∧ FB 〈TATB〉sM4

. (4.134)

Here, 〈TATB〉sM4
can be obtained using the useful properties of the semigroup expansion

procedure. Indeed, using theorem VII.1 of ref. [16], one can see that the components

of an invariant tensor for the sM4 superalgebra can be written in terms of a particular

choice of the original invariant tensor,

〈JabJcd〉sM4
= α0

〈
J̃abJ̃cd

〉
, (4.135)〈

JabZ̃cd

〉
sM4

= α2

〈
J̃abJ̃cd

〉
, (4.136)〈

Z̃abZ̃cd

〉
sM4

= α4

〈
J̃abJ̃cd

〉
, (4.137)

〈JabZcd〉sM4
= α4

〈
J̃abJ̃cd

〉
, (4.138)

〈QαQβ〉sM4
= α2

〈
Q̃αQ̃β

〉
, (4.139)

〈QαΣβ〉sM4
= α4

〈
Q̃αQ̃β

〉
, (4.140)
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where 〈
J̃abJ̃cd

〉
= εabcd,〈

Q̃αQ̃β

〉
= 2 (γ5)αβ ,

and the α’s are dimensionless arbitrary independent constants. It is important to

clarify that this choice of the invariant tensor breaks the Maxwell supergroup to its

Lorentz like subgroup. This is not a surprise since we have considered the S-expansion

of a particular choice of an invariant tensor which breaks the Osp (4|1) supergroups

to its Lorentz subgroup. This construction of a supergravity action can be seen as

a supersymmetric generalization of the four-dimensional Born-Infeld gravity action in

which the action is constructed from the AdS two-form curvatures using 〈TATB〉 as an

invariant tensor for the Lorentz group.

Then, considering the two-form curvature of the minimal Maxwell superalgebra

sM4 (4.126) and the non-vanishing components of the invariant tensor (4.135)−(4.140),

the supergravity action (4.134) becomes

S = 2

∫ (
1

4
α0εabcdR

abRcd +
1

2
α2εabcdR

abF̃ cd +
1

2
α4εabcdR

abF cd

+
1

4
α4εabcdF̃

abF̃ cd +
2

l
α2Ψ̄γ5Ψ +

4

l
α4Ψ̄γ5Ξ

)
. (4.141)

The action (4.141) can be written explicitly in terms of the different components of the

curvature two-form as

S =

∫
α0

2
εabcdR

abRcd + α2εabcd

(
RabDk̃cd +

1

2l
Rabψ̄γcdψ

)
+

4

l
α2Dψ̄γ5Dψ + α4εabcd

(
RabDkcd +

1

2
Dk̃abDk̃cd +

1

l2
Rabeced

+
1

2l
Dk̃abψ̄γcdψ +Rabk̃cf k̃

fd +
1

l
Rabξ̄γcdψ

)
+

8

l
α4Dψ̄γ5Dξ +

2

l
α4Dψ̄γ5k̃abγ

abψ +
4

l2
α4ψ̄e

aγaγ5Dψ. (4.142)

Interestingly, using the gravitino Bianchi identity and the gamma matrix identity

2γabγ5 = −εabcdγcd, (4.143)

46



it is possible to combine some expressions as boundary terms. In fact, following ref.

[32], we have

1

2
εabcdR

abψ̄γabψ + 4Dψ̄γ5Dψ = d
(
4Dψ̄γ5ψ

)
,

εabcdR
abξ̄γcdψ + 8Dξ̄γ5Dψ = d

(
8Dξ̄γ5ψ

)
,

1

2
εabcdDk̃

abψ̄γcdψ + 2ψ̄k̃abγabγ5Dψ = d
(
ψ̄k̃abγabγ5ψ

)
.

Thus the MacDowell-Mansouri geometrical formulation of a supergravity action for the

sM4 superalgebra is given by

S =

∫
α0

2
εabcdR

abRcd + α2d

(
εabcdR

abk̃cd +
4

l
Dψ̄γ5ψ

)
+ α4

[
1

l2
εabcdR

abeced +
4

l2
ψ̄eaγaγ5Dψ

+d

(
εabcd

(
Rabkcd +

1

2
Dk̃abk̃cd

)
+

8

l
ξ̄γ5Dψ +

1

l
ψ̄k̃abγabγ5ψ

)]
. (4.144)

The supergravity action is split into three independent terms proportional to α0, α2

and α4, respectively. The first term corresponds to the topological Euler Lagrangian

and does not contribute to the dynamics. The piece proportional to α2 is also a

boundary term and contains explicitly the coupling between the new bosonic gauge

fields k̃ab and the Lorentz curvatures Rab. The last term is proportional to α4 and

contains the Einstein-Hilbert Lagrangian εabcdR
abeced, the Rarita-Schwinger Lagrangian

4ψ̄eaγaγ5Dψ and boundary terms.

Interestingly, the supergravity action obtained using the MacDowell-Mansouri geo-

metrical approach and the minimal Maxwell superalgebra sM4 describes pure super-

gravity in four dimensions. Indeed, the new Maxwell gauge fields kab and k̃ab appear

only in the boundary terms and do not contribute to the dynamics. Moreover, as a

consequence of the semigroup expansion method, the cosmological constant term dis-

appaers completely from the supergravity action similarly to the bosonic case using the

Maxwell algebra3. Then, this result can be seen as the supersymmetric extension of

the results found in refs. [11, 12] where General Relativity is recovered from Maxwell

algebra as Born-Infeld gravity action.

3Also known as B4 algebra.
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A particular case can be derived when we consider k̃ab = 0. In fact, the action

found in ref. [39] corresponds to the term proportional to α4, namely

S|k̃ab=0 = α4

∫
1

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dωψ
)

+ d

(
εabcdR

abkcd +
8

l
ξ̄γ5Dωψ

)
.

(4.145)

This results is not a surprise since we have previously seen that setting Z̃ab = 0 in

sM4 leads to the simplest minimal Maxwell algebra [31], which allows to construct the

action (4.145) as shown in ref. [39].

It is tempting to argue that the presence of the new bosonic gauge fields kab and k̃ab

in the boundary would allow to recover the supersymmetry invariance in the rheonomic

approach. It seems that the supergravity action obtained here could be obtained using

the geometric approach considered in ref. [40] where N = 1 and N = 2 supergravities

are constructed on a manifold with boundary.

4.3.1 sM4 gauge transformations and supersymmetry

In this section, following ref. [32], we analyze the supersymmetry invariance of the

action (4.144). Although the supergravity action à la MacDowell-Mansouri (4.144) is

constructed out of the 2-form curvatures of the minimal Maxwell superalgebra sM4, it

is not invariant under the gauge transformations. Indeed, the supergravity action does

not correspond to a topologial invariant, nor a Yang-Mills action.

The sM4 gauge transformation of the one-form gauge connection A is given by

δρA = Dρ = dρ+ [A, ρ]

where ρ is the sM4 gauge parameter,

ρ =
1

2
ρabJab +

1

2
κ̃abZ̃ab +

1

2
κabZab +

1

l
ρaPa +

1√
l
εαQα +

1√
l
%αΣα. (4.146)
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Then, we have explicitly for each component the following gauge transformations,

δωab = Dρab, (4.147)

δk̃ab = Dκ̃ab −
(
k̃ac ρ

b
c − k̃bcρac

)
− 1

l
ε̄γabψ, (4.148)

δkab = Dκab −
(
kacρbc − kbcρac

)
−
(
k̃acκ̃bc − k̃bcκ̃ac

)
+

2

l2
eaρb − 1

l
%̄γabψ − 1

l
ε̄γabξ, (4.149)

δea = Dρa + ebρ a
b + ε̄γaψ, (4.150)

δψ = dε+
1

4
ωabγabε−

1

4
ρabγabψ, (4.151)

δξ = d%+
1

4
ωabγab%+

1

2l
eaγaε−

1

2l
ρaγaψ −

1

4
ρabγabξ

+
1

4
k̃abγabε−

1

4
κ̃abγabψ. (4.152)

Similarly, the gauge transformations of the curvature F can be obtained from δρF =

[F, ρ] leading to

δRab = Racρ b
c −Rcbρac, (4.153)

δF̃ ab =
(
Racκ̃ b

c −Rbcκ̃ac
)
−
(
F̃ acρbc − F̃ bcρac

)
− 1

l
ε̄γabΨ, (4.154)

δF ab =
(
Racκ b

c −Rbcκac
)
−
(
F acρbc − F bcρac

)
−
(
F̃ acκ̃bc − F̃ acκ̃ac

)
+

2

l2
Raρb − 1

l
%̄γabΨ− 1

l
ε̄γabΞ, (4.155)

δRa = Ra
bρ
b +Rbρ a

b + ε̄γaΨ, (4.156)

δΨ =
1

4
Rabγabε−

1

4
ρabγabΨ, (4.157)

δΞ =
1

4
Rabγab%+

1

2l
Raγaε−

1

2l
ρaγaΨ−

1

4
ρabγabΞ +

1

4
F̃ abγabε−

1

4
κ̃abγabΨ. (4.158)

Let us note that the variation of the action (4.144) under gauge supersymmetry is

δsusyS = − 4

l2
α4

∫
RaΨ̄γaγ5ε. (4.159)

As in the Poincaré and osp (4|1) superalgebra, the gauge supersymmetry invariance of

the action is obtained imposing the supertorsion constraint

Ra = 0.
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This leads us to express the spin connection ωab in terms of the other fields (second

order formalism). Nevertheless, the supersymmetry invariance of the action in the first

formalism can be recovered adding an extra piece to the gauge transformation of the

spin connection δωab. Then, the variation of the action can be written as

δS = − 4

l2
α4

∫
Ra

(
Ψ̄γaγ5ε−

1

2
εabcde

bδextraω
cd

)
. (4.160)

The supersymmetry invariance of the supergravity action is obtained imposing

δextraω
ab = 2εabcd

(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (4.161)

with Ψ̄ = Ψ̄abe
aeb.

Thus, the supergravity action (4.144) is invariant under the following supersymme-

try transformations

δωab = 2εabcd
(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (4.162)

δk̃ab = −1

l
ε̄γabψ, (4.163)

δkab = −1

l
ε̄γabξ, (4.164)

δea = ε̄γaψ, (4.165)

δψ = dε+
1

4
ωabγabε = Dε, (4.166)

δξ =
1

2l
eaγaε+

1

4
k̃abγabε. (4.167)

It is important to clarify that the susy transformations are not gauge symmetries of the

action. Additionally, the supersymmetry transformations leaving the action (4.144)

invariant do not close off-shell, meanwhile, the sM4 gauge variation close off-shell by

construction.

The situation is quite different when we consider the gauge supersymmetry trans-

formations related to the spinor generator Σα. From (4.147) − (4.152), we have that
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the new supersymmetry transformations are given by

δωab = 0, (4.168)

δk̃ab = 0, (4.169)

δkab = −1

l
%̄γabψ, (4.170)

δea = 0, (4.171)

δψ = 0, (4.172)

δξ = d%+
1

4
ωabγab% = D%. (4.173)

Interestingly, the action (4.144) is invariant under these transformations,

δS = 0. (4.174)

In particular, the supergravity action à la MacDowell-Mansouri (4.144) is off-shell in-

variant under a particular subalgebra of sM4 which are generated by
{
Jab, Z̃ab, Zab,Σα

}
and corresponds to a Lorentz type superalgebra.

Our results show that the Poincaré supersymmetries are not the only supersymme-

tries of the pure supergravity action. The invariance of the pure supergravity action

under additional supersymmetry transformations could not be guessed trivially. The

procedure used here could be useful in order to derive new supersymmetry structures

related to standard supergravity. It seems that it should be possible to recover higher-

dimensional standard supergravity from the Maxwell superalgebras.

4.4 D = 4 supergravity from minimal Maxwell type

superalgebra sMm+2

In this section, following ref. [32], we present a geometric construction of a super-

gravity action using the minimal Maxwell type superalgebra sMm+2.

In the previous section, we have shown that after extracting a reduced resonant

S
(2m)
E -expansion of the osp (4|1) superalgebra we find the minimal Maxwell type superal-

gebra sMm+2 =
{
Jab,(k), Pa,(l), Qα,(p)

}
, whose generators satisfy the (anti)commutation

relations (4.51)− (4.56).
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The one-form gauge connection for the sMm+2 superalgebra is given by

A =
1

2

∑
k

ωab,(k)Jab,(k) +
1

l

∑
l

ea,(l)Pa,(l) +
1√
l

∑
p

ψα,(p)Qα,(p), (4.175)

where the one-form gauge fields can be written in terms of the components of the

osp (4|1) connection as

ωab,(k) = λ2kω̃
ab, (4.176)

ea,(l) = λ2lẽ
a, (4.177)

ψα,(p) = λ2p−1ψ̃
α. (4.178)

The associated curvature two-form F = dA+ A ∧ A is given by

F = FATA =
1

2

∑
k

Rab,(k)Jab,(k) +
1

l

∑
l

Ra,(l)Pa,(l) +
1√
l

∑
p

Ψα,(p)Qα,(p), (4.179)

where

Rab,(k) = dωab,(k) + ωa (i)
c ∧ ωcb,(j)δki+j +

1

l2
ea,(l)eb,(n)δkl+n

+
1

2l
ψ̄(p)γab ∧ ψ(q)δ2k

p+q,

Ra,(l) = dea,(l) + ω
a (k)
b ∧ eb,(n)δlk+n −

1

2
ψ̄(p)γa ∧ ψ(q)δ2l

p+q,

Ψ(p) = dψ(p) +
1

4
ω

(k)
ab γab ∧ ψ(q)δpk+q +

1

2l
ea,(l)γa ∧ ψ(q)δpl+q,

with k = 0, . . . ,m; l, p = 1, . . . ,m. The one-forms ωab = ωab,(0), ea = ea,(2) and ψ = ψ(1)

are the spin connection, the vielbein and the gravitino field, respectively.

On the other hand, the Lorentz covariant exterior derivatives D = d + ω of the

curvatures can be derived from the Bianchi identity ∇F = 0 leading to

DRab,(k) =
(
Rac,(i)ω b,(j+1)

c −Rbc,(i)ω a,(j+1)
c

)
δki+j+1

+
1

l

(
Ra,(l)eb,(n) − ea,(n)Rb,(l)

)
δkl+n −

1

l
ψ̄(p)γabΨ(q)δ2k

p+q, (4.180)

DRa,(l) = Rab,(i)e
,(j)

b δli+j +Rc,(n)ω a,(j+1)
c δln+j+1 + ψ̄(p)γaΨ(q)δ2l

p+q, (4.181)

DΨ(p) =
1

4

(
Rab,(i)γabψ

(q)
)
δpi+q −

1

4

(
ωab,(i+1)γabΨ

(q)
)
δpi+1+q

+
1

2l

(
T a,(l)γaψ

(q)
)
δpl+q −

1

2l

(
ea,(l)γaΨ

(q)
)
δpl+q, (4.182)
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Then, using the MacDowell-Mansouri geometrical formalism [17] and following ref. [32],

a supergravity action can be constructed out of the curvature 2-forms of the minimal

Maxwell superalgebra sMm+2 as

S = 2

∫
〈F ∧ F 〉 = 2

∫
FA ∧ FB 〈TATB〉sMm+2

. (4.183)

Here, 〈TATB〉sMm+2
can be obtained using theorem VII.1 of ref. [16]. Indeed, it is

possible to show that the components of an invariant tensor for the sMm+2 superalgebra

can be written in terms of a particular choice of the original invariant tensor,〈
Jab,(k)Jcd,(j)

〉
sMm+2

= α2(k+j)

〈
J̃abJ̃cd

〉
, (4.184)〈

Qα,(p)Qβ,(q)

〉
sMm+2

= α2(p+q−1)

〈
Q̃αQ̃β

〉
, (4.185)

which can be written as〈
Jab,(k)Jcd,(j)

〉
sMm+2

= α2(k+j)εabcd, (4.186)〈
Qα,(p)Qβ,(q)

〉
sMm+2

= 2α2(p+q−1) (γ5)αβ . (4.187)

Here the α’s are dimensionless arbitrary independent constants. Similarly to the pre-

vious case, this choice of the invariant tensor breaks the Maxwell type supergroup to its

Lorentz like subgroup. This is not a surprise since we have considered the S-expansion

of a particular choice of an invariant tensor which breaks the Osp (4|1) supergroups to

its Lorentz subgroup.

Then, considering the two-form curvature of the minimal Maxwell type superalgebra

sMm+2 (4.179) and the non-vanishing components of the invariant tensor (4.186) −
(4.187), the supergravity action (4.183) becomes

S = 2

∫ ∑
k,j

α2(k+j)

2
εabcdRab,(k)Rcd,(j) +

∑
p,q

α2(p+q−1)
4

l
Ψ̄(p) ∧ γ5Ψ(q), (4.188)

with k, j = 0, . . . ,m; p, q = 1, . . . ,m.

Interestingly, the term proportional to α4 describes pure supergravity,

S = 2α4

∫ (
1

2
εabcdRab,(0)Rcd,(2) +

1

4
εabcdRab,(1)Rcd,(1) +

4

l
Ψ̄(2) ∧ γ5Ψ(1)

)
, (4.189)
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which can be written explicitly as

S = α4

∫
εabcd

1

l2
(
Rab,(0)ec,(1)ed,(1) + 4ψ̄(1)ea,(1)γaγ5Dωψ

(1)
)

+ d

(
εabcd

(
Rab,(0)ωab,(2) +

1

2
Dωω

ab,(1)ωcd,(1)

)
+

8

l
Dωψ̄

(1)γ5ψ
(2) +

1

l
ψ̄(1)ωab,(1)γabγ5ψ

(1)

)
(4.190)

Then using the gravitino Bianchi identity DΨ(1) = 1
4
RabγabΨ

(1), the gamma matrix

identity (4.143), and using the following identification,

ωab,(0) = ωab, ωab,(1) = k̃ab,

ωab,(2) = kab, ea,(1) = ea,

Rab,(0) = Rab, ψ(1) = ψ,

ψ(2) = ξ,

it is possible to write the pure supergravity action plus boundary terms,

S = α4

∫
εabcd

1

l2
(
Rabeced + 4ψ̄eaγaγ5Dωψ

)
+ d

(
εabcd

(
Rabkcd +

1

2
Dωk̃

abk̃cd
)

+
8

l
ξ̄γ5Dωψ +

1

l
ψ̄k̃abγabγ5ψ

)
. (4.191)

Let us note that, as in the previous result, the cosmological constant does not appear

explicitly in the α4 term. In particular, the presence of the cosmological term requires

the components
〈
Jab,(2)Jcd,(2)

〉
which is proportional to α8.

On the other hand, the case m = 1 reproduces the four-dimensional Poincaré super-

gravity à la MacDowell-Mansouri. Nevertheless, it is not possible to recover the pure

supergravity action from the MacDowell-Mansouri formalism using the sP superalgebra

since the Einstein-Hilbert term cannot be construct from the component 〈JabJcd〉sP .

4.4.1 sMm+2 gauge transformations and supersymmetry

In this section, following ref. [32], we analyze the supersymmetry invariance of the

action (4.188). Although the supergravity action à la MacDowell-Mansouri (4.188)
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is constructed out of the 2-form curvatures of the minimal Maxwell type superalgebra

sMm+2, it is not invariant under the gauge transformations. Indeed, the supergravity

action does not correspond to a topological invariant, nor a Yang-Mills action.

The sMm+2 gauge transformation of the one-form gauge connection A is given by

δρA = Dρ = dρ+ [A, ρ]

where ρ is the sMm+2 gauge parameter,

ρ =
1

2

∑
k

ρab,(k)Jab,(k) +
1

l

∑
l

ρa,(l)Pa,(l) +
1√
l

∑
p

εα,(p)Qα,(p). (4.192)

Here, the components of the gauge parameter are related to the components of the

osp (4|1) gauge parameter as

ρab,(k) = λ2kρ̃
ab,

ρa,(l) = λ2lρ̃
a,

εα,(p) = λ2p−1ε̃
α,

with k = 0, . . . ,m; l, p = 1, . . . ,m. Then, we have the following gauge transformations

δωab,(k) = Dρab,(k) −
(
ωac,(i+1)ρb ,(j)c − ωbc,(i+1)ρa ,(j)c

)
δki+j+1

+
2

l2
ea,(l)ρb,(n)δkl+n −

1

l
ε̄(p)γabψ(q)δ2k

p+q, (4.193)

δea,(l) = Dρa,(l) + ω
a ,(k+1)
b ρb,(n)δlk+n+1 + eb,(n)ρ

a,(k)
b δln+k + ε̄(p)γaψ(q)δ2l

p+q, (4.194)

δψ(p) = dε(p) +
1

4
ωab,(k)γabε

(q)δpk+q +
1

2l
ea,(l)γaε

(q)δpl+q

− 1

4
ρab,(k)γabψ

(q)δpk+q −
1

2l
ρa,(l)γaψ

(q)δpl+q. (4.195)

Similarly, the gauge transformations of the curvature F can be obtained from δρF =
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[F, ρ] leading to

δRab,(k) =
(
Rac,(i)ρ b,(j)

c −Rcb,(i)ρa ,(j)c

)
δki+j +

2

l2
Ra,(l)ρb,(n)δkl+n

− 1

l
ε̄(p)γabΨ(q)δ2k

p+q, (4.196)

δRa,(l) = Ra ,(k)
b ρb,(n)δlk+n +Rb,(n)ρ

a,(k)
b δlk+n + ε̄(p)γaΨ(q)δ2l

p+q, (4.197)

δΨ(p) =
1

4
Rab,(k)γabε

(q)δpk+q +
1

2l
Ra,(l)γaε

(q)δpl+q −
1

4
ρab,(k)γabΨ

(q)δpk+q

− 1

2l
ρa,(l)γaΨ

(q)δpl+q. (4.198)

Let us note that the variation of the action (4.188) under gauge supersymmetry is

δsusyS = − 4

l2

∫ ∑
k

α2kR
a,(l)Ψ̄(p)γaγ5εδ

k
l+p, (4.199)

As in the previous case, the gauge supersymmetry invariance of the action is obtained

imposing the expanded supertorsion constraint

Ra,(l) = 0.

This leads us to express the bosonic fields ωab,(k) in terms of the other fields (second

order formalism).

Interestingly, since the α constants are independent and arbitrary, the study of

the supersymmetry invariance can be approached in each term separately. Let us

consider the variation of the term proportional to α2k under gauge supersymmetry

transformations related to the Q(k−1) generator,

δsusyS = − 4

l2
α2k

∫
RaΨ̄γaγ5ε

(k−1), (4.200)

with k = 0, . . . ,m. Here ε(k−1) corresponds to the gauge parameter associated to

the spinor generator Q(k−1) and Ra and Ψ correspond to Ra,(1) and Ψ(1), respectively.

The supersymmetry invariance of the α2k term in the first formalism can be recovered

adding an extra piece to the gauge transformation of ωab,(k−2). Then, the variation of

the action proportional to α2k can be written as

δS = − 4

l2
α2k

∫
Ra

(
Ψ̄γaγ5ε

(k−1) − 1

2
εabcde

bδextraω
cd,(k−2)

)
. (4.201)
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The supersymmetry invariance of the supergravity action proportional to α2k is obtained

imposing

δextraω
ab,(k−2) = 2εabcd

(
Ψ̄ecγdγ5ε

(k−1) + Ψ̄deγcγ5ε
(k−1) − Ψ̄cdγeγ5ε

(k−1)
)
ee, (4.202)

with Ψ̄ = Ψ̄abe
aeb.

It is important to clarify that the supersymmetry transformation leaving the action

proportional to α2k invariant is not a gauge symmetry. Additionally, these supersym-

metry transformations do not close off-shell, meanwhile, the sMm+2 gauge variation

close off-shell by construction.

However, the term proportional to α2k is truly invariant under gauge supersymmetry

transformations related to the Q(q) generators if q ≥ k. Naturally, when m = 2, we

recover the previous results.
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Chapter 5

Generalized supersymmetric

cosmological term in N = 1

supergravity

5.1 Introduction

In the literature, it was pointed out that a good candidate to describe the dark

energy is the cosmological constant [41, 42]. In the geometric approach, the cosmologi-

cal term can be introduced in a four-dimensional gravity theory using the AdS algebra.

The introduction of a cosmological term in the supersymmetric extension of gravity can

be performed in the MacDowell-Mansouri geometric formalism. In this framework, as

we have seen previously, the construction of the supergravity action is based only on

the osp (4|1) curvatures [17].

An alternative method to introduce a generalized cosmological constant term us-

ing the Maxwell algebra has been presented in ref. [9]. Nevertheless, as we have

shown in the previous section, the geometric construction of a supergravity action us-

ing the Maxwell superalgebras does not reproduce the generalized cosmological term.

An alternative superalgebra have to be considered in order to introduce a generalized

supersymmetric cosmological constant to a supergravity action.

An interesting deformations of the Maxwell algebras consist in the so (D − 1, 2) ⊕
so (D − 1, 1) or so (D, 1) ⊕ so (D − 1, 1) algebra introduced in refs. [43, 44]. This
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algebra, also known as AdS-Lorentz (AdS − L4) algebra, has been used in order to

reproduce the generalized cosmological constant term from a Born-Infeld gravity action

[35]. In particular, as shown in refs. [45, 17], the AdS-Lorentz algebra can be derived

applying the semigroup expansion procedure to the AdS algebra.

Then, it seems that the supersymmetric extension of the AdS-Lorentz algebra is the

appropriate superalgebra in order to reproduce the generalized supersymmetric cosmo-

logical term in a supergravity theory. In this chapter, we present different AdS-Lorentz

superalgebras using the abelian semigroup expansion procedure. The construction of

supergravity actions à la MacDowell-Mansouri is also proposed.

5.2 AdS-Lorentz superalgebras and abelian semigroup

expansion

5.2.1 The AdS-Lorentz superalgebra

In the present section, following the method used in ref. [46], we present the

construction of the four-dimensional AdS-Lorent superalgebra as an S-expansion of

the osp (4|1) superalgebra.

As we have said previously, the original superalgebra has to be decomposed in

subspaces before to apply the semigroup expansion procedure. Let us consider a de-

composition of the osp (4|1) superalgebra as

g = osp (4|1) = so (3, 1)⊕ osp (4|1)

sp (4)
⊕ sp (4)

so (3, 1)

= V0 ⊕ V1 ⊕ V2, (5.1)

where V0, V1 and V2 satisfy (4.8)− (4.10) and correspond to the Lorentz, subspace, the

fermionic subspace and the AdS-boost, respectively.

Following the properties and definitions of ref. [16], let us consider S
(2)
M = {λ0, λ1, λ2}

as the relevant finite abelian semigroup which satisfy the following multiplication law,

λαλβ =

{
λα+β, if α + β ≤ 2

λα+β−2, if α + β > 2
(5.2)
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Let us consider the subset decomposition S
(2)
M = S0 ∪ S1 ∪ S2 where

S0 = {λ0, λ2} , (5.3)

S1 = {λ1} , (5.4)

S2 = {λ2} . (5.5)

In particular, this subset decomposition is ”resonant” since it satisfies the same struc-

ture as the subspaces Vp of the osp (4|1) superalgebra [compare with eqs. (4.8)− (4.10)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2, (5.6)

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1, (5.7)

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0. (5.8)

Then, according to theorem IV.2 of ref. [16], we can say that the superalgebra

GR = W0 ⊕W1 ⊕W2, (5.9)

is a resonant subalgebra of S
(2)
M × g, where

W0 = (S0 × V0) = {λ0, λ2} ×
{
J̃ab

}
=
{
λ0J̃ab, λ2J̃ab

}
, (5.10)

W1 = (S1 × V1) = {λ1} ×
{
Q̃α

}
=
{
λ1Q̃α

}
, (5.11)

W2 = (S2 × V2) = {λ2} ×
{
P̃a

}
=
{
λ2P̃a

}
. (5.12)

Then, the new superalgebra obtained by the S-expansion procedure is generated by

{Jab, Pa, Zab, Qα} whose generators are related to the osp (4|1) generators as

Jab = λ0J̃ab,

Zab = λ2J̃ab,

Pa = λ2P̃a,

Qα = λ1Q̃α.
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The (anti)commutation relations read

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (5.13)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.14)

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.15)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (5.16)

[Zab, Pc] = ηbcPa − ηacPb, (5.17)

[Jab, Qα] = −1

2
(γabQ)α , [Pa, Qα] = −1

2
(γaQ)α , (5.18)

[Zab, Qα] = −1

2
(γabQ)α , (5.19)

{Qα, Qβ} = −1

2

[(
γabC

)
αβ
Zab − 2 (γaC)αβ Pa

]
, (5.20)

where we have used the (anti)commutation relations of the osp (4|1) superalgebra and

the multiplication law of the semigroup (5.2). The superalgebra obtained after a res-

onant S
(2)
M -expansion of the osp (4|1) superalgebra corresponds to the four-dimensional

AdS-Lorentz superalgebra sAdS − L4. This superalgebra has the usual AdS-Lorentz

algebra1 AdS − L4 = {Jab, Pa, Zab} as a bosonic subalgebra which allows to introduce

a generalized cosmological term to a Born-Infeld gravity action. Unlike the Maxwell

symmetries, the Zab generators are not abelian and behave as Lorentz generators.

It is interesting to note that the Inönü-Wigner (IW) contraction [48, 49, 50] of the

sAdS−L4 superalgebra leads us to the Maxwell superalgebra. Indeed, considering the

rescaling

Zab → µ2Zab, Pa → µPa and Qα → µQα (5.21)

1Also known as Poincaré semi-simple extended algebra.
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the Maxwell superalgebra is recovered in the limit µ→∞ [47].

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (5.22)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.23)

[Zab, Zcd] = 0, [Zab, Pc] = 0, (5.24)

[Jab, Pc] = ηbcPa − ηacPb, (5.25)

[Jab, Qα] = −1

2
(γabQ)α , [Pa, Qα] = 0, (5.26)

[Zab, Qα] = 0, [Pa, Pb] = Zab, (5.27)

{Qα, Qβ} = −1

2

(
γabC

)
αβ
Zab, (5.28)

It is important to clarify that this Maxwell superalgebra is quite different from the min-

imal Maxwell supperalgebra sM. In particular, it does not have additional Majorana

spinor generators and cannot be obtained directly as an S-expansion of the osp (4|1)

superalgebra.

5.2.2 The generalized minimal AdS-Lorentz superalgebra

In this section, following ref. [33], we present the construction of a four-dimensional

generalized minimal AdS-Lorentz superalgebra using the abelian semigroup expansion

method.

Following the definitions of ref. [16], let us consider S
(4)
M = {λ0, λ1, λ2, λ3, λ4} as the

relevant finite abelian semigroup with the following multiplication law

λαλβ =

{
λα+β, if α + β ≤ 4

λα+β−4, if α + β > 4
(5.29)

Let S = S0 ∪ S1 ∪ S2 be the subset decomposition where

S0 = {λ0, λ2, λ4} , (5.30)

S1 = {λ1, λ3} , (5.31)

S2 = {λ2, λ4} . (5.32)
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One can see that this subset decomposition is said to be ”resonant” since it satisfies

the same structure as the original subspaces Vp [compare with eqs. (4.8)− (4.10)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2, (5.33)

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1, (5.34)

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0. (5.35)

Then, according to theorem IV.2 of ref. [16], we can say that the superalgebra

GR = W0 ⊕W1 ⊕W2, (5.36)

is a resonant subalgebra of S
(4)
M × osp (4|1), where

W0 = (S0 × V0) = {λ0, λ2, λ4} ×
{
J̃ab

}
=
{
λ0J̃ab, λ2J̃ab, λ4J̃ab

}
, (5.37)

W1 = (S1 × V1) = {λ1, λ3} ×
{
Q̃α

}
=
{
λ1Q̃α, λ3Q̃α

}
, (5.38)

W2 = (S2 × V2) = {λ2, λ4} ×
{
P̃a

}
=
{
λ2P̃a, λ4P̃a

}
. (5.39)

The resulting superalgebra is then generated by
{
Jab, Pa, Zab, Z̃ab, Z̃a, Qα,Σα

}
whose

generators are related to the osp (4|1) ones through

Jab = λ0J̃ab, Pa = λ2P̃a,

Z̃ab = λ2J̃ab, Z̃a = λ4P̃a,

Zab = λ4J̃ab, Qα = λ1Q̃α,

Σα = λ3Q̃α.
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In particular, these new generators satisfy the (anti)commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (5.40)

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.41)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.42)[
Jab, Z̃cd

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (5.43)[

Z̃ab, Z̃cd

]
= ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.44)[

Z̃ab, Zcd

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (5.45)

[Jab, Pc] = ηbcPa − ηacPb, [Zab, Pc] = ηbcPa − ηacPb, (5.46)[
Z̃ab, Pc

]
= ηbcZ̃a − ηacZ̃b,

[
Jab, Z̃c

]
= ηbcZ̃a − ηacZ̃b, (5.47)[

Z̃ab, Z̃c

]
= ηbcPa − ηacPb,

[
Zab, Z̃c

]
= ηbcZ̃a − ηacZ̃b, (5.48)

[Pa, Pb] = Zab,
[
Z̃a, Pb

]
= Z̃ab,

[
Z̃a, Z̃b

]
= Zab, (5.49)

[Jab, Qα] = −1

2
(γabQ)α , [Pa, Qα] = −1

2
(γaΣ)α , (5.50)[

Z̃ab, Qα

]
= −1

2
(γabΣ)α ,

[
Z̃a, Qα

]
= −1

2
(γaQ)α , (5.51)

[Zab, Qα] = −1

2
(γabQ)α , [Pa,Σα] = −1

2
(γaQ)α , (5.52)

[Jab,Σα] = −1

2
(γabΣ)α ,

[
Z̃a,Σα

]
= −1

2
(γaΣ)α , (5.53)[

Z̃ab,Σα

]
= −1

2
(γabQ)α , [Zab,Σα] = −1

2
(γabΣ)α , (5.54)

{Qα, Qβ} = −1

2

[(
γabC

)
αβ
Z̃ab − 2 (γaC)αβ Pa

]
, (5.55)

{Qα,Σβ} = −1

2

[(
γabC

)
αβ
Zab − 2 (γaC)αβ Z̃a

]
, (5.56)

{Σα,Σβ} = −1

2

[(
γabC

)
αβ
Z̃ab − 2 (γaC)αβ Pa

]
, (5.57)

The superalgebra obtained after a resonant S
(4)
E -expansion of the osp (4|1) superalgebra

corresponds to the four-dimensional generalized minimal AdS-Lorentz superalgebra.

Unlike the usual AdS-Lorentz superalgebra, this superalgebra contains an additional
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4-component Majorana spinor charge Σ. The introduction of a second spinor generator

has been already proposed in ref. [37] in the context of D = 11 supergravity theory

and subsequently in ref. [38] in the superstring theory context.

A particular bosonic subalgebra of this superalgebra is the generalized AdS-Lorentz

algebra generated by
{
Jab, Pa, Z̃ab, Zab, Z̃a

}
and can be confused with the AdS − L6

algebra introduced in ref. [35]. Indeed, one could identify the Z̃ab, Zab and Z̃a generators

with the Z
(1)
ab , Z

(2)
ab and Za generators of the AdS −L6 algebra, respectively. However,

the commutators (5.49) are subtly different of those of the AdS − L6 algebra. On the

other hand, the usual AdS − L4 algebra generated by {Jab, Pa, Zab} is a subalgebra of

the generalized minimal AdS-Lorentz superalgebra.

Interestingly, a generalized minimal Maxwell superalgebra can be recovered as an

Inönü-Wigner contraction [48, 49, 50] of the generalized minimal AdS-Lorentz superal-

gebra. Indeed, considering the rescaling

Z̃ab → µ2Z̃ab, Zab → µ4Zab, Pa → µ2Pa,

Z̃a → µ4Z̃a, Qα → µQα and Σ→ µ3Σ,

and the limit µ → ∞, we found a generalized minimal Maxwell superalgebra [33].

Naturally, when we consider Z̃a = 0 we recover the usual minimal Maxwell superalgebra

sM4 defined in the previous section.

The construction of a four-dimensional supergravity action using the generalized

minimal AdS-Lorentz superalgebra will be considered later. In the next section, fol-

lowing the method presented in ref. [33], we will approach theN -extended AdS-Lorentz

superalgebra using the semigroup expansion procedure.

5.2.3 N -extended AdS-Lorentz superalgebras

In the previous sections, we have shown that the S-expansion of the AdS super-

algebra osp (4|1) allows to derive diverse AdS-Lorentz superalgebras. Then, it seems

natural to consider the osp (4|N ) superalgebra as a starting point in order to obtain

the four-dimensional N -extended AdS-Lorentz superalgebra.

Before to apply the semigroup expansion method, the original superalgebra has

to be decomposed in subspaces. Let us consider a decomposition of the osp (4|N )
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superalgebra as

g = osp (4|N ) = (so (3, 1)⊕ so (N ))⊕ osp (4|N )

sp (4)⊕ so (N )
⊕ sp (4)

so (3, 1)

= V0 ⊕ V1 ⊕ V2, (5.58)

where V0, V1 and V2 satisfy (4.76) − (4.78). Here, V0 corresponds to the subspace

generated by Lorentz transformations J̃ab and by N (N−1)
2

internal symmetry generators

T ij, V1 corresponds to the supersymmetry translation generated by N Majorana spinor

generators Q̃i
α (i = 1, · · · ,N ; α = 1, · · · , 4) and V2 is associated to the P̃a generators.

Following the definitions of ref. [16], let us consider S
(2)
M = {λ0, λ1, λ2} as the

relevant abelian semigroup whose elements satisfy the following multiplication law

λαλβ =

{
λα+β, if α + β ≤ 2

λα+β−2, if α + β > 2
(5.59)

Let us consider the subset decomposition S
(2)
M = S0 ∪ S1 ∪ S2 where

S0 = {λ0, λ2} , (5.60)

S1 = {λ1} , (5.61)

S2 = {λ2} . (5.62)

In particular, this subset decomposition is said to ”resonant” since it satisfies the same

structure as the subspaces Vp of the osp (4|N ) superalgebra [compare with eqs. (4.76)−
(4.78)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2, (5.63)

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1, (5.64)

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0. (5.65)

Then, according to theorem IV.2 of ref. [16], the superalgebra

GR = W0 ⊕W1 ⊕W2, (5.66)
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is a resonant subalgebra of S
(2)
M × osp (4|N ), where

W0 = (S0 × V0) = {λ0, λ2} ×
{
J̃ab, T

ij
}

=
{
λ0J̃ab, λ2J̃ab, λ0T

ij, λ2T
ij
}
, (5.67)

W1 = (S1 × V1) = {λ1} ×
{
Q̃i
α

}
=
{
λ1Q̃

i
α

}
, (5.68)

W2 = (S2 × V2) = {λ2} ×
{
P̃a

}
=
{
λ2P̃a

}
. (5.69)

The resulting superalgebra is then generated by {Jab, Pa, Zab, Qi
α, T

ij, Y ij} whose gen-

erators are related to the osp (4|N ) ones through

Jab = λ0J̃ab, Qi
α = λ1Q̃

i
α,

Pa = λ2P̃a, T ij = λ0T
ij,

Zab = λ2J̃ab, Y ij = λ2T
ij.

These generators satisfy the (anti)commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (5.70)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (5.71)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.72)

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.73)

[Zab, Pc] = ηbcPa − ηacPb, (5.74)[
T ij, T kl

]
= δjkT il − δikT jl − δjlT ik + δilT jk, (5.75)[

T ij, Y kl
]

= δjkY il − δikY jl − δjlY ik + δilY jk, (5.76)[
Y ij, Y kl

]
= δjkY il − δikY jl − δjlY ik + δilY jk, (5.77)

[
Jab, Q

i
α

]
= −1

2

(
γabQ

i
)
α
,

[
Zab, Q

i
α

]
= −1

2

(
γabQ

i
)
α
, (5.78)[

T ij, Qi
α

]
=
(
δjkQi

α − δikQi
α

)
, (5.79)[

Y ij, Qk
α

]
=
(
δjkQi

α − δikQi
α

)
, (5.80)[

Pa, Q
i
α

]
= −1

2

(
γaQ

i
)
α
, (5.81){

Qi
α, Q

j
β

}
= −1

2
δij
[(
γabC

)
αβ
Zab − 2 (γaC)αβ Pa

]
+ CαβY

ij, (5.82)

others = 0. (5.83)

67



The superalgebra obtained after a resonant S
(2)
M -expansion of the osp (4|N ) superalge-

bra corresponds to the four-dimensional N -extended AdS-Lorentz superalgebra. In

particular, the Jab generators form the Lorentz algebra so (3, 1) while the Zab, Pa, Y
ij

and Qi
α generators form the osp (4|N ) superalgebra. Then, the N -extended AdS-

Lorentz superalgebra corresponds to a direct sum of the Lorentz algebra so (3, 1) and

the AdS superalgebra osp (4|N ).

On the other hand, one can see that theAdS-Lorentz algebra generated by {Jab, Zab, Pa}
is contained as a bosonic subalgebra of the N -extended AdS-Lorentz superalgebra.

The generalization of this procedure to (N )-extended AdS-Lorentz type superal-

gebras and the construction of a N -extended supergravity action à la MacDowell-

Mansouri remains an interesting problem to approach and will not be considered in

the present thesis.

5.3 Geometric theory of supergravity with a gener-

alized cosmological constant

It is the purpose of this section, following ref. [33], to construct a supergravity

action using the MacDowell-Mansouri geometric formalism which contains a generalized

supersymmetric cosmological constant. To this aim, we consider diverse AdS-Lorentz

superalgebras and propose a supergravity action based only on the two-form curvature.

In particular, as we have seen previously, the AdS-Lorentz superalgebra contains non

abelian Zab generators which implies the presence of additional bosonic fields kab.

Our main motivation of considering the AdS-Lorentz symmetries is that we are

interested in investigate the geometric consequences of the presence of the generators

Zab = [Pa, Pb] in the construction of a supergravity action. Although a similar non-

commutativity appears in the Maxwell superalgebra, as shown in ref. [32], the super-

gravity action à la MacDowell-Mansouri based on the Maxwell supersymmetries does

not reproduce the cosmological term in the supergravity action.
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5.3.1 D = 4 supergravity from the AdS-Lorentz superalgebra

In this section, following ref. [33], we present an alternative way of introducing the

supersymmetric cosmological term to the four-dimensional supergravity action using the

MacDowell-Mansouri geometrical approach. In particular, analogously to the previous

chapter, we propose a supergravity action constructed out the curvature two-form of

the AdS-Lorent superalgebra using the semigroup expansion method. The study of

the supersymmetry invariance is also considered in the present section.

Let us consider the connection one-form

A = AATA =
1

2
ωabJab +

1

l
eaPa +

1

2
kabZab +

1√
l
ψαQα, (5.84)

whose components are related to the osp (4|1) ones as follows

ωab = λ0ω̃
ab,

ea = λ2ẽ
a,

kab = λ2ω̃
ab,

ψα = λ1ψ̃
α.

Let F = dA+ A ∧ A be the associated curvature two-form given by

F = FATA =
1

2
RabJab +

1

l
RaPa +

1

2
F abZab +

1√
l
ΨαQα, (5.85)

with

Rab = dωab + ωacω
cb,

Ra = dea + ωabe
b + kabe

b − 1

2
ψ̄γaψ,

F ab = dkab + ωack
cb − ωbckca + kack

cb +
1

l2
eaeb +

1

2l
ψ̄γabψ,

Ψ = dψ +
1

4
ωabγ

abψ +
1

2l
eaγaψ +

1

4
kabγ

abψ.

Here, the one-forms ωab, ea, and ψ are the spin connection, the vielbein and the gravitino

field, respectively. While the kab fields describe additional bosonic ”matter” fields.

Let us note that the Maurer-Cartan equations for the AdS-Lorentz superalgebra are

satisfied when F = 0.
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On the other hand, the Lorentz covariant exterior derivatives D = d + ω of the

curvatures can be obtained from the Bianchi identity ∇F = 0 ( where ∇ is the gauge

covariant derivative given by ∇ = d+ [A, ·] ) leading to

DRab = 0, (5.86)

DRa = Ra
be
b + F a

be
b +Rck a

c + ψ̄γaΨ, (5.87)

DF ab = Ra
ck
cb −Rb

ck
ca + F a

ck
cb − F b

ck
ca +

1

l2
(
Raeb − eaRb

)
+

1

l
Ψ̄γabψ, (5.88)

DΨ =
1

4
Rabγ

abψ +
1

4
Fabγ

abψ − 1

4
kabγ

abΨ +
1

2l
Raγaψ

− 1

2l
eaγaΨ. (5.89)

In order to construct a supergravity action à la MacDowell-Mansouri for the AdS-

Lorentz superalgebra we shall consider the semigroup expansion of a particular choice of

the invariant tensor 〈TATB〉 and the curvature two-form (5.85). Then the MacDowell-

Mansouri type action for the sAdS − L4 superalgebra can be written as

S = 2

∫
FA ∧ FB 〈TATB〉sAdS−L4 . (5.90)

Here, 〈TATB〉sAdS−L4 can be obtained using the useful properties of the semigroup ex-

pansion procedure. Indeed, according to the theorem VII.1 of ref. [16], the components

of an invariant tensor for the AdS-Lorentz superalgebra can be written in terms of a

particular choice of the original invariant tensor,

〈JabJcd〉sAdS−L4 = α0

〈
J̃abJ̃cd

〉
, (5.91)

〈JabZcd〉sAdS−L4 = α2

〈
J̃abJ̃cd

〉
, (5.92)

〈ZabZcd〉sAdS−L4 = α2

〈
J̃abJ̃cd

〉
, (5.93)

〈QαQβ〉sAdS−L4 = α2

〈
Q̃αQ̃β

〉
, (5.94)

with 〈
J̃abJ̃cd

〉
= εabcd,〈

Q̃αQ̃β

〉
= 2 (γ5)αβ ,
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and where the α’s are arbitrary dimensionless independent constants. It is important

to clarify that this choice of the invariant tensor breaks the AdS-Lorentz superalgebra

to its Lorentz like subalgebra generated by {Jab, Zab} . This is not a surprise since

we have considered the S-expansion of a particular choice of an invariant tensor which

breaks the Osp (4|1) supergroups to its Lorentz subgroup.

Then, considering the curvature two-form of the AdS-Lorentz superalgebra sAdS−
L4 (5.85) and the non-vanishing components of the invariant tensor (5.91)− (5.94), the

MacDowell-Mansouri type supergravity action (5.90) becomes

S = 2

∫ (
1

4
α0εabcdR

abRcd +
1

2
α2εabcdR

abF cd +
1

4
α2εabcdF

abF cd +
2

l
α2Ψ̄γ5Ψ

)
. (5.95)

The action (5.95) can be written explicitly in terms of the different components of the

two-form curvature as

S =

∫
α0

2
εabcdR

abRcd + α2εabcd

(
RabDkcd +Rabkcek

ed +
1

l2
Rabeced

+
1

2l
Rabψ̄γcdψ +

1

2
DkabDkcd +Dkabkcek

ed +
1

l2
Dkabeced

+
1

2l
Dkabψ̄γcdψ +

1

2
kafk

fbkcgk
gd +

1

l2
kafk

fbeced +
1

2l
kafk

fbψ̄γcdψ

)
+

1

2l3
eaebψ̄γcdψ +

1

2l4
eaebeced

)
+ α2

(
4

l
Dψ̄γ5Dψ +

4

l2
ψ̄eaγaγ5Dψ

+
2

l
Dψ̄γ5kabγ

abψ +
1

l3
ψ̄eaγaγ5e

bγbψ +
1

l2
ψ̄eaγaγ5k

bcγbcψ

+
1

4l
ψ̄kabγ

abγ5kcdγ
cdψ

)
. (5.96)

Interestingly, using the gravitino Bianchi identity and the gamma matrix identity

2γabγ5 = −εabcdγcd, (5.97)

it is possible to combine some expressions as boundary terms. Indeed, following ref.

[33], we have

1

2
εabcdR

abψ̄γcdψ + 4Dψ̄γ5Dψ = d
(
4Dψ̄γ5ψ

)
,

1

2
εabcdDk

abψ̄γcdψ + 2Dψ̄γ5k
abγabψ = d

(
ψ̄kabγabγ5ψ

)
.
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Moreover, using the useful gamma matrix identities [see Appendix B], it is possible to

show

ψ̄eaγaγ5e
bγbψ =

1

2
eaebψ̄γcdψεabcd,

1

4
ψ̄kabγ

abγ5kcdγ
cdψ = −1

2
kafk

fbψ̄γcdψεabcd,

ψ̄eaγaγ5k
bcγbcψ = εabcdk

abecψ̄γdψ,

Thus, the supergravity action for the AdS-Lorentz superalgebra can be finally written

as

S =

∫
α0

2
εabcdR

abRcd +
α2

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dψ
)

+ α2εabcd

(
RabDkcd +Rabkcek

ed +
1

2
DkabDkcd +Dkabkcek

ed +
1

2
kafk

fbkcgk
gd

)
+ α2εabcd

(
1

l2
Dkabeced +

1

l2
kafk

fbeced +
1

l3
eaebψ̄γcdψ

+
1

l2
kabecψ̄γdψ +

1

2l4
eaebeced

)
+ α2d

(
4Dψ̄γ5ψ + ψ̄kabγabγ5ψ

)
. (5.98)

The supergravity action (5.98) is split intentionally into five terms. The first term

corresponds to the topological Gauss-Bonnet term and does not contribute to the dy-

namics. The second piece is proportional to α2 and contains the Einstein-Hilbert and

the Rarita-Schwinger terms . The third and last term is also a boundary term and

contains explicitly the coupling between the new bosonic gauge fields kab and the usual

fields. Interestingly, the fourth term contains a generalized supersymmetric cosmolog-

ical term which contains not only the usual supersymmetric cosmological constant, but

also additional terms containing the new fields kab.

The procedure used here corresponds to an alternative method to include a cos-

mological term to a supergravity action à la MacDowell-Mansouri. Interestingly, the

bosonic part of the action (5.98) corresponds to the Born-Infeld gravity action for the

AdS-Lorentz algebra presented in ref. [35]. On the other hand, the bosonic cosmolog-

ical term introduced here coincides with the one appearing in ref. [9].

It is important to clarify that although there are many four-dimensional supergrav-

ity theories with cosmological constant, the formalism used here could be useful in the
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AdS/CFT correspondence. In particular, the presence of the new bosonic fields kab

in the boundary could play an important role in the well celebrated duality between

superstring theory realized on an AdS space-time and the conformal field theory on its

boundary [51, 52, 53, 54]. As was pointed out in ref. [55], the introduction of an ap-

propriate topological boundary term in a four-dimensional bosonic action is equivalent

to the holographic renormalization in the AdS/CFT context. Then, it seems that the

presence of the kab fields in the boundary would allow to regularize the supergravity

action in the holographic renormalization language.

Additionally, as shown in ref. [55, 56], the bosonic MacDowell-Mansouri action

is on-shell equivalent to the square of the Weyl tensor describing conformal gravity.

This would suggest a superconformal structure in the MacDowell-Mansouri geometrical

formalism of supergravity theory.

The supergravity action (5.98) can be rewritten omitting the boundary contributions

as

S =

∫
α2

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dψ
)

+ α2εabcd

(
2

l2
kabT̂ ced +

1

l2
kafk

fbeced +
1

l3
eaebψ̄γcdψ +

1

2l4
eaebeced

)
, (5.99)

where

εabcdDk
abeced = 2εabcdk

abT ced + d

(
1

l2
εabcdk

abeced
)
,

T̂ a = Dea − 1

2
ψ̄γaψ = T a − 1

2
ψ̄γaψ.

In particular, the usual MacDowell-Mansouri supergravity action for the osp (4|1) su-

peralgebra can be recover in the limit kab = 0.

Although the supergravity action (5.98) is constructed out of the curvature 2-forms

of the AdS-Lorentz superalgebra, it is not invariant under the gauge transformations.

Indeed, the supergravity action does not correspond to a topological invariant, nor a

Yang-Mills action.

The AdS-Lorentz gauge transformation of the one-form gauge connection A is given

by

δρA = Dρ = dρ+ [A, ρ]

73



where ρ is the gauge parameter given by

ρ =
1

2
ρabJab +

1

2
κabZab +

1

l
ρaPa +

1√
l
εαQα. (5.100)

Then, we have explicitly for each component the following gauge transformations,

δωab = Dρab, (5.101)

δkab = Dκab −
(
kacρbc − kbcρac

)
−
(
kacκbc − kbcκac

)
+

2

l2
eaρb − 1

l
ε̄γabψ, (5.102)

δea = Dρa + ebρ a
b + kabρ

b + ebκ a
b + ε̄γaψ, (5.103)

δψ = dε+
1

4
ωabγabε−

1

4
ρabγabψ +

1

2l
eaγaε−

1

2l
ρaγaψ

+
1

4
k̃abγabε−

1

4
κ̃abγabψ. (5.104)

Similarly, the gauge transformations of the curvature F can be obtained from δρF =

[F, ρ] leading to

δRab = Racρ b
c −Rcbρac, (5.105)

δF ab =
(
Racκ b

c −Rbcκac
)
−
(
F acρbc − F bcρac

)
−
(
F acκbc − F acκac

)
+

2

l2
Raρb − 1

l
ε̄γabΨ, (5.106)

δRa = Ra
bρ
b +Rbρ a

b + F a
bρ
b +Rbκ a

b + ε̄γaΨ, (5.107)

δΨ =
1

4
Rabγabε−

1

4
ρabγabΨ +

1

2l
Raγaε−

1

2l
ρaγaΨ

+
1

4
F abγabε−

1

4
κabγabΨ. (5.108)

Then, one can see that the variation of the action (5.98) under gauge supersymmetry

is

δsusyS = − 4

l2
α2

∫
RaΨ̄γaγ5ε. (5.109)

This implies that the supertorsion constraint

Ra = Deb + kabe
b − 1

2
ψ̄γaψ = 0,

has to be imposed in order to obtain the gauge AdS-Lorentz supersymmetry invariance.

This leads us to express the spin connection ωab and the bosonic field kab in terms of the
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other fields (second order formalism). Interestingly, following ref. [33], it is possible to

define a new bosonic field as the combination of the spin connection and the kab fields

as

$ab = ωab + kab, (5.110)

and its respective covariant derivative,

D = d+$. (5.111)

Then, the supertorsion constraint can be written as(
Dea − 1

2
ψ̄γaψ

)
= 0, (5.112)

allowing to express the bosonic field $ab in terms of the vielbein ea and gravitino field

ψα. Let us consider the following decomposition,

$ab = $̊ab + $̃ab, (5.113)

where $̊ab corresponds to the solution of Dec = 0 and it is given by

$̊ab
µ =

(
ecλ∂[µe

d
ν]ηcd + ecν∂[λe

d
µ]ηcd − ecµ∂[νe

d
λ]ηcd

)
eλ|aeν|b. (5.114)

Thus,

Dea = dea + $̊abeb + $̃abeb =
1

2
ψ̄γaψ, (5.115)

implies

$̃ab
[µeν]b =

1

2
ψ̄µγ

aψν . (5.116)

This may be solved in terms of the two other fields,

$̃ab
µ =

1

4
ea|λeb|ν

(
ψ̄µγλψν + ψ̄λγνψµ − ψ̄νγµψλ − ψ̄µγνψλ − ψ̄νγλψµ + ψ̄λγµψν

)
. (5.117)

Here, the bosonic field $ab does not carry additional physical degrees of freedom. In

particular, the number of bosonic degrees of freedom is two when the supertorsion is

set equal to zero.

On the other, the supersymmetry invariance of the action (5.98) can be obtained

in the first formalism adding an extra piece to the gauge transformation of the spin

connection ωab. Then, the variation of the action is given by

δS = − 4

l2
α4

∫
Ra

(
Ψ̄γaγ5ε−

1

2
εabcde

bδextraω
cd

)
. (5.118)
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The supersymmetry invariance of the supergravity action is fulfilled imposing

δextraω
ab = 2εabcd

(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (5.119)

with Ψ̄ = Ψ̄abe
aeb.

Thus, the supergravity action à la MacDowell-Mansouri (5.98) is invariant under

the following supersymmetry transformations

δωab = 2εabcd
(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (5.120)

δkab = −1

l
ε̄γabψ, (5.121)

δea = ε̄γaψ, (5.122)

δψ = Dε+
1

4
kabγabε+

1

2l
eaγaε. (5.123)

It is important to clarify that these supersymmetry transformations do not correspond

to gauge symmetries of the action, since it is broken to a Lorentz like symmetry.

5.3.2 D = 4 supergravity from the generalized minimal AdS-

Lorentz superalgebra

In this section, we present the construction of a supergravity action with a gener-

alized supersymmetric cosmological term using the generalized minimal AdS-Lorentz

superalgebra introduced in ref. [33]. In particular, the MacDowell-Mansouri geometric

formalism is considered.

First, let us consider the one-form gauge connection,

A =
1

2
ωabJab +

1

l
eaPa +

1

2
k̃abZ̃ab +

1

2
kabZab +

1

l
h̃aZ̃a +

1√
l
ψαQα +

1√
l
ξαΣα, (5.124)

whose components are related to the osp (4|1) ones through the elements of the semi-

group S
(4)
M

ωab = λ0ω̃
ab, ea = λ2ẽ

a,

k̃ab = λ2ω̃
ab, ψα = λ1ψ̃

α,

kab = λ4ω̃
ab, ξα = λ3ψ̃

α,

h̃a = λ4e
a.
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Let F = dA+ A ∧ A be the associated curvature two-form given by

F =
1

2
RabJab +

1

l
RaPa +

1

2
F̃ abZ̃ab +

1

2
F abZab +

1

l
H̃aZ̃a +

1√
l
ΨαQα +

1√
l
ΞαΣα, (5.125)

with

Rab = dωab + ωacω
cb,

Ra = dea + ωabe
b + kabe

b + k̃abh̃
b − 1

2
ψ̄γaψ − 1

2
ξ̄γaξ,

H̃a = dh̃a + ωabh̃
b + k̃abe

b + kabh̃
b − ψ̄γaξ,

F̃ ab = dk̃ab + ωack̃
cb − ωbck̃ca + kack̃

cb − kbck̃ca +
2

l2
eah̃b +

1

2l
ψ̄γabψ +

1

2l
ξ̄γabξ,

F ab = dkab + ωack
cb − ωbckca + k̃ack̃

cb + kack
cb +

1

l2
eaeb +

1

l2
h̃ah̃b +

1

l
ξ̄γabψ,

Ψ = dψ +
1

4
ωabγ

abψ +
1

4
kabγ

abψ +
1

4
k̃abγ

abξ +
1

2l
eaγ

aξ +
1

2
h̃aγ

aψ,

Ξ = dξ +
1

4
ωabγ

abξ +
1

4
kabγ

abξ +
1

4
k̃abγ

abψ +
1

2l
eaγ

aψ +
1

2l
h̃aγ

aξ.

Here, the one-forms ωab, ea, ψ and ξ are the spin connection, the vielbein, the gravitino

field and an additional Majorana fermionic field2, respectively. While the kab, k̃ab and

h̃a fields describe bosonic fields.

In order to construct a supergravity action à la MacDowell-Mansouri for the gener-

alized minima AdS-Lorentz superalgebra we shall consider the semigroup expansion of

a particular choice of the invariant tensor 〈TATB〉 and the two-form curvature (5.125).

Then the supergravity action for this generalized AdS-Lorentz superalgebra can be

written as

S = 2

∫
FA ∧ FB 〈TATB〉S . (5.126)

Here, 〈TATB〉S can be obtained using the useful properties of the semigroup expansion

method. In fact, according to the theorem VII.1 of ref. [16], the components of an

invariant tensor for the generalized minimal AdS-Lorentz superalgebra can be written

2A Majorana spinor ψ satisfies the Majorana condition ψ̄ = ψC, where C is the charge conjugation

matrix.
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in terms of a particular choice of the original invariant tensor,

〈JabJcd〉S = α0

〈
J̃abJ̃cd

〉
,

〈
Z̃abZ̃cd

〉
S

= α4

〈
J̃abJ̃cd

〉
, (5.127)〈

JabZ̃cd

〉
S

= α2

〈
J̃abJ̃cd

〉
, 〈ZabZcd〉S = α4

〈
J̃abJ̃cd

〉
, (5.128)〈

Z̃abZcd

〉
S

= α2

〈
J̃abJ̃cd

〉
, 〈JabZcd〉S = α4

〈
J̃abJ̃cd

〉
, (5.129)

〈QαQβ〉S = α2

〈
Q̃αQ̃β

〉
, 〈ΣαΣβ〉S = α2

〈
Q̃αQ̃β

〉
, (5.130)

〈QαΣβ〉S = α4

〈
Q̃αQ̃β

〉
, (5.131)

with 〈
J̃abJ̃cd

〉
= εabcd,〈

Q̃αQ̃β

〉
= 2 (γ5)αβ ,

and where the α’s are arbitrary dimensionless independent constants. Let us note that

this choice of the invariant tensor breaks the generalized AdS-Lorentz superalgebra to

its Lorentz like subalgebra generated by
{
Jab, Zab, Z̃ab

}
. This is not a surprise since

we have considered the S-expansion of a particular choice of an invariant tensor which

breaks the Osp (4|1) supergroups to its Lorentz subgroup.

Then, considering the curvature two-form of the generalized minimal AdS-Lorentz

superalgebra(5.125) and the non-vanishing components of the invariant tensor (5.127)−
(5.131), the MacDowell-Mansouri type supergravity action (5.126) becomes

S = 2

∫ (α0

4
εabcdR

abRcd +
α2

2
εabcdR

abF̃ cd +
α2

2
εabcdF̃

abF cd +
α4

2
εabcdR

abF cd

α4

4
εabcdF̃

abF̃ cd +
α4

2
εabcdF

abF cd +
2

l
α2Ψ̄γ5Ψ +

2

l
α2Ξ̄γ5Ξ +

4

l
α4Ψ̄γ5Ξ

)
.

(5.132)

Interestingly, the term proportional to α4 contains the Einstein-Hilbert and the Rarita-

Schwinger type Lagrangian in presence of a generalized supersymmetric cosmologi-

cal term. Indeed, using the gamma matrix identities and the Bianchi identities
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(dF + [A,F ] = 0), the term proportional to α4 can be written explicitly as

S = α4

∫
εabcd

(
RabKcd +

1

2
K̃abK̃cd +

1

2
KabKcd

)
+

1

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dψ + 4ξ̄eaγaγ5Dξ
)

+
1

l2

(
εabcdR

abh̃ch̃d + 4ψ̄h̃aγaγ5Dξ + 4ξ̄h̃aγaγ5Dψ
)

+
1

l2
εabcd

(
2K̃abech̃d +Kabeced +Kabh̃ch̃d +

1

l2
eaebeced

+
6

l2
eaebh̃ch̃d +

1

l2
h̃ah̃bh̃ch̃d +

2

l
ψ̄γabψech̃d +

2

l
ψ̄γabξeced +

2

l
ψ̄γabξh̃ch̃d

+
2

l
ξ̄γabξech̃d + kabec

{
ψ̄γdψ + ξ̄γdξ

}
+ 2k̃abecψ̄γdξ + 2kabh̃aψ̄γdξ

+k̃abh̃c
{
ψ̄γdψ + ξ̄γdξ

})
+ d

(
8

l
ξ̄γ5∇ψ

)
, (5.133)

where we have defined

K̃ab = Dk̃cb + kack̃
cb + kbck̃

ac,

Kab = Dkca + k̃ack̃
cb + kack

cb.

A notorious difference with the previous supergravity action (see eq. (5.98)) is the

presence of the bosonic field h̃a related to the generator Z̃a. Interestingly, set Z̃a equals

to zero does not violate the Jacobi identities (JI). Indeed, the JI are satisfied due to the

gamma matrix identity (Cγa)(αβ (Cγa)γδ) = 0 (cyclic permutations of α, β, γ). Then,

setting ha equals to zero and omitting boundary contributions, the supergravity action

proportional to α4 (5.133) can be written as

S = α4

∫
1

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5∇ψ + 4ξ̄eaγaγ5∇ξ
)

+
1

l2
εabcd

(
Kabeced +

1

l2
eaebeced +

2

l
ψ̄γabξeced

)
, (5.134)

with

∇ψ = Dψ +
1

4
kabγ

abψ +
1

4
k̃abγ

abξ,

∇ξ = Dξ +
1

4
kabγ

abξ +
1

4
k̃abγ

abψ.
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The supergravity action (5.134) obtained here corresponds to a four-dimensional geo-

metric supergravity action in presence of a generalized cosmological term. Naturally,

the procedure used here can be generalized using bigger semigroups leading to more

complicated actions.

Interestingly, the four-dimensional pure supergravity action presented in the previ-

ous chapter can be recovered as an Inönü-Wigner contraction. Indeed, considering the

rescaling

ωab → ωab, k̃ab → µ2k̃ab, kab → µ4kab,

ea → µ2ea, ψ → µψ and ξ → µ3ξ,

the pure supergravity action is obtained dividing by µ4 and taking the limit µ→ 0,

S = α4

∫
1

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dψ
)
. (5.135)

This result is not a surprise since the minimal Maxwell superalgebra sM4 can be ob-

tained as a Inönü-Wigner contraction of the generalized AdS-Lorentz superalgebra. In

particular, pure supergravity can be viewed as the geometric formulation of a super-

gravity theory invariant under the minimal Maxwell superalgebra.
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Chapter 6

Chern-Simons formulation of

supergravity and Maxwell

superalgebras

6.1 Introduction

The four-dimensional supergravity theories in the MacDowell-Mansouri geometric

framework are not gauge theories for a given superalgebra. In this framework, as

we have seen, the supersymmetry algebra closes only on shell. A way to close off

shell the superalgebra is through the introduction of auxiliary fields. However, this

procedure cannot be reproduce for all dimensions and N and cannot be related to a

fiber bundle structure. An interesting formalism which allows to construct a gauge

theory of supergravity in odd dimensions is the Chern-Simons approach.

In particular, the Chern-Simons action in three dimensions [14, 15] is given by

S
(2+1)
CS = k

∫ 〈
A

(
dA+

2

3
A2

)〉
, (6.1)

where A is the one-form gauge connection and the bracket 〈· · · 〉 stands for the non-

vanishing components of an invariant tensor.

A good candidate to describe a three-dimensional CS supergravity theory in presence

of a cosmological constant is the AdS supergroup. The most generalized susy extension
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of the three-dimensional AdS algebra corresponds to the direct product

osp (2|p)⊗ osp (2|q) , (6.2)

and allows to construct a (p, q)-type AdS-CS supergravity action [57]. The min-

imal three-dimensional AdS-CS supergravity action occurs for p = 1 and q = 0

(osp (2|1)⊗ sp (2)) whose supergravity action with cosmological term is given by

S
(2+1)
CS = k

∫
M

µ0

2

(
ωabdω

b
a +

2

3
ωacω

c
bω

b
a +

2

l2
eaTa +

2

l
ψ̄Ψ

)
+
µ1

l

(
εabc

(
Rabec +

1

3l2
eaebec

)
− ψ̄Ψ

)
− d

(µ1

2l
εabcω

abec
)

(6.3)

where T a = dea + ωabe
b is the torsion 2-form and ψ is a Majorana spinor[58].

There is a particular interest in supergravity theories to explore new superalgebras.

In particular, the minimal Maxwell superalgebra sM describes the supersymmetries of

generalized four-dimensional N = 1 superspace in the presence of a constant abelian

spersymmetric field strength background [36]. Interestingly, the minimal Maxwell

superalgebra has the particularity to have more than one spinor charge. The gener-

alization to diverse minimal Maxwell superalgebras through the semigroup expansion

procedure has been subsequently studied in ref. [31] and has been approached in detail

in the chapter 4 of this thesis.

In this chapter, following ref. [59], we present the construction of the minimal

CS supergravity action (without cosmological constant) using the minimal Maxwell

superalgebra sM3. In the following section, according to ref. [60], we first consider

an useful algebraic construction of a three-dimensional supersymmetric action from the

non-standard Maxwell superalgebra.

6.2 D = 3 CS exotic supersymmetric theory from

non-standard Maxwell superlagebra

In this section we present the construction of a three-dimensional Chern-Simons

supersymmetric action based on the non-standard Maxwell superalgebra. An essential

ingredient in order to construct a Chern-Simons action is the invariant tensor. Besides,
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as was pointed out in ref. [16], the invariant tensor of an S-expanded (super)algebra can

be obtained from the invariant tensor of the original algebra. Nevertheless, it seems that

the non-standard Maxwell superalgebra cannot be obtained as an semigroup expansion

of an known algebra and the components of an invariant tensor remain unknown. This

difficulty has been elegantly solved in ref. [60], combining the semigroup expansion

method with the Inönü-Wigner contraction.

As shown in ref. [46], the three-dimensional AdS-Lorentz superalgebra can be ob-

tained as an S-expansion of the osp (2|1)⊗ sp (2) superalgebra. On the other hand, an

Inönü-Wigner contraction of the AdS-Lorentz superalgebra leads to the non-standard

Maxwell superalgebra [61, 35]. Then it seems natural to combine the semigroup expan-

sion method with the Inönü-Wigner contraction in order to obtain the non-standard

Maxwell superalgebra and its respective invariant tensor.

6.2.1 The non-standard Maxwell superalgebra

Let us consider first the AdS-Lorentz superalgebra as an S-expansion of the osp (2|1)⊗
sp (2) superalgebra using SΛ as the relevant abelian semigroup. Before to apply the

S-expansion method it is necessary to consider a decomposition of the osp (2|1)⊗sp (2)

superalgebra in subspaces Vp,

g = osp (2|1)⊗ sp (2) = V0 ⊕ V1 ⊕ V2 (6.4)

where V0 is generated by the Lorentz generator J̃ab, V1 corresponds to the fermionic

subspace generated by a 3-component Majorana spinor charge Q̃α and V2 is generated by

P̃a. The osp (2|1)⊗ sp (2) generators satisfy the following (anti)commutation relations[
J̃ab, J̃cd

]
= ηbcJ̃ad − ηacJ̃bd − ηbdJ̃ac + ηadJ̃bc, (6.5)[

J̃ab, P̃c

]
= ηbcP̃a − ηacP̃b, (6.6)[

P̃a, P̃b

]
= J̃ab, (6.7)[

J̃ab, Q̃α

]
= −1

2

(
γabQ̃

)
α
,

[
P̃a, Q̃α

]
= −1

2

(
γaQ̃

)
α
, (6.8){

Q̃α, Q̃β

}
= −1

2

[(
γabC

)
αβ
J̃ab − 2 (γaC)αβ P̃a

]
, (6.9)
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where γa are the Dirac matrices, C stands for the charge conjugation matrix and

a, b, c, d = 0, 1, 2. Then, the subspace structure may be written as

[V0, V0] ⊂ V0, [V1, V1] ⊂ V0 ⊕ V2, (6.10)

[V0, V1] ⊂ V1, [V1, V2] ⊂ V1, (6.11)

[V0, V2] ⊂ V2, [V2, V2] ⊂ V0. (6.12)

Let SΛ = {λ0, λ1} be the abelian semigroup with the following multiplication law,

λαλβ =

{
λ1, if α = β = 1

λ0, all others
(6.13)

Let S∧ = S0 ∪ S1 ∪ S2 be a subset decomposition with

S0 = {λ0, λ1} , (6.14)

S1 = {λ0} , (6.15)

S2 = {λ0} . (6.16)

This decomposition is said to be ”resonant ” since it satisfies the same structure as the

subspaces Vp [compare with eqs. (6.10) − (6.12)]. According to the theorem IV. 2 of

ref. [16], the superalgebra

GR = W0 ⊕W1 ⊕W2, (6.17)

is a resonant super subalgebra of SΛ × g, with

W0 = (S0 × V0) = {λ0, λ1} ×
{
J̃ab

}
=
{
λ0J̃ab, λ1J̃ab

}
, (6.18)

W1 = (S1 × V1) = {λ0} ×
{
Q̃α

}
=
{
λ0Q̃α

}
, (6.19)

W2 = (S2 × V2) = {λ0} ×
{
P̃a

}
=
{
λ0P̃a

}
. (6.20)

Thus, the new superalgebra obtained is generated by {Jab, Pa, Zab, Qα} whose gen-

erators are related to the osp (2|1)⊗ sp (2) through

Jab = λ1J̃ab, Pa = λ0P̃a, (6.21)

Zab = λ0J̃ab, Qα = λ0Q̃α. (6.22)
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The (anti)commutation relations read

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (6.23)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (6.24)

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (6.25)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (6.26)

[Zab, Pc] = ηbcPa − ηacPb, (6.27)

[Jab, Qα] = −1

2
(ΓabQ)α , [Pa, Qα] = −1

2
(ΓaQ)α , (6.28)

[Zab, Qα] = −1

2
(ΓabQ)α , (6.29)

{Qα, Qβ} = −1

2

[(
ΓabC

)
αβ
Zab − 2 (ΓaC)αβ Pa

]
, (6.30)

The new superalgebra obtained after a resonant S∧-expansion of the AdS superalge-

bra corresponds to the three-dimensional AdS−Lorentz superalgebra. As we have

seen in the previous chapter, this superalgebra has an interesting application in four-

dimensional supergravity allowing an alternative method to include the cosmological

term [33].

Now, let us consider an Inönü-Wigner contraction to this superalgebra applying the

following rescaling [60],

Zab → σ2Zab, Pa → σPa and Qα → σQα. (6.31)

Then the limit σ → ∞ provides the three-dimensional non-standard Maxwell superal-

gebra,

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (6.32)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (6.33)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (6.34)

[Zab, Zcd] = 0, [Zab, Pc] = 0, (6.35)

[Jab, Qα] = −1

2
(ΓabQ)α , (6.36)

[Zab, Qα] = 0, [Pa, Qα] = 0, (6.37)

{Qα, Qβ} = −1

2

(
ΓabC

)
αβ
Zab. (6.38)
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In particular, this superalgebra has the Maxwell algebra M = {Jab, Pa, Zab} and the

Lorentz type algebra LM = {Jab, Zab} as subalgebras. Let us note that this superalge-

bra does not have a necessary relation to supergravity. Indeed, from eq. (6.38), one can

note that the combination of two subsequent supersymmetry transformations does not

amount to a space-time translation. The situation is completely different in the case of

the minimal Maxwell superalgebra. However, before to approach the construction of

CS supergravity action for the minimal case, we shall consider the explicit construction

of a supersymmetric CS action for the usual Maxwell superalgebra.

6.2.2 D = 3 supersymmetric action

It seems that a Chern-Simons supersymmetric action for the non-standard Maxwell

superalgebra can be constructed combining the SΛ-expansion of the AdS superalgebra

with the appropiate rescaling of the generators. However, as it was pointed out in ref.

[60], the arbitrary constants of an invariant tensor have also to be rescaled in order to

avoid a trivial Chern-Simons action.

Following Theorem VII.2 of ref. [16], the non-vanishing components of an invariant

tensor for the AdS-Lorentz superalgebra are related to the osp (2|1)⊗ sp (2) through,

〈JabJcd〉AdS−L = α̃1

〈
J̃abJ̃cd

〉
, 〈ZabPc〉AdS−L = α̃0

〈
J̃abP̃c

〉
,

〈JabZcd〉AdS−L = α̃0

〈
J̃abJ̃cd

〉
, 〈PaPb〉AdS−L = α̃0

〈
P̃aP̃b

〉
,

〈ZabZcd〉AdS−L = α̃0

〈
J̃abJ̃cd

〉
, 〈QαQβ〉AdS−L = α̃0

〈
Q̃αQ̃β

〉
,

〈JabPc〉AdS−L = α̃0

〈
J̃abP̃c

〉
,

(6.39)

where 〈
J̃abJ̃cd

〉
= µ0 (ηbcηad − ηacηbd) ,〈

J̃abP̃c

〉
= µ1εabc,〈

P̃aP̃b

〉
= µ0ηab,〈

Q̃αQ̃β

〉
= (µ0 − µ1)Cαβ.

Then, defining

β0 ≡ α̃0µ0, α0 ≡ α̃0µ1, β1 ≡ α̃1µ0, (6.40)
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the components of an invariant tensor for the AdS-Lorentz superalgebra can be written

as

〈JabJcd〉AdS−L = β1 (ηbcηad − ηacηbd) , 〈ZabPc〉AdS−L = α0εabc,

〈JabZcd〉AdS−L = β0 (ηbcηad − ηacηbd) , 〈PaPb〉AdS−L = β0ηab,

〈ZabZcd〉AdS−L = β0 (ηbcηad − ηacηbd) , 〈QαQβ〉AdS−L = (β0 − α0)Cαβ,

〈JabPc〉AdS−L = α0εabc.

(6.41)

The next step consists in considering a rescaling which preserves the structure of the

curvatures in the supergravity action. There is one rescaling with this particularity

and it is given by

β0 → σ2β0, α0 → σα0, β1 → β1. (6.42)

Thus, the components of an invariant tensor for the non-standard Maxwell superalgebra

is obtained considering the rescaling of not only the generators (7.109) but also of the

constants (6.42) [60]. Indeed, the limit σ →∞ leads

〈JabJcd〉sM = β1 (ηbcηad − ηacηbd) , (6.43)

〈JabZcd〉sM = β0 (ηbcηad − ηacηbd) , (6.44)

〈JabPc〉sM = α0εabc, (6.45)

〈PaPb〉sM = β0ηab, (6.46)

〈QαQβ〉sM = β0Cαβ. (6.47)

An additional ingredient in order to construct a Chern-Simons action is the one-form

gauge connection which is given by

A = AATA =
1

2
ωabJab +

1

l
eaPa +

1

2
kabZab +

1√
l
ψαQα. (6.48)

The associated curvature two-form F = dA+ A ∧ A is given by

F = FATA =
1

2
RabJab +

1

l
RaPa +

1

2
F abZab +

1√
l
ΨαQα, (6.49)
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with

Rab = dωab + ωacω
cb,

Ra = dea + ωabe
b = T a,

F ab = dkab + ωack
cb − ωbckca +

1

l2
eaeb +

1

l
ψ̄Γabψ,

Ψ = dψ +
1

4
ωabΓ

abψ = Dψ.

The one-forms ωab, ea, ψ are the spin connection, the vielbein and the gravitino field,

respectively. While the kab fields describe bosonic ”matter” fields. On the other hand,

the Lorentz covariant exterior derivatives D = d + ω of the curvatures can be derived

from the Bianchi identity ∇F = 0 ( where ∇ is the gauge covariant derivative given by

∇ = d+ [A, ·] ) leading to

DRab = 0, (6.50)

DRa = Ra
be
b, (6.51)

DF ab = Ra
ck
cb −Rb

ck
ca +

1

l2
Raeb − 1

l2
eaRb − 1

l
ψ̄γabΨ, (6.52)

DΨ =
1

4
Rabγ

abψ. (6.53)

Then, considering the one-form connection of the Maxwell superalgebra (6.48) and

the non-vanishing components of the invariant tensor (6.43)− (6.47), the supergravity

action (6.1) becomes

S
(2+1)
CS = k

∫
M

[
1

2
β1

(
ωabdω

b
a +

2

3
ωabω

b
cω

c
a

)
+
α0

l

(
εabcR

abec
)

+β0

(
Ra

bk
b
a +

1

l2
eaTa +

1

l
ψ̄Ψ

)
− 1

2
d
(
β0ω

a
bk
b
a +

α0

l
εabcω

abec
)]

, (6.54)

where Ψ = dψ + 1
4
ωabΓ

abψ is the covariant derivative of the spinor ψ. Here, the term

proportional to β1 corresponds to the exotic Lagrangian [62, 63] and it is constructed

exclusively out of the spin connection. The α0 piece corresponds to the Einstein-Hilbert

term. Unlike the osp (2|1) ⊗ sp (2) supergravity action, the cosmological term is not

present in the superMaxwell case. It is important to note that the action (6.54) is

related not only to the Euler invariant through the term proportional to α0 but also
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to the Pontryagin invariant through the β0 and β1 terms. The full supersymmetric

action is invariant (modulo boundary terms) under the local gauge transformations of

the non-standard Maxwell superalgebra,

δωab = Dρab, (6.55)

δkab = Dκab +
2

l2
eaρb − 1

l
ε̄Γabψ, (6.56)

δea = Dρa + ebρ a
b , (6.57)

δψ = dε+
1

4
ωabΓabε = Dε. (6.58)

Here, the gauge parameter ρ is given by

ρ =
1

2
ρabJab +

1

2
κabZab +

1

l
ρaPa +

1√
l
εαQα.

Interestingly, the bosonic part of the action (6.54) corresponds to the Maxwell-

Chern-Simons gravity action found in ref. [64, 65]. Nevertheless, the supersymmetric

action (6.54) does not describe a supergravity action due principally to eq. (6.38). It is

tempting to argue that the IW contraction used here can be seen as a low-energy limit

σ → ∞ where the EH term is decoupled from the rigid supersymmetric Lagrangian.

Naturally, in the σ = 1 case, we obtain the Chern-Simons supergravity action for the

AdS−Lorentz superalgebra presented in ref. [46].

6.3 D = 3 CS supergravity from the minimal Maxwell

superalgebra

In the present section, following ref. [59], we present the construction of a three-

dimensional Chern-Simons supergravity action using the minimal Maxwell superalgebra

sM3.

Following the definitions of the semigroup expansion procedure [16] and the method

used in ref. [59], it is possible to derive a minimal Maxwell superalgebra after extracting

a 0s-reduced resonant S
(4)
E -expansion of the osp (2|1) ⊗ sp (2) superalgebra. The new

superalgebra is generated by
{
Jab, Pa, Z̃ab, Zab, Z̃a, Qα,Σα

}
whose generators obey the
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following (anti)commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (6.59)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (6.60)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (6.61)

[Pa, Qα] = −1

2
(ΓaΣ)α , (6.62)

[Jab, Qα] = −1

2
(ΓabQ)α , (6.63)

[Jab,Σα] = −1

2
(ΓabΣ)α , (6.64)

{Qα, Qβ} = −1

2

[(
ΓabC

)
αβ
Z̃ab − 2 (ΓaC)αβ Pa

]
, (6.65)

{Qα,Σβ} = −1

2

[(
ΓabC

)
αβ
Zab − 2 (ΓaC)αβ Z̃a

]
, (6.66)[

Jab, Z̃ab

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (6.67)[

Z̃ab, Z̃cd

]
= ηbcZad − ηacZbd − ηbdZac + ηadZbc, (6.68)[

Jab, Z̃c

]
= ηbcZ̃a − ηacZ̃b,

[
Z̃ab, Pc

]
= ηbcZ̃a − ηacZ̃b, (6.69)[

Z̃ab, Qα

]
= −1

2
(γabΣ)α , (6.70)

others = 0. (6.71)

The Maxwell superalgebra sM3 has the particularity to have an additional spinor gener-

ator as we have seen in chapter 4. This superalgebra can be seen as the supersymmetric

extension of a generalized Maxwell algebra introduced in ref. [31]. Interestingly, we

recover the usual three-dimensional minimal Maxwell superalgebra setting Z̃a, Z̃ab = 0.

Set Z̃ab and Z̃a equals to zero does not violate the Jacobi identities. Indeed, the JI are

satisfied due to the gamma matrix identity (Cγa)(αβ (Cγa)γδ) = 0 (cyclic permutations

of α, β, γ).

In order to write down an Chern-Simons supergravity action for a minimal Maxwell

superalgebra we consider the one-gauge connection

A =
1

2
ωabJab +

1

2
k̃abZ̃ab +

1

2
kabZab +

1

l
eaPa +

1

l
h̃aZ̃a +

1√
l
ψαQα +

1√
l
ξαΣα,

(6.72)
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whose components are related to the osp (2|1)⊗ sp (2) ones
(
ω̃ab, ẽa, ψ̃

)
through

ωab = λ0ω̃
ab, k̃ab = λ2ω̃

ab kab = λ4ω̃
ab,

ea = λ2ẽ
a, h̃a = λ4ẽ

a, ψα = λ1ψ̃
α,

ξα = λ3ψ̃
α.

The corresponding curvature two-form F = dA+ A ∧ A is given by

F = FATA =
1

2
RabJab +

1

l
RaPa +

1

2
F̃ abZ̃ab +

1

2
F abZab +

1

l
H̃aZ̃a

+
1√
l
ΨαQα +

1√
l
ΞαΣα, (6.73)

with

Rab = dωab + ωacω
cb,

Ra = dea + ωabe
b − 1

2
ψ̄Γaψ,

H̃a = dh̃a + ωabh̃
b + k̃ace

c − ξ̄Γaψ,

F̃ ab = dk̃ab + ωack̃
cb − ωbck̃ca +

1

2l
ψ̄Γabψ,

F ab = dkab + ωack
cb − ωbckca + k̃ack̃

cb +
1

l2
eaeb +

1

l
ξ̄Γabψ,

Ψ = dψ +
1

4
ωabΓ

abψ,

Ξ = dξ +
1

4
ωabΓ

abξ +
1

4
k̃abΓ

abψ +
1

2l
eaΓaψ.

The one-forms ωab, ea, ψ and ξ are the spin connection, the vielbein, the gravitino field

and an additional Majorana fermionic field1, respectively. While the kab, k̃ab and h̃a

fields describe bosonic ”matter” fields.

According to the Theorem VII.2 of ref. [16], it is possible to show that the compo-

nents of an invariant tensor for the Maxwell superalgebra can be written in terms of an

1A Majorana spinor ψ satisfies the Majorana condition ψ̄ = ψC, where C is the charge conjugation

matrix.

91



osp (2|1)⊗ sp (2) invariant tensor, leading

〈JabJcd〉sMg = α̃0

〈
J̃abJ̃cd

〉
(6.74)〈

JabZ̃cd

〉
sMg

= α̃2

〈
J̃abJ̃cd

〉
(6.75)〈

Z̃abZ̃cd

〉
sMg

= 〈JabZcd〉 = α̃4

〈
J̃abJ̃cd

〉
(6.76)

〈JabPc〉sMg = α̃1

〈
J̃abP̃c

〉
(6.77)〈

Z̃abPc

〉
sMg

=
〈
JabZ̃c

〉
= α̃3

〈
JabP̃c

〉
(6.78)

〈PaPb〉sMg = α̃4

〈
P̃aP̃b

〉
(6.79)

〈QαQβ〉sMg = (α̃2 − α̃1)
〈
Q̃αQ̃β

〉
(6.80)

〈QαΣβ〉sMg = (α̃4 − α̃3)
〈
Q̃αQ̃β

〉
(6.81)

with 〈
J̃abJ̃cd

〉
= µ0 (ηbcηad − ηacηbd) ,〈

J̃abP̃c

〉
= µ1εabc,〈

P̃aP̃b

〉
= µ0ηab,〈

Q̃αQ̃β

〉
= (µ0 − µ1)Cαβ.

Then, considering the following definitions

α0 ≡ α̃0µ0, α1 ≡ α̃2µ1, α2 ≡ α̃2µ0

α3 ≡ α̃4µ1, α4 ≡ α̃4µ0,

the components of an invariant tensor for the minimal Maxwell superalgebra sM3 can

be written as

〈JabJcd〉sM3
= α0 (ηadηbc − ηacηbd) (6.82)〈

JabZ̃cd

〉
sM3

= α2 (ηadηbc − ηacηbd) (6.83)〈
Z̃abZ̃cd

〉
sM3

= 〈JabZcd〉 = α4 (ηadηbc − ηacηbd) (6.84)
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〈JabPc〉sM3
= α1εabc (6.85)〈

Z̃abPc

〉
sM3

=
〈
JabZ̃c

〉
= α3εabc (6.86)

〈PaPb〉sM3
= α4ηab (6.87)

〈QαQβ〉sM3
= (α2 − α1)Cαβ (6.88)

〈QαΣβ〉sM3
= (α4 − α3)Cαβ (6.89)

Then, considering the connection one-form (6.72) and the non-vanishing components

of the invariant tensor (6.82)−(6.89) in the general expression of a Chern-Simons action,

we find

S
(2+1)
CS = k

∫
M

[
α0

2

(
ωabdω

b
a +

2

3
ωacω

c
bω

b
a

)
+
α1

l

(
εabcR

abec − ψ̄Ψ
)

+ α2

(
Ra

bk̃
b
a +

1

l
ψ̄Ψ

)
+
α3

l

(
εabc

(
Rabh̃c +Dωk̃

abec
)
− ξ̄Ψ− ψ̄Ξ

)
+ α4

(
Ra

bk
b
a +

1

l2
eaTa +

1

l
ξ̄Ψ +

1

l
ψ̄Ξ

)
−d
(α1

2l
εabcω

abec +
α3

2l
εabc

(
k̃abec + ωabh̃c

)
+
α2

2
ωabk̃

b
a +

α4

2
ωabk

b
a

)]
. (6.90)

The three-dimensional action (6.90) describes a supergravity theory without cosmo-

logical constant and can be seen as a supersymmetric extension of the results in refs

[64, 65]. where new extra fields have been added in order to have well defined invariant

tensors.

The supergravity action (6.90) is split into five independent terms proportional to

α0, α1, α2, α3 and α4, respectively. The term proportional to α0 describes the so called

exotic Lagrangian [62, 63]. The second term consists of the Einstein-Hilbert term plus

the fermionic contribution describing a pure supergravity action without cosmological

constant invariant under the Poincaré symmetries. The others terms contain the

coupling of the new gauge fields to the original ones. Unlike the action for the usual

Maxwell superalgebra, this action contains an additional spinor field ξ which appears

in the α3 and α4 terms.

Let us note that the new bosonic fields
(
kab, k̃ab, h̃a

)
appear also in the boundary

term. Although the boundary terms do not contribute to the dynamics of the theory,

they play an essential role in the study of the AdS/CFT correspondence [51, 52, 53, 54].
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The presence of boundary terms in (super)gravity theories has been extensively studied

in refs. [18, 20, 40, 66].

One can see that the minimal Maxwell superalgebra sM3 enlarges the previous

action adding new terms to the action allowing to construct a Maxwell-Chern-Simons

Supergravity action which is off-shell invariant under the local gauge transformations

of the minimal Maxwell superalgebra,

δωab = Dρab, (6.91)

δk̃ab = Dκ̃ab −
(
k̃ac ρ

b
c − k̃bcρac

)
− 1

l
ε̄γabψ, (6.92)

δkab = Dκab −
(
kacρbc − kbcρac

)
−
(
k̃acκ̃bc − k̃bcκ̃ac

)
+

2

l2
eaρb − 1

l
%̄γabψ − 1

l
ε̄γabξ, (6.93)

δea = Dρa + ebρ a
b + ε̄γaψ, (6.94)

δh̃a = Dρ̃a + h̃bρ a
b + κ̃ace

c + k̃ac ρ
c + %̄γaψ + ε̄γaξ (6.95)

δψ = dε+
1

4
ωabγabε−

1

4
ρabγabψ, (6.96)

δξ = d%+
1

4
ωabγab%+

1

2l
eaγaε−

1

2l
ρaγaψ −

1

4
ρabγabξ

+
1

4
k̃abγabε−

1

4
κ̃abγabψ. (6.97)

where the gauge parameter is given by

ρ =
1

2
ρabJab +

1

2
κ̃abZ̃ab +

1

2
κabZab +

1

l
ρaPa +

1

l
ρ̃aZ̃a +

1√
l
εαQα +

1√
l
%αΣα.

This result provides one more example of the advantage of the semigroup expansion

in the construction of new (super)algebras and new (super)gravity theories. In partic-

ular, the procedure used here can be useful in order to construct supergravity action

in higher odd dimensions. It should be possible to recover standard odd-dimensional

supergravity from the Maxwell supersymmetries. On the other hand, the same proce-

dure could be applied to the construction of (p, q)-type Chern-Simons models and to

the construction of matter-supergravity theories.



Chapter 7

Supersymmetric Born-infeld theory

from N = 2 Supergravity theory

7.1 Introduction

Recently, there has been growing interest in the study of the supersymmetric Born-

Infeld theory and its multi-vector generalization. The Born-Infeld theory [67] describes

a non-linear electrodynamics in four dimensional space-time. The supersymmetric ex-

tension of the BI theory was constructed in [68, 69]. In particular, the BI theory

and its multi-vector generalization emerge from a low energy limit of partially broken

U (1)n rigid N = 2 supersymmetric theory [70]. As shown by I. Antoniadis, H. Par-

touche, T.R. Taylor (APT model) [71], the partially supersymmetry breaking requires

the introduction of magnetic Fayet-Iliopoulos (FI) terms besides the electric ones. In-

terestingly, as shown in ref. [72], the partially broken N = 2 rigid theory to N = 1 in

presence of one vector multiplet, corresponding to ref. [71], can be obtained as a rigid

limit of a N = 2 supergravity theory.

The purpose of this chapter, following ref. [73], is to generalize the procedure of

ref. [72] to n vector multiplets. In particular, we are interested in relate the partially

broken N = 2 rigid theory of n abelian vector multiplets to supergravity. This would

clarify the supergravity origin of the multi-vector generalization of the BI theory of ref.

[74].

In the rigid limit of ref. [72], the partial breaking of supersymmetry required the use
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of a specific choice of symplectic frame. In particular, in this frame the prepotential of

the special geometry does not exist. This restriction is forced within the framework of

santard electric gaugins due to some no-go theorems [75, 76]. Nevertheless, as shown in

ref. [77], the partial supersymmetry breaking can be achieved in any symplectic frame

using an embedding tensor [78, 79, 80] with both electric and magnetic components.

In particular, a frame in which the prepotential exists can be chosen.

A generalization to n vector multiplets of ref. [72], leads us to relate the FI terms

of the rigid theory not only to the components of the embedding tensor, but also

to constants entering the geometry of the scalar manifold. Interestingly, we shall

show that we can reformulate the theory in a symplectic frame leading to a more clear

interpretation of the FI terms. In particular, in this new frame, the manifest symplectic

invariance is preserved after the rigid limit. Besides, the electric and magnetic FI

terms are related only to the components of the embedding tensor. Indeed, denoting

by AΛ
µ = (A0

µ, A
I
µ), the n+1 supergravity vector fields in the new frame, A0

µ is identified

with the graviphoton while AIµ corresponds to the vector fields of the resulting rigid

theory.

In our approach, we shall consider the construction of a suitable dyonic gauging of an

N = 2 supergravity model coupled to n vector multiplets and to a single hypermultiplet

which, in the rigid limit, leads us to a multi-vector generalization of the APT model

and ref. [72].

Before to present the N = 1 rigid supersymmetric theory as a rigid limit of a

N = 2 supergravity partially broken, we give the relevant identities related to the

most general gauging of special Kähler and quaternionic Kähler isometries in a general

N = 2 supergravity model. Some of these identities are already known and have been

proven only for electric gaugings [81, 82] or within superconformal calculus [83]. Here,

following ref. [73], we present some compact proof for the generic dyonic gaugings,

based on the symplectic-covariant description of the local special-geometry and on the

general constraints on the embedding tensor. In particular, a detailed study of the

potential Ward identity [84, 85] for generic dyonic gaugings, which is required by the

supersymmetry invariance of the action, is presented.
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7.2 Geometry of N = 2 matter-coupled supergrav-

ity theory

In the present section we study the underlying geometry of the general N = 2

supergravity theory. To this aim, we briefly review some useful formulae for special

and quaternionic geometry following refs. [81, 82, 86]. Our purpose is to clarify

the general structure of the four-dimensional N = 2 supergravity coupled to n vector

multiplets gauging some Lie group G and nH hypermultiplets. In particular, the scalar

sector of the vector multiplets is described by a special Kähler manifold MSK . On

the other hand, the scalar sector of the hypermultiplets is described by a quaternionic

Kähler manifold MQK . Then, the more general N = 2 supergravity theory coupled

to matter contains 2n + 4nH scalar fields interacting through a σ-model based on the

following scalar manifold:

Mscalar =MSK ×MQK . (7.1)

7.2.1 Special Kähler geometry

A special Kähler manifold MSK is a Hodge-Kähler manifold endowed with a flat,

holomorphic, symplectic bundle satisfying certain properties. Interestingly, there are

two kinds of special Kähler geometry. The local one describes a N = 2 Supergravity

coupled to vector multiplets. While the rigid one describes the scalar field sector of

vector multiplets in rigid N = 2 Yang-Mills theories. In particular, a special Kähler

manifold has a complex structure and a hermitian metric

ds2 = gij̄ (z, z̄) dzi ⊗ dz̄ ̄, (7.2)

such that the 2-form

K = igij̄ (z, z̄) dzi ∧ dz̄ ̄,

is closed dK = 0. The Kähler potential K (z, z̄) can be defined such that

gij̄ = ∂i∂jK, (7.3)

K = dQ, Q = − i
2

(
∂iKdzi − ∂iKdz̄ ı̄

)
. (7.4)
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In particular, under a Kähler transformation K → K + f (z) + f (z̄) , the one-form Q
transforms as an U (1) connection Q → Q+ d (Im f).

Let now Φ (z, z̄) be a field of weight p. Then, its U (1) covariant derivative is given

by

DΦ = (d+ ipQ) Φ

or, in components

DiΦ =

(
∂i +

1

2
p∂iK

)
Φ, Dı̄Φ =

(
∂ı̄ −

1

2
p∂ı̄K

)
Φ. (7.5)

A covariantly holomorphic field of weight p is defined by the equation

Dı̄Φ = 0. (7.6)

On the other hand, setting

Φ̃ = e−pG/2Φ, (7.7)

we have

DiΦ̃ =

(
∂i +

1

2
p∂iK

)
Φ, Dı̄Φ̃ = ∂ı̄Φ. (7.8)

Then, Φ̃ is a holomorphic section with respect to the holomorphic connection ∂iK.

A more intrinsic and useful definition of a special Kähler manifold can be given in-

troducing a (n)-dimensional holomorphic tensor whose holomorphic section are denoted

by

Ω (z) = ΩM(z) =

(
XΛ (z)

FΣ (z)

)
(7.9)

with Λ,Σ = 0, . . . , n

We say that a Hodge-Kähler manifold M is special Kähler of the local type if, for

some section Ω, the Kähler two-form is given by

K =
i

2π
∂∂̄ log

(
i
〈
Ω|Ω̄

〉)
, (7.10)

where 〈 | 〉 denotes a symplectic inner product given by

i
〈
Ω|Ω̄

〉
≡ −iΩT

(
0 1

−1 0

)
Ω̄. (7.11)
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This definition implies that it is possible to relate the Kähler potential K with the

holomorphic section Ω,

K = − log
(
i
〈
Ω|Ω̄

〉)
= − log

[
i
(
X̄ΛFΛ − F̄ΣX

Σ
)]
. (7.12)

Introducing now a covariantly holomorphic section V such that

V (z, z̄) = (V M(z, z̄)) =

(
LΛ

MΣ

)
= eK/2Ω = eK/2

(
XΛ

FΣ

)
, (7.13)

which satisfies the condition

1 = i
〈
V |V̄

〉
= i
(
L̄ΛMΛ − M̄ΣL

Σ
)
. (7.14)

Since V is related to a holomorphic section it follows

Dı̄V =

(
∂ı̄ −

1

2
∂ı̄K
)
V = 0. (7.15)

On the other hand, defining the U (1)-covariant derivatives on V ,

Ui = DiV =

(
∂i +

1

2
∂iK
)
V ≡

(
fΛ
i

hΣ|i

)
, (7.16)

and introducing a symmetric three-tensor Cijk, it follows that

DiUj = ∂iUj +
∂iK
2
Uj − ΓkijUk = iCijkg

kl̄Ūl̄. (7.17)

Then, the special geometry is defined by the following set of differential equations:

DiV = Ui, (7.18)

DiUj = iCijkg
kl̄Ūl̄, (7.19)

Dı̄Uj = gı̄jV, (7.20)

Dı̄V = 0. (7.21)

Let us construct, using V and its covariant derivatives, the following matrix

L(z, z̄)MN ≡ (V, ēĪ
ı̄U

M

ı̄ , V
M
, eI

iUM
i ) ,
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where eI
i are the inverse vielbein matrices gi̄ =

∑n
I=Ī=1 ei

I ē̄
Ī , and N is a holonomy

group index. Then, eqs. (7.18)− (7.21) imply

L†CL = $ , (7.22)

with

$ ≡ −i

(
1 0

0 −1

)
. (7.23)

Interestingly, a symplectic matrix can be define in terms of L,

M(z, z̄) = (MMN) ≡ CLL†C =M(z, z̄)T ,

MCM = C . (7.24)

In particular, M encodes all the information about the coupling of the vector fields

to the scalars. From the above properties of V and Ui we find the following general

symplectic covariant relation

UMN ≡ gi̄ UM
i U

N
̄ = −1

2
MMN − i

2
CMN − V M

V N , (7.25)

whereMMN are the components of

M−1 = −LL†. (7.26)

Let us now consider the Killing vectors ka = kia (z) ∂i+kı̄a (z̄) ∂ı̄ defining an infinites-

imal isometry and satisfying

[ka, kb] = −f c
ab kc. (7.27)

The invariance of the Kähler 2-form K implies

`aK = d(ιaK) = 0 ⇒ ιaK = −dPa , (7.28)

where `a = `ka and ιa ≡ ιka denote, respectively, the Lie derivative and the contraction

along ka. Then, we can define the momentum map Pa (the details can be found in

Appendix C) such that

ιaK = −dPa . (7.29)
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On the other hand, we say that a Hodge-Kähler manifold M is special Kähler of

the rigid type if for some section Ω, the Kähler two form is given by

K = − i

2π
∂∂̄
(
i
〈
Ω|Ω̄

〉)
, (7.30)

where the holomorphic section Ω have the following structure

Ω =

(
Y I

FJ

)
(7.31)

with I, J = 1, . . . , n. As in the local case, the Kähler potential K can be related to the

holomorphic section Ω,

K =
(
i
〈
Ω|Ω̄

〉)
=
[
i
(
Ȳ IFI − F̄JY J

)]
(7.32)

The rigid special geometry is then defined by the following set of differential equations:

∂ı̄Ω = 0,

Ui = ∂iΩ,

∇iUj = iCijkg
kl̄Ūl̄,

where ∇i is the covariant derivative with respect to the Levi-Civita connection.

7.2.2 Hypergeometry

In a N = 2 four-dimensional supergravity theory coupled to hypermultiplets, there

are 4 real scalar fields for each hypermultiplet which can be seen locally as the four

components of a quaternion. As in the special geometry, there are two kinds of hy-

pergeometry. The local one is described by a Quaternionic geometry, meanwhile the

rigid one is described by a HyperKähler geometry. Both manifolds correspond to a

4nH-dimensional real manifold endowed with a metric h

ds2 = huv (q) dqu ⊗ dqv (7.33)

with u, v = 1, . . . , 4nH ; and three complex structures satisfying the quaternionic algebra

JxJy = −δxy + εxyzJz. (7.34)
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Let us consider a triplet of Kx 2-form named the HyperKähler form,

Kx = Kx
uvdq

u ∧ dqv , Kx
uv = huw (Jx)wv . (7.35)

The HyperKähler 2-form is covariantly closed

∇Kx ≡ dKx + εxyzωy ∧Kz = 0 (7.36)

with respect to an SU (2) connection ωx.

We say that a quaternionic manifold is a 4nH-dimensional manifold such that the

curvature associated to the SU (2) connection is proportional to the HyperKähler 2-

form

Ωx ≡ dωx +
1

2
εxyzωy ∧ ωz = λKx. (7.37)

While a HyperKähler manifold is a 4nH-dimensional manifold such that

Ωx = 0. (7.38)

In particular, the quaternionic Kähler manifoldMQK has a holonomy groupHol (MQK (nH)) =

SU (2) ⊗ H where H ⊂ Sp (2nH ,R) is some subgroup of the symplectic group in

D = 2nH . Then, introducing flat indices {A,B,C = 1, 2}, {α, β, γ = 1, . . . , 2nH} that

run in the fundamental representation of SU (2) and Sp (2nH ,R), respectively, we can

find a vielbein 1-form

UAα = UAαu (q) dqu, (7.39)

such that

huv = UAαu UBβv CαβεAB, (7.40)

where εAB = −εBA and Cαβ = −Cβα are the Sp (2) ∼ SU (2) and the flat Sp (2nH ,R)

invariant matrix, respectively.

The vielbein 1-form UAα is covariantly closed with respect to the SU (2)-connection

ωz and to some Sp (2nH) Lie algebra valued connection ∆αβ = ∆βα

∇UAα ≡ dUAα +
1

2
iωx

(
εσxε

−1
)A
B
∧ UBα + ∆αβ ∧ UAγCβγ = 0. (7.41)

Additionally, it satisfies the following relations

UAα ≡
(
UAα

)∗
= εABCαβUBβ, (7.42)

UAαu UBαv =
1

2
huv δ

B
A +

i

2
Kx
uv (σx)A

B . (7.43)
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7.3 General N = 2 gauging

In the present section, following ref. [73], we briefly review the most general gauging

of N = 2 supergravity involving both electric and magnetic charges. In particular,

the discussion presented here generalize the identities given in ref. [81] to electric-

magnetic gaugings. The results discussed here will be relevant to the very specific

electric-magnetic abelian gaugings in which the rigid limit of a spontaneously broken

N = 2 supergravity is approached.

Let us first consider anN = 2 supergravity model coupled to n vector multiplets and

nH hypermultiplets. The theory consist of n complex scalars zi and 4nH hyperscalars

qu parameterizing a special Kähler manifoldMSK and a quaternionic Kähler manifold

MQK , respectively, such that

Mscalar =MSK ×MQK (7.44)

Let us now consider the general gauging of a gauge group G in the isometry of

the scalar manifold Mscalar. According to ref. [83], it is possible to write the gauge

generators as components of an electric-magnetic vector XM =
(
XΛ, X

Λ
)
. Let ta, tn

be the generators of the isometry groups of MSK and MQK , respectively, and let θ a
M

be the embedding tensor such that

XM = θM
a ta + θM

n tn . (7.45)

The symplectic matrices X P
MN = θ a

M t P
aN describe the symplectic electric-magnetic

duality action of XM . In particular, the following set of linear and quadratic constraints

on the embedding tensor

X(MNP ) ≡ X(MN
QCQ|P ) = 0 , (7.46)

ΘM
aΘN

bfab
c +XMN

P ΘP
c = 0 , (7.47)

ΘM
mΘN

nfmn
p +XMN

P ΘP
p = 0 , (7.48)

ΘM
aCMNΘN

b = ΘM
aCMNΘN

n = ΘM
mCMNΘN

n = 0 . (7.49)

assures the consistency of the gauging. One can see that the conditions (7.47) and

(7.48) are equivalent to

[XM , XN ] = −XMN
P XP . (7.50)
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It is possible to define gauge Killing vectors and momentum maps as

kM ≡ ΘM
a ka , PM ≡ ΘM

aPa , PxM ≡ ΘM
mPxm . (7.51)

Additionally, the equivariance conditions,

igi̄ k
i
[M k̄N ] =

1

2
XMN

P PP , (7.52)

2Kx
uv k

u
M kvN + εxyz PyM P

z
N = XMN

P PxP , (7.53)

can be found from the quadratic constraints and the following eqs. (see Appendix C),

igi̄ k
i
[a k

̄
b] = −1

2
fab

c (Pc − Cc) , (7.54)

2Kuv k
u
n k

v
m − λ εxyz Pyn Pzm = −fmnpPxp . (7.55)

Interestingly, using the linear constraint (7.46) on the embedding tensor it is possible

to prove the following identities

PMΩM = 0 , kiM ΩM = 0 . (7.56)

Indeed, using some relevant relations of the Appendix C,

Pa = −V N taNMV
M

= −V N
taNM V P , (7.57)

we find for the gauge-momentum maps the following relation,

PM = −eKXMNPΩ
N

ΩP .

Then, contracting both sides with ΩM and using the linear constraint (7.46), we have

ΩMPM = −eK ΩMXMNPΩ
N

ΩP =
eK

2
Ω
N
XNMPΩMΩP , (7.58)

where we have used the symplectic property of the matrices X P
MN given by

2X(MP )N = −XNMP , (7.59)

with XMNP ≡ XMN
QCQP . Then, using the general property,

taMNΩMΩN = 0 , ∀ta ,
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we finally find the first identity,

ΩMPM = 0.

On the other hand, the second identity of (7.56) can be proven using the first identity

as

ΩM kiM = i gi̄ ΩM ∂̄PM = i gi̄ ∂̄(Ω
M PM) = 0 . (7.60)

Interestingly, from (7.56), the following relations can be deduced

Di(V
MPM) = 0 ⇒ UM

i PM + V M∂iP = 0 ⇒ UM
i PM + i gi̄ k

̄
MV

M = 0 . (7.61)

Then, contracting the following equation

kia U
M
i = −taNM V N + iPa V M ,

with the embedding tensor, we find

kiM UP
i = −XMN

P V N + iPM V P . (7.62)

Besides, using the first identity of (7.56) and contracting both sides with V̄ M , we find

the relation

V
M
kiM UP

i = −XMN
P V

M
V N . (7.63)

Eventually, using the quadratic constraints (7.50) and contracting both sides with ΘP

we have

V
M
kiM UP

i ΘP = −XMN
P V

M
V NΘP = XNM

P V
M
V NΘP = −V Mkı̄M U

P

ı̄ ΘP . (7.64)

7.3.1 The general Ward identity

The supersymmetry variation terms of the gauged Lagrangian, which are quadratic

in the embedding tensor, are canceled by the supersymmetry Ward identity [84, 85].

The Ward identity expresses a relation between the scalar potential V (z, z, q) and the

fermionic shift matrices in the following way

gi̄W
i ACW

̄

BC + 2Nα
ANα

B − 12SACSBC = δBA V(z, z̄, q) , (7.65)
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where W i AC , Nα
B, SAB are the supersymmetry shift-matrices of the chiral gaugini λi,

hyperini ζα and gravitini ψA, respectively. In particular, we use the following conven-

tion

vA = εAB v
B , vA = εBA vB , vα = Cαβ v

β , vα = Cβα vβ . (7.66)

Let us consider the generic dyonic gauging of N = 2 supergravity and let us prove

the Ward identity for this particular case. Here, the fermionic shifts is generalized to

the following symplectically-invariant expressions

W i AB = εAB kiM V
M − i (σx)C

BεCAPxM gi̄U
M

̄ , (7.67)

SAB =
i

2
(σx)A

CεBC PxM V M , (7.68)

Nα
A = 2UAu α kuM V

M
, Nα

A ≡ (Nα
A)∗ = −2 UuAα kuM V M . (7.69)

Then, the right hand side of eq. (7.65) can be decomposed explicitly in a singlet and a

triplet of SU (2)

gi̄W
i ACW

̄

BC + 2Nα
ANα

B − 12SACSBC = δAB V(z, z̄, q) + i Zx (σx)B
A , (7.70)

where the general symplectic invariant expression of the scalar potential is given by

V(z, z̄, q) = (kiMk
̄
Ngi̄ + 4huvk

u
Mk

v
N)V

M
V N + (UMN − 3V MV

N
)PxNPxM ,

generalizing to dyonic gaugings. On the other hand,

Zx = (−2XMN
P PxP + 2 εxyz PyMP

z
N + 4Kx

uvk
u
M kvN)V

M
V N ,

which, from the equivariance condition (7.53), it equals to zero so that the Ward identity

is proven. The explicit expression of the left hand side of the eq. (7.65) can be found

in Appendix D.

7.3.2 Abelian gauging of quaternionic isometries

Let us now consider the gauging considered in ref. [73], which involves an abelian

group of quaternionic isometries. Since we consider only gauging of quaternionic isome-

tries, such that the generalized structure constants vanish

X P
MN = 0, (7.71)
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we have that eq. (7.53) implies

Kx
uvk

u
M kvN = −1

2
εxyz PyMP

z
N . (7.72)

Using eq. (7.72), it is possible to show that the three fermionic-shifts cancel against

one another

gi̄W
i ACW

̄

BC → −εxyz PyMP
z
NV

M
V N , (7.73)

2Nα
ANα

B → −2 εxyz PyMP
z
NV

M
V N , (7.74)

−12SACSBC → 3 εxyz PyMP
z
NV

M
V N . (7.75)

The objective of the present chapter it to consider the rigid limit of the Ward identity

(7.65) to a rigid supersymmetric theory of vector multiplets [70, 71, 72, 87, 88]. In

particular, according to refs. [72, 88], the Ward identity of the rigid theory in presence

of n vector multiplets is given by

g̊i̄ W̊
i ACW̊

̄

BC = δAB V(APT )(z, z̄) + CB
A . (7.76)

Here, V (APT )(z, z̄) corresponds to the N = 2 scalar potential in the spontaneously

broken rigid theory which reproduce the APT one in the case n = 1 and g̊i̄ is the metric

of the rigid special Kähler manifold parameterized by the scalar fields zi. On the other

hand, C A
B is a SU (2)-traceless matrix which allows partial breaking of supersymmetry

if C A
B 6= 0. Interestingly, this occurs for gauging involving non-commuting electric and

magnetic charges [71].

The relations (7.73), (7.74) and (7.75) allow us to understand the meaning of the

matrix C A
B by relating the supergravity Ward identity (7.65) to the rigid one (7.76).

In fact, rewriting the Ward identity (7.65) as

gi̄W
i ACW

̄

BC = δBA V(z, z̄, q)− 2Nα
ANα

B + 12SACSBC , (7.77)

it is possible to show that all squared fermionic shift matrices survive in the rigid limit

in which the Planck mass MPl is sent to infinity. In particular, the left-hand side of

(7.77) corresponds to the left-hand side of (7.76). While the constant matrix C A
B have

contributions from the hyperini and gravitini shift-matrices proportional to σx. Then,

using eqs. (7.74) and (7.75), we find that

CB
A = lim

MPl→∞

M4
Pl

Λ4

(
−i εxyz PyMP

z
NV

M
V N(σz)B

A
)
, (7.78)
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where Λ corresponds to the supersymmetry breaking scale. The same fermionic shift-

matrices also contribute to the terms proportional to δAB affecting the scalar potential

form in the rigid theory. Indeed, according to the explicit value of Nα
ANα

B, S
ACSBC

(see Appendix D), we have

V(APT )
N=2 = lim

MPl→∞

M4
Pl

Λ4

[
V(z, z̄, q)− (4huv k

u
Mk

v
N − 3PxMPxN)V

M
V N
]
. (7.79)

We shall see in the next section that, in the rigid limit, the leading order terms in

Θ n
N V N depend only on the hyperscalars qu, such that

V(APT )
N=2 = lim

MPl→∞

M4
Pl

Λ4
[V(z, z̄, q)] + A(q) . (7.80)

Thus, the N = 2 scalar potential of the rigid theory V(APT )
N=2 is given by the rigid limit

of the supergravity potential V modulo an unphysical additive constant. Indeed, the

fluctuations of the hyperscalars qu are suppressed in the rigid theory by a factor M−1
Pl

so that they are non-dynamical.

7.4 Partial breaking of N = 2 to N = 1 supersym-

metry in presence of n vector multiplets

In this section, following ref. [73] we present a partial breaking of N = 2 to N = 1

supersymmetry. In particular, we consider a supergravity model which, in the low

energy limit, gives rise to a rigid supersymmetric theory. The rigid supersymmetric

theory obtained here corresponds to a generalization of the APT model [71] to a generic

number n of vector multiplets. Interestingly, the procedure approached here admits

a well defined limit to the supersymmetric Born-Infeld theory generalized to n vector

multiplets.

The N = 2 supergravity model considered here, consists of n vector multiplets and

a single hypermultiplet, whose scalars parameterize the quaternionic manifold

MQK =
SO (4, 1)

SO (4)
. (7.81)

Following the procedure of ref. [72], let us consider a symplectic section

ΩM
(
zi
)

=

(
XΛ (zi)

FΛ (zi)

)
Λ = 0, I, I, i = 1, . . . , n, (7.82)
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in a symplectic frame in the presence of a holomorphic prepotential. Then using special

coordinates zi = X i/X0δiI , we have

F
(
XΛ
)

= −i
(
X0
)2
f
(
X i/X0

)
, (7.83)

so that, choosing

XΛ =

{
X0 = 1

X i = zi
, (7.84)

we found

FΛ =

{
F0 = ∂F/∂X0 = −i (2f − zi∂if)

Fi = ∂F/∂X i = −i∂if
, (7.85)

Ω =


1

zi

−i (2f − zi∂if)

−i∂if

 . (7.86)

In particular the Kähler potential is given by

K = − ln
[
i
(
X̄ΛFΛ −XΛF̄Λ

)]
,

= − ln
[
2
(
f + f̄

)
− (z − z̄)i

(
∂if − ∂if

)]
.

In order to generalize the procedure of ref. [72] to the n vector multiplets case, it is

necessary to consider a rigid limit µ = MPl/Λ→∞, leading to partial breaking N = 2

to N = 1 in a rigid supersymmetric theory. In particular, MPl denotes the Planck

scale and Λ the scale of partial supersymmetry breaking. As shown in ref. [72], the

presence of a linear term in the expansion of the prepotential f(z) in powers of 1
µ

was

crucial in the derivation of partial breaking N = 2 to N = 1. In particular, in ref.

[72], the prepotenial f(z) was given by

f (z) =
1

4
+

z

2µ
+
φ(z)

2µ2
+O

(
1

µ3

)
. (7.87)

In our case, the generalization is obtained by introducing a set of n constant parameters

ηi, so that the holomorphic prepotential f (zi) takes the form

f
(
zi
)

=
1

4
+
ηiz

i

2µ
+
φ(zi)

2µ2
+O

(
1

µ3

)
. (7.88)
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Using the definition introduced in the previous section, we found for the Kähler poten-

tial, up to order µ−3

K =
κ(1)

µ
+

κ̊

µ2

= −ηi (z + z̄)i

µ
− 1

µ2

φ+ φ̄− (z − z̄)i
(
∂iφ− ∂iφ

2

)
−

(
ηi (z + z̄)i

)2

2

 .(7.89)

Then, from eq. 7.89, one finds

gi̄ = ∂i∂̄K

=
1

µ2
g̊i̄ =

1

µ2

{
ηiηj −

1

2

(
∂ijφ+ ∂ijφ

)}
, (7.90)

where g̊i̄ corresponds to the rigid special Kähler metric, which can be derived, in terms

of the (rigid) Sp(2n)-symplectic section

Ω̂M =

(
zi

∂iF

)
=

(
zi

i
2
(ηiηjz

j − ∂iφ)

)
, M = 1, · · · , 2n , (7.91)

from the (rigid) prepotential

F =
i

4

[(
ηiz

i
)2 − 2φ

]
. (7.92)

In fact,

Fi̄ = ∂i∂̄F =
i

2
(ηiη̄ − ∂i∂̄φ)

=
i

4

(
∂i∂̄φ− ∂i∂̄φ

)
+
i

2

(
ηiηj −

1

2

(
∂i∂̄φ+ ∂i∂̄φ

))
=

i

4

(
∂i∂̄φ− ∂i∂̄φ

)
+
i

2
g̊i̄,

which can be written as

Fi̄ = τ1i̄ + iτ2i̄,

and where we have defined

τ1i̄ ≡
i

4

(
∂i∂̄φ− ∂i∂̄φ

)
,

τ2i̄ ≡
g̊i̄
2
.
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The covariantly holomorphic symplectic section V M ≡ eK/2ΩM has the following

expansion

V M =


1− 1

2µ
ηi (z + z̄)i +O (1/µ2)

zj − 1
2µ
ηi (z + z̄)i zj +O (1/µ2)

−i
[

1
2

+ 1
2µ

{
ηiz

i − 1
2
ηi (z + z̄)i

}]
+O (1/µ2)

− i
2µ
ηj +O (1/µ2)

 . (7.93)

On the other hand, the symplectic section UM
i denotes the Kähler-covariant derivative

of the symplectic section given by

UM
i = DiV

M = ∂iV
M +

∂iK
2
V M .

Then using special coordinates (eq. (7.82)) we can write

UM
i =

(
1 +
K̊(1)

2µ
+

1

2µ2

[
K̊ + K̊(1)2/4

])

×




0

δji

−i
(
ηi
2µ

+ 2
2µ2

[∂iφ− ∂ijφ zj] +O (1/µ3)
)

−i∂ijφ
2µ2


+

[
−ηi
µ
− 1

µ2

(
1

2

[
∂iφ+ ∂iφ

]
− [z − z̄]k

∂ikφ

2
− ηiηk [z + z̄]k

)]

×


1

zj

−i
(

1
2

+ ηiz
i

2µ
+O (1/µ2)

)
−i
(
ηj
2µ

+O (1/µ2)
)




,

UM
i =


−ηi

µ
+ 1

2µ2

(
−
[
∂iφ+ ∂iφ

]
+ ∂ijφ [z − z̄]j + 3ηiηj [z + z̄]j

)
+O (1/µ3)

δji − 1
µ

(
1
2
ηk (z + z̄)k δji + ηiz

j
)

+O (1/µ3)

− i
4µ2

([
∂iφ− ∂iφ

]
− ∂ijφ [z + z̄]j + 2ηiηjz

j
)

+O (1/µ3)

− i
2µ2

(∂ijφ− ηiηj) +O (1/µ3)

 .

(7.94)
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The physical meaning of the constant parameters ηi appearing in the symplectic section

Ω̂M and in the metric g̊i̄ of the rigid theory will be clarified in the following subsection.

Let us now consider a gauging of two translational isometries in the hypermultiplet

sector involving both electric and magnetic charges [89, 90]. To this purpose, we

express the gauge generators XM ≡ (XΛ, X
Λ) in terms of the isometry generators tm,

m = 1, . . . , dimG, of the quaternionic Kähler manifold MQK through an embedding

tensor [80, 83],

XM = θM
m tm . (7.95)

Then, we choose an abelian gauging involving only two translational isometries tm

(m = 1, 2) and the embedding tensor as

Θ m
M =

(
Θ 1
M ,Θ

2
M

)
=


Θ 1

0 Θ 2
0

Θ 1
i Θ 2

i

Θ0 1 Θ0 2

Θi 1 Θi 2

 =


e/µ2 σ/µ2

0 0

0 0

mi/µ 0

 . (7.96)

The embedding tensor Θ m
M depends on constant charges e, σ,mi and satisfies the lo-

cality condition

CMNΘ m
M Θ n

N = 0 , where CMN =

(
0 1

−1 0

)
. (7.97)

The embedding tensor Θ m
M relates the embedded Killing vectors k u

M =
(
k u

Λ , kΛ u
)

to the geometrical Killing vectors k u
m (m = 1, . . . , dimG) generating the isometry group

G of MQK through

k u
M = Θ m

M k u
m . (7.98)

In particular, the fermionic shifts δ
(Θ)
ε of the supersymmetry transformation laws

can be written in a symplectic covariant way using the embedding tensor Θ m
M . Indeed,

in our N = 2 matter-coupled supergravity, we have

δ(Θ)
ε λi A = W i ABεB, (7.99)

δ(Θ)
ε ψA µ = iSABγµε

B, (7.100)

δ(Θ)
ε ζα = Nα

Aε
A, (7.101)
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where

W i AB = igi̄ (σx) B
C εCAU M

̄ Θ α
M Pxα, (7.102)

SAB =
i

2
(σx) C

A εBCV
MΘ α

M Pxα, (7.103)

Nα
A = −2UαA|ukuαV MΘ α

M . (7.104)

Let us note that, since our gauging does not involve special Kähler isometries, we have

set kiM = 0. Here, UαA|u is the vielbein of the quaternionic manifold, which can be

parametrized as [72]:

UαA = UαA|udqu =
1

2
εαβ
[
−dϕδβA − ieϕd~q · ~σ A

β

]
. (7.105)

On the other hand, (σx) C
A are the standard Pauli matrices and Pxm correspond to

the quaternionic momentum maps associated with the quaternionic isometries through

(see Appendix C)

Pxm = −k u
m ωxu. (7.106)

Here ωxu denotes the SU(2)-connection on the quaternionic Kähler manifoldMQK . Let

us note that the eigenvalues of the mass matrix SAB correspond to the gravitino masses
1.

In particular, the momentum maps can be chosen as

Pxm = (Px1 ,Px2 ) = δxme
ϕ,

with

Px1 = (0, 1, 0) eϕ, (7.107)

Px2 = (0, 0, 1) eϕ. (7.108)

7.4.1 Partial supersymmetry breaking

The partial supersymmetry breaking is recovered considering the limit µ = MPl

Λ
→

∞. To explicitly perform the limit on the fermionic shifts (which are written in natural

1In the supersymmetry partially broken case, only one of them, m3/2is different from zero.
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units c = ~ = MPl = 1) it is convenient to reintroduce the appropriate dependence on

the Planck Mass MPl and on the supersymmetry breaking scale Λ. On the other

hand, Taking into account that the gravitino mass is related to the scale Λ through

Λ2 = MPlm 3
2
, and that the Special-Kähler metric rescales according to (7.90), the

canonically normalized kinetic terms are recovered by the following rescaling [72],

xµ →MPlx
µ, ε→M

1/2
Pl ε,

ψµ →M
−3/2
Pl ψµ, λ→

(
MPlΛ

2
)−1/2

λ, ζα →M
−3/2
Pl ζα.

(7.109)

Them, using the rescaling of eq. (7.109) we find in the rigid limit that the fermionic

shifts read

δλi A = −iΛ2εCA
[̊
gi̄
(
ex̄ − τ1̄km

k x
)

+
i

2
mi x

]
(σx) B

C eϕεB,

δψA µ = −Λ2

2
εBC

[
ex − iηj

2
mj x

]
(σx) C

A eϕεB,

δζα = −iΛ2εαβ
[
ex − iηj

2
mj x

]
(σx)αA e

ϕεA, (7.110)

where we have defined

ex = (0, e, σ) = (0, em) ,

mi x =
(
0,mi, 0

)
= (0,mim) , (7.111)

exi = ηie
x.

Let us note that the hypermultiplet decouples in the rigid theory meanwhile the mo-

mentum maps PxM reduce to constant Fayet-Iliopoulos terms

PxM =
(
mix, exi

)
.

The relation between them can be read explicitly from the gaugino shift:

g̊iŪM
̄ PxM =

eϕ

µ

[̊
gi̄
(
ex̄ − τ1̄km

k x
)

+
i

2
mi x

]
=
eϕ

µ
g̊i̄ŪM̄ PxM . (7.112)

Here UMj are related to the rigid symplectic sections by UMj = ∂jΩ̂
M.
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Interestingly, the case of one vector multiplet (n = 1), is recovering setting ηi = 1

in the eq. (7.110) reproducing the results of ref. [72] leading to the APT model.

It is important to clarify that the FI terms are expressed not only in terms of the

components of the embedding tensor (e, σ,mi) but also in terms of the parameters ηi

characterizing the special geometry. We shall show in the next subsection that we can

reformulate the theory in a symplectic frame leading to a more clear interpretation of

the FI terms.

7.4.2 Interpretation of the constant parameters ηi

It is well known that partial supersymmetry breaking in rigid supersymmetry can

occur, provided one evades previously stated no-go theorems [75, 76]. Indeed, the

partial breaking of supersymmetry crucially requires that the quantity ξx, defined by

ξx ≡ 1

2
εxyzPyMPzNCMN = εxyzeyim

zi 6= 0, (7.113)

be different from zero. As shown in [88], this condition is also necessary to achieve

a multi-field generalization of the Born-Infeld theory in the low energy limit. This

relation seems to be an non-locality condition. Nevertheless, the locality condition is

satisfied in the rigid theory due to the choice of the embedding tensor (7.96)

Θm
MΘn

NCMN = 2Θi[mΘ
n]
i = 0. (7.114)

Thus, recalling the definition of the momentum maps PxM = PxmΘm
M, the condition

εxyzPyMPzNCMN = 0 is satisfied in the chosen frame. Indeed, the momentum maps

in supergravity PxM and the Fayet-Iliopoulos terms PxM of the rigid theory are related

through (7.112) which involves the contribution from the index 0 of the symplectic

section, keeping a memory of the graviphoton. On the other hand, the geometry of

the rigid theory in the chosen coordinate frame depends in a non trivial way on the

constant parameters ηi.

Interestingly, the ηi required in order to implement partial supersymmetry breaking

(with its BI low energy limit) can be traded with charges through a symplectic rotation.

This involves a redefinition of the special coordinates in the underlying supergravity

theory.
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In fact, let us consider the symplectic transformation in supergravity

S(η, µ) =


1 ηi/µ 0 0

0 1
µ
1n 0 0

0 0 1 0

0 0 −ηi µ1n

 (7.115)

which induces the following rotation in the symplectic section Ω (7.82):

Ω̃ = S · Ω =


X0 + 1

µ
ηiX

i

1
µ
X i

F0

µFi − ηiF0

 =


X̃0

X̃ i

F̃0

F̃i

 . (7.116)

The new holomorphic prepotential is then F̃ (X̃) = F (X). Since the new special

coordinates z̃i are related to the old ones by z̃i = zi

µ+ηjzj
= 1

µ
ωi, then the reduced

prepotential f̃(z̃) is related to f(z) by (see (7.83)):

f̃(z̃) = (1 +
1

µ
ηjz

j)−2f(z)

that gives

f̃(z̃) =

(
1

4
+

1

2µ2
φ̃(z̃) +O(

1

µ3
)

)
(7.117)

where φ̃(z̃) is related to φ(z) by

φ̃(z̃) = φ(z)− 1

2
(ηiz̃

i)2≡ Φ(ω).

Interestingly, after the symplectic rotation, we note that the covariantly holomorphic

symplectic sections Ṽ M and ŨM
i can be written in the rigid limit µ→∞ as

Ṽ M =


X0

0

F0

0

 +
1

µ


0

X̊I(ω)

0

F̊I(ω)

 +O
(
1/µ2

)
; (7.118)

ŨM
i =

1

µ


0

∂iX̊
I

0

∂iF̊I

 +O
(
1/µ2

)
. (7.119)
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Here, the special coordinates X̊I(ω) = ωi, F̊I(ω) = ∂Φ
∂ωi describe the symplectic section

of the rigid theory Ω̊M ≡ (X̊I , F̊I) (I = 1, · · ·n). Let us note that in the new frame the

symplectic structure Sp(2n+ 2) of the supergravity theory flows in the rigid limit to a

manifest Sp(2n) structure. Interestingly, the 0-directions have a different µ-rescaling

with respect to the M directions.

On the other hand, the embedding tensor (7.96) is also modified by the symplectic

transformation (7.115)

Θ̃m
M = Θm

N · (S−1)NM =
1

µ2

(
em,−ηiem, ηimim,mim

)
=

1

µ2
Θ̊m
M , (7.120)

where Θ̊m
M corresponds to the embedding tensor of the rigid theory.

In this new frame the parameters ηi play the role of charges, since Θ̃m
i = ηie

m are

the electric charges associated with the vector multiplets. While Θ̃0m = ηim
im is the

magnetic charge associated with the graviphoton. Note that in the old frame both of

them were zero.

Consequently, the new embedding tensor (7.120) obeys the same locality condition

(7.97) as the old one. The difference is given by

Θ̃Λ[mΘ̃
n]
Λ = 0 ⇒ Θ̃0[mΘ̃

n]
0 = −Θ̃i[mΘ̃

n]
i =

1

µ4
emηim

in 6= 0 . (7.121)

Additionally, unlike the old frame, in the new frame the graviphoton is identified with

the 0 direction of the vector field strengths. Due to the decoupling of the graviphoton

from the spectrum, we find that the rigid supersymmetric theory found as low energy

limit of supergravity in the new frame is actually non local. Thus, with the new

embedding tensor, eq. (7.113) express indeed the non locality of the rigid theory.

The effects of the non-locality (7.121) is intimately related to the supersymmetric

structure. Indeed, the supergravity modes associated with the underlying N = 2

supergravity theory still freely propagate in the rigid theory. Consequently, the SU (2)-

Lie algebra valued term C B
A which appears in the rigid Ward identity (7.76) can be

understood as the contribution to the Ward identity from gravitini and hyperini, still

propagating in the rigid theory.

This non-locality of the rigid theory hints toward a high-energy interpretation in

terms of a non-triviality of the fiber bundle associated with the graviphoton. Interest-

ingly, this non-locality poses no obstruction to a correct definition of the vector fields
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AIµ in the rigid theory, by virtue of an interesting mechanism. According to refs.

[83, 89, 91, 92], the natural symplectic frame to deal with magnetic charges mΛn is ro-

tated with respect to the purely electric frame. In particular, this allows the presence

of antisymmetric tensors Bnµν , coupled to the gauge fields AΛ in the combinations

F̂Λ
µν = FΛ

µν + 2mΛnBnµν . (7.122)

A generic feature of magnetic gaugings in supergravity is the fact that the vector fields

AΛ
µ corresponding to non-vanishing magnetic components of the embedding tensor ΘΛm,

are not well defined since the corresponding field strengths FΛ
µν are not covariantly

closed. This poses no problem because such vector fields, in a vacuum, are “eaten” by

the tensor ones Bn and become their longitudinal components by virtue of the “anti-

Higgs” mechanism [93]. In the rigid limit, as we shall show, the antisymmetric tensor

fields decouple, thus preventing the anti-Higgs mechanism from taking place, so that

the vectors AIµ survive and become well defined.

The N = 2 supersymmetric Free Differential Algebra in four dimensions contains,

in the case where the antisymmetric tensors dualize scalars in the quaternionic sector

F̂ (2)Λ ≡ dAΛ + 2mΛnBn + (LΛ(z)ψ̄A ∧ ψBεAB + h.c.) (7.123)

H(3)
n ≡ dBn +

i

2
Pxn (σx) BA ψ̄B ∧ γaψA ∧ V a (7.124)

where

V M =

(
LΛ

MΣ

)
and Pxn are functions of the hyperscalars [90]. Then, one can see that the closure of

the free differential algebra requires

dF̂Λ = ΘΛn
(

2Hn − iPxn (σx) BA ψ̄B ∧ γaψA ∧ V a
)
. (7.125)

In the low energy limit the hyperscalars are not suppresed but tend to constants. In-

deed, Θ n
MPxn becomes constants Θ n

MPxn 6= 0 whose non-zero indices Θ n
MPxn yield the FI

parameters. Then, from the expression (7.125), taking account the decoupling of the

tensor fields, the clousure of the supersymmetric free differential algebra gives

dF̂ I ∝ iΘI nPxn (σx) BA ψ̄B ∧ γaψA ∧ V a + · · · 6= 0 . (7.126)
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Thus, the magnetic FI terms parametrize a non-locality only along the fermionic di-

rections of superspace, thus not affecting the well-definiteness of AIµ. The eq. (7.126)

is the superspace counterpart of the fact that, on space-time, the commutator of two

supersymmetries acts on the gauge field AIµ as a gauge transformation, as observed in

[72] and, in the multi-vector field case, in [88].

7.5 The rigid limit: N = 1 Supersymmetric La-

grangian

In this section we present the rigid limit of the N = 2 Supergravity action corre-

sponding to partial breaking of supersymmetry.

Following ref. [73], we shall consider the symplectic frame defined in the previous

section whose gauging structure involve the presence of magnetic charges. Then, the

natural framework to perform the limit is the formalism in which the scalars of the

hypermultiplets are Hodge-dualized to antisymmetric tensor BIµν [83, 89, 90, 91, 92].

Before to perform the rigid limit, it is convenient to introduce the appropriate scale

dimensions in the Lagrangian. In particular, we shall first explicitly write the cor-

rect Planck-mass MPl dependence of the physical fields in the N = 2 supergravity

Lagrangian. This leads us, after perform the low energy limit µ = MPl

Λ
→ ∞, to the

appropriate redefinitions of the physical fields appearing in the N = 1 rigid supersym-

metric theory.

The canonical scale dimensions of the fields of the theory in natural units c = ~ = 1

are

[xµ] = M−1 , [∂µ] = M , [AΛ
µ ] = [Bx

µν ] = M , [zi(can.)] = [qu(can.)] = M,

[ψAµ ] = [λA] = [ζα] = M3/2 , [εA] = M−1/2 .

On the other hand, the symplectic-covariant embedding tensor Θm
M given by eq. (7.120)

is adimensional. Since the scalars zi, qu appear in the theory through non-linear sigma-

models, we will keep them adimensional so that zi ≡ zi(can.)/MPl, q
u ≡ qu(can.)/MPl.

Then, the Lagrangian of ref. [90] can be reorganized in terms of Planck-scale powers,

up to four fermions terms,

L = L(4) + L(2) + L(1) + L(0) + L(−1). (7.127)
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In particular, we have

L(4) = M4
PlV(z, q) (7.128)

L(2) = M2
Pl

(
−R

2
+ gi̄∂

µzi∂µz̄
̄ + huv∂µq

u∂µqv
)

(7.129)

L(1) = MPl

{
(− ε

µνρσ

√
−g

)

[
2Hm|νρσA

m
u ∂µq

u +
1

2
Bm|µνΘ

m
Λ

(
F̂Λ
ρσ −MPl

1

2
Θ ΛnBn|ρσ

)]
+

+
(
2SABψ̄

A
µ γ

µνψBν + igi̄W
iABλ̄̄Aγµψ

µ
B + 2iNA

α ζ̄
αγµψ

µ
A

+Mαβ ζ̄αζβ +Mα
iB ζ̄αλ

iB +MiAjBλ̄
iAλjB + h.c.

)}
(7.130)

L(0) = i
(
N̄ΛΣF̂−Λ

µν F̂−Σµν −NΛΣF̂+Λ
µν F̂+Σµν

)
+ 6MmnHmµνρH µνρ

n +

+
εµνλσ√
−g
(
ψ̄Aµ γνρA|λσ − ψ̄A|µγνρAλσ

)
− i

2
gi̄
(
λ̄iAγµ∇µλ

̄
A + λ̄̄Aγ

µ∇µλ
iA
)

+

−i
(
ζ̄αγµ∇µζα + ζ̄αγ

µ∇µζ
α
)

+

−gi̄∂µz̄ ̄
(
ψ̄µAλ

iA − λ̄iAγµνψAν + h.c.
)
− 2UαAu ∂µq

u
(
ψ̄µAζα − ζ̄αγ

µνψAν + h.c.
)

(7.131)

L(−1) = M−1
Pl

{
F̂−Λ
µν IΛΣ

[
LΣψ̄AµψBνεAB − 4if̄Σ

ı̄ λ̄
ı̄
Aγ

νψµBε
AB +

1

2
∇if

Σ
j λ̄

iAγµνλjBεAB+

−LΣζ̄αγ
µνζβCαβ

]
+ h.c.+

+2MmnH µνρ
m

[
U Aα
n

(
3iψ̄Aµγνρζα + ψ̄Aµζα

)
+ i∆ β

nα ζβγµνρζ
α
]}

.

(7.132)

Here, huv, A
m
u and Mmn correspond to the components of the quaternionic metric

after dualization of the scalars qm to antisymmetric tensors Bm|µν . On the other hand

F±Λ
µν = 1

2

(
FΛ
µν ± i

2
εµνρσFΛρσ

)
and F̂Λ

µν := FΛ
µν+ 1

2
ΘΛmBµνm are the gauge-field-strengths

undergoing the anti-Higgs mechanism introduced in (7.123) 2. The mass-matrices are

2In a symplectic frame, where the gauge fields undergo the standard Higgs-mechanism by coupling

to the scalars in the quaternionic sector (not dualized to antisymmetric tensors), the gauge-covariant

derivative in the quaternionic sector is defined as

∇µqu = ∂µq
u +M−1

Pl A
Λ
µΘ α

Λ k uα .
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given by

W i AB = igi̄ (σx) B
C εCAU M

̄ Θ m
M Pxm, (7.133)

SAB =
i

2
(σx) C

A εBCV
MΘ m

M Pxm, (7.134)

Nα
A = −2UαA|ukumV MΘ m

M , (7.135)

Mαβ = −UαAu UβBv εABΘ m
M ∇[ukv]

mV
M , (7.136)

Mα
iB = −4UαBuΘ m

M kumU
M
i , (7.137)

MiAjB =
i

3

(
σxε
−1
)
AB

Θ m
M Pxm∇jU

M
i . (7.138)

To perform the rigid limit µ→∞ of the Lagrangian, we have to consider the limit

of the various couplings in the Lagrangian. We shall identify the fields of the rigid

supersymmetric theory with a ring, in order to distinguish them from the supergravity

fields. In particular, the special-geometry sigma-model metric in supergravity is related

to its counterpart g̊i̄ in the rigid limit by:

gi̄ =
1

µ2
g̊i̄ , (7.139)

so that the kinetic terms of scalars and spinors in the vector multiplets read

1

µ2
g̊i̄

[
M2

Pl∂
µzi∂µz̄

̄ − i

2

(
λ̄iAγµ∇µλ

̄
A + λ̄̄Aγ

µ∇µλ
iA
)]
.

This implies that the gaugini of the rigid supersymmetric theory should be related to

the supergravity one as

λ̊iA =
1

µ
λiA. (7.140)

On the other hand, the holomorphic scalars should not be rescaled

z̊i = zi.

Furthermore, the relations of special geometry imply a low-energy rescaling of the

vector-kinetic-matrix NΛΣ corresponding to the following identification of the matrix

N̊ΛΣ of the rigid theory:

N00 = N̊00 , NIJ = N̊IJ , N0I =
1

µ
N̊0I . (7.141)
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In this way, the gauge vector should not be redefined

ÅΛ
µ = AΛ

µ , (7.142)

and the gauge kinetic term is given by, at low energies

IΛΣF
Λ
µνF

Σ|µν = I̊00F
0
µνF

0|µν + I̊IJF
I
µνF

J |µν +
2

µ
I̊0IF

0
µνF

I|µν +O(1/µ2),

where IΛΣ ≡ Im(NΛΣ).

The rescaling of the special geometry sector, in a generic coordinate frame, is given

by

V M =


X0

0

F0

0

 +
1

µ


0

X̊I(z, z̄)

0

F̊I(z, z̄)

 +O
(
1/µ2

)
; (7.143)

ŨM
i =

1

µ


0

∂iX̊
I ≡ f̊ Ii
0

∂iF̊I ≡ h̊Ii

 +O
(
1/µ2

)
, (7.144)

while the embedding tensor,

Θm
M =

1

µ2
Θ̊m
M . (7.145)

Then, following the low energy limit of the symplectic sections and embedding tensor

discussed in the previous section, we have that the rescalings of the fermion shifts and

spinor mass matrices are given by

W i AB =
1

µ
W̊ i AB , Mαβ =

1

µ2
M̊αβ , (7.146)

SAB =
1

µ2
S̊AB , Mα

iB =
1

µ3
M̊α

iB , (7.147)

Nα
A =

1

µ2
N̊α

A , MiAjB =
1

µ3
M̊iAjB . (7.148)

Thus, the scalar potential rescales as

V =
1

µ4

◦
V . (7.149)
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Consequently, using the rescaled fields, the various contributions to the Lagrangian

(7.127) can be written as

L(4) = Λ4V̊(z, q) (7.150)

L(2) = M2
Pl

(
−R

2
+ huv∂µq

u∂µqv
)

+ Λ2g̊i̄∂
µz̊i∂µ˚̄z

̄ (7.151)

L(1) = MPl

{
(− ε

µνρσ

√
−g

)

[
2Hm|νρσA

m
u ∂µq

u +
1

2µ2
Bm|µνΘ̊

m
Λ

(
F̂Λ
ρσ −

MPl

µ2

1

2
Θ̊ ΛnBn|ρσ

)]
+

+
1

µ2

(
2S̊ABψ̄

A
µ γ

µνψBν + i̊gi̄W̊
iAB˚̄λ̄Aγµψ

µ
B + 2iN̊A

α ζ̄
αγµψ

µ
A + h.c.

)
+

+
1

µ2

(
M̊αβ ζ̄αζβ + M̊α

iB ζ̄αλ̊
iB + h.c.

)}
+ Λ

(
M̊iAjB

˚̄λiAλ̊jB + h.c.
)
.

(7.152)

L(0) = i
(
N̄ΛΣF̂−Λ

µν F̂−Σµν −NΛΣF̂+Λ
µν F̂+Σµν

)
+ 6MmnHm|µνρH µνρ

n +

+
εµνλσ√
−g
(
ψ̄Aµ γνρA|λσ − ψ̄A|µγνρAλσ

)
− i

2
g̊i̄

(
˚̄λiAγµ∇µλ̊

̄
A + ˚̄λ̄Aγ

µ∇µλ̊
iA
)

+

−i
(
ζ̄αγµ∇µζα + ζ̄αγ

µ∇µζ
α
)

+

− 1

µ
g̊i̄[∂µz̄

̄
(
ψ̄µAλ̊

iA − ˚̄λiAγµνψAν

)
+ h.c.]− 2UαAu ∂µq

u
(
ψ̄µAζα − ζ̄αγ

µνψAν + h.c.
)

(7.153)

L(−1) = Λ−1F−Iµν I̊IJ
[

1

2
∇if̊

J
j
˚̄λiAγµνλ̊jBεAB + h.c.

]
+

+M−1
Pl

{
F−0
µν I̊00L̊

0
[
ψ̄AµψBνεAB − ζ̄αγµνζβCαβ + h.c.

]
+

−F−Iµν I̊IJ
[
4i˚̄fJı̄

˚̄λı̄Aγ
νψµBε

AB + h.c.
]

+2MmnH µνρ
m

[
U Aα
n

(
3iψ̄Aµγνρζα + ψ̄Aµζα

)
+ i∆ β

nα ζβγµνρζ
α
]}

. (7.154)
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Then, performing the rigid limit µ = MPl/Λ→∞, we find

L(4) = Λ4V̊(z, q) (7.155)

L(2) = M2
Pl

(
−R

2
+ huv∂µq

u∂µqv
)

+ Λ2g̊i̄∂
µzi∂µz̄

̄ (7.156)

L(1) = −2
εµνρσ√
−g

MPlHm|νρσA
m
u ∂µq

u + Λ
(
M̊iAjB

˚̄λiAλ̊jB + h.c.
)
. (7.157)

L(0) = i
(

˚̄NΛΣF−Λ
µν F−Σµν − N̊ΛΣF+Λ

µν F+Σµν
)

+ 6MmnHmµνρH µνρ
n +

+
εµνλσ√
−g
(
ψ̄Aµ γνρA|λσ − ψ̄A|µγνρAλσ

)
− i

2
g̊i̄

(
˚̄λiAγµ∇µλ̊

̄
A + ˚̄λ̄Aγ

µ∇µλ̊
iA
)

+

−i
(
ζ̄αγµ∇µζα + ζ̄αγ

µ∇µζ
α
)
− 2UαAu ∂µq

u
(
ψ̄µAζα − ζ̄αγ

µνψAν + h.c.
)
(7.158)

L(−1) = Λ−1F̊−Iµν I̊IJ
[

1

2
∇if̊

J
j
˚̄λiAγµνλ̊jBεAB + h.c.

]
. (7.159)

The observable sector corresponds to the N = 1 rigid supersymmetric Lagrangian

obtained as a rigid limit of a N = 2 supergravity Lagragian partially broken. Let us

note that the N = 2 supergravity Lagrangian reduce to the multi-vector generalization

of the rigid Lagrangian of the APT model [71]. On the other hand, the hidden sector

is still propagating but fully decoupled from the observable one,

Lsugra → LAPT + Lhidden,

where

LAPT = Λ2g̊i̄∂
µzi∂µz̄

̄ − i

2
g̊i̄

(
˚̄λiAγµ∇µλ̊

̄
A + ˚̄λ̄Aγ

µ∇µλ̊
iA
)

+

+i
(

˚̄NIJF−Iµν F−Jµν − N̊IJF+I
µν F+Jµν

)
+

+Λ4V̊ + Λ
(
M̊iAjB

˚̄λiAλ̊jB + h.c.
)

+

+Λ−1F̊−Iµν I̊IJ
[

1

2
∇if̊

J
j
˚̄λiAγµνλ̊jBεAB + h.c.

]
, (7.160)
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Lhidden = M2
Pl

(
−R

2
+ huv∂µq

u∂µqv
)

+ i
(

˚̄N00F−0
µν F−0µν − N̊00F+0

µν F+0µν
)

+

+6MmnHm|µνρH µνρ
n − 2

εµνρσ√
−g

MPlHm|νρσA
m
u ∂µq

u +

+
εµνλσ√
−g
(
ψ̄Aµ γνρA|λσ − ψ̄A|µγνρAλσ

)
− i
(
ζ̄αγµ∇µζα + ζ̄αγ

µ∇µζ
α
)

+

−2UαAu ∂µq
u
(
ψ̄µAζα − ζ̄αγ

µνψAν + h.c.
)
. (7.161)

Thus, the high-energy supergravity Lagrangian is characterized by a visible sector

surviving the rigid limit and by a hidden one consisting of the gravitational multiplet

and by a hypermultiplet, which decouple when the Planck mass is sent to infinity.
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Chapter 8

Conclusion

In the present thesis we have presented, using a geometrical formalism, diverse

supergravity theories in different frameworks. In particular, we have incorporated

diverse interesting features to supergravity models like enlarged symmetries, three-

dimensional space-time, matter couplings and the presence of cosmological constant.

In chapter 4, we have shown that the Maxwell superalgebras can be derived by

the semigroup expansion procedure. In particular, the minimal Maxwell superalgebra

and its generalizations can be obtained as an S-expansion of the osp (4|1) superalge-

bra with a suitable semigroup S [31]. Interestingly, using the MacDowell-Mansouri

approach, we showed that the supergravity action, constructed out of the curvatures

of a minimal Maxwell superalgebra sM4, describes pure supergravity in four dimen-

sions [32]. This result can be seen as a supersymmetric generalization of ref. [11] (see

chapter 2) in which four-dimensional General Relativity can be derived from Maxwell

algebra as a Born-Infeld gravity action. Additionally, we presented an analyze of the

invariance of the supergravity action under the Maxwell supersymmetry transforma-

tions. The Maxwell symmetries could play an important role in higher dimensions

supergravity theories. Indeed, it seems that it should be possible to recover standard

odd-dimensional supergravity from the Maxwell superalgebras.

In chapter 5, we have presented an alternative method of introducing the super-

symmetric cosmological term to a supergravity action à la MacDowell-Mansouri [33].

In particular, we showed the the AdS-Lorentz superalgebra allows to add new terms

to the supergravity action, describing a generalized supersymmetric cosmological con-
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stant. This superalgebra and its N -extended generalization has been derived through

the S-expansion procedure. Interestingly, this expansion method gives us the com-

ponents of an invariant tensor in terms of particular choice of the invariant tensor of

the osp (4|1) superalgebra, allowing to construct a supergravity action in the geomet-

ric formalism. Although there already exists supergravity theories with cosmological

constant, the supergravity action à la MacDowell-Mansouri suggests a superconformal

structure which represents an additional motivation in our construction.

In chapter 6, we analyzed the construction of a three-dimensional Chern-Simons

supergravity action using a minimal Maxwell superalgebra [59]. To this purpose, we

used the S-expansion method in order to obtain the Maxwell superalgebra sM3 from

the osp (2|1) ⊗ sp (2) superalgebra. Additionally, using the usual Maxwell superal-

gebra, we briefly studied an exotic supersymmetric action combining the expansion

and contraction procedures. Interestingly, the model considered here represents a toy

model in order to approach richer theories in higher dimensions or in higherN -extended

supersymmetric theories.

Eventually, in chapter 7, we presented a multi-vector generalization of a rigid par-

tially broken N = 2 supersymmetric theory as a rigid limit of a suitable gauged N = 2

supergravity theory in presence of electric and magnetic charges [73]. Interestingly, the

N = 1 rigid supersymmetric theory corresponds to a generalization of the APT model

[71] to a generic number n of vector multiplets. The purpose of this chapter was to

elucidate the supergravity origin of the multifield supersymmetric Born-Infeld theory

and to understand the origin of the dyonic Fayet-Iliopoulos terms. Furthermore, the

N = 2 supergravity Ward identity for generic dyonic gaugings and its rigid limit was

also approached.
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Appendix A

Abelian semigroup expansion

procedure

The derivation of new Lie (super)algebras from a given one is an interesting prob-

lem in Physics since it allows to derive new physical theories from an already known.

Nowadays, there are four different ways to relate and obtain diverse Lie (super)algebras.

Interestingly, the expansion procedure leads to higher-dimensional Lie algebra from a

known one. The expansion method was initially proposed in the context of AdS su-

perstring by M. Hadsuda and M. Sakaguchi in ref. [94]. Subsequently, a method based

on the Maurer-Cartan (MC) forms power-series expansion has been presented in ref.

[95] and subsequently developed in refs. [96, 97] with interesting physical implications.

Recently, F. Izaurieta, E. Rodŕıguez and P. Salgado have proposed an alternative

expansion method in ref. [16]. Unlike the Maurer-Cartan expansion, the expansion pro-

cedure introduced in ref. [16] is based on operations performed on the (super)algebra

generators. Basically, it consists in combining the structure constants of a Lie (su-

per)algebra g with the inner multiplication law of a semigroup S leading to the Lie

brackets of a new Lie (super)algebra G = S × g.

Let g a Lie (super)algebra with basis TA and structure constants C C
AB and let

S = {λα} be a finite abelian semigroup with 2-selector K γ
αβ . Then, the direct product

S × g is also a Lie algebra given by[
T(A,α), T(B,β)

]
= K γ

αβC
C

AB T(C,γ). (A.1)
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The Lie (super)algebra G defined by G = S×g is called the S-expanded (super)algebra

of g and is generated by T(A,α) = λαTA.

Interestingly, smaller (super)algebras can be extracted from an S-expanded (su-

per)algebra G = S × g. However, it is first necessary to consider a decomposition of

the original (super)algebra g in subspaces Vp such that g =
⊕

p∈I Vp, where I is a set

of indices. For each p, q ∈ I, one can define i(p,q) ⊂ I such that

[Vp, Vq] ⊂
⊕
r∈i(p,q)

Vr. (A.2)

According to the definitions of ref. [16], it is possible to consider a particular subset

decomposition of the semigroup S =
⋃
p∈I Sp such that

Sp · Sq ⊂
⋂

r∈i(p,q)

Sr. (A.3)

When such decomposition exists, we say that this subset decomposition is in resonant

with the subspace decomposition of the Lie (super)algebra g and

GR =
⊕
p∈I

Sp × Vp,

is a resonant (super) subalgebra of G = S×g. Therefore, in order to derive a resonant

S-expanded (super)algebra, we just need to solve the resonance condition for a finite

abelian semigroup S.

A smaller (super)algebra can be obtained when the semigroup has a zero element

0S ∈ S such that for all λα ∈ S, we have 0Sλα = 0S. In particular, the (super)algebra

derived by imposing the 0S-reduction condition 0STA = 0 on G is called the 0S-reduced

algebra of G = S × g.

On the other hand, it is possible to extract a reduced (super)algebra from a resonant

(super) subalgebra. Indeed, let us consider GR =
⊕

p Sp × Vp as the resonant (super)

subalgebra of G = S × g. Let Sp = Ŝp ∪ Šp be a subset decomposition with Sp ⊂ S

such that

Ŝp ∩ Šp = ∅, (A.4)

Šp · Ŝq ⊂
⋂

r∈i(p,q)

Ŝr. (A.5)

130



Then, the conditions (A.4)− (A.5) induce the partition

ǦR =
⊕
p∈I

Šp × Vp, (A.6)

ĜR =
⊕
p∈I

Ŝp × Vp, (A.7)

with [
ǦR, ĜR

]
⊂ ĜR. (A.8)

Thus,
∣∣ǦR

∣∣ corresponds to a reduced (super)algebra of GR [16].

A useful property of this expansion mechanism is that it provides us with the com-

ponents of an invariant tensor for the S-expanded (super)algebra in terms of the com-

ponents of an invariant tensor for the original (super)algebra g. Following theorem

VII.1 of ref. [16], let S be an abelian semigroup with the n-selector K γ
α1···αn

, g a Lie

(super)algebra of basis {TA} and let 〈TA1 · · ·TAn〉 be an invariant tensor for the original

algebra g. Then, 〈
T(A1,α1) · · ·T(An,αn)

〉
= αγK

γ
α1···αn

〈TA1 · · ·TAn〉 (A.9)

corresponds to the invariant tensor for the S-expanded (super)algebra G = S × g.
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Appendix B

Gamma matrices identities and

conventions

In this Appendix we briefly review some gamma matrices identities and the con-

ventions used in the present thesis. The Dirac gamma matrices in a four-dimensional

space-time are defined through the relation

{ γa, γb} = −2ηab, (B.1)

where ηab = (−1, 1, 1, 1) is the Minkowski metric. This gamma matrices satisfy the

Clifford Algebra:

[γa, γb] = 2γab, (B.2)

γ5 ≡ −γ0γ1γ2γ3γ4, (B.3)

γ2
5 = −1, (B.4)

{γ5, γa} = [γ5, γab] = 0, (B.5)

γabγ5 = −1

2
εabcdγ

cd, (B.6)

γaγb = γab − ηab, (B.7)

γabγcd = εabcdγ5 − 4δ
[a
[cγ

b]
d] − 2δabcd , (B.8)

γabγc = 2γ[aδb]c − εabcdγ5γd, (B.9)

γcγab = −2γ[aδb]c − εabcdγ5γd. (B.10)
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In particular, in the present thesis we are working with the Majorana spinors which

satisfy the Majorana condition ψ̄ = ψTC, where C is the charge conjugation matrix.

Furthermore, the gamma matrices satisfy

(Cγa)
T = Cγa , (B.11)

(Cγab)
T = Cγab, (B.12)

while

CT = −C, (B.13)

(Cγ5)T = −Cγ5, (B.14)

(Cγ5γa)
T = −Cγ5γa, (B.15)

which means that Cγa and Cγab are symmetric, while C, Cγ5 and Cγ5γa are antisym-

metric gamma matrices. This leads to the following identities for the p-form ψ and

q-form ξ:

ψ̄ξ = (−1)pq ξ̄ψ, (B.16)

ψSξ = − (−1)pq ξψ, (B.17)

ψAξ = (−1)pq ξψ, (B.18)

where S and A are symmetric and antisymmetric matrices, respectively. This prop-

erties allows to write some useful Fierz identities:

ψψ̄ =
1

2
γaψ̄γ

aψ − 1

8
γabψ̄γ

abψ, (B.19)

γaψψ̄γ
aψ = 0, (B.20)

γabψψ̄γ
abψ = 0. (B.21)
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Appendix C

Relevant relations on the

sigma-model geometry

In the present appendix, following ref. [73], we present some important relations

required to a good understanding of the N = 2 supergravity model considered in the

present thesis.

A special Kähler manifoldMSK is locally described by a holomorphic section Ω and

a choice of complex coordinates zi,

Ω(z) =

(
XΛ (z)

FΛ (z)

)
, Λ = 0, . . . , n, (C.1)

such that the Kähler potential is given by

K(z, z̄) = − log[iΩ(z̄)TCΩ(z)] . (C.2)

We define the covariantly holomorphic section V M in terms of Ω and κ as

V M ≡ e
K
2 ΩM . (C.3)

One can associate a holomorphic function fg (z) and a symplectic matrix M[g] =

(M[g]M
N) to each element g of the identity component GSK of the isometry group of

the special Kähler manifold MSK . Indeed, if g : zi → z′i = z′i(z), we have

Ω (z′) = efg(z) M[g]−T Ω(z) ⇔ K(z′, z̄′) = K(z, z̄)− fg(z)− f̄g(z̄) . (C.4)
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Let {ta} be the infinitesimal generators of GSK and let ka = kia (z) ∂i + kı̄a (z̄) ∂ı̄ be the

Killing vectors satisfying

[ta, tb] = fab
c tc , [ka, kb] = −fabc kc ,

then eqs. (C.4) imply

`aΩ
M = kia∂iΩ

M = −taNM ΩN + fa(z)ΩM , (C.5)

`aK = kia∂iK + kı̄a∂ı̄K = −(fa + f̄a)K , (C.6)

`aV
M = (kia∂i + kı̄a∂ı̄)V

M = −taNM V N +
fa − f̄a

2
V M . (C.7)

Here t M
aN corresponds to the symplectic matrix representation of the generator ta on

covariant vectors,

ta[N
PCM ]P = 0 , (taΩ)M = −taNM ΩN . (C.8)

Let Pa(z, z̄) be the momentum map corresponding to ka, defined as [81],

kia = i gi̄ ∂̄Pa , kı̄a = −i g ı̄i ∂iPa , (C.9)

and satisfying

igi̄ k
i
[a k

̄
b] = −1

2
fab

c (Pc − Cc) . (C.10)

Here, Cc is a constant vector which can be reabsorbed by a redefinition of Pc. In what

follows we shall consider the following redefinition,

Pc − Cc → Pc. (C.11)

In particular, using eq. (C.6), eqs. (C.9) are solved by

Pa = − i
2

(
kia∂iK − kı̄a∂ı̄K

)
+ Im(fa)

= i kı̄a∂ı̄K + i f̄a = −i kia∂iK − i fa . (C.12)

Then, using eqs. (C.12) and (C.7), we find

kia U
M
i = −taNM V N + iPa V M . (C.13)

Interestingly, contracting eq. (C.13) with CV̄ and using the relations V TCV = i, V TCUi =

0, we obtain

Pa = −V N taNMV
M

= −V N
taNM V P , (C.14)
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where

taNM ≡ taN
PCPM = taMN . (C.15)

The general property

taMNΩMΩN = 0 , ∀ta , (C.16)

follows by contracting eq. (C.5) by CΩ and using V TCUi = 0, which implies

ΩTC∂iΩ = 0 . (C.17)

Let us now consider infinitesimal isometries of the quaternionic Kähler manifold

MQK . These isometries are generated by tm whose action on the scalar fields is

described by Killing vectors km = kum∂u. In particular, they satisfy the isometry

algebra

[tm, tn] = fmn
p tp , [km, kn] = −fmnp kp ,

and leave the 4-form
∑3

x=1 K
x ∧Kx invariant [81], which amounts to requiring

`nK
x = εxyzKyW z

n . (C.18)

Here, W z
n corresponds to an SU (2)-compensator. Writing the Killing vectors kn in

term of tri-holomorphic momentum maps Pxn it is possible to solve eq. (C.18) as

ιnK
x = −∇Pxn = −(dPxn + εxyzωy Pzn) , (C.19)

provided

Pxn = λ−1(ιnω
x −W x

n ) = W x
n − ιnωx , (C.20)

where we have defined λ = −1. In particular, in the case of vanishing compensator,

W x
n = 0, the momentum maps have the simple expression

Pxn = −kun ωxu. (C.21)

As for the special Kähler manifolds, the momentum maps satisfy Poisson brackets

described by the following condition

2Kuv k
u
n k

v
m − λ εxyz Pyn Pzm = −fmnpPxp . (C.22)
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Appendix D

The General Ward Identity for a

generic N = 2 supergravity gauging

In the present appendix, we prove the general Ward identity for the generic dyonic

gauging of N = 2 supergravity. To this aim, we will evaluate each term in the left

hand side of eq. (7.65),

gi̄W
i ACW

̄

BC + 2Nα
ANα

B − 12SACSBC = δBA V (z, z̄, q) . (D.1)

Let us consider the symplectically-invariant generalization of the fermionic shifts

W i AB = εAB kiM V
M − i (σx)C

BεCAPxM gi̄U
M

̄ , (D.2)

SAB =
i

2
(σx)A

CεBC PxM V M , (D.3)

Nα
A = 2UAu α kuM V

M
, Nα

A ≡ (Nα
A)∗ = −2 UuAα kuM V M . (D.4)

Then we have

W i ACW
̄

BCgi̄ = δAB k
i
Mk

̄
Ngi̄V

M
V N

−i (σx)B
A
(
k̄M V M U

N

̄ − kiM V
M
UN
i

)
PxN

+(σxσy)B
APxMP

y
NU

MN , (D.5)

with

UMN ≡ UN
i gi̄ U

N

̄ . (D.6)
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Splitting the terms proportional to δAB from those proportional to (σx) A
B and using eq.

(7.64),

V
M
kiM UP

i ΘP = −XMN
P V

M
V NΘP = XNM

P V
M
V NΘP = −V Mkı̄M U

P

ı̄ ΘP , (D.7)

we find

W i ACW
̄

BCgi̄ = δAB

(
kiMk

̄
Ngi̄V

M
V N + PxNPxMUMN

)
+i (σx)B

A
(
−2XMN

PV
M
V N PxP + εxyz PyMP

z
NU

[MN ]
)
. (D.8)

Let us now consider the general symplectic covariant relation given by eq. (7.25),

UMN ≡ gi̄ UM
i U

N
̄ = −1

2
MMN − i

2
CMN − V M

V N , (D.9)

and let be the locality constraint given by eq. (7.49),

ΘM
aCMNΘN

b = ΘM
aCMNΘN

n = ΘM
mCMNΘN

n = 0 . (D.10)

Then we can write

PyMP
z
NU

[MN ] = − i
2
PyMP

z
NCMN − PyMP

z
NV

[M
V N ] = −PyMP

z
NV

[M
V N ] , (D.11)

leading to

W i ACW
̄

BCgi̄ = δAB

(
kiMk

̄
Ngi̄V

M
V N + PxNPxMUMN

)
+i (σx)B

A
(
−2XMN

PV
M
V N PxP − εxyz P

y
MP

z
N V

M
V N
)
.(D.12)

Let us now consider the square of the gravitini shifts,

−12SAC SBC = −3 (σxσy)B
APxMP

y
N V

MV
N

= −3PxMPxN V MV
N

+ 3i εxyz PyMP
z
N V

M
V N(σx)B

A . (D.13)

While the square of the hyperini shifts is given by

2Nα
ANα

A = 8UAαu Uv Bα kuM kvN V
M
V N

= 4
(
δABhuv + i (σx)B

AKx
uv

)
kuM kvN V

M
V N , (D.14)
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where we have used eq. (7.43).

Then, we can compute the left hand side of the Ward identity,

gi̄W
i ACW

̄

BC + 2Nα
ANα

B − 12SACSBC = δAB V (z, z̄, q) + i Zx (σx)B
A , (D.15)

where the general symplectic invariant expression of the scalar potential is given by

V (z, z̄, q) = (kiMk
̄
Ngi̄ + 4huvk

u
Mk

v
N)V

M
V N + (UMN − 3V MV

N
)PxNPxM , (D.16)

and

Zx = (−2XMN
P PxP + 2 εxyz PyMP

z
N + 4Kx

uvk
u
M kvN)V

M
V N . (D.17)

In particular, from the equivariance condition (7.53),

2Kx
uv k

u
M kvN + εxyz PyM P

z
N = XMN

P PxP , (D.18)

it follows that Zx = 0, so that the Ward identity is proven.
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General Relativity from Born-Infeld gravity, Phys. Lett. B 725, 419 (2013).

arXiv:1309.0062 [hep-th].
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[32] P.K. Concha, E.K. Rodŕıguez, N=1 supergravity and Maxwell superalgebras, JHEP

1409 (2014) 090. arXiv:1407.4635 [hep-th].

143
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A generalized action for (2 + 1)-dimensional Chern-Simons gravity, J. Phys. A 45

(2012) 255207. arXiv:1311.2215 [gr-qc].

[46] O. Fierro, F. Izaurieta, P. Salgado, O. Valdivia, (2+1)-dimensional supergravity

invariant under the AdS-Lorentz superalgebra, arXiv:1401.3697 [hep-th].

[47] J. Lukierski, Generalied Wigner-Inonu Contractions and Maxwell (Super)Algebras,

Proc. Steklov Inst. Math. 272 (2011) 1-8. arXiv:1007.3405 [hep-th].
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