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Abstract

This thesis deals with a geometrical formulation of diverse Supergravity theories.
In particular, the construction of Supergravity actions in four and three dimensions are
considered in different frameworks with interesting physical implications.

Before approaching supersymmetry, we briefly review some gravity theories in the
Cartan formalism. The formalism used in the introductory chapter is crucial in order
to understand the development of the present thesis. Some interesting results are
presented in chapter 2 using the semigroup expansion method in the Chern-Simons
(CS) and Born-Infeld (BI) gravity theories. Subsequently, a brief introduction of
supersymmetry and some supergravity models are considered in chapter 3.

Chapters 4, 5, 6 and 7 contain the main results of this thesis which are based on
five articles written during the cotutelle research process.

Initially, we present a family of superalgebras using the semigroup expansion of
the Anti-de Sitter superalgebra. In the MacDowell-Mansouri approach, we study the
construction of diverse four-dimensional supergravity theories for different superalge-
bras. Interestingly, we show that the pure supergravity action can be obtained as
a MacDowell-Mansouri like action using the Maxwell symmetries.  Additionally, a
generalized supersymmetric cosmological constant term can be included to a super-
gravity theory using a particular supersymmetry, called AdS-Lorentz. Furthermore,
we present a supergravity model in three dimensions using the CS formalism and the
Maxwell superalgebras.

Subsequently, the thesis is focused on a supergravity model with partial breaking of
N =2 to N = 1 supersymmetry which, in the low energy limit, gives rise to a N’ = 1
supersymmetric theory.

Eventually, the thesis ends with some comments about possible developments.
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Introduction

The observers are crucial in order to describe Physics. They can measure and
define mathematical objects in order to represent physical concepts. However, following
the Copernican principle, there are not privileged observers of the universe. Thus, the
Physics has to be observer-independent. Interestingly, the diverse results obtained
by different observers can be related by symmetry transformations. In particular,
the symmetry of a physical system is a feature which remains unchanged under some
transformation.  Ones of the symmetries of nature are the space-time symmetries
successfully described by the General Relativity (GR) theory. On the other hand, the
internal symmetries are understood through gauge theories described by the Standard
Model.

Nowadays, three of the four forces of nature are successfully described by the Stan-
dard Model as Yang-Mills theories. They are elegantly related to gauge symmetries
allowing renormalizability and ensuring a viable quantum theory. On the other hand,
gravity described by General Relativity, resists to the quantization. In spite of the huge
success of the General Relativity theory, there is not a consistent quantum description
of gravity which prevents a possible unification of gravity to the other interactions.

The fundamental interactions of nature and their coupling to matter are based on
the invariance under local transformations of some gauge group. In particular, the
local symmetry is achieved if matter is coupled to bosonic gauge fields which are the
mediators of an interaction. The coupling of matter to the electromagnetic fields
described by the Quantum-electrodynamics (QED) is seen as a U (1)-gauge theory.
While the Weak and electromagnetic interactions are unified in the Standard model as
local SU (2) x U (1)-gauge theory. On the other hand, the SU (3) gauge group describe

the strong interactions (QCD). In the same way, General Relativity can be seen as the



"gauge” theory of the Poincaré group whose gauge boson is associated with the local
space-time translation generators P,.

In order to unify gravity with the other interactions in a unique theory, it is neces-
sary to put together the internal symmetries with the space-time symmetries. A good
candidate for this purpose is the supersymmetry. Supersymmetric theories are remark-
able theories since they unify space-time with internal symmetries relating bosonic and
fermionic particles in an elegant way. Indeed, the particles of different spin can be as-
sociated in a bigger group called the supersymmetry group or supergroup. This allows
to introduce a new algebraic structure known as the Lie superalgebra. In particular,
the supersymmetric generalization of the Poincaré algebra can be obtained introduc-
ing in addition to the bosonic generators, the fermionic generators () which satisfy the
Poincaré (anti)commutation relations.

The supersymmetric extension of gravity, described by General Relativity, corre-
sponds to the supergravity theory. Thus, the simplest supergravity theory can be
viewed as the “gauge” theory of the Poincaré superalgebra where the fermionic gener-
ators () are gauged by the superpartner of the graviton (spin-2), which corresponds to
a spin-3/2 field 1) called the gravitino. There is a particular interest in superalgebras
going beyond the superPoincaré one, in order to study richer supergravity theories. Fur-
thermore, there are several models depending on the amount of supersymmetry charges
N and on the choice of the space-time dimension D. The larger N and the larger D,
more constraints are presents in the theory. It is known that increase N beyond 8 or
the dimension D beyond 11 makes difficult a consistent coupling to gravity.

Interestingly, other features can be incorporated to supergravity theories like matter
couplings and the presence of cosmological constant. The inclusion of matter in a
supergravity theory has important consequences in the geometrical structure leading to
a vast variety of supergravity theories with diverse physical implications. In particular,
pure supergravity models can be coupled to matter multiplets in order to obtain more
realistic theories. The models of particular relevance are the supergravity theories in
ten and eleven dimensions since they describe the low-energy dynamics of superstring
and M-theory, on flat space-time, respectively. Besides with the well celebrated duality
between superstring theory realized on an AdS space-time and the conformal field theory

on its boundary (AdS/CFT duality) made supergravity a useful tool for studying non-

x1



perturbative properties of gauge theories.

The purpose of the present thesis to study diverse features of supergravity models
using different geometric formalisms. First, we shall approach enlarged supersym-
metries using a Lie algebra expansion (S-expansion) method in order to analyze and
construct four-dimensional supergravity theories. We shall see that the pure super-
gravity action can be obtained as a MacDowell-Mansouri like action using the Maxwell
symmetries. Additionally, we shall present an alternative way to introduce a gener-
alized cosmological term to a supergravity action a la MacDowell-Mansouri using the
AdS-Lorentz superalgebra.

Subsequently, we will study, in the Chern-Simons formalism, the construction of
a three-dimensional supergravity action using a minimal Maxwell superalgebra. In
particular, a supersymmetric theory for the usual Maxwell superalgebra can be obtained
combining the expansion and contraction procedures. FEventually, we shall present
the multi-vector generalization of the partially broken AN/ = 2 rigid supersymmetric
theory as a rigid limit of a N = 2 supergravity theory. Our purpose is to elucidate
the supergravity origin of the multifield Born-Infeld supersymmetric theory and to

understand the origin of the electric and magnetic Fayet-Iliopoulos terms.
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Chapter 1

Differential geometry and gravity

1.1 Introduction

It is well known that gravity described by General Relativity theory can be formu-

lated from a variational principle,

Sy = /E d'z = li/\/—ng d'z. (1.1)

The scalar L, can be obtained considering that the Einstein field equations,

1
R,uz/ ~ §g;wR = '%T,ulla (12)
are second order in the metric g,,. This restricts the scalar L, to contain only the
metric and their first derivatives through the connection
1
FWMV = 597)\ (aug/\u + anM)\ - a)xg;w) . (13)
However there is no way to construct an invariant scalar only with these ingredients.
The problem was elegantly solved in 1915 by D. Hilbert proposing that L, must also

contain second order derivative of the metric through the Riemann curvature tensor
A A
R, =00, — 0,1, + FZAFW — F’;AFM. (1.4)

In four dimensions, there are 14 invariant scalars which can be constructed from the

metric coefficients, theirs first and second derivatives. Nevertheless, only the curvature

1



scalar R = ¢g" R, is lineal in the second derivatives of g,,. Then the Einstein field

equations can be derived from the Einstein-Hilbert (EH) action

S = /i/\/—_gR d*x. (1.5)

It remains an open problem to find an action which describes the unification of
gravity with the others interactions. Along the thesis we will try to approach this

problem generalizing the Einstein theory to diverse gravity theories.

1.2 First order formulation for gravity

The differential forms are an useful tool in order to describe a gravity theory beyond
General Relativity. Before to study (super)gravity in this formalism it is necessary to
introduce some useful concepts for the understanding of the thesis.

Let us consider the space-time as a four-dimensional differential manifold M.
For each point P of the manifold we can define a tangent space built from all the
tangent vectors defined on P. Let x* be a coordinate system defined on the tangent
space which contains P. Then the vectors 0; = 0, (P) define a coordinate basis of the

tangent space in P. This basis is not necessary orthonormal but rather
i+ Ok = Gik, (1.6)

where g, = g, (P) corresponds to the metric components in the coordinate basis.
However, an orthonormal basis can be defined using a tetrad (also known as vierbein)
ea = €0},

€a " €5 = €hey Gik = Nav, (1.7)
where 74, is the Minkowski metric. The inverse matrix e allows to relate the

Minkowski metric to the metric g,

Gik = e?eﬁnab. (1.8)

Thus the space-time metric can be directly derived if we know the local orthonormal
frame ef. Nevertheless, the choice of the ef is not unique since they transform as a

contravariant vector under local Lorentz SO (3, 1) rotations

ef — el = A‘_‘beg, (1.9)

2



where the matrices A form the Lorentz group and satisfy
AN ey = Nea- (1.10)

Although the vierbein e® behave as a vector under local Lorentz transformations, the
exterior derivative de® does not. A covariant exterior derivative D has to be introduced

such that De® transforms covariantly under local Lorentz rotations,
De” — De = A% De. (1.11)
The covariant exterior derivative D required the presence of a gauge field w
De” = de” + w%e®, (1.12)

where w? is known as the one-form spin connection and obeys the following transfor-

mation law
waé — AdbAanCd - deAac. (113)

Analogously to the Yang-Mills theory, a field strength can be associated to the gauge
potential w,

Ry = 0wy — Ok + Wiy, — W, (1.14)
which allows to define the curvature 2-form
1 )
On the other hand, we introduce the torsion 2-form as
1 )
T* = De" = JTda’ A da*, (1.16)

with
T%, = 0;e", — Ope®; + w',el — whiels. (1.17)
The equations ((1.15)) — (1.16|) are the structure equations and describe the geometrical

structure of the manifold. These 2-forms satisfy the first and the second Bianchi

identity



In the Cartan formalism, the Einstein-Hilbert action (without cosmological
constant) can be written in terms of the vierbein e?, the spin connection w® and their
respective fields strengths (T“, Rab) as

Sgg = /eabcdR“beced. (1.20)

The field equations can be obtained in this formalism varying the action with respect

to the vierbein and the spin connection
0SEpy = /eabcd (5R“beced + 2R“becéed) ) (1.21)
Then 6S = 0 requires the following field equations

€abea R = 0, (1.22)
€apeale? = 0. (1.23)

which correspond to the Einstein field equations in the Cartan formalism. Let us note
that the second equation express the vanishing of the torsion. This allows to write w®

in terms of e* from a variational equation and does not correspond to a priori constraint.

1.3 Poincaré symmetries

A gauge symmetry is a crucial ingredient in order to have a Yang-Mills theory and
ensure renormalization. However, gravity described by General Relativity have only
a diffeomorphism invariance which makes difficult the unification with the other three
interactions.

In this section we will briefly discuss the invariance of the EH action under the
Poincaré symmetries. This discussion will be fundamental for a correct understanding
of the thesis and will be generalized to other (super)symmetries.

One of the simplest gauge symmetries in order to describe gravity corresponds to

the Poincaré group 15O (3,1). The generators of the Poincaré Lie algebra are given by

Ty = (P, Jwp), (1.24)



where J,, are the Lorentz transformations and P, correspond to the four-dimensionan

translational generators. These generators satisfy the following commutation relations

[Jaba ch] = nbcjad - nacjbd - nbdt]ac + 77adl]bca (125)
[Jab7 Pc] = nbcPa - nacpby (126)
[P, B] = 0. (1.27)

The corresponding gauge fields are the one-form vierbein e® and the one-form spin
connection w®. These gauge fields can be viewed as a single multiplet in the adjoint
representation of the Poincaré group. Then the one-form gauge connection A can be
written as

1 1
A= AT, = 7eaPa + §w”bJab. (1.28)

The introduction of the length scale [ is necessary in order to interpret the gauge field

as the vierbein. In fact, one can always choose the generators T4 to be dimensionless

so that the one-form connection A must also be dimensionless. However, the vierbein

e® = e?dz’ must have length dimensions since it is related to the spacetime metric

Gik = 6?6277@. This means that that the true gauge field must be of the form e®/I.
The field strength F' = dA + A? is defined as

1 1
F =FAT, = 7T“Pa + 5RabJa,;,,

where the corresponding Poincaré Lie algebra-valued curvature 2-forms are

R® = dw® 4+ ww®, (1.29)
T* = de” + w%e’ = De". (1.30)

Thus the Lorentz curvature R corresponds to the field strength of the the spin con-
nection while the torsion 7' is the field strength of the vierbein. The formalism used
here shows explicitly the relation between the algebraic structure of a symmetry group
and the geometrical structure of a manifold.

In order to have a true gauge theory of gravity the action has to be invariant under
the whole gauge algebra. Nevertheless the Einstein-Hilbert action is not a Yang-
Mills action so that the EH action is not invariant under the Poincaré algebra iso (3, 1),

but only under the Lorentz subalgebra so (3,1).
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The non invariance of the EH action ({1.20]) under the Poincaré algebra can be viewed

using the Poincaré gauge transformations
Ogauge A = VA4, (1.31)

where A\ is the gauge parameter \* = (p“, m“b) and V is the Poincaré covariant deriva-

tive. Then the transformation laws of the gauge fields are

o’ = Dp®+ ek, (1.32)
sw® = Dr™. (1.33)

In particular, the translational transformations correspond to

de* = Dp°, (1.34)
sw® = 0. (1.35)

It is straightforward to see that the EH action is not invariant under (1.34) — (1.35).
In fact, if we consider the variation of the action ((1.20)) under local transformations, we
find

0Sgg =2 / €aped R0 = 2 / €abeaRCTCp? # 0. (1.36)

Beside, the constraint 7% = 0 is not invariant under Poincaré transformations,
6T = R™p, # 0. (1.37)

The non invariance of the EH action seems strange since a translation can be though
as a coordinate transformation. However, a coordinate transformation is not a gauge
translation but a Lie derivative. Then we said that the EH action is invariant under
diffeomorphisms.

The situation is completely different in odd dimensions where the D = 2n — 1 EH
action is truly invariant under the Poincaré algebra. Interestingly the inclusion of the
cosmological constant in the EH action leads to an anti-de Sitter ( AdS ) invariance.
The generalization of General Relativity to higher dimensions and to other symmetries

will be discussed along the thesis.



Chapter 2

Beyond General Relativity

2.1 The Lanczos-Lovelock theory

It is an accepted assumption in Physics that the spacetime may have more than four
dimensions. This requires a generalization of General Relativity theory of gravity that
includes general covariance and second order field equations for the metric. Although
the Einstein-Hilbert action can be generalized to higher dimensions, it is interesting to
analyze a more general gravity theory.

The most general metric theory of gravity satisfying the criteria of general covariance
and second order field equations is a polynomial of degree [D/2] in the curvature known
as the Lanczos-Lovelock gravity theory (LL) [I, 2]. The LL action can be written as
the most general D-form invariant under local Lorentz transformations, constructed
out of the vielbein e?, the spin connection w® and their exterior derivatives without

using the Hodge dual [3] [4],
[D/2]

S = / > a, LW, (2.1)
p=0
where «, are arbitrary constants and they are not fixed from first principles, and

P — €ayagap R - - - RI2p=1920 0241 . 00D (2.2)

Although the EH action is contained in the LL action, the action with higher powers of
curvature are dynamically different from General Relativity and are not perturbatively

related.



It was shown in ref. [5] that requiring the LL theory to have the maximum possible
number of degrees of freedom, fixes the a,’s coefficients in terms of the gravitational
and the cosmological constants.

In odd dimensions, the parameters are given by

L en-D@y (n - 1)’ 23

T ey —op—1)

p
with
K
= — 2.4
&%) DZD ; ( )
l2
7= msgn(d) 5, (2.5)
where [ is a length parameter related to the cosmological constant by
(D—-1)(D-2)
A=+ 2.
and the gravitational constant G is related to x through
k' =2(D-2)!Qp_,G. (2.7)

With these coefficients, the LL Lagrangian is a Chern-Simons (CS) (2n — 1)-form

n l2(p—n)+1 n—1
L = a1a2---a2n—1 59/ N 1

p=0

)Ra1a2 y Ran—1a2p€a2p+1 e eaQn_l . (28)

The Lagrangian ([2.8]) is invariant not only under local Lorentz rotation, but also under
a local AdS boost,

de’ = —Dp°, (2.9)

1
Sw® = B (pe” — p’e*). (2.10)

Meanwhile in even dimensions, the coefficient are given by

a, = ag (27) (n> (2.11)

p
With these coefficients the LL Lagrangian takes the form [5]

L = gealaz---aanaIQQ tee Razn_1a2n’ (212)
n



which is the Pfaffian of the 2-form R = R“b—i—l%e“eb and can be written as a Born-Infeld
like form [5] [6],

1
L=2"1(n- 1)!/{\/th (R“b + l—zeaeb). (2.13)

The corresponding Born-Infeld (BI) gravity Lagrangian is given by

n

l2p—2n n
Lpr = K€ajas--asn, Z o (p) R42 ... R2p—192pp02p+1 . .. €a2n, (214)

p=0

which is off-shell invariant under the Lorentz Lie algebra so (2n — 1,1).
The Levi-Civita symbol €,,4,...45, I can be viewed as the only non-vanishing
component of the SO (2n — 1,1) invariant tensor of rank n, namely
on—1
(Jaraz - Jagn_razn) = ——Caa-az (2.15)
Let us note that this choice of the invariant tensor breaks the AdS group to their
Lorentz subgroup. If (T4---Tp) is an invariant tensor for the so (D — 1,2) algebra
then the Lagrangian corresponds to a topological invariant.

If the Lovelock gravity theory is the appropriate theory to provide a framework for
the gravitational interaction, then it must satisfy the correspondence principle, namely
it must be related to General Relativity theory. Nevertheless, from the Lovelock action,
it is apparent that neither the [ — 0 nor the [ — oo limit allows to recover the Einstein-
Hilbert term. In the following sections, we will discuss a particular choice of symmetry
that permits to establish a relation between General Relativity and the Lovelock gravity

theory.

2.2 Maxwell symmetries and General Relativity

It is known that the Maxwell algebra| M corresponds to a modification of the
Poincaré algebra, where a constant electromagnetic field background is added to the

Minkowski space [7, 8]. In four dimensions, this algebra is obtained by adding to

L Also known as B, algebra.



the Poincaré generators (Ju, P,) the tensorial central charges Z,,. This enlarges the

Poincaré algebra and modifies the commutation relations as follows

[Pa, Pb] = Zab, [Jab, Pc] = Mo Py — Nac b, (2'16)
[Jabs Zed) = MbeZad — NacZbd — ModZac + Nad Zbe, (2.17)
[Jabs Jea) = Mbedad = NacTba — MoaSac + NadJbe, (2.18)
(Zavs Zea) = 0, [Zay, Pe] = 0. (2.19)

Recently, it was shown in ref. [9] an alternative way of introducing the cosmological
constant term using the Maxwell symmetries. In particular, the Maxwell type algebras
P| allow to recover the Einstein equations from a Lovelock gravity theory in a certain
limit of a coupling constant [10, 1T}, T2, 13]. In the next section we will briefly review the
relation between General Relativity and the Maxwell algebras type using the abelian

semigroup expansion approach.

2.2.1 Standard General Relativity from Chern-Simons gravity

In this section, following ref. [I0] we discuss how to recover General Relativity
from a Chern-Simons gravity theory using a Lie algebra expansion procedure.

A Generalization of the odd-dimensional General Relativity theory corresponds to
the AdS Chern-Simons gravity theory. The CS theory has the advantage to describe
a gauge gravity theory in a odd-dimensional spacetime.

In (4+ 1) dimensions, the general expression of the Chern-Simons Lagrangian is
given by [14] [15]

L — <A (dA)? + gA:*dA + §A5> | (2.20)

where (---) denotes a symmetric invariant tensor. Then in order to write down a
CS Lagrangian for the AdS algebra, we start from the AdS-valued one-form gauge

connection

1 w5 1 .=
A= §wab<]ab -+ jeaPa, (221)

2Also known as generalized Poincaré algebra.
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where the s0 (4,2) generators satisfy the following commutation relations

|:jab7 jcd - 77bc=]~ad - nacjbd - 77bdj0Lc + nadjbca (222)
[jaba pc- - nbcpzz - nacpln (223)
[pa, B = Ju. (2.24)

The Levi-Civita symbol €,pc4e corresponds to the only non-vanishing component of the
50 (4,2)-invariant tensor. Therefore, the D = 5 Chern-Simons Lagrangian invariant
under the AdS algebra can be written as

L(j;s = K€abede (ie“ebecede6 + 3R“becede6 + 1Ii’“bRCdee) . (2.25)

505 303 l

One can see that neither the [ — oo nor the [ — 0 limit allows to recover the EH
Lagrangian alone. Nevertheless, the AdS Lie algebra is not the only possible choice
in order to describe a gravity theory. In particular, a family of Maxwell type algebras
Momi1 can be defined using the abelian semigroup expansion procedure.

The S-expansion method is a powerful tool in order to derive new lie (super)algebras
and construct new (super)gravity theories [See Appendix A]. Basically it consists on
combining the multiplication law of a semigroup S with the structure constants of a
Lie (super)algebra g [16].

Following ref. [10], let Sg’) = { Ao, A1, A2, A3, A4} be the relevant finite abelian semi-

group with the following multiplication law

A h <4
)\a>\,8:{ wtpr  WheD ot [, (2.26)

A4, when o + 3 > 4.

Here A4 plays the role of the zero element of the semigroup Sg’), so we have for each A\, €
Sg’), Ao = Ay = 0,. Let us consider the SS’)—eXpansion of the so(4,2) Lie algebra.
The Maxwell type algebraﬂ M is obtained after extracting a resonant subalgebra and
performing its Os-reduction [I0]. The new algebra is generated by {Jup, P, Zap, Za}

3Also known as 85 algebra.
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which are related to the so (4,2) generators through

Jab
Zab
Py
Za

Ao @ Jap, (2.27)
Ao @ Jup, (2.28)
A\ ® P, (2.29)
A3 ® P, (2.30)

The M generators satisfy the following commutation relations

= Zab7

= MbeZad — NacZbd — MdLac + NadZbe,
= Moedad = NacTbd — MbaJac + NadJbe,
= Mbela — NacLbs

= Mwela — NacZb,

B [Zabv Zc] = [Pm Zb] = [Za7 Zb] = 0.

[Jabs Pe] = MhePa — Nac Py, 2.31
2.32
2.33
2.34
2.35

(
(
(
(
(
(2.36

)
)
)
)
)
)

Let us note that the P, generators are no longer AdS boost, nevertheless the vielbein

e still transforms as vector under Lorentz transformations.

A very useful advantage of the S-expansion method is that it provides with an

invariant tensor for the S-expanded (super)algebra & = S x g in terms of an invariant

tensor for the original (super)algebra g. Using Theorem VII.2 from ref. [16], one can

see that the only non-vanishing components of a Mj invariant tensor are given by

<JachdPe>M5

<=]achdZe>M5

<JachdPe>M5

where «; and a3 are arbitrary constants of dimension [length

051 <jabjcd15e>
4

3
=l 1 €gbede s

3
a3 <jabjcdﬁe>
4

3
=l Q3€qbcde s

3

as <jabjcd]56>
4
_l3a3€abcdea

3

AdS
(2.37)

AdS
(2.38)

AdS

(2.39)

]—3
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The one-form gauge connection for the Maxwell type algebra Mj is

1 1 1 1
A= §w“bJab + e Pt ékabzab + 0" Z. (2.40)

Inserting the one-form connection (2.40)) into the general expression of the CS action

(2.20) and using the invariant tensor (2.37/—2.39)), we can write explicitly the Chern-
Simons gravity action for the Maxwell algebra type Ms [10],

LB = a1%€peqe R R + i3€apede @Rabecedee + 212k AT 4 ZQR“bRthe) . (2.41)
The Lagrangian is split into two independent pieces proportional to a; and as.
The first term corresponds to the CS Lagrangian invariant under the Poincaré algebra
iso (4,1). Meanwhile the term proportional to a3 contains the EH Lagrangian and the
coupling between the curvature and the new Maxwell fields k% and h®.

Interestingly, when the coupling constant [ equals zero, we obtain only the EH term,

2
Ll(i)m 2 §Q3€abcdeRab€C€d66. (2.42)

Analogously, the limit [ — 0 in the variation of the Lagrangian leads to the Einstein

equations in vacuum,
(5L(C5; = 2036 gpede R0 + 2003€ ypoge O e TE. (2.43)

This result can be generalized to every odd dimension using a bigger semigroup leading
to a bigger Maxwell algebra type. However we have pointed out in Theorem 4 of ref.
[12] that only some Maxwell type algebras allow to recover General Relativity from a

Chern-Simons gravity theory.

Theorem 1 Let My, 1 be the Maxwell type algebra, which is obtained from the AdS

algebra by a resonant reduced S](;mfl)

-expansion. If L(CQZH) is a (2p + 1)-dimensional
Chern-Simons Lagrangian invariant under the Mo, 1 algebra, then the CS Lagrangian
leads to the Einstein equations in a certain limit of the coupling constant l, if and only

ifm > p.

13



2.2.2 Even-dimensional General Relativity from Born-Infeld
gravity

In this section, following ref. [I1] we discuss how to recover General Relativity
from a Born-Infeld gravity theory using the semigroup expansion method.

The four-dimensional Lovelock Lagrangian corresponds to the Born-Infeld grav-

ity Lagrangian and can be seen as the bosonic MacDowell-Mansouri Lagrangian [17].

Then, the BI Lagrangian can be constructed from the 2-form curvature as
Lpr =k {(FAF)=kFA*NFB(T)\Tg). (2.44)

Let us note that if we choose (T4Tg) as an invariant tensor for the so (3,2) group, the
the action ({2.44) is a topological invariant and does not contribute to the dynamics.

However, with the following choice of the invariant tensor

(TaTp) = (JabJed) = €abeds (2.45)
the action (2.44]) becomes
LBI = gRabRCdeabC(b (246)
with |
Ro= R 1 Zebehs (2.47)

12
The choice of the invariant tensor, which is necessary in order to reproduce a dynamical
action, breaks the so(3,2) symmetry to its Lorentz subgroup.

One can note that, although the Einstein equations (with cosmological constant)
can be obtained from a BI gravity theory, it is not possible to recover General Relativity
in higher even dimensions. However, there is a particular choice of symmetry that allow
to relate even-dimensional BI gravity theory and the Einstein dynamic.

Following ref. [11], let Sg) = { Ao, A1, A2, A3} be an abelian semigroup with the

following multiplication law

)\a ) h < 37

Ndy = § Dot when o< (2.48)
A3, when o + 3 > 3,

where A3 plays the role of the zero element of the semigroup Sg). Let us consider

the Sg)—expansion of the s0(3,2) Lie algebra. The Maxwell algebra M (M = M,)is

14



obtained after extracting a resonant subalgebra and performing its 0s-reduction [11].
The expanded algebra is generated by {Ju, Pa, Za} whose generators are related to
the so (4, 2) generators through

Jab = AoJab, (2.49)
Zay = Nodap, (2.50)
P, = MP, (2.51)

and satisfy the commutation relations given by eqs. — . In particular,
as in the so(3,2) symmetry, the Maxwell algebra has a Lorentz like subalgebra L,
given by {Ju, Za} which can be obtained directly as a reduced 882)—expansion of the
Lorentz algebra [1(3,1). Using Theorem VII.2 from ref. [16], one can see that the only

non-vanishing components of an invariant tensor for the £, subalgebra are given by

(Javdea),, = a/0<jabjcd>£

=  (p€abed,s (252)
<Jachd>[;M = 0% <jabjcd>£
= (2€4bcd- (253)

where oy and ay are arbitrary constants. Interestingly, The invariant tensor breaks
the Maxwell symmetry to its Lorentz like subgroup.

The curvature 2-form for the Lorentz like algebra L is given by

1 1 1
F = 5RabJab +5 (Dwk“b - l—Qeaeb> Zap, (2.54)

where k% corresponds to the bosonic field associated to the abelian generator Zg;, and
R is the usual Lorentz curvature R = dw® +w®w®. Inserting the 2-form curvature
(2.54) into the general expression of the BI expression and using the invariant
tensor , we can write explicitly the Born-Infeld gravity Lagrangian for the
Lorentz like L algebra [11],

Ly = %GabcdRabRCd + %eabcd (R*ete’ + Dk R) . (2.55)

Here we can note that the Lagrangian (2.55)) is split into two independent terms.

The piece proportional to a corresponds to a topological boundary term known as the

15



Gauss Bonnet term. While the term proportional to as contains the Einstein-Hilbert
term and the coupling between the new gauge field k% and the Lorentz curvature R®
which corresponds to a Gauss Bonnet like term. Although the topological Euler-Gauss-
Bonnet term do not contribute to the field equations, it permits to regularize the action
and the related conserved charges [18, [19] 20} 211, 22].

Interestingly, the variation of the Lagrangian, modulo boundary terms, leads to

General Relativity equations when a solution without matter (k:“b = 0) is considered.
5L§y = 9€4bed (R“bec) de 4+ an€apeadw™ (Tced) ) (2.56)

Nevertheless as was shown in ref. [I1], in higher even dimensions (D > 6), an appro-
priate limit of the coupling constant [ has to be considered in order to recover the field
equations of General Relativity. In particular, it was pointed out in Theorem 5 of ref.
[12] that only some Lorentz like algebras allow to recover General Relativity from a

Born-Infeld type gravity theory.

Theorem 2 Let Ly, be the Lorentz like algebra obtained from the Lorentz algebra
by a reduced Sézm_Q)-e:Epansion, which corresponds to a subalgebra of the Maxwell type
algebra Moy,. If Lgf) is a (2p)-dimensional Born-Infeld type Lagrangian constructed
from the 2-form curvature of the Lay,, algebra, then the BI Lagrangian leads to the

FEinstein equations in a certain limit of the coupling constant l, if and only if m > p.

2.3 Einstein-Lovelock-Cartan gravity theory

In the previous section we have seen that the S-expansion method permits to relate
General Relativity with the Chern-Simons and Born-Infeld gravity theories using the
Maxwell symmetries. This suggests a generalized formulation of the Lovelock-Cartan
gravity action ([2.1)) which allows to recover the Einstein equations under a certain limit
of a coupling constant /.

A generalized Lovelock action can be obtained considering the most general D-form
invariant under a local lorentz type transformation constructed out of the vielbein e®,
the spin-connection w® and the expanded fields [I3]. The new action is given by

[D/2]

SGL = / Z ,uz-oszgf), (257)
p=0
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where «, and p;, with ¢ = 0,..., D — 2, are arbitrary constants and L(Gp’Li) is given by

L(C;;z‘) — [d-24i Rlarazin) | Rlazp—1,a2p,0p) o (a2p4150p+1) | | @(“D’iD*P)’ (2,58)

z1+-~~+iD7p€al‘12“'aD

with

RO20) — (o2 4 oy (ae2d) (20 §i (2.59)
The expanded fields {w(@?) e(@2+D} are related to the so (D — 1,2) fields {@, &}
through

w2 = Ny @ &%, (2.60)
e(“’z”l) = )\2i+1®éa, (261)

where )\, € S](EDQ)obeys the following multiplication law

h <D-1
Aom:{ N ’ (2.62)

Ap_1, Wwhena+pg>D—1.

Interestingly, there are different choices for the coefficients «, leading to different
theories with diverse numbers of degrees of freedom. In particular, as in ref. [5],
it is possible to choose the s coefficients according that the fields attain the max-
imum number of degrees of freedom. This fixes the «,’s parameters in terms of the
gravitational and the cosmological constants [13].

In odd dimensions, the coefficients are given by

a, = a @n=1) )" <” N 1), (2.63)

"@n-2p-1)\ p
with
K
Qp = W’ (264)
l2
7= —sgn(N) 5, (2.65)

where [ is a length parameter related to the cosmological constant as in eq. (2.6). As
in the original Lovelock gravity theory, the Lagrangian (2.57)) may be written as the
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Chern-Simons form

n—1
(2n—-1) __ 2p—2 i (araz2,i1) (azp—1a2p,ip)
LCS - ! Cp/“’[/i(sil—‘r'“—l—ig»n,l,pEa1a2"‘a2n71R e R Py
p=1
w el@2p+1sp+1) | .e(aznflmnflfp)7 (2.66)

where

¢, = 2(%——11@—1 (" ; 1) . (2.67)

The Lagrangian ([2.66|) corresponds to the Einstein-Chern-Simons Lagrangian and it is
invariant not only local Lorentz type rotation but also under the Maxwell type algebra
Mo, 1. In particular, the [ — 0 limit permits to recover General Relativity dynamics
as was shown in refs. [10} 12].

Meanwhile, in even dimensions the coefficients satisfying the requirement to have

the maximum possible number of degrees of freedom are given by

a, = ag (27)" (Z) (2.68)

With these coefficients the Lagrangian ([2.66|) take a Born-Infeld form,

n

2 K oon of T ' ) ,

Lt = 250" <p>“6++R<>R<)
p=1

Xe(a2p+1»ip+l) e e(a2n:i2n—p)' (2.69)

The Lagrangian (2.69) is invariant under a local lorentz type algebra and corresponds to
the Einstein-Born-Infeld Lagrangian found in ref. [I1]. General Relativity is recovered
when the [ — 0 limit is considered.

Unlike the Lanczos-Lovelock theory, the generalized Einstein-Lovelock gravity action
allows to recover Einstein-Hilbert dynamics in a particular limit of the coupling constant
[ both in even and odd dimensions. Interestingly, as in ref. [5], torsional terms can
be added to the Einstein-Lovelock Lagrangian leading to Pontryagin-Chern-Simons
Lagrangians in 4k — 1 dimensions [13].

4The term with p = 0 does not contribute to the sum because 52“1+---+i2n71 = 0 for any value of i
and n.
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Chapter 3

Supersymmetry and supergravity

3.1 Why Supersymmetry?

Three of the four forces of nature are successfully described by the Standard Model
as a Yang-Mills theory. They are elegantly related to gauge symmetries allowing
renormalizability and ensuring a viable quantum theory. On the other hand, gravity
described by General Relativity, resists to the quantization. In spite of the huge success
of the General Relativity theory, there is not a consistent quantum description of gravity
which prevents a possible unification of gravity to the other interactions.

In order to unify gravity with the other interactions in a unique theory, it is nec-
essary to put together the internal symmetries with the space-time symmetries. A
good candidate for this purpose is the supersymmetryﬂ The presence of supersym-
metry offers the possibility to solve the ultraviolet divergences cancelling the fermionic
and bosonic contributions to divergent loop integrals. Omne of the phenomenological
advantages of this theory is that it solves the hierarchy problem present in the Stan-
dard Model. In particular, supersymmetry requires the existence of super-partner for
each particle, whose contributions allows to cancel quadratic divergences in quantum
corrections to the Higgs mass.

Supersymmetry theories are remarkable theories since they unify space-time with
internal symmetries relating bosonic and fermionic particles in an elegant way. The

supersymmetry transformations generated by quantum operators () have the interesting

LA general introduction to supersymmetry can be found in ref. [23].
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property of mapping bosons into fermions and vice versa
Q |boson) = | fermion);  Q|fermion) = |boson) . (3.1)

Interestingly, a new algebraic structure known as the Lie superalgebraﬂ is required in
order to describe a supersymmetry theory. This permits to generalize the Poincaré al-
gebra introducing besides the bosonic generators B, the fermionic generators ). Thus
the simplest supersymmetry extension of gravity corresponds to the Poincaré super-
gravity theory and can be viewed as the “gauge” theory of the Poincaré superalgebra.
In the next section, we will briefly introduce the Lie superalgebra concept and review

the simplest supersymmetric extension of General relativity.

3.2 Lie superalgebras

In the 1960s, there were various attempts to find a symmetry group which would
relate different strongly interacting particles of different spins in a relativistic quantum
theory. Nevertheless, Coleman and Mandula showed in their no-go theorem that the
only possibility to unify the Poincaré symmetry and internal symmetries is given by
the Lie algebra g = p & 5, where p and s correspond to the Poincaré and internal sym-
metry algebras, respectively [24]. A way to circumvent the no-go theorem is through
supersymmetry using not only bosonic generators B, but also fermionic generators Q).
Particularly, having both commutation and anticommutation relations forming a Lie
superlgebra.

The Lie superalgebra £ can be decomposed in subspaces as
£=2L0 L, (3.2)

where £y is the subspace generated by the bosonic generators and £; corresponds to

the subspace generated by the fermionic ones . Then the product o defined by
o 1 E&xL—=EL (3.3)

satisfies the following properties [25]:

2Also known as a graded Lie algebra.
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o Grading: Va; € £;;1=0,1; x;0x; € £, moare) then £ is a graded Lie algebra.

e Supersymmetrization: Vz; € £;, Vx; € £554,7 =0,1; z,0x; = — (—l)ij Tjox; =

(-1)1+ij Zj O X;.
e Generalized Jacobi identites: Vi, € £k, Vo, € £,V € L5 k,[,m € {0,1};
2 0 (210 ) (=1 + 270 (2 0 2) (1) + 2 0 (zp 0 2) (=1)™ = 0. (3.4)

Thus, the generators of a Lie superalgebra are closed under the (anti)commutation

relations,
[B,B] = B, (3.5)
[B,F] = F, (3.6)
A S T (3.7)

One of the simplest supersymmetry algebras corresponds to the super Poincaré. In
particular, the four-dimensional Poincaré superalgebra is given by the Lorentz trans-
formations J,;,, the space-time translations P, and the 4-component Majorana spinor

charge ),. The super Poincaré (anti)commutation relations read

[Jabs Jed] = Moedad — NacIbd — MbaJac + NadJbes (3.8)
[Jab, Pe] = oc P = NacPo, [Pa, Bo] =0, (3.9)
[ Qul = —5 (@) [P @] =0, (3.10)
{Qa, Qs} = (vC) 5 P (3.11)

Interestingly, this implies that the combination of two supersymmetry transformations
corresponds to a space-time translation. On the other hand, the commutativity of
the fermionic generators () with the bosonic P implies that the supermultiplets contain
one-particle states with the same mass but different spins. This particularity is crucial
in order to unify the interactions with matter. In fact, gravity is described by the
spin-2 particle known as the graviton while the matter is made of spin-1/2 particles.
It is important to clarify that given a Lie algebra, it is not always possible to ex-

tend into a closed superalgebra. As we have said, the generators have to satisfy the
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generalized Jacobi identity . In some cases, the introduction of a new set of
bosonic generators and A fermionic generators are required in order to close the super-
algebra. Along the thesis we will present diverse superalgebras and their geometrical
consequences in the construction of a supergravity action. However, before to ap-
proach different superalgebras, it is useful to review one of the simplest models of a

supergravity theory based on the Poincaré superalgebra.

3.3 Poincaré supergravity theory

In a supersymmetric extension of gravity, the invariance of the theory is generalized
to an invariance under local supersymmetry transformations. Interestingly, there are
several modelsﬂ depending on the amount of supersymmetry charges A" and on the
choice of the space-time dimension D. The larger ' and the larger D, more constraints
are presents in the theory. It is known that increase N beyond 8 or the dimension D
beyond 11 leads to spins higher than two which makes difficult a consistent coupling to
gravity.

In the simplest version, a supergravity action consists of the coupling of the spin-
3/2 field to gravity. This can be done considering the Einstein-Hilbert term plus a
Rarita-Schwinger term [27), 28, 29]. The Rarita-Schwinger Lagrangian is given in term

of forms by
Py
Lrs = Z—Qwe“%%Dw, (3.12)

where 1) is a Majorana spinor (gravitino) which satisfies 1) = ¢TC, with C' the charge
conjugation matrix. This implies that 1 and 7/ are not independent fields.
Then, the supergravity action describing the coupling of spin-2 and spin-3/2 fields
is given by
S = %/eabcdR“beced + depeyays Db, (3.13)
In a very similar way to the Einstein-Hilbert theory, the complete action is

not invariant under the Poincaré superalgebra. The non invariance of the supergravity

3An extended study of diverse supergravity theories in a geometrical formulation can be found in
ref. [26].

22



action (3.13)) under the Poincaré superalgebra can be viewed using the Poincaré gauge

supersymmetry transformations
Ogauge A = VA4, (3.14)

where A is the gauge parameter \* = (pa, K, eo‘) and V is the Poincaré covariant

derivative. Then, using
§ (AYT4) = d\ + [APTy, \“T¢] (3.15)

the Poincaré gauge supersymmetry transformations are given by

0’ = Dp®+ ek + ey, (3.16)

ow® = Dr®, (3.17)
1

0 = de+ Zw“b%be = De, (3.18)

where D corresponds to the Lorentz covariant exterior derivative D = d + w. It is
straightforward to see that the supergravity action (3.13]) is not invariant under gauge
supersymmetry. In fact, if we consider the variation of the action (3.13) under gauge

supersymmetry, we find
4 |
5susys . _l_z\/RaquPYaﬁ)/BEa (319)

where R* = De® — %z/}yaw is the super torsion. Then, the invariance is obtained

imposing the super torsion constraint
R*=0. (3.20)

This leads to write the spin connection w® in terms of the veilbein and the gravitino
fields yielding to the second order formalism. This may be solved considering the

following decomposition,

w® = %+ o, (3.21)

where &% is the solution of De® = 0 and it is given by

o.ab

I (ef\é’[uel‘f]ncd + eia[kez]ncd — eié’[yei]ncd) eMaevll,

Then,
1=
De® = de + &%e, + 0%e, = 5@%, (3.22)
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implies
fres = w,ﬂ by, (3.23)

which permits to solve @ in terms of the two other fields,

ajzb = 411 alA b‘ (%%% + ¢A7y¢u @Z_JVVM@Z)A - @Eu’YV@Z}A - ?Eu%\% + &A%ﬂﬁy) . (324)

Thus, the spin connection w?

is completely determined in terms of e}, and ¢}y and does
not carry additional physical degrees of freedom.

Alternatively, the supersymmetry invariance can be recovered in the first order
formalism modifying the supersymmetry transformation for the spin connection w?.
Indeed, considering the variation of the supergravity action under an arbitrary

w® we have

2
2
Following ref. [30], it is possible to modify dw*® adding an extra piece such that the

(50_,S /EabcdRa béde (325)

variation of the action have the following form

4 - 1
0S8 = _l_Q/Ra <D77Z)fya75€ - éeabcdebéeztraww) . (326)

The supersymmetry invariance of the action ([3.13)) is ensured when Gpgirqw® has the
following value

6ewtraw6d = 2€abcd (\Tjec’yd75€ + \de670756 - \chd7675€) ee’ (327)

with ¥ = U e%b.

Thus the supergravity action ((3.13)) is invariant under the following supersymmetry

transformations:
det = ey, (3.28)
Sw® = 2¢abed (Peervarse + Waeverse — Weayeyse) €, (3.29)
0 = De. (3.30)

It is important to emphasize that the action supersymmetry is not a gauge super-

symmetry. In particular, one can see that the action (3.13]) does not correspond to a
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Yang-Mills action nor a topological invariant. Besides, the supersymmetry transfor-
mations leaving the action invariant do not close off-shell. Meanwhile, the super
Poincaré gauge variations close off-shell by construction.

The situation is completely different in three dimensions where the supergravity
action is truly invariant under the Poincaré superalgebra. This occurs, of course, us-
ing the Chern-Simons formalism. A supersymmetry group of particular interest is the
AdS supergroup since it allows to include the cosmological constant to the supergravity
action. We will see that others superalgebras can be derived from the AdS superal-
gebra using the semigroup expansion procedure with interesting consequences in the

construction of supergravity actions.

3.4 Geometric supergravity theory a la MacDowell-

Mansouri

In this section, we briefly review the geometric formulation of the four-dimensional
N =1 supergravity theory presented in ref. [I7]. In this unified geometric approach,
the relevant gauge fields of the theory correspond to those of the osp (4|1) superalgebra.

The generators of this superalgebra satisfy the following (anti)commutation relations

[jab, jcd: = Mhedad = TacIva — MoaJac + TadJoes (3.31)
|:jab> f’c: = 77bc15a - 77ac15b, (3.32)
[Pa,ﬁb: — Jon, (3.33)
Qo] = 5 (10@) . [Pn@] =5 (@) . (3.34)
{Qa s} = —% (1€ Jar = 2(1°C) g P (3.35)

where jab correspond to the Lorentz transformations, Pa are the AdS boost generators
and Qa corresponds to the 4-component Majorana spinor generator.

The one-form gauge connection A is given by

1 ,- 1 - 1 .
A= ABTy = éw“b b + 7eaPa + WWQQ, (3.36)

25



and the associated curvature two-form F' =dA + AN A is

1 ~ 1 - 1 ~
F=FATy=-R%®J,+ =R*P, + —p“Q, 3.37
A 9 b + l + \/Zp Q ) ( )
where
ab ab a, cb 1 a b 1 7. ab
RY = dw” + ww +l—2€ e’ + 2—l1/ry Y, (3.38)
1 -
R = de® + we’ — —hy™, (3.39)
2
1 1 1
p=dy+ Zwab’Yabw + gea%w = Dy + Zea%ﬂﬂ- (3.40)

Here, the one-forms w®

, e and 1) are respectively the spin connection, the vierbein and
the gravitino field (Majorana spinor). It is important to clarify that, since we have
choosen the Lie algebra generators 14 and the one-form connection A dimensionless,
the "true” gauge fields must be considered as e®/l and 1/ Vi

The supergravity action can be constructed only with the 2-form curvatures
as

5:2/(F/\F) :2/FA/\FB (TATg) . (3.41)

In particular, if (T4Tp) is an invariant tensor for the Osp (4]|1) supergroup then the
action (3.41) corresponds to a topological invariant and does not contribute to the
equations of motion. However, with a particular choice of the components of an

ivariant tensor

Ja Jc = Cabc
(TaTg) = oot = o (3.42)
(QaQp) =2(75)up
the action (3.41]) takes the following form
1 ab>ab 2—
S =2 ZLR R¥eapea + 7,075/). (3.43)

The action corresponds to the MacDowell-Mansouri supergravity action [17]
whose bosonic part is equivalent to the four-dimensional Born-infeld gravity action
(see eq. (2.46)). Let us note that this choice of the components of the invariant ten-
sor reproduces not only a dynamical action but also breaks the Osp (4|1) supergroup
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to its Lorentz subgroup. Considering the components of the curvature 2-form F' the
supergravity action can be written explicitly as

1 2 1 2 _
S = / §€ab0d (R“bRCd + Z—QR“beCed + ﬁeaebeced + l—ngabweced)

+ 50D + 14 ($1DY) (3.44)

Then, modulo boundary terms, we have

S = /llz (€apcaR* e ? + dpe®y,y5 D) + %Eabcd (%Gaebeced + l%@wa%eced) . (3.45)
The supergravity action is the MacDowell-Mansouri supergravity action for the
osp (4]1) superalgebra [I7]. As in the Poincaré supersymmetries, the four-dimensional
N = 1 supergravity action is not invariant under supersymmetry gauge transformations
for the Osp (4]1) supergroup. Nevertheless, the supersymmetry invariance of the action
can be obtained modifying the spin connection supersymmetry transformation
[30].

Along this thesis, we will present diverse supergravity actions a la MacDowell-
Mansouri using different superalgebras. In particular, following our results obtained
in refs. [31), 32 B3], we will present in the next sections the geometric consequences
of using different superalgebras in the construction of a N' = 1 supergravity action.
The generalization to N -extended supergravity theory using the MacDowell-Mansouri

formalism will not be approached in this thesis.
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Chapter 4

Geometric theory of Supergravity

and Maxwell superalgebras

4.1 Introduction

A well-known enlargement of the Poincaré algebra is the Maxwell algebra M where

a constant electromagnetic field background is added to the Minkowski space [7], §].

This algebra can be obtained by adding tensorial central charges Z,, to the Poincaré

generators (Jup, P,) modifying the commutation relation of the translation generators
Py,

[P, By = Zg. (4.1)

As shown in refs. [34, [35], the Maxwell algebra can be derived as an expansion
of the AdS Lie algebra so0(3,2). Particularly in ref. [35], the Maxwell algebra can
be obtained using the semigroup expansion method using SS) = {0, A\1, A2, A3} as
the relevant abelian semigroup. Subsequently, the procedure was generalized to all
Maxwell type algebr M, which can be derived as an SSEN)—eXpansion of the AdS
Lie algebra [12]. As we have seen previously, the Maxwell type algebras are useful
in order to recover General Relativity from a Chern-Simons and Born-Infeld gravity
theory [10, [T} 12, [13).

As shown in ref. [36], a supersymmetric extension of the four-dimensional Maxwell

! Also known as generalized Poincar algebras 95,,.
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algebra can be derived as an enlargement of the Poincaré superalgebra. Interestingly,
the N = 1, D = 4 Maxwell superalgebra sM describes the geometry of a N/ = 1,
D = 4 superspace in the presence of a constant abelian supersymmetric field strength
background. Recently, it was pointed out in ref. [34] that the minimal Maxwell super-
algebra sM can be obtained from the AdS algebra using the Maurer-Cartan expansion
method.

In the next section, following our results found in ref. [3I], we show that the
abelian semigroup expansion procedure can be used in order to derive the Maxwell
superalgebras and its generalization using bigger semigroups. The construction of a

supergravity action using a geometrical formulation is also considered.

4.2 Maxwell superalgebras and abelian semigroup

expansion

In this section, we shall consider the AdS superalgebra osp (4|1) as a starting point
and present new interesting four-dimensional superalgebras using the semigroup expan-
sion method. Before to apply the expansion procedure to the osp (4|1) superalgebra, it
is necessary to study the subspace decomposition of the original lie superalgebra g. In
particular, the osp (4]1) superalgebra g can be decomposed as a direct sum of subspaces

V, as

g=osp(4]1) =s0(3,1) &

sp (4) © 50

— VoV & Vs, (4.2)

osp (4]1)  sp
(

where V; is the Lorentz subspace generated by the Lorentz transformations J,,, V4
corresponds to the supersymmetry translation generated by a 4-component Majorana
spinor charge Q, and V; is generated by P,. The osp (4]1) generators satisfy the
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following (anti)commutation relations

[jab, jcd: = Mhedad — NacTvd — MoaJac + NadJoe, (4.3)
|:jzzb7 Pc: = chpa - nacpb; (4‘4)
20 B = s (4.5)
[ Ge] = =5 (@) . [Pu@a] =5 (@) . (16)
(00,05} = = [(0),, Ju—20),,, B (7)

where 7, are the Dirac matrices and C' stands for the charge conjugation matrix. Then,

the subspace structure may be written as

[Vo, Vol C Vo, Vi, Vi] C Vo @ Vs, (4.8)
Vo, Vi] € W, [Vi, Vo] € V4, (4.9)
[Vo, Vo] C V2, [Va, Vo] C Vo (4.10)

Now, we have to find a subset decomposition of a semigroup S "resonant” with
respect to (4.8)) — (4.10). As shown in ref. [31], the choice of the semigroup leads to
various superalgebras with interesting properties.

4.2.1 Minimal D =4 Maxwell superalgebra sM

In this section we show, following ref. [31], that the four-dimensional minimal
Maxwell superalgebra can be derived from the osp (4|1) superalgebra using the abelian
semigroup expansion method.

Let S](;) = {0, A1, A2, A3, Ay, A5} be the relevant finite abelian semigroup with the
following multiplication law

h <
Aadg = { Aarpy  When ot <5, (4.11)

As, when a4+ 3 > 5.

Here, A5 plays the role of the zero element of the semigroup S](;) so that for each
Ao € S](;), AsAe = A5 = 0g. Let us consider the subset decomposition 51(54) = SoUS1USs,

30



with

So = { Ao, A2s Au, s}, (4.12)
St={A, 23,5}, (4.13)
SQ - {)\2, )\4, )\5} . (414)

One sees that this decomposition is said to be resonant since it satisfies the same
structure as the subspaces V), [compare with eqs (4.8]) — (4.10)]

So-S0CSo, 815 C Sen S, (4.15)
S() -5 C Sl, Sy - SQ C Sl, (416)
S() -5y C Sg, Sy Sy C S(). (417)

Following theorem IV.2 of ref. [16], we can say that the superalgebra
S =Wy @ W, ® Wy, (4.18)
is a resonant super-subalgebra of Sg) X g, where
Wo = (So x Vo) = { Ao, Ag, Ay, As } x {jab} = {Aojab, /\Qjab7)‘4jab7)\5jab}7
Wi = (8% Vi) = (g, As} < {Qa f = {AiQas @, X5 |
Wy = (S x V3) = {ho, A, As} X {Pa} - {AQPG,AJQ,AE;E}.

As was pointed out in ref. [16], a smaller superalgebra can be extracted from the
resonant super-subalgebra &g. To this aim we have to apply the reduction procedure.

Let us consider a decomposition of the semigroup S, = Sp U Sp where Sp N Sp =J,
SO - {)\07)\27)\4}a SO - {)\5}a
Sl == {)\17 )\3}a Sl = {)\5}7 (419)
Sy = {Aa}, Sy = {1, A5}

In particular, the partition of the subsets S, C S satisfies [compare with eqs. (4.8)) —
[@10)]

So-So < So, Sy-S8y € SyNn Sy, (4.20)
S() . Sl C S’l, Sl : »SA’Q C Sl, (421)
So : SQ C SQ, Sg : SQ C So. (422)
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Then, we have

where

G
G

(So x
(50

VO)GB(SHXVl)@(SzXVz)a
%>@<§1><V1>@<S'2><V2>7

|:QV5R7 éR:| C ®R7

and therefore ‘éﬁ R| corresponds to a reduced algebra of &p.

(4.25)

The new superalgebra obtained is generated by {Jab, P, Zab, Lo, Qas Za} whose

generators are related to the osp (4|1) generators as

Jab = >\0J~ab7 Pa = )\Qpaa

Zab - )\2jab7 Zab - >\4jab7
Qa = )\1Qa7 Do, — )\SQa-

The (anti)commutation relations read

[Jaln ch] = 7Ib(:Jacl - nacjbd - ndeac + nadea
[Jaba Pc] 3 nbcPa - nacpln [Pm Pb] = Zab>

[Jaba ch] = nchad - nachd - nbdZac + nadecy

Par Q] = — 2 (123), .

2
o Qal = =5 (@)
b Zal = =3 (D),
Q0 @5} = 3 [(5C) s Zus — 2(°0),, P
(QuZsk = =3 (1) oy Zan

Jab; Zab = nchad - nachd - nbdZac + nadecy

[Zaby ch = nchad - T/achd - nbdZac + nadem

1

_Zaba Qa_ - _5 (’Vabz)a )

others = 0,
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where we have used the (anti)commutation relations of the original superalgebra osp (4(1)
and the multiplication law of the semigroup . The superalgebra obtained after a
reduced resonant Sg)—expansion of the osp (4]1) superalgebra corresponds to a general-
ized minimal four-dimensional Maxwell superalgebra sMy. In particular, the minimal
Maxwell superalgebra sM introduced in ref. [36] can be recovered imposing Zg, = 0.
Set Zg;, equals to zero does not violate the Jacobi identities (JI) for spinors generators.
Indeed, the JI are satisfied due to the gamma matrix identity (C7?) 5 (C7a),5 = 0
(cyclic permutations of a, 3, 7).

It is interesting to note the presence of a new Majorna spinor charge . The
introduction of a second abelian spinor generator is not new in the literature and has
been already proposed in ref. [37] in the context of D = 11 supergravity theory and
subsequently in ref. [38] in the superstring theory context. On the other hand, the
minimal Maxwell superalgebra contains the Maxwell algebra M = {Ju, P, Zap} and
the Lorentz type LM = {Ju, Zay} as a subalgebras.

4.2.2 Minimal D = 4 Maxwell type superalgebras sM,, -

The procedure presented previously can be generalized to a family of Maxwell
superalgebras.  In this section, following ref. [31], we show that a minimal four-
dimensional Maxwell type superalgebra sM,, o can be defined from the osp (4[1) su-

peralgebra using the abelian semigroup expansion method.

Let ng) = {0, A1, A9, -+, Agmma1} be the relevant finite abelian semigroup with
the following multiplication law
Aot 85 h < Aot
Ay =4 otP when a5 < Aomi (4.38)
)\2m+17 when « + B > )\Qm-‘rl-

Here Ay, 11 plays the role of the zero element of the semigroup ng).

As in the previous
section, let us consider the decomposition ng) = 5o U S1 U Sy where the subsets 5,

are given by

2m —p

Sp = {)\zn_H,7 with n = 0, ey |: :| } U {)\2m+1}7 P = O, ]_, 2. (439)

In particular, we said that this decomposition is said to be resonant since it satisfies
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[compare with eqs. (4.8)) — (4.10))]

So-SoC So, 815 C SeM Sy, (4.40)
S() -5 C Sl, Sy - 52 C Sl, (441)
S() - Sy C 52, Sy - Sy C S(). (442)

Then, according to theorem IV.2 of ref. [16], we have that
QiR = W() D W1 D WQ, (443)

with
W, =S5, xV,, (4.44)

is a resonant subalgebra of & = ng) X g.

In order to extract a smaller superalgebra from the resonant one & we have to
apply the reduction procedure. Let us consider S, = S’p U S*p a partition of the subsets
S, C S where Spﬂgp =J,

So = {Aan, with n = 0,--+,2[m/2]}, So = {(Nam) , Aamir},
St ={Aont1, withn =0, ,m—1}, S1={Aom+s1}, (4.45)
Sy = {Nonso, withn=0,---,2[(m —1) /2]}, Sz = {(Nom) s A1}

and where

S’O if m is odd
)\2m S A . .
Sy if m is even.

Then, one can see that the partition satisfies [compare with eqs. (4.8) — (4.10))]

So-Sy S, S-S C SN Sy, (4.46)
50 . Sl C S’l, Sl : »SA’Q C Sl, (447)
So . SQ C SQ, gg : 5’2 C So. (448)

Then, following the definitions of ref. [16], we have that

Gp=Wod W, & W, (4.49)
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corresponds to a reduced superalgebra of &g, where
Wo = (So % Vo) = {Aan, with n =0, ,2[m/2]} x {Jab} :
Wy = (S % V) = Do, withn =0, .m — 1} x { G}
Wa = (8 % Vo) = Do, with =0, ,2[(m — 1) /2} x {B.}.

Then, the new superalgebra obtained by the S-expansion procedure is generated by

{Jab.k)s Pastty) Qam) } (4.50)

where these new generators are related to the osp (4|1) generators as

Jab,(k) = Aok Jab,
Pa,(l) = )\lem

Qa,(p):)\2p—1Qa7
with £ =0,.... m—1;l=1,...,m; p=1,...,m when m is odd and k = 0,...,m;

[l =1,....m—1; p = 1,...,m when m is even. The new generators satisfy the

(anti)commutation relations

[ ab, (k) Jed,(5) ] Jad,(k+5) — NacTbd,(k+5) = ModJac,(k+5) T NadJbc, (k+7) (4.51)
[ ] = 0, (k+1) — NacBo,(k+1)5 (4.52)
[ a,(1)1 Pb )] = l+n (4.53)
[ab ), Q)] = —5 (Yab @) (1) (4.54)
1
[P (1) Qa ] = 5 ’VaQ (+p) (4.55)
1 ab a
{Qa (p)> Qﬁ } "9 [( C) Jab,(p+q) — 2 (v C)a,ﬁ Popta) | - (4.56)

The superalgebra obtained after a reduced resonant ng)—expansion of the osp (4[1)
superalgebra corresponds to the four-dimensional minimal Maxwell type superalgebra
sMn1o. Naturally, when k + 7 > m, the generators TXC) and T' g ) become abelian. It
is important to clarify that the indices p and ¢ of the spinor charges correspond to the

expansion labels and they do not define an AM-extended superalgebra. In particular,
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the (anti)commutation relations of ref. [3I] can be written explicitly if we redefine the

generators as

Jab = Jabo = XoJab; Py = Paz = M P,,

Z(b - Jab 4i = )\42Jab7 Z((l]) = Pa,4]+2 )‘4]+2Pa7
ZC(LZ) = Jabai—2 = Asi- 2 Jab, Zg) = P,4 = )\4jPa> i
Qa‘ = Qo1 = MQa, ) = Qaai-1 = Mi—1Qa,

oY) = Qajr1 = )\4j+1Qa7

with ¢ = 1,...,[m/2], j = 1,..., [mT’l] A bosonic subalgebra of the sM,, o su-

peralgebra is the Maxwell type algebra M., s = {Jab, P, Zé?, Z{ )} whose generators
satisfy [10, [12],

[Jab, Jed] = Mbedad — NacIbd — MbaJac + NadJbes (4.57)
Vabs P = e Pa — 1acPyy [Pas P = 23, (4.58)
et 20| = meZ8) — Mac ) — maZ8D + MuaZiy (4.59)
[Z,EZ), P.| = 12 — naeZy?, [Jab, Z9] = e 25 — UL (4.60)
128, 20)] = meZi9 = nae2, (4.61)
128, 28] = meZ5 = nac 25t = maZGH + naaZii™, (4.62)
[P, 29 = 25, [29,29) = 25, (4.63)

withi, k=1,...,[m/2];j,l=1,..., [mT’l} As was pointed out in refs. [10, 1], 12, [13],
the Maxwell type algebras are useful in order to recover the Einstein equations from
Chern-Simons and Born-Infeld gravity theories in a certain limit of a coupling constant.

Interestingly, when we consider the Sg) as the relevant abelian semigroup (m = 2)

and imposing Zéll))

= 0, we recover the minimal Maxwell superalgebra sM. The case
m = 1 is the most trivial case corresponding to the four-dimensional Poincaré super-

algebra sP = {Juw, Pa, Qa} whose generators satisfy the following (anti)commutation
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relations

[Jaba ch] = nchad - nachd - ndeac + nad(]bca (464)
[Jaln Pc] = nbcPa - naCPb7 [Pau Pb] = 07 (465)

1
[Jaba Qa] - _5 (f}/abQ)a 9 [Paa Qa] - 07 (466)
{Qa, Qs} = (vC) 5 P (4.67)

This result is not a surprise since the Inonii-Wigner contraction of the four-dimensional
AdS superalgebra can be seen as a reduced resonant Sg)—expansion of the osp (4]1)
superalgebra.

One can see that the minimal Maxwell type superalgebra sM,, o contains addi-
tional Majorana spinors generators (), (, Which transform as spinors under Lorentz
transformations. In particular, all the anticommutators of fermionic generators sat-
isfy the Jacobi identities by virtue of the gamma matrix identity (C~®) (a8 (C,) ) =
(C'Vab)(aﬁ (C%b)v@ = 0 (cyclic permutations of «, §,7v). In fact, the JI are satisfied
for all the generators since they correspond to an S-expansion of the original JI of the
osp (4]1) superalgebra.

The introduction of additional Majorana spinors charges in the minimal Maxwell
type superalgebra sM,, s can be seen as a generalization of the D’auria-Fré super-
algebra and the Green algebras introduced in refs. [37, B8], respectively. Naturally,
in presence of only one 4-component Majorana spinor generator (m = 1) the Maxwell
superalgebra s M3 corresponds trivially to the superPoincaré one sP.

The construction of a four-dimensional supergravity action using the minimal Maxwell
type superalgebra will be considered later. In the next section, following ref. [31], we
will approach the N-extended Maxwell superalgebra using the semigroup expansion

procedure.

4.2.3 N-extended Maxwell superalgebras

In the previous section, we have shown that the S-expansion of the AdS superalge-
bra osp (4]1) allows to derive diverse minimal Maxwell superalgebras. Then, it seems
natural to consider the osp (4|\') superalgebra as a starting point in order to obtain

the four-dimensional N-extended Maxwell superalgebra [31].
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Before to apply the semigroup expansion procedure it is necessary to consider a
decomposition of the original superalgebra osp (4|N) = {jab, B, T, Qfl} as a direct

sum of subspaces V,

g=osp(4N)=(s0(3,1)®so(N)) &

osp (4|\V) sp (4)
sp(4)®dso(N)  s0(3,1)
=VWo Vo, (4.68)

where Vj is the subspace generated by Lorentz transformations J,, and by w

internal symmetry generators 7%, V; corresponds to the supersymmetry translation
generated by A Majorana spinor generators Q) (i=1,--- N ;a=1,---,4) and V;
is associated to the P, generators. The osp (4|N) generators satisfy the following

(anti)commutation relations

[jaba jcd- = Doedaa — NacIbd — MdJac + NadJse; (4.69)
[Tij’Tkl_] — kil _ gikil _ galpik | gilpik (4.70)
|:J~ab7 pc: = nbcﬁ)a - nacpba (4.71)

2] = )
7@ = 5 (@) . [Pa@i] = 5 (@) . (1.73)
79,08] = (01, - %0L). (4.74)
{ 7 @g} - —%5@7 [('y“bC’)aﬁ v —2(1"C),5 Pa] + CagT, (4.75)

where 4,7, k,1 = 1,...,N; 7, are the Dirac matrices and C stands for the charge

conjugation matrix. Then, the subspace structure may be written as

[Vo, Vol C Vo, Vi, Vi] C Vo @ Va, (4.76)
[Vo. Vi] € W, Vi, Vo] C V4, (4.77)
[Vo, V] C V4, [Va, Vo] C V. (4.78)

Following ref. [31], let Sgl) = {0, A1, A2, A3, Ay, A5} be the relevant finite abelian

semigroup with the following multiplication law

Ny = { Aatp,  cuando a+ 5 <5,

(4.79)
s, cuando a + 3 > 5.
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Here A5 corresponds to the zero element of the semigroup SS). Let us consider the
decomposition Sg) = Sp U S] U Sy where

SO - {)\07/\27/\47/\5}7 (480)
St = {1, A3, A5} (4.81)
Sy = {Ao, Ay As) (4.82)

Such decomposition is said to be resonant since it satisfies [compare with eqs. (4.76]) —
(4.78))]

So-Sy C S(), S1-51 C SpN 52, (483)
So . Sl C Sl, Sl . SQ C Sl, (484)
S-Sy C SQ, Sy - Sy C So. (485)

Then, according to the definitions of ref. [16], we have that
Gr=Wo @ W, & W, (4.86)
is a resonant super-subalgebra of Sgl) X g, where

Wo = (S x Vo) = {Aos Aoy Ay A x { s TV }
= MMAMWMQAJWMWAJ%MWAJ@,

Wi =(S1 x V1) ={ A1, A3, A5} % {Qa} = {Aléa,)\séa,/\&séa},
Wy = (Ss % Va) = {da, A, Mg} X {Pa} - {Agﬁa,x4ﬁa,xsﬁa} .

The 0g-reduced resonant superalgebra is obtained imposing the reduction condition
AsT4 = 0. The resulting superalgebra is then generated by {Jab, Py, Zay, Zap, Zay Q50 TH Y }7”}
whose generators are related to the osp (4|A) ones through

Jab = Nodap, QL =M@,
Py= P, = N\0Q%,
Zap = Madap, T = NTH,
Zap = Mo, YT = NTY,
Zo=MP,, Y =)\T4,
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In particular, the bosonic generators {Jab, Py, Zap, Zaps Lo, T4, Y Y } satisfy the fol-

lowing commutation relations

[Jabs Jed] = Mbead — NacIbd — ModJac + NadJbe, (4.87)

[Jab, Pe] = Mo Lo — Nac s, [Pa, Po] = Za, (4.88)

(Jabs Zea] = MbeZad — NacZbd — ModZac + NadLbe (4.89)

[Jaba ch: = N Zad — NacZbd — ModZac + NadZbe, (4.90)

|:Zaba Za] = NocZad — NacZbd — MvdZac + Nad Zbe; (4.91)

[Jab, Zc- = TIcha - Uach, |:Zab; Pci| = chZa - Uach, (4.92)

(7%, T’d} = T — %I — ST 4 TR, (4.93)

[T, YH] = g/ky ™ — ghy It — ity 4 gty %, (4.94)

|79, V4] = o7y — gl iy g gy, (4.95)

79,74 = gyt = gy it — ooty g gty ok, (4.96)

others = 0. (4.97)

Meanwhile the fermionic generators {Q’,, ¢ } satisfy the following (anti)commutation
relations

@) = —2 (@), [Zan Q] = 2 (), (1.95)

D) = =5 (), [T9.Q4) = (7@~ 5%QL), (4.99)

[T 54] = (53’@ 6TL), [V, QE] = (s - atsl), (4.100)

2@ = —5 (62, (4.101)

{Q.,Q%} = —%5“’ [(yabc)aﬁ Zap = 2(1"C) g Pa] + CopY, (4.102)

{Q., %%} = —%5” [( PC) 5 Zab = 2(1°C) Z] + CopY™, (4.103)

others = 0. (4.104)

These (anti)commutation relations can be obtained using the commutation relations of
the osp (4|N) superalgebra and the multiplication law of the semigroup Sgl). In partic-
ular, the Og-reduced resonant SS)—expansion of the osp (4|N) superalgebra leads to the
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four-dimensional N-extended Maxwell superalgebra SMA(LN) [31]. This superalgebra
contains the generalized Maxwell algebra gM = Jab,Pa,Zab,Zab,Za as a bosonic
subalgebra ( see egs. — ([4.92)). One can see that the presence of additional
bosonic generators modifies the anticommutator of the minimal Maxwell superalgebra.
Interestingly, it is possible to recover the simplest four-dimensional AV-extended Maxwell
superalgebra sMWN) = {Jab, Py Zap, Q°,, 3, T} imposing Za = Zab =Y¥ =Yii = 0.
Naturally, the minimal Maxwell superlgebra sM is recovered when T% = 0. It is
important to clarify that, due to properties of the gamma matrices in four dimensions,
impose some generators equals to zero does not break the Jacobi identity.

As in the minimal case, this procedure can be generalized in order to derive the
N-extended Maxwell type superalgebra SM%\QQ from the osp (4|\') superalgebra. Fol-
lowing ref. [31], let us consider the ng) = {Xo, A1, A2, .., Aoy1 b as the relevant

abelian semigroup. Let ng) = SoUS1US; be a resonant subset decomposition where

2m —p

Sp = {)\2n+p, with n = 0, ° P 5 |: :| } U {)\2m+1}7 P = 0, 1, 2, (4105)

and let S, = Sp U Sp be a partition of the subsets S, C S with

SO = {>\2na with n = 0,---,2 [m/Q]} ) SO =2 {()‘2m> ) /\2m+1} ) (4106)

51 = {)\2n+17 with n = 0, . i = 1} 9 gl = {)\2m+1} s (4107)

Sy = {Donge, withn=0,--- ,2[(m—1)/2]}, So={(Dam), Aamea}t,  (4.108)
where

N € { Sy if m is odd

Sy if m is even.

This partition satisfies the resonant conditions for any value of m and S, NS, = @.

Then, according to the definitions of ref. [16],
Gr = (S0 x Vo) ® (51 x V1) ® (82 x Va) , (4.109)

corresponds to a reduced resonant superalgebra. The new superalgebra obtained is

generated by
{Jab,(k)7 Py, Qo p) Y(zk)} , (4.110)
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whose generators are related to the osp (4|\) generators as

Jab (k) = Mok Jab,
) — )\lea7
Qa,(p) - )\2p—1Qa7
Y = AT,
with £k =0,.... m—1;l=1,...,m;p=1,...,m when m is odd and k = 0,...,m;

[ =1,....m—1; p = 1,...,m when m is even. The new generators satisfy the

(anti)commutation relations

[Jab,(k)s Jea, ()] = Moead,(k5) — TacTva (k+5) — Modae,(k-+5) T TadToe (k) (4.111)
i ih i jh ihy ih

[Yﬂ }: gykﬂ SOV Y Y (4.112)
[ } = a,(k+1) — Nachs,(k+1) (4.113)
[P, Pb (n] = l+n)7 (4.114)
[Jab (k) Qo)) = =5 %bQ a(kip) (4.115)
[ uit) Qaup)] = =5 %Q A (4.116)
[ p)} = 5”’621 (brp) — 09Q% (k1)) 5 (4.117)
{Qa ) Qo)) = [( PC) 5 Jabpra) = 2(V'C) g Papra) | + CasYiig:  (4118)

The superalgebra obtained after a reduced resonant S](;m)—expansion of the osp (4|N)
superalgebra corresponds to the four-dimensional N -extended Maxwell type superal-
gebra SMSL\QZ [31]. Naturally, when k + j > m, the generators TA and T become
abelian. As in the minimal case, this M -extended superalgebra contains additional
Majorana spinors generators Qf)z,(p) which transform as spinors under Lorentz trans-
formations. Interestingly, the s./\/léN) superalgebra obtained after a reduced resonant

Sg)—expansion of the osp (4|N') superalgebra corresponds to the four-dimensional N-
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extended Poincaré superalgebra sPW) = {J,;, P,, @', T} whose generators satisfy

[Jaba ch] = nchad - 7/]otct]bd - nbdjac + nadjbca
[Jabypc] :anPa_naCPba [Pa,Pb] :Oa
|:Jab7 Qza] = _§ (/Yasz)a ’ [Paa Qla] =0,
[le,Tkl] — 5jkT’L'l o 5Zijl o 5lezk + 6ilTjk’
[Tijv sz] = ((Vszx - 5ZkQ;) )

{in ,jg} =" (VQC)QB P,

This result is not a surprise since the Inonii-Wigner contraction of the four-dimensional
N-extended AdS superalgebra can be seen as a reduced resonant Sg)-expansion of the
osp (4|N') superalgebra.

The construction of an four-dimensional N-extended supergravity action based on
the N-extended Maxwell type superalgebras remains an open problem and will not be

considered in the present thesis.

4.3 D = 4 supergravity from minimal Maxwell su-

peralgebra sM,

In this section, following ref. [32], we present a geometric construction of a super-
gravity action using the minimal Maxwell superalgebra sM,.
In the previous section, we have shown that after extracting a reduced resonant
Sg)—expansion of the osp (4|1) superalgebra we find the minimal Maxwell superalge-
bra sMy = { Jub, Pay Zabs Zabs Qa, Ba ¢ whose generators satisfy the (anti)commutation

relations (4.26]) — (4.37)).

The one-form gauge connection for the sM, superalgebra is given by

1 1, ~ 1 1 1 1
A= W], + k™7, + k™7, + =P, + —1*Q,, + —E°%,, 4.12

where the one-form gauge fields can be written in terms of the components of the
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osp (4|1) connection as
wab — )\O(Ijab, et = )\2féa’
]::ab = A2(:}(1177 ¢a = /\1?;&7
kab — /\4&')ab7 ga — /\3,(2)01'

The associated curvature two-form F' = dA + A A A is given by

1 1 1~ - 1 1
F=FAT, = 5RabJab + -RP,+ -F®Z + ~F®Z, + —0°Q, +

I 2 2 Vi

where
Rab — dwab + wacwcb7
1-
R* = de® + whe — =§°y,

~ ~ ~ = 1=
Fab — dkab + wc::k,cb . wbck,ca 4 awq/abw,

Vi

- 1 1-
Fab _ dk?ab + wack’Cb _ wbckca + k’ack?d) 4+ _eaeb + 7§,yabw’

[2
1
U =dip + Zwabyabw = Dij,

1 1~ 1
==d —w, ab _k,a ab _aa
&+ waY 8 + TRy Y + ey

1- 1
= D& + k¥ + —eyath.
5+4 b ¢+2l67¢

The one-forms w®

1
2%, (4.126)

, % 1 and & are the spin connection, the vielbein, the gravitino field

and an additional Majorana fermionic ﬁel, respectively.  While the k% and k% fields

describe bosonic "matter” fields.

On the other hand, the Lorentz covariant exterior derivatives D = d + w of the

curvatures can be derived from the Bianchi identity VF = 0 ( where V is the gauge

2 A Majorana spinor 1) satisfies the Majorana condition ) = 1C, where C' is the charge conjugation

matrix.
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covariant derivative given by V = d + [A4, -] ) leading to

DR™ =0, (4.127)
DR = R%e" + "V, (4.128)
DF® = Rk — R® j= — %mabw, (4.129)
DF® = ROk — R® | 4+ [ — FP ke llz R’ — ll?e R (4.130)
+ %Ey% — %f’yab\lf, (4.131)

DU = }lRaw“b@/} (4.132)
D= = Z—lRaw b - ~aw“”\lf + iFaw“bw + o et — ! 3¢ Y- (4.133)

Then, using the MacDowell-Mansouri geometrical formalism [17] and following ref.
[32], a supergravity action can be constructed out of the 2-form curvatures of the

minimal Maxwell superalgebra sMy as
S = 2/ (FAF) = 2/FA ANFP(TuTg) 0y, - (4.134)

Here, (T4Tp), M, can be obtained using the useful properties of the semigroup expansion
procedure. Indeed, using theorem VII.1 of ref. [16], one can see that the components
of an invariant tensor for the sM, superalgebra can be written in terms of a particular

choice of the original invariant tensor,

(JabJea) spa, = ao< ab cd>> (4.135)
<Jachd>sM4 = o < Jab ~Cd> : (4.136)
<Zab2cd>sM4 =y < Jab ~Cd> : (4.137)

(JavZeahopn, = 4 < oo }d> , (4.138)

(Qa@p) g, = 2 <Qa@ﬁ> , (4.139)

(QuXp) 4 pq, = 4 <Qac?5> , (4.140)



where

<jabjcd> = €abcd,)
(Quls) =235

and the a’s are dimensionless arbitrary independent constants. It is important to
clarify that this choice of the invariant tensor breaks the Maxwell supergroup to its
Lorentz like subgroup. This is not a surprise since we have considered the S-expansion
of a particular choice of an invariant tensor which breaks the Osp (4|1) supergroups
to its Lorentz subgroup. This construction of a supergravity action can be seen as
a supersymmetric generalization of the four-dimensional Born-Infeld gravity action in
which the action is constructed from the AdS two-form curvatures using (T47ps) as an
invariant tensor for the Lorentz group.

Then, considering the two-form curvature of the minimal Maxwell superalgebra
sMy and the non-vanishing components of the invariant tensor (4.135]) — (4.140)),

the supergravity action (4.134) becomes

1 1 ~ 1
S = 2/ (ZaoeabcdRabRCd —+ §a2€abcdRachd + §a4€abcdRabFCd

1 s N 0\ 4

The action (4.141]) can be written explicitly in terms of the different components of the

curvature two-form as

> 1 _
S = / %GabcdRabRCd + Q2€qbed <Ra‘kaCd + ﬂRabl/}’yqu/;)
1

l2 Rabeced

4 _ 1 -
+ YQQD@ZJ%D@U + Q4€qped (R“kaCd + 5Dk;a”chd +

1 - - 1 _
+2_leﬂb,¢,ycd,¢ + Rabk,cfk,fd + jRabé-,YCdd})
8 7 2 T T ab 4 7a
+ 70[4D77Z)”75D§ + 70[4D1/}’}/5k3ab’7 77/) + l—2064¢6 ’YQ”Y5D¢. (4142)
Interestingly, using the gravitino Bianchi identity and the gamma matrix identity

2VabY5 = —€abedV* (4.143)
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it is possible to combine some expressions as boundary terms. In fact, following ref.
[32], we have

1 _ _ _
EﬁabcdRabi/Wab@D + 4Dyrys Dip = d (4DYys1)) |
€abeaREV ) + 8DEYs DY = d (8DE51))

1 - . .
SCatea DR + 208005 D = d (DR 50

Thus the MacDowell-Mansouri geometrical formulation of a supergravity action for the

sMy superalgebra is given by

~ 4
S = /%EabcdRabRCd + Oé2d (ﬁabcdRabde + 7D¢75¢)
1 ab c_d 4 - a
+ ay l_zgabcdR ee” + l—2¢6 YaYs D

+d (eabcd <Rabk0d + %D/%ablécd) - %%qu + %zziléab%bwp)] . (4.144)
The supergravity action is split into three independent terms proportional to ag, as
and a4, respectively. The first term corresponds to the topological Euler Lagrangian
and does not contribute to the dynamics. The piece proportional to as is also a
boundary term and contains explicitly the coupling between the new bosonic gauge
fields k% and the Lorentz curvatures R%. The last term is proportional to ay and
contains the Einstein-Hilbert Lagrangian €qp.qR%e‘e?, the Rarita-Schwinger Lagrangian
4ape®~y,75 D1 and boundary terms.

Interestingly, the supergravity action obtained using the MacDowell-Mansouri geo-
metrical approach and the minimal Maxwell superalgebra sM, describes pure super-
gravity in four dimensions. Indeed, the new Maxwell gauge fields k% and k* appear
only in the boundary terms and do not contribute to the dynamics. Moreover, as a
consequence of the semigroup expansion method, the cosmological constant term dis-
appaers completely from the supergravity action similarly to the bosonic case using the
Maxwell algebraﬁ Then, this result can be seen as the supersymmetric extension of
the results found in refs. [11} [12] where General Relativity is recovered from Maxwell

algebra as Born-Infeld gravity action.

3 Also known as By algebra.
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A particular case can be derived when we consider £ = 0. In fact, the action

found in ref. [39] corresponds to the term proportional to ay, namely

Sliav_g = 4 /%2 (GabcdRabeced + 4&6(1%&75wa) +d (GabcdRabk’Cd + %f%wa) .
(4.145)
This results is not a surprise since we have previously seen that setting Z,, = 0 in
sMy leads to the simplest minimal Maxwell algebra [31], which allows to construct the
action as shown in ref. [39].

It is tempting to argue that the presence of the new bosonic gauge fields k% and &
in the boundary would allow to recover the supersymmetry invariance in the rheonomic
approach. It seems that the supergravity action obtained here could be obtained using
the geometric approach considered in ref. [40] where N' =1 and N = 2 supergravities

are constructed on a manifold with boundary.

4.3.1 sM, gauge transformations and supersymmetry

In this section, following ref. [32], we analyze the supersymmetry invariance of the
action . Although the supergravity action a la MacDowell-Mansouri is
constructed out of the 2-form curvatures of the minimal Maxwell superalgebra sM,, it
is not invariant under the gauge transformations. Indeed, the supergravity action does
not correspond to a topologial invariant, nor a Yang-Mills action.

The sM, gauge transformation of the one-form gauge connection A is given by
6,A = Dp =dp+[A,p|

where p is the sM, gauge parameter,

1 1 ,~ 1 1 1 1
p==p®Jdu + =k Zy + =K% Zy + = p* P, + WGQQQ + —0"%,. (4.146)

2 2 2 l Vi
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Then, we have explicitly for each component the following gauge transformations,

Sw™ = Dp™, (4.147)
~ ~ 1
ke = DRab — <k:“c ot — kbcpac) - A", (4.148)
5kab Dliab (kacpbc - kbcpac) _ (]%ac’%bc - i{}bcl’%ac>
2 1_, 1_,
+ e’ — 70" — 76 (4.149)
5e” = Dp® + ’p + ey, (4.150)
1 1
500 = de + 79" Ve = 70t (4.151)
1 1 1 1
5:d _aba _aa__aa__aba
§=do+ 7w + 57€"a€ — 5/ Vet — 1P Vabs
1- 1_,
+ Zk“b%be —zF Y. (4.152)

Similarly, the gauge transformations of the curvature F' can be obtained from ¢,F =

[F, p] leading to

SR™ = R*p., — R%p° o (4.153)
1
5Fab (Rac Rbc a < Fbc a> o 7€,Yab\1!’ (4154)
5F(zb (Rac Rbc a ) (Fac b Fbc a ) (Faci%bc i Faclz&ac>
2 1 1
SRY" — Sy — —ey= 4.155
SR* = R%p" + R°p) + &0, (4.156)
1
oV = ZR“Z’%Z,E — Zpab%bm, (4.157)
1 1 1 1 1~ 1
6= = ~R™, Rue — = p"YaV — = pPyp= + — F e — ~ K"y, 0. (4.158
12 Va5 R ae — 50" 1P V= F e — R ¥ (4.158)
Let us note that the variation of the action (4.144]) under gauge supersymmetry is
4 -
OsusyS = —l—2a4/Ra\If7a75e. (4.159)

As in the Poincaré and osp (4]1) superalgebra, the gauge supersymmetry invariance of

the action is obtained imposing the supertorsion constraint

R*=0.
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This leads us to express the spin connection w® in terms of the other fields (second
order formalism). Nevertheless, the supersymmetry invariance of the action in the first
formalism can be recovered adding an extra piece to the gauge transformation of the

spin connection dw®. Then, the variation of the action can be written as

4 - 1
05 = —l—2a4 / R (\I['Ya’YSE - §€abcd6béeaxt7’aw0d) . (4160)

The supersymmetry invariance of the supergravity action is obtained imposing

Seatraw™ = 26! (Weeyavse + Waeveyse — Weayeyse) €, (4.161)

with ¥ = U ,e%b.
Thus, the supergravity action (4.144)) is invariant under the following supersymme-

try transformations

0w = 26 (Weeryayse + WaeVeys€ — WeaVese) €, (4.162)
ok = —%@y%, (4.163)
Sk = —%ev“bf, (4.164)
de = ey, (4.165)
S1p = de + ;lw“b’yabe =Dk, (4.166)
0¢ = %e“%e + il;:ab%be. (4.167)

It is important to clarify that the susy transformations are not gauge symmetries of the
action. Additionally, the supersymmetry transformations leaving the action
invariant do not close off-shell, meanwhile, the sM, gauge variation close off-shell by
construction.

The situation is quite different when we consider the gauge supersymmetry trans-

formations related to the spinor generator 3,. From (4.147) — (4.152)), we have that
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the new supersymmetry transformations are given by

sw™® =0, (4.168)
oK™ =0, (4.169)

1
6k = —7@7“%, (4.170)
de” =0, (4.171)
0 =0, (4.172)

1
0& =do+ Zw“b’yabg = Do. (4.173)
Interestingly, the action (4.144) is invariant under these transformations,

05 =0. (4.174)

In particular, the supergravity action a la MacDowell-Mansouri (4.144) is off-shell in-
variant under a particular subalgebra of sM, which are generated kmb, Zab, Lap, Ea}
and corresponds to a Lorentz type superalgebra.

Our results show that the Poincaré supersymmetries are not the only supersymme-
tries of the pure supergravity action. The invariance of the pure supergravity action
under additional supersymmetry transformations could not be guessed trivially. The
procedure used here could be useful in order to derive new supersymmetry structures
related to standard supergravity. It seems that it should be possible to recover higher-

dimensional standard supergravity from the Maxwell superalgebras.

4.4 D =4 supergravity from minimal Maxwell type

superalgebra sM,, -

In this section, following ref. [32], we present a geometric construction of a super-
gravity action using the minimal Maxwell type superalgebra sM,,, ..

In the previous section, we have shown that after extracting a reduced resonant

ng)—expansion of the osp (4]1) superalgebra we find the minimal Maxwell type superal-

gebra sM,, 10 = {Jab,(k), Py, Qa,(p)} , whose generators satisfy the (anti)commutation

relations (4.51]) — (4.56]).
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The one-form gauge connection for the sM,, o superalgebra is given by
ab,(k) J o,(p)
A== Zw ab (k) + 7 ;i Z l)+ lgz/; me(p), (4.175)

where the one-form gauge fields can be written in terms of the components of the

0sp (4]1) connection as

BR) = Mg, (4.176)
et = Ny e, (4.177)
P = Ny 10 (4.178)
The associated curvature two-form F' = dA + A A A is given by
1
A a a,
F=F TA:égnb(kJab B+ ZR(I l)+_qu (an (4.179)
where
- 1
Rab,(k) — dwab,(k) + Wa,C (z) ])5!:] - —e% (D) b ,(n) 5lk+n

1 ab k

a, k n N a
RO = e +w (k) A b 5,l€+n 2¢(p)7 Al 5;1(1,

1 . L,
VO =y + 20, Oy NGO+ e Oy, A DT,
withk =0,....,m;l,p=1,...,m. The one-forms w® = w™® ) ¢ = =2 and ) = (M

are the spin connection, the vielbein and the gravitino field, respectively.
On the other hand, the Lorentz covariant exterior derivatives D = d + w of the

curvatures can be derived from the Bianchi identity VF' = 0 leading to

DRab (k) (Rac 1), , b,(j+1) Rbc 1), , a,(j+1) )5Zk+]+1

1
g o . R, (w1so)
DR>W — Rab.() J)5f+] + Rc,(n)wca, j+1) 65’L+j+1 + @E(p)vaqj(q 5;!2)5_(17 (4.181)
1 ab, (i 1 ab, (%
DY = 1 (R " )%W((J)) Oiyg — 1 (w . +1)%b\11(q)) Oi 144
1 I
+ 57 (T2 @) 67, = o7 ("2 @) 67, (4.182)
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Then, using the MacDowell-Mansouri geometrical formalism [I7] and following ref. [32],
a supergravity action can be constructed out of the curvature 2-forms of the minimal

Maxwell superalgebra sM,, o as
S = 2/ (FAF)=2 / FANFP(TATp) .. (4.183)

Here, (I'aTp),p,,, ., can be obtained using theorem VIL1 of ref. [I6]. Indeed, it is
possible to show that the components of an invariant tensor for the sM,,, .5 superalgebra

can be written in terms of a particular choice of the original invariant tensor,

(ab. (k) ch,(j)>st+2 = Q2(k+) <jabjcd> ) (4.184)

<Qa,(p)Qﬁ,(q)>st+2 = Q2(p+4q-1) <Q~ac~25> ; (4.185)
which can be written as

<Jab,(k)ch,(j)>st+2 = Q9(k+)€abed; (4.186)

<Qa,(p)Qﬂ,(q)>st+2 = 202(p+q—1) (V5) o5 - (4.187)

Here the o’s are dimensionless arbitrary independent constants. Similarly to the pre-
vious case, this choice of the invariant tensor breaks the Maxwell type supergroup to its
Lorentz like subgroup. This is not a surprise since we have considered the S-expansion
of a particular choice of an invariant tensor which breaks the Osp (4|1) supergroups to
its Lorentz subgroup.

Then, considering the two-form curvature of the minimal Maxwell type superalgebra
SMpto and the non-vanishing components of the invariant tensor (4.186[) —

(4.187]), the supergravity action (4.183)) becomes

. . 4 _
S =9 / Z %eabcdRab,(k)Rcd,(J) + Z a2(p+q71)7\p(p) A 75\11(61)’ (4.188)

k,j P,q

with k,7=0,...,m;p,g=1,...,m.

Interestingly, the term proportional to ay describes pure supergravity,

1 1 4
S = 2044/ (§€abcdRab’(0)RCd7(2) + ZEQdeRab’(l)RCd’(l) + Y\I’(Q) A ’}/5\11(1)) R (4189)
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which can be written explicitly as
1 _
5:a{/%Wﬁ(Rm@@mgmuﬁwmgmwwd%¢m)
+ d (Eabcd (Rab,(O)wab,(Z) + %waab,(l)wcd,(l)>
8 1 D@ & L5, ab.1) M
+7Dw¢ Vst + 71/1 W Yap Y5 (4.190)

Then using the gravitino Bianchi identity DW®) = %Rab%blll(l), the gamma matrix
identity (4.143)), and using the following identification,

wab,(O) _ wab’ wab,(l) _ l%ab7

L) — fab el — ga,

Rab,(O) _ Rab7 w(l) _ ’l/),
¥ =,

it is possible to write the pure supergravity action plus boundary terms,
1 E
S = s [ camags (Rt 4 40e,7D,0)
ab1.cd 1 7.ab7.cd 8= 1 7.7.ab
+ d €abed R k + §Dwk' k’ —+ 75"}/5wa + jwk ’yab’)/g)d} . (4191)

Let us note that, as in the previous result, the cosmological constant does not appear
explicitly in the ay term. In particular, the presence of the cosmological term requires
the components <Jab7(2)ch,(2)> which is proportional to ag.

On the other hand, the case m = 1 reproduces the four-dimensional Poincaré super-
gravity a la MacDowell-Mansouri. Nevertheless, it is not possible to recover the pure
supergravity action from the MacDowell-Mansouri formalism using the sP superalgebra

since the Einstein-Hilbert term cannot be construct from the component (JupJea) p-

4.4.1 sM,, » gauge transformations and supersymmetry

In this section, following ref. [32], we analyze the supersymmetry invariance of the
action (4.188). Although the supergravity action a la MacDowell-Mansouri (4.188|)

o4



is constructed out of the 2-form curvatures of the minimal Maxwell type superalgebra
SM 10, it is not invariant under the gauge transformations. Indeed, the supergravity
action does not correspond to a topological invariant, nor a Yang-Mills action.

The sM,, 12 gauge transformation of the one-form gauge connection A is given by
6pA = Dp=dp+[A,p]

where p is the sM,, 12 gauge parameter,
1
T2 > 00 Ty + T Z P Poay + — Z P Qa ) (4.192)
2

Here, the components of the gauge parameter are related to the components of the

osp (4|1) gauge parameter as

pab,(k) _ )\Qk ~ab’

Pa’(l) = )\ZZP )
e (P) — by 18
with k =0,...,m; ,p=1,...,m. Then, we have the following gauge transformations

5wab,(k) _ Dpab,(k) o (wac,(i—i-l)pbc,(j) b ,(i41) pac ,(9) )(5k

i+j+1
n l% e pmgh %e(my“bzp@éﬁiq, (4.193)
oe®) = Dp=) 4 wab’(kﬂ) (5k+n+1 + et p, 5l kT eyl 512)5,-(]7 (4.194)
1 1
S = de® + 4w ) o€’ 5£+q 21 5f+q
1 1
= 2" a5 Dyt . (4.195)

Similarly, the gauge transformations of the curvature I’ can be obtained from §,F =
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[F, p] leading to

SRAE) = (o0 p ) _ RebD) 1 V) gt ¢ l% RO hmgh
_ %g )b q)(gﬁq, (4.196)
JRYD = RO W gl R p e WGl e yaplag2 (4.197)
ouw = ER“Z’ a0}, + Q—ZR“’(”% CH ip R L
N % 0, B0, (4.198)

Let us note that the variation of the action (4.188]) under gauge supersymmetry is
OsusyS = / Z e RO DU Py ysedf, (4.199)

As in the previous case, the gauge supersymmetry invariance of the action is obtained

imposing the expanded supertorsion constraint
RYW 0,

This leads us to express the bosonic fields w®®*) in terms of the other fields (second
order formalism).

Interestingly, since the a constants are independent and arbitrary, the study of
the supersymmetry invariance can be approached in each term separately. Let us
consider the variation of the term proportional to as; under gauge supersymmetry

transformations related to the )1y generator,
4 ONT (k—1)
(5susyS = _l_2a2k R ‘If’}/a’}/5€ s (4200)

with & = 0,...,m. Here ¢*1 corresponds to the gauge parameter associated to
the spinor generator Q(,—1y and R* and ¥ correspond to R*»M and ¥, respectively.
The supersymmetry invariance of the ag term in the first formalism can be recovered

b(k—2)

adding an extra piece to the gauge transformation of w® Then, the variation of

the action proportional to aig, can be written as

4

= 1
55 —l—ZOézk/Ra (\I]Pyap)/f)e(k_l) - §€abcd€b56xtraWCd’(k_2)) . (4201)
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The supersymmetry invariance of the supergravity action proportional to asy is obtained

imposing
5extrawab’(ki2) = Qeade (\Ilecfyd75€(k71) + ‘I/de’)/cfyf)‘s(kil) - \I]cdfye’)%e(kil)) 667 (4202)

with U = W, e%eP.

It is important to clarify that the supersymmetry transformation leaving the action
proportional to ag invariant is not a gauge symmetry. Additionally, these supersym-
metry transformations do not close off-shell, meanwhile, the sM,, o gauge variation
close off-shell by construction.

However, the term proportional to asy is truly invariant under gauge supersymmetry
transformations related to the )¢, generators if ¢ > k. Naturally, when m = 2, we

recover the previous results.
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Chapter 5

Generalized supersymmetric
cosmological term in N =1

supergravity

5.1 Introduction

In the literature, it was pointed out that a good candidate to describe the dark
energy is the cosmological constant [41, 42]. In the geometric approach, the cosmologi-
cal term can be introduced in a four-dimensional gravity theory using the AdS algebra.
The introduction of a cosmological term in the supersymmetric extension of gravity can
be performed in the MacDowell-Mansouri geometric formalism. In this framework, as
we have seen previously, the construction of the supergravity action is based only on
the osp (4|1) curvatures [17].

An alternative method to introduce a generalized cosmological constant term us-
ing the Maxwell algebra has been presented in ref. [9]. Nevertheless, as we have
shown in the previous section, the geometric construction of a supergravity action us-
ing the Maxwell superalgebras does not reproduce the generalized cosmological term.
An alternative superalgebra have to be considered in order to introduce a generalized
supersymmetric cosmological constant to a supergravity action.

An interesting deformations of the Maxwell algebras consist in the so (D — 1,2) &
s0(D—1,1) or so(D,1) @ so(D —1,1) algebra introduced in refs. [43, [44]. This
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algebra, also known as AdS-Lorentz (AdS — L,) algebra, has been used in order to
reproduce the generalized cosmological constant term from a Born-Infeld gravity action
[35]. In particular, as shown in refs. [45, [I7], the AdS-Lorentz algebra can be derived
applying the semigroup expansion procedure to the AdS algebra.

Then, it seems that the supersymmetric extension of the AdS-Lorentz algebra is the
appropriate superalgebra in order to reproduce the generalized supersymmetric cosmo-
logical term in a supergravity theory. In this chapter, we present different AdS-Lorentz
superalgebras using the abelian semigroup expansion procedure. The construction of

supergravity actions a la MacDowell-Mansouri is also proposed.

5.2 AdS-Lorentz superalgebras and abelian semigroup

expansion

5.2.1 The AdS-Lorentz superalgebra

In the present section, following the method used in ref. [46], we present the
construction of the four-dimensional AdS-Lorent superalgebra as an S-expansion of
the osp (4|1) superalgebra.

As we have said previously, the original superalgebra has to be decomposed in
subspaces before to apply the semigroup expansion procedure. Let us consider a de-

composition of the osp (4|1) superalgebra as

= 41) = 1
8= 0sp (41) =s0(8.1) & "2 0

osp (4]1)  sp
(

where Vj, V; and V; satisfy (4.8) — (4.10) and correspond to the Lorentz, subspace, the
fermionic subspace and the AdS-boost, respectively.
Following the properties and definitions of ref. [16], let us consider S @) _ {0, A1, Ao}

as the relevant finite abelian semigroup which satisfy the following multiplication law,

Nays, if <2
Mk =1 + ot f (5.2)
atp-2, fa+p>2
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Let us consider the subset decomposition S 2 _ So U S; U Sy where
So = { Ao, A2}, (5.3)
S1={\}, (5.4)
= {2} (5.5)

In particular, this subset decomposition is "resonant” since it satisfies the same struc-
ture as the subspaces V), of the osp (4|1) superalgebra [compare with eqs. (4.8]) — (4.10)]

S(] . S() C S(], S1-81 C S() N SQ, (56)
So- S C S, S-S, C Sy, (5.7)
S() - Sy C 52, Sy - Sy C So. (58)

Then, according to theorem IV.2 of ref. [16], we can say that the superalgebra
Gr =Wy W, ®Ws, (5.9)

is a resonant subalgebra of S/(a) X @, where

Wo = (So % Vo) = {ho, Ao} x {j } {Aojab,xgjab} , (5.10)
Wy = (S1 x Vi) = {\} % { } {AIQQ}, (5.11)
Wy = (Sy x Vo) = { Ao} % { } F {)\2]5,1}. (5.12)

Then, the new superalgebra obtained by the S-expansion procedure is generated by

{Jaby Pa, Zap, Qo } whose generators are related to the osp (4|1) generators as

Jab = AoJab,
Zay = NaJap,
Py = XF,
Qo = MiQa-
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The (anti)commutation relations read

[Jaba ch] - nbc ad — nact]bd - 77bd<]ac + 7/]owlt]bcy (513)

[ aby d] - nbc ad — nachd - nbdZac + nadeca (514)

[Zab, Zed) = MbeZad — NacZbd — MdZac + Nad ZLye, (5.15)

[Jab; P] = 77bc a 77(1ch7 [Pm Pb] = Zab7 (516)

[Zaba P] - nbc a 77¢1ch’ (517)

1
[Jab7 Qa] = _5 (VabQ)a > [Paa Qa] = _5 (’YaQ)a ’ (518)
1

[Za,b’ Qa] - _5 (’7&6@)@ ) (519)
1 a a

{Qa Qs} = =5 | (1C) g Zar = 2(1°C) | (5.20)

where we have used the (anti)commutation relations of the osp (4|1) superalgebra and
the multiplication law of the semigroup . The superalgebra obtained after a res-
onant Sﬁ)—expansion of the osp (4|1) superalgebra corresponds to the four-dimensional
AdS-Lorentz superalgebra sAdS — £,. This superalgebra has the usual AdS-Lorentz
algebraﬂ AdS — Ly = {Ja, Pa, Zap} as a bosonic subalgebra which allows to introduce
a generalized cosmological term to a Born-Infeld gravity action. Unlike the Maxwell
symmetries, the Z,, generators are not abelian and behave as Lorentz generators.

It is interesting to note that the Inénii-Wigner (IW) contraction [48, 149, [50] of the
sAdS — L4 superalgebra leads us to the Maxwell superalgebra. Indeed, considering the
rescaling

Zzzb — ﬂzZaba Pa — ,upa and Qa — MQOA (521)

1 Also known as Poincaré semi-simple extended algebra.
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the Maxwell superalgebra is recovered in the limit © — oo [47].

[Jaba ch] Tlbe 7/]otct]bd nbdjac + nadjbca (5 22)
[Jabs Zea] = MbeZad — NacZbvd — MviZac + Nad Zbe (5.23)
[Zaln Z d] 0 [Zalh PC] - 07 (5 24)
[Jaba P] — 77bc a nach; (5 25)
1
[Jaba Qa] = _5 (’VabQ)a y [Paa Qa] = 07 (5 26)
[Zabu Qa] - 07 [Paa Pb] = Zab; (5 27)
1
{Qav Qﬁ} = _5 (/yabc)aﬂ Zab: (5 28)

It is important to clarify that this Maxwell superalgebra is quite different from the min-
imal Maxwell supperalgebra sM. In particular, it does not have additional Majorana
spinor generators and cannot be obtained directly as an S-expansion of the osp (4]1)

superalgebra.

5.2.2 The generalized minimal AdS-Lorentz superalgebra

In this section, following ref. [33], we present the construction of a four-dimensional
generalized minimal AdS-Lorentz superalgebra using the abelian semigroup expansion
method.

Following the definitions of ref. [16], let us consider S](\j) = {0, A1, A2, Az, Ay} as the

relevant finite abelian semigroup with the following multiplication law

Aot Bs if <4
Ny = § Dkt d (5.29)
)\a+,3747 if o + ﬁ >4
Let S = 55U S; U.S; be the subset decomposition where
So = {0, A2, \a} (5.30)
S1 = {1, A3}, (5.31)
SQ - {)\2, )\4} . (532)
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One can see that this subset decomposition is said to be ”"resonant” since it satisfies
the same structure as the original subspaces V), [compare with eqs. (4.8]) — (4.10)]

S(] . S() C S(], S1-81 C S() N SQ, (533)
So-S,C S, 8-S C 8y, (5.34)
S() - Sy C 52, Sy - Sy C So. (535)

Then, according to theorem IV.2 of ref. [16], we can say that the superalgebra
Gr =Wy W, Wy, (5.36)

is a resonant subalgebra of S/(ét) x 0sp (4|1), where

Wo = (So % Vo) = {hos Aoy Aa} X Jab} - {Aojab, )\zjab,)\4jab}, (5.37)
Wy = (S x Vi) = {Ais Ag} x {Qa} - {Aléga,AgQa}, (5.38)
Wy = (Sy % Va) = { Aoy Aa} X {Pa} — {AQPG,MPQ} . (5.39)

The resulting superalgebra is then generated by {Jab, Py, Zavs Zats Zas Qu,s Za} whose
generators are related to the osp (4]/1) ones through

Jab = Xodaw, P = Ao,

Zap = Madapy  Za = AP,

Zab = Madapy Qo = MQa,
Yo = A3Qq.
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[Jaba ch] - nchad
[Zab7 ch] - nchad
[Jaba ch] = nchad

|:Jab7 ch = nchad
|:Zab; ch - nchad

[Zaba ch = nchad

In particular, these new generators satisfy the (anti)commutation relations

- 77achd - nbdjzzc + nadeca

- nachd - nbdZac + nadeca
- nachd - nbdZac + nadeca

- nachd - nbdZac + nadeca
- nachd - nbdZac + nadeca

- 77achd - 7/]bdZac + nadeca

[Jab; Pc] - nbchz - nacha ab> P] = Mbe P nacpby
|:Zaba Pc - ncha - nacha [ Z :| = 77bc a nacha

|:Zab7 Z = MhePa — NacPos [ ] — acZb,
(P, B = Zay | Za Bo] = Za [Za, Zb} = Zu,
o Qo] = =5 (0@ [P @l = 5 (a3
7,0 = 5 CaDas [20:Qu] = 5 (6.
Zu Qo] = —5 (@ [Bar e = =3 (1aQ)..

1 ~ 1
by Zal = =5 (Z)ar | ZesTa] = =5 (1)

[Z,50) = =5 Ca@as (2o 5l = =5 (D),

2

1 -

{QOA?Q/B} =5
{Qavzﬁ} =75

{Zav Eﬁ} =75

21
1_
2L
1_
2L

5.40

ot Ot Ot

N
>

'Cﬂ ot
M =~
oo W
N N N~ N~ N~ N~ ~— ~

o~ o~ o~ o~ o~~~ o~~~

(5.50)
(5.51)
(5.52)
(5.53)
(5.54)
(5.55)
(5.56)

(5.57)

The superalgebra obtained after a resonant Sg)—expansion of the osp (4|1) superalgebra

corresponds to the four-dimensional generalized minimal AdS-Lorentz superalgebra.

Unlike the usual AdS-Lorentz superalgebra, this superalgebra contains an additional
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4-component Majorana spinor charge ¥. The introduction of a second spinor generator
has been already proposed in ref. [37] in the context of D = 11 supergravity theory
and subsequently in ref. [38] in the superstring theory context.

A particular bosonic subalgebra of this superalgebra is the generalized AdS-Lorentz
algebra generated by {Jab, Pa,Zal” Zabs Za} and can be confused with the AdS — Lg

algebra introduced in ref. [35]. Indeed, one could identify the Zab, Zop and Za generators
with the Z (g), 4 (gi) and Z, generators of the AdS — Lg algebra, respectively. However,
the commutators are subtly different of those of the AdS — Lg algebra. On the
other hand, the usual AdS — L, algebra generated by {Ju, P., Zap} is a subalgebra of
the generalized minimal AdS-Lorentz superalgebra.

Interestingly, a generalized minimal Maxwell superalgebra can be recovered as an
Inénti-Wigner contraction [48], [49] [50] of the generalized minimal AdS-Lorentz superal-

gebra. Indeed, considering the rescaling

~ab — ,UZZaba Zab —ou ,u4Zab7 Pa — [LQPaa
Zy = W24, Qo — Qo and X — pP%,

and the limit g — oo, we found a generalized minimal Maxwell superalgebra [33].
Naturally, when we consider Z, = 0 we recover the usual minimal Maxwell superalgebra
sMy defined in the previous section.

The construction of a four-dimensional supergravity action using the generalized
minimal AdS-Lorentz superalgebra will be considered later. In the next section, fol-
lowing the method presented in ref. [33], we will approach the A-extended AdS-Lorentz

superalgebra using the semigroup expansion procedure.

5.2.3 N-extended AdS-Lorentz superalgebras

In the previous sections, we have shown that the S-expansion of the AdS super-
algebra osp (4|1) allows to derive diverse AdS-Lorentz superalgebras. Then, it seems
natural to consider the osp (4|\') superalgebra as a starting point in order to obtain
the four-dimensional N -extended AdS-Lorentz superalgebra.

Before to apply the semigroup expansion method, the original superalgebra has

to be decomposed in subspaces. Let us consider a decomposition of the osp (4|N)
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superalgebra as

g=o0sp (4N)=(s0(3,1)®so(N)) &

0sp (4|NV) sp (4)
sp (4) dso(N) ~ s0(3,1)
=V e, (5.58)

where Vp, Vi and V; satisfy (4.76) — (4.78). Here, V; corresponds to the subspace

generated by Lorentz transformations J,;, and by W

T% ., V; corresponds to the supersymmetry translation generated by N' Majorana spinor

internal symmetry generators

generators Qza (i=1,---,N;a=1,---,4) and V, is associated to the P, generators.
Following the definitions of ref. [16], let us consider S](é) = { Ao, A1, A2} as the

relevant abelian semigroup whose elements satisfy the following multiplication law

Aargy if <2
R B fatf< (5.59)
a+pB—2 1f05+ﬁ > 2

Let us consider the subset decomposition S® _ SoU S U Sy where

So = {)\07)\2}7 (5-60)
S1={\}, (5.61)
S = {2} . (5.62)

In particular, this subset decomposition is said to "resonant” since it satisfies the same
structure as the subspaces V,, of the osp (4|\') superalgebra [compare with eqs. (4.76]) —
(4.78))]

S-S C So, Sy -8y C Sy S, (5.63)
S() -5 C Sl, Sy - 52 C Sl, (564)
S(] - Sy C 52, Sy - Sy C S(). (565)

Then, according to theorem IV.2 of ref. [16], the superalgebra

Gr=Wy 0 W, & Wy, (5.66)
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is a resonant subalgebra of S/(\%t) x 0sp (4|N), where
Wo = (So % Vo) = {ho, Ao} x {jab,TU} _ {)\Ojab, Ao T AT AQTZ‘J} . (567
Wi = (S x Vi) = (A x {@L} = {nai (5.68)
Wy = (S5 x V3) = [} x {Pa} - {AQPG} . (5.69)

The resulting superalgebra is then generated by {Ju, P, Zap, Q%,, T, Y} whose gen-
erators are related to the osp (4|N) ones through

Jab = Nodw,  Qf =M@,
P, =X\F,, TY = X\T",
Zap = Aodop, Y4 = \TU.

These generators satisfy the (anti)commutation relations

[Jabs Jea] = Nbedad — NacTvd — MbdSac + NadJbe, (5.70)

[Japs Pe] = MbePa — Nac P, [Pa, Po] = Za, (5.71)

[Jabs Zed) = MbeZad — NacLbd — MbdZac + NadLbe, (5.72)

[Zab, Zed) = MbeZad — NacZbd — MdZac + NadZbe, (5.73)

[Zabs Pe] = Moo — Nacls, (5.74)

(77, T] = (WTd — &I — ST 4 TR, (5.75)

[T7, Y] = 6%y — gyt — 57ty ™ 4 gy %, (5.76)

[V, VK] = oihy ™ — gyt — sity ™ 4 sty Ik, (5.77)
@) = 3 (0w, e Q=5 (@), 67
12.Q.] = (704~ 5".). (579
YV, Q0] = (6"Q, — 6"QL) (5-80)
[P, Q) = —% (7.Q"),, » (5.81)
{Q.,Q%} = —%5” [(7“"0)&5 Zapy = 2(V°C) g Pa| + CapY ", (5.82)
others = 0. (5.83)
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The superalgebra obtained after a resonant S](\? -expansion of the osp (4|N') superalge-
bra corresponds to the four-dimensional N-extended AdS-Lorentz superalgebra. In
particular, the J,;, generators form the Lorentz algebra so (3, 1) while the Z,, P,, Y%
and @', generators form the osp (4|N) superalgebra. Then, the A-extended AdS-
Lorentz superalgebra corresponds to a direct sum of the Lorentz algebra so (3,1) and
the AdS superalgebra osp (4|N).

On the other hand, one can see that the AdS-Lorentz algebra generated by {Jup, Zap, Pa}
is contained as a bosonic subalgebra of the N-extended AdS-Lorentz superalgebra.

The generalization of this procedure to (N)-extended AdS-Lorentz type superal-
gebras and the construction of a AN-extended supergravity action a la MacDowell-
Mansouri remains an interesting problem to approach and will not be considered in

the present thesis.

5.3 Geometric theory of supergravity with a gener-

alized cosmological constant

It is the purpose of this section, following ref. [33], to construct a supergravity
action using the MacDowell-Mansouri geometric formalism which contains a generalized
supersymmetric cosmological constant. To this aim, we consider diverse AdS-Lorentz
superalgebras and propose a supergravity action based only on the two-form curvature.
In particular, as we have seen previously, the AdS-Lorentz superalgebra contains non
abelian Z,;, generators which implies the presence of additional bosonic fields k2.

Our main motivation of considering the AdS-Lorentz symmetries is that we are
interested in investigate the geometric consequences of the presence of the generators
Za = [P, Py in the construction of a supergravity action. Although a similar non-
commutativity appears in the Maxwell superalgebra, as shown in ref. [32], the super-
gravity action a la MacDowell-Mansouri based on the Maxwell supersymmetries does

not reproduce the cosmological term in the supergravity action.
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5.3.1 D = 4 supergravity from the AdS-Lorentz superalgebra

In this section, following ref. [33], we present an alternative way of introducing the

supersymmetric cosmological term to the four-dimensional supergravity action using the

MacDowell-Mansouri geometrical approach. In particular, analogously to the previous

chapter, we propose a supergravity action constructed out the curvature two-form of

the AdS-Lorent superalgebra using the semigroup expansion method. The study of

the supersymmetry invariance is also considered in the present section.

Let us consider the connection one-form
1
Vi

whose components are related to the osp (4|1) ones as follows

1 1 1
A= AT, = §w“b b+ =P, + 5kabZab +

: 0" Qa.

wab - )\oajab,

e’ = g€,
kab —= /\Qajab7
Y= Mg
Let ' =dA + A A A be the associated curvature two-form given by

1 1 1
_RaPa + _FabZab + _\IIOCQOH

1
F=FATy = -R"J,
479 A 2 Vi

with
Rab:dwab+wacwcb’
a a a b a b 1~ a
R* = de® +wie’ + ke —§¢7 W,
1 1 -
Fwab:dk,ab_i_wackcb_wbckca_i_k;ackcb_i_l_2€aeb_'_aw,yabw7
1 1 1
U = d _aab _aa _k,a ab‘
Yt qway U+ et + Thay Y

Here, the one-forms w®

(5.84)

(5.85)

, €%, and 1) are the spin connection, the vielbein and the gravitino

field, respectively. While the k% fields describe additional bosonic “matter” fields.

Let us note that the Maurer-Cartan equations for the AdS-Lorentz superalgebra are

satisfied when I = 0.
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On the other hand, the Lorentz covariant exterior derivatives D = d + w of the
curvatures can be obtained from the Bianchi identity VF = 0 ( where V is the gauge

covariant derivative given by V = d + [4, -] ) leading to

DR™ =0, (5.86)
DR = R%e" + F4e® + Rk 4 vV, (5.87)
1
DFab Ra k’Cb Rbck:ca + F(chb o Flz:k:ca + l_2 (Raeb o eaRb)
Ly, (5.88)
1 ab 1 ab 1 ab a
DY = 7 Rapy™ % + 7 Fapy™ % — Jkapy™ W + le Vo
1
— e WU .
ey (5.89)

In order to construct a supergravity action a la MacDowell-Mansouri for the AdS-
Lorentz superalgebra we shall consider the semigroup expansion of a particular choice of
the invariant tensor (T475) and the curvature two-form (5.85). Then the MacDowell-

Mansouri type action for the sAdS — L, superalgebra can be written as
S =2 / FANFB(TuTs), pas s, (5.90)

Here, (TaTg) 445 -, can be obtained using the useful properties of the semigroup ex-
pansion procedure. Indeed, according to the theorem VII.1 of ref. [16], the components
of an invariant tensor for the AdS-Lorentz superalgebra can be written in terms of a

particular choice of the original invariant tensor,
(JabJed) sas—c, = 0

(JavZed sAdS—L, — X2

ot
©
&

<Zachd sAdS—L, — 02

)
)
)
)

Ql

S

&2
~—~ —~ —~ —~

(@)1

Ne)

[\
~— ~—r ~— ~—

<QO€Q,3 sAdS—Ly = Q2

with



and where the a’s are arbitrary dimensionless independent constants. It is important
to clarify that this choice of the invariant tensor breaks the AdS-Lorentz superalgebra
to its Lorentz like subalgebra generated by {Ju, Zs} . This is not a surprise since
we have considered the S-expansion of a particular choice of an invariant tensor which
breaks the Osp (4]1) supergroups to its Lorentz subgroup.

Then, considering the curvature two-form of the AdS-Lorentz superalgebra sAdS —

L4 (5.85)) and the non-vanishing components of the invariant tensor (5.91)) — (5.94), the
MacDowell-Mansouri type supergravity action (5.90) becomes

1 1 1 2 -
S = 2/ (ZaoeabcdRabRCd + §a2€abcdRabFCd + Zaz%bchabFCd + 7042\1175‘I’> . (5.95)

The action ((5.95]) can be written explicitly in terms of the different components of the

two-form curvature as

&%)

1
S = / 7€abcdRabRCd + Q2€4bcd (Rakacd + Rabkcekjed e

l2
Dkabeced

Rabeced
1
2

1 1 1 1 _
o DR Py + Sk R 4 SRk ete! + ok bmﬂ%/})

1 - 1
+ZRab1/J’}/Cd1/J+§DkakaCd+Dkabkceked+

1 — 1 Ay 4 _
+2—l3€a€b1/}76d¢ + Q—H(faebeced) + o (TDi/)%D@/) + Z—Q@/Jea%%D@b
2 7 ab L - a b I - a be
+7D¢75kaw P+ l—3¢6 Yo Y5€ VoW + l—gwe Ya ¥k Voct)
—|—ilﬁl{3 ab k cdw (5 96)
4l ab” V5Red” . .

Interestingly, using the gravitino Bianchi identity and the gamma matrix identity

2’)/ab75 = _Eabcd’}/Cda (597)
it is possible to combine some expressions as boundary terms. Indeed, following ref.

[33], we have

1 - - _
§€abcdRab@/WCd@/) + 4Dy Dip = d (4DYys1)) |

1 _ ) .
§eabcde“dew + 2Dk Yt = d (O ey y50) -
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Moreover, using the useful gamma matrix identities [see Appendix B, it is possible to

show

1
Ve a5 W = e Y Peasea,
1- _
Zqﬂkabﬁya VSkcd’YC ¢ = _ékafkfbw70d¢€abcda

Qzea7a75kbc’7bcw = GabcdkabeCIEdea
Thus, the supergravity action for the AdS-Lorentz superalgebra can be finally written
as

g_ / Q0 RebRed |

5 l2 (eabcdRabe 4+ dapey,y5 DY)

1 1
+ A2€aped (Rakacd 4 Rabkceked i 5l)kaka,cd 4+ Dkabkcek'ed + 5k,afk,fbkcgk,gd)

1
+ 2€4ped (l2 Dk%®ece? + > ka klbeced 4+ = ; €a€b¢76d¢

1 _ .
+l k®ecpydap + e"“ebeced) + aod (4DYrysth + @/)k:ab%b%lP) : (5.98)

The supergravity action is split intentionally into five terms. The first term
corresponds to the topological Gauss-Bonnet term and does not contribute to the dy-
namics. The second piece is proportional to as and contains the Einstein-Hilbert and
the Rarita-Schwinger terms . The third and last term is also a boundary term and
contains explicitly the coupling between the new bosonic gauge fields k% and the usual
fields. Interestingly, the fourth term contains a generalized supersymmetric cosmolog-
ical term which contains not only the usual supersymmetric cosmological constant, but
also additional terms containing the new fields k.

The procedure used here corresponds to an alternative method to include a cos-
mological term to a supergravity action a la MacDowell-Mansouri. Interestingly, the
bosonic part of the action corresponds to the Born-Infeld gravity action for the
AdS-Lorentz algebra presented in ref. [35]. On the other hand, the bosonic cosmolog-
ical term introduced here coincides with the one appearing in ref. [9].

It is important to clarify that although there are many four-dimensional supergrav-

ity theories with cosmological constant, the formalism used here could be useful in the
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AdS/CFT correspondence. In particular, the presence of the new bosonic fields k®
in the boundary could play an important role in the well celebrated duality between
superstring theory realized on an AdS space-time and the conformal field theory on its
boundary [51) 52} [53] 54]. As was pointed out in ref. [55], the introduction of an ap-
propriate topological boundary term in a four-dimensional bosonic action is equivalent
to the holographic renormalization in the AdS/CFT context. Then, it seems that the
presence of the k? fields in the boundary would allow to regularize the supergravity
action in the holographic renormalization language.

Additionally, as shown in ref. [55 [56], the bosonic MacDowell-Mansouri action
is on-shell equivalent to the square of the Weyl tensor describing conformal gravity.
This would suggest a superconformal structure in the MacDowell-Mansouri geometrical
formalism of supergravity theory.

The supergravity action (5.98]) can be rewritten omitting the boundary contributions
as

(8%

S = / — (eadeRabeced + 4&6“%75D¢)

2
2abAcd 1afbcd 1ab‘cd 1abcd
kT + S k%K efe -I—l—geegb'y ¢+2—l46666 , (5.99)

+ Q2€abed (l2 I

where
1
Eabcde‘abeced = QEabcdk’ached +d (Z—QEabcdk’abeced) ,
ma a 1 a a 1 a
T = De —§¢7¢:T —§¢7 Y.

In particular, the usual MacDowell-Mansouri supergravity action for the osp (4[1) su-
peralgebra can be recover in the limit £%° = 0.

Although the supergravity action is constructed out of the curvature 2-forms
of the AdS-Lorentz superalgebra, it is not invariant under the gauge transformations.
Indeed, the supergravity action does not correspond to a topological invariant, nor a
Yang-Mills action.

The AdS-Lorentz gauge transformation of the one-form gauge connection A is given
by

6,A = Dp=dp+[A,p|
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where p is the gauge parameter given by

1 1 1 1
p==p®lay+ =K Zy+ 50" Py + —=e€

2 2 Pt

Then, we have explicitly for each component the following gauge transformations,

Q. (5.100)

dw® = Dp, (5.101)
5k,ab Dﬁlab (kacpbc o kbcpac) o (kac/{/bc o kbcﬁac)
2 1,
+ 50" — 7", (5.102)
det = Dp® + ebpba + kS p° 4 Pk + ey, (5.103)
1 1 1 1
oY =d _aba__aba =€Vt — =PV
Y =de+ JwTyae — 1p 7b¢+2l€7€ 21/)7@&
1+ 1
+ k% e — =KDyt (5.104)

4 4
Similarly, the gauge transformations of the curvature F' can be obtained from §,F =

[F, p] leading to

SR = R*“p? — R®p" (5.105)
5Fab (Rac Rbc a ) (Fac Fbc a ) (Fac,ibc o Facliac)
1

+ ZQR“ P’ — l€7ab\lf, (5.106)

OR* = R%p® + R'p2 + F4p° + R'k,* + &y, (5.107)
1 1
/g ab o /] a A I
Y R Yab€ 4p ’Vab + 2lR Va€ lp Ya
1 ab 1 ab
+ ZF Vab€ = F Yab V. (5.108)

Then, one can see that the variation of the action (5.98)) under gauge supersymmetry
is
4 e
OsusyS = —l—2a2 R, vs€. (5.109)

This implies that the supertorsion constraint
R = De® + k%e® — —?ﬂ’y“iﬁ =0,

has to be imposed in order to obtain the gauge AdS-Lorentz supersymmetry invariance.

This leads us to express the spin connection w® and the bosonic field k% in terms of the
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other fields (second order formalism). Interestingly, following ref. [33], it is possible to
define a new bosonic field as the combination of the spin connection and the k% fields

as
w?® = WP 4 kP, (5.110)

and its respective covariant derivative,
D=d+w. (5.111)

Then, the supertorsion constraint can be written as
1-
(De“ — Ew’y“w) =0, (5.112)

allowing to express the bosonic field @ in terms of the vielbein e® and gravitino field

®. Let us consider the following decomposition,

w?® = &% 4 &, (5.113)
where % corresponds to the solution of De¢ = 0 and it is given by
%Zb = (eia[peff]ncd + eﬁﬁ[kez]ncd — eza[yef\l]ncd) eMeerlb, (5.114)
Thus,
De® = de + w%e, + % = %w”Y%P, (5.115)
implies
ey = %”y Yy (5.116)

This may be solved in terms of the two other fields,
~a 1 e? " n A A
wub = 4 A b| (wu’}/)\wu + ¢A%¢u ¢V7uw)\ - wuf}/uw)\ - wu%\wu + ¢A7ﬂ¢u) . (5117)
Here, the bosonic field @ does not carry additional physical degrees of freedom. In
particular, the number of bosonic degrees of freedom is two when the supertorsion is
set equal to zero.
On the other, the supersymmetry invariance of the action (5.98)) can be obtained

in the first formalism adding an extra piece to the gauge transformation of the spin

connection w®. Then, the variation of the action is given by
4 a [ T, 1 cd
0S = —l—2a4 R [ Wy, v5¢ — o Cabed® 08 e trald (5.118)

5



The supersymmetry invariance of the supergravity action is fulfilled imposing

Seatraw™ = 2€70¢d (‘i’ec"}/d’}/g)ﬁ + VeV y5€ — @Cd%%e) e, (5.119)

with U = U e,
Thus, the supergravity action a la MacDowell-Mansouri (5.98) is invariant under

the following supersymmetry transformations

Sw™ = 2™ (W, yay5€ + Waevevse — Ueaverse) €, (5.120)
5k = —%w“%, (5.121)
det = ey, (5.122)
01 = De + ik“b%be + %e“%e. (5.123)

It is important to clarify that these supersymmetry transformations do not correspond

to gauge symmetries of the action, since it is broken to a Lorentz like symmetry.

5.3.2 D = 4 supergravity from the generalized minimal AdS-

Lorentz superalgebra

In this section, we present the construction of a supergravity action with a gener-
alized supersymmetric cosmological term using the generalized minimal AdS-Lorentz
superalgebra introduced in ref. [33]. In particular, the MacDowell-Mansouri geometric
formalism is considered.

First, let us consider the one-form gauge connection,
1 1 1- 1 1-, =
A= —wJp + =" Py + k™ Zoy + k™ Zy + —h*Z,
2(.0 b+ l@ + 5 b+ 5 b+ ;i + \/Z

1 « L «
—U Qa+\/l§ Yo, (5.124)

whose components are related to the osp (4|1) ones through the elements of the semi-
group S](é)

wab — )\Oajab7 et = >\2éa,

B = i, g =
kP =A@, €= A,

h® = )\46a.
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Let F'=dA + A A A be the associated curvature two-form given by

1 1 1~ = 1 1~ - 1 1
F=-R®J,+-RP,+-F%Z,+—-F*Z,+-HZ, + —U*Q,+ —2°%,, (5.125
5 bt +3 bty bt +\/Z Q+ﬂ , ( )

with
Rab:dwab+w¢7,cwcb7
a a a b a b 7.0 7.b 1 a 1 a
R® = de® 4+ wie’ + ke’ + k% h —§¢7 1/)—557 £,

H® = dh + wh’ + k4e” + kGh" — 9,

- - - . . N P 1.

Fab — dk’ab + wack,cb . wbckca + k,oi:kcb o k,bckca + l_2€ahb + 2lw7ab¢ + 2l€,}/ab€’
- - 1 1~ ~ 1-

F = dk® 4+ w2k — ® k + k2E® + k% kD 4 l—Qe“eb + l—zh“hb + 757“%,

1 1 1- 1 1-
U = - ab = ab - ab - a - a
dw + 4wab7 ¢ + 4kab7 ¢ + 4kab7 €+ 2lea7 6 + 2haﬁ)/ ?ﬂ,

= = df + Jwar 6+ hat 6 + TR + grear™ + e
Here, the one-forms w®, e, 1) and & are the spin connection, the vielbein, the gravitino
field and an additional Majorana fermionic ﬁel, respectively. While the k%, ke and
he fields describe bosonic fields.

In order to construct a supergravity action a la MacDowell-Mansouri for the gener-
alized minima AdS-Lorentz superalgebra we shall consider the semigroup expansion of
a particular choice of the invariant tensor (T475) and the two-form curvature .
Then the supergravity action for this generalized AdS-Lorentz superalgebra can be
written as

S = 2/FA ANFP(TyTg)s . (5.126)

Here, (I'aTp)¢ can be obtained using the useful properties of the semigroup expansion
method. In fact, according to the theorem VII.1 of ref. [I6], the components of an

invariant tensor for the generalized minimal AdS-Lorentz superalgebra can be written

2A Majorana spinor v satisfies the Majorana condition 1) = ¢C, where C is the charge conjugation

matrix.
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in terms of a particular choice of the original invariant tensor,

(JabJed)s = 0 < oo ~Cd> , <Zachd>S — oy <Jabjcd> , (5.127)
<Jachd>S — < Jut Ld> , (ZarZed) s = 004 <jab ;d> , (5.128)
<Zachd>$ = ay <Lb ~cd> , (JapZea)s = 4 <Jabjcd> , (5.129)

(QaQp)s = 2 <Qa@,@> , (ZaZs)g = <Qac~25> , (5.130)

(QaXs)s = au <Qa©ﬁ> , (5.131)

with

<jabjcd> = €abcd)
(Qals) =2(3)as

and where the a’s are arbitrary dimensionless independent constants. Let us note that
this choice of the invariant tensor breaks the generalized AdS-Lorentz superalgebra to
its Lorentz like subalgebra generated by {Jab, ZLab, Zab} . This is not a surprise since
we have considered the S-expansion of a particular choice of an invariant tensor which
breaks the Osp (4|1) supergroups to its Lorentz subgroup.

Then, considering the curvature two-form of the generalized minimal AdS-Lorentz
superalgebra and the non-vanishing components of the invariant tensor (5.127]) —
, the MacDowell-Mansouri type supergravity action becomes

S = 2/ (C:LO 6(JLbcd}%ab}%Cd 7€abcdRabFCd + EeabchabFCd + 7€abcdRabFCd

4

o
! S EsE + l044‘1175~) .

2
4 EabchabFCd %EabchabFCd + I 042\1”)/5\];’ + ]

(5.132)

Interestingly, the term proportional to ay contains the Einstein-Hilbert and the Rarita-
Schwinger type Lagrangian in presence of a generalized supersymmetric cosmologi-

cal term. Indeed, using the gamma matrix identities and the Bianchi identities
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(dF 4 [A, F] = 0), the term proportional to ay can be written explicitly as

S =y / €abed <RabICCd + %,&ab’écd + %K&b,ccd)
+%&WMW5&+MW%%Dw+%¢%%DQ
+ %2 (szcdebiLCiLd + dph Y,y DE + 4§ﬁa7a75D¢>
+ llQEabcd (2,€ab€chd + ,Cab€c€d + Icabﬁcild + %eaebeced

T L9 2
+l§2€a6bhchd+ Z—Qhahbhchd—i- 7¢7ab¢echd+ 7w,yabé;eced_i_ 71/J’Yab§hchd

2 _ ~ _ _ ~ _ ~  _
+7€7ab£echd 4 kabec {w,ydw + Sﬁydg} + Qkabecw”ydf + Qkabha¢7d§
- L~ _ _ 8 —
+RRE (" + €76} ) +d (7575Vw> , (5.133)
where we have defined

Iaab _ D];:cb ir k,ac];:cb + k'bcl:?ac,
’Cab — Dk + l;,ac];,cb + kacka.

A notorious difference with the previous supergravity action (see eq. ([5.98)) is the
presence of the bosonic field h® related to the generator Z,. Interestingly, set Z, equals
to zero does not violate the Jacobi identities (JI). Indeed, the JI are satisfied due to the
gamma matrix identity (C7*) 5 (C7a),s = 0 (cyclic permutations of «, 8,7).  Then,
setting h® equals to zero and omitting boundary contributions, the supergravity action
proportional to ay can be written as

1

S=a / B (€apeaR?P e + dipe Y,y Vi + A€ Y, VE)

1 1 2 -
+ 73 Cabed (/C“beced + ﬁe“ebeced + iwyabgeced) , (5.134)
with
1 ab 1- ab
V@Z) = D@Z) + Zkab’y 77Z} + Zk’alﬁ gv
1 1-
V¢ = D¢+ Zk‘awabf + Zkabvab¢~
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The supergravity action obtained here corresponds to a four-dimensional geo-
metric supergravity action in presence of a generalized cosmological term. Naturally,
the procedure used here can be generalized using bigger semigroups leading to more
complicated actions.

Interestingly, the four-dimensional pure supergravity action presented in the previ-
ous chapter can be recovered as an Inoni-Wigner contraction. Indeed, considering the

rescaling
Wab =7 Wab, kb — le%aba kap = 11 kap,
o = pieq, W —pp and & — ¢,

the pure supergravity action is obtained dividing by u* and taking the limit 4 — 0,
1 _
S=ay / B (eabcdR“beced + 4@/}6“%75D@/1) . (5.135)

This result is not a surprise since the minimal Maxwell superalgebra sM, can be ob-
tained as a Inonii-Wigner contraction of the generalized AdS-Lorentz superalgebra. In
particular, pure supergravity can be viewed as the geometric formulation of a super-

gravity theory invariant under the minimal Maxwell superalgebra.
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Chapter 6

Chern-Simons formulation of
supergravity and Maxwell

superalgebras

6.1 Introduction

The four-dimensional supergravity theories in the MacDowell-Mansouri geometric
framework are not gauge theories for a given superalgebra. In this framework, as
we have seen, the supersymmetry algebra closes only on shell. A way to close off
shell the superalgebra is through the introduction of auxiliary fields. However, this
procedure cannot be reproduce for all dimensions and A and cannot be related to a
fiber bundle structure. An interesting formalism which allows to construct a gauge
theory of supergravity in odd dimensions is the Chern-Simons approach.

In particular, the Chern-Simons action in three dimensions [14], [15] is given by

SEH — k:/ <A (dA + §A2>> , (6.1)

where A is the one-form gauge connection and the bracket (---) stands for the non-
vanishing components of an invariant tensor.
A good candidate to describe a three-dimensional CS supergravity theory in presence

of a cosmological constant is the AdS supergroup. The most generalized susy extension
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of the three-dimensional AdS algebra corresponds to the direct product

osp (2|p) ® osp (2]q) (6.2)

and allows to construct a (p,q)-type AdS-CS supergravity action [57]. The min-
imal three-dimensional AdS-CS supergravity action occurs for p = 1 and ¢ = 0

(0sp (2|]1) ® sp (2)) whose supergravity action with cosmological term is given by

2 3

& ab c i a,b.c) 7 . <& ab c)
+ l (eabc (R e +3l2e ee) w\ll> d 2l€abcw e (6.3)

2 2 2
SE — k /M Fo ( @ dwb 4+ Zwiwwt + €Tt fp\p)

where T = de® + w%e® is the torsion 2-form and ¢ is a Majorana spinor[58].

There is a particular interest in supergravity theories to explore new superalgebras.
In particular, the minimal Maxwell superalgebra sM describes the supersymmetries of
generalized four-dimensional N/ = 1 superspace in the presence of a constant abelian
spersymmetric field strength background [36]. Interestingly, the minimal Maxwell
superalgebra has the particularity to have more than one spinor charge. The gener-
alization to diverse minimal Maxwell superalgebras through the semigroup expansion
procedure has been subsequently studied in ref. [31] and has been approached in detail
in the chapter 4 of this thesis.

In this chapter, following ref. [59], we present the construction of the minimal
CS supergravity action (without cosmological constant) using the minimal Maxwell
superalgebra sMj3. In the following section, according to ref. [60], we first consider
an useful algebraic construction of a three-dimensional supersymmetric action from the

non-standard Maxwell superalgebra.

6.2 D = 3 CS exotic supersymmetric theory from

non-standard Maxwell superlagebra

In this section we present the construction of a three-dimensional Chern-Simons
supersymmetric action based on the non-standard Maxwell superalgebra. An essential

ingredient in order to construct a Chern-Simons action is the invariant tensor. Besides,
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as was pointed out in ref. [16], the invariant tensor of an S-expanded (super)algebra can
be obtained from the invariant tensor of the original algebra. Nevertheless, it seems that
the non-standard Maxwell superalgebra cannot be obtained as an semigroup expansion
of an known algebra and the components of an invariant tensor remain unknown. This
difficulty has been elegantly solved in ref. [60], combining the semigroup expansion
method with the Inonii-Wigner contraction.

As shown in ref. [46], the three-dimensional AdS-Lorentz superalgebra can be ob-
tained as an S-expansion of the osp (2|1) ® sp (2) superalgebra. On the other hand, an
Inonii-Wigner contraction of the AdS-Lorentz superalgebra leads to the non-standard
Maxwell superalgebra [61],[35]. Then it seems natural to combine the semigroup expan-
sion method with the Inoni-Wigner contraction in order to obtain the non-standard

Maxwell superalgebra and its respective invariant tensor.

6.2.1 The non-standard Maxwell superalgebra

Let us consider first the AdS-Lorentz superalgebra as an S-expansion of the osp (2|1) ®
sp (2) superalgebra using S, as the relevant abelian semigroup. Before to apply the
S-expansion method it is necessary to consider a decomposition of the osp (2|1) ® sp (2)

superalgebra in subspaces V),
=osp (21) ®sp(2) =Vo® Vi@ V2 (6.4)

where Vj is generated by the Lorentz generator Ju, Vi corresponds to the fermionic
subspace generated by a 3-component Majorana spinor charge Q, and V5 is generated by

P,. The osp (2|1) ® sp (2) generators satisfy the following (anti)commutation relations

[jaba jcd: = Nbead — NacIbd — MdJac + NadIbe; (6.5)
|:jab> Pc: = 77bc15a - 77ac15b, (6-6)
Pus B| = (6.7)
Qo] = 5 (@) . [Pn@] = 5 (@) . (63
(0005} = 5 [(60),, Ju—2(0),, B (6.9)
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where 7, are the Dirac matrices, C' stands for the charge conjugation matrix and

a,b,c,d=10,1,2. Then, the subspace structure may be written as

Vo, Vol C Vo, Vi, Vi] C Vo & Va, (6.10)
[Vo, V1] € V4, Vi, Vo] € W, (6.11)
Vo, Va] C V4, [Va, Va] € V. (6.12)

Let Sy = { Ao, A1} be the abelian semigroup with the following multiplication law,

fa=0=1
My = 4 o dta=0 (6.13)
Ao, all others

Let S\ = Sy U S7 U .Sy be a subset decomposition with

S() = {)\0, )\1} ; (614)
S1=1{Xo}, (6.15)
Sy ={Xo} - (6.16)

This decomposition is said to be "resonant ” since it satisfies the same structure as the

subspaces V,, [compare with eqgs. ((6.10) — (6.12)]. According to the theorem IV. 2 of
ref. [16], the superalgebra

®R=WOEBW1EBW2, (617)

is a resonant super subalgebra of Sy x g, with

Wo = (So % Vo) = {Ao, At} x {jab} — {/\Ojab,/\ljab}, (6.18)
Wi = (S1x Vi) = {0} x {@a f = {M0Qa . (6.19)
Wy = (Ss x V3) = {Ao} x {ﬁa} - {AOPa}. (6.20)

Thus, the new superalgebra obtained is generated by {Jub, Pa, Zap, Qo } whose gen-
erators are related to the osp (2|1) ® sp (2) through

Jab - >\1jzzb7 Pzz - )\OP(M (62]‘)
Zap = NoJab, Qo = 20Qa- (6.22)
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The (anti)commutation relations read

[Jaba ch] - nbc ad — nachd 77bd<]ac + nadjbca (623)
[Jaba Z d] - nbc ad 77achd - nbdZac + nadeca (624)
[Zaby Z d] - nbc ad — nachd - nbdZac + nadeca (625)
[J(lby P] nbc a nacpb; [Paa Pb] = Zaba (626)
[Zab>p] 77bc a nacha (627)
1
[Jaba Qa] = -3 ( abQ) [Paa Qa] = _5 (FGQ)a ) (628)
[Zaba Qa] = _5 (FabQ)a ) (629)
1
{QuQs} = —5 [(rabc)aﬁ Zup —2(T°C),., Pa] , (6.30)

The new superalgebra obtained after a resonant Sx-expansion of the AdS superalge-
bra corresponds to the three-dimensional AdS—Lorentz superalgebra. As we have
seen in the previous chapter, this superalgebra has an interesting application in four-
dimensional supergravity allowing an alternative method to include the cosmological
term [33].

Now, let us consider an Inonti-Wigner contraction to this superalgebra applying the

following rescaling [60],

Zapy = 02y, P, — 0P, and Q, — 0Q,. (6.31)
Then the limit ¢ — oo provides the three-dimensional non-standard Maxwell superal-
gebra,
[ aba ] — nbc ad — nachd - ndeac + nad‘]bca 6.32
[Jaba Z d] — nbc ad — nachd — nbdZ(zc + nadeca 6.33
[Jab> P] - 77bc a nacha [Paa Pb] = Zaba 6.34
(Zab, Zea] = 6.3

&
o
>

[Jaba Qa] Y ( abQ)
[ ab, Qa] =0, [Paa Qa] =0,
{QOU QB} = - (Fabc)

>
w
~J

(
(
(
(Zap, Pe] = 0, (
(
(
(
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In particular, this superalgebra has the Maxwell algebra M = {Ju, P, Zap} and the
Lorentz type algebra LM = {J,,, Z,} as subalgebras. Let us note that this superalge-
bra does not have a necessary relation to supergravity. Indeed, from eq. , one can
note that the combination of two subsequent supersymmetry transformations does not
amount to a space-time translation. The situation is completely different in the case of
the minimal Maxwell superalgebra. However, before to approach the construction of
CS supergravity action for the minimal case, we shall consider the explicit construction

of a supersymmetric CS action for the usual Maxwell superalgebra.

6.2.2 D = 3 supersymmetric action

It seems that a Chern-Simons supersymmetric action for the non-standard Maxwell
superalgebra can be constructed combining the Sj-expansion of the AdS superalgebra
with the appropiate rescaling of the generators. However, as it was pointed out in ref.
[60], the arbitrary constants of an invariant tensor have also to be rescaled in order to
avoid a trivial Chern-Simons action.

Following Theorem VIL.2 of ref. [16], the non-vanishing components of an invariant
tensor for the AdS-Lorentz superalgebra are related to the osp (2|1) ® sp (2) through,

< NQQﬁ> | (6.39)

where

S
S R
o
Nk
U

I
=
o
—~
3
S
(9]
3
Q
U

|
3
Q
[¢)
=
f=al
ISH
N

Then, defining
Bo = dopo, o = aopr, i = Qaflo, (6.40)
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the components of an invariant tensor for the AdS-Lorentz superalgebra can be written

as

(Jabded) ags—r = Br (MocNad = Nacbd) s (ZavPe) gqs—r = Co€abes

( achd>Adg,g = Bo (77bc77ad - nacﬁbd) ) <Pan>Ad5,g = BoNab, (6.41)
(ZabZed) aas—r = Bo (MbeNad = Nactod) s (Qa®@8) ays_r = (Bo — o) Cag,

(JabPe) ags—r = 0€abe-

The next step consists in considering a rescaling which preserves the structure of the
curvatures in the supergravity action. There is one rescaling with this particularity
and it is given by

Bo — 2o, ag — oag, [ — P (6.42)

Thus, the components of an invariant tensor for the non-standard Maxwell superalgebra
is obtained considering the rescaling of not only the generators (7.109)) but also of the
constants (6.42)) [60]. Indeed, the limit o — oo leads

( achd>S M= = B1 (MeNad — Nacbd) » ( )
(JabZea)spn = Bo (MocNad — Nachva) » (6.44)
(JabPe) spq = Q0€abe; (6.45)
(PaPo) a1 = Ponav, (6.46)
)sMm (6.47)

(Qa®s) 1 = BoClas-

An additional ingredient in order to construct a Chern-Simons action is the one-form

gauge connection which is given by

1 1 1 1
A= AT, = §w“bJab + e Pot §kabZab + WWQQ. (6.48)

The associated curvature two-form F' = dA + A A A is given by

1 1 1 1
F=FAT, = §R“bJab + jR“Pa + EF“bZab + W\D“Qa, (6.49)

87



with

Rab — dwab + wacwcb’
R" = de® + w%e = T,

1 1-
Fab — dkab + Cdack'Cb o wbck,ca + l_zeaeb + 7¢Fab¢7

1
U =dy + Zwabrabw = D).

The one-forms w?

respectively. While the k% fields describe bosonic "matter” fields. On the other hand,

the Lorentz covariant exterior derivatives D = d + w of the curvatures can be derived

, e 1) are the spin connection, the vielbein and the gravitino field,

from the Bianchi identity VF = 0 ( where V is the gauge covariant derivative given by
V =d+[4,-]) leading to

DRab — 07 (650)
DR® = R%¢”, (6.51)
1 1 1-
DF™ = Rk = ROk + SR = 5" R — ™, (6.52)
1
DV = ZRM“%. (6.53)

Then, considering the one-form connection of the Maxwell superalgebra ((6.48|) and
the non-vanishing components of the invariant tensor (6.43) — (6.47)), the supergravity
action ([6.1)) becomes

1 2
Sg;’_l) =k /]\4 |:§Bl (w%dwba + gw%wbcwca) + % (€abcRab€C)

+05o ( °k° + l%e“Ta + %zZJ\If) — %d (ng“bk‘ba + %eabcw“becﬂ , (6.54)
where U = d + iwabF“bz/) is the covariant derivative of the spinor ¢. Here, the term
proportional to f; corresponds to the exotic Lagrangian [62, [63] and it is constructed
exclusively out of the spin connection. The aq piece corresponds to the Einstein-Hilbert
term. Unlike the osp (2|1) ® sp (2) supergravity action, the cosmological term is not
present in the superMaxwell case. It is important to note that the action (6.54)) is

related not only to the Euler invariant through the term proportional to ay but also
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to the Pontryagin invariant through the 5y and f; terms. The full supersymmetric
action is invariant (modulo boundary terms) under the local gauge transformations of

the non-standard Maxwell superalgebra,

dw™ = Dp®, (6.55)
6k = Dr® + l%eapb - %erabzp, (6.56)
§e” = Dp® + e’p, (6.57)
8 = de + }lwabfabe = De. (6.58)

Here, the gauge parameter p is given by
1 1 1 1
p = §pab<]ab + §’fabZab + jpaPa + WEQ
Interestingly, the bosonic part of the action (6.54]) corresponds to the Maxwell-
Chern-Simons gravity action found in ref. [64, [65]. Nevertheless, the supersymmetric

action ((6.54)) does not describe a supergravity action due principally to eq. (6.38)). It is
tempting to argue that the IW contraction used here can be seen as a low-energy limit

Qa-

o — oo where the EH term is decoupled from the rigid supersymmetric Lagrangian.
Naturally, in the ¢ = 1 case, we obtain the Chern-Simons supergravity action for the

AdS—Lorentz superalgebra presented in ref. [40].

6.3 D =3 CS supergravity from the minimal Maxwell

superalgebra

In the present section, following ref. [59], we present the construction of a three-
dimensional Chern-Simons supergravity action using the minimal Maxwell superalgebra
sMas.

Following the definitions of the semigroup expansion procedure [16] and the method
used in ref. [59], it is possible to derive a minimal Maxwell superalgebra after extracting
a 0s-reduced resonant Sg)—expansion of the osp (2|1) ® sp (2) superalgebra. The new
superalgebra is generated by {Jab, P, Zab, Lab, Za, Qa, Za} whose generators obey the
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following (anti)commutation relations

[Jabs Jed) = Mbedad — NacIba — MaJac + NadJbe, (6.59)

[Jab, Pe] = Mo Lo — Nac o, [Po, o] = Zap, (6.60)

[Jabs Zed) = MbeZad — NacZbd — MdZac + Nad Zbe, (6.61)

[Pa, Qo] = —%( a2)g s (6.62)

o @] = =5 (T, (6:63)

o a] = —5 (T, (6.64)
(Qu @5} = 3 [(10) ., Zu —2(1°C) , 2] (6.65)
{Qu, 25} = —% [(rabc)aﬁ Zap = 2(T°C) 4 Z] , (6.66)
|:Jab7 Zab: = MoeZad — NacZbd — MdZac + Nad Zse, (6.67)
|:Zab7 ch: = NbcZad — NacZbd — MvdZac T NadZbc, (6.68)
[Jaba Zc: = MocZa — Nac Ly, [Zab7 Pc] = e Za — Nac b (6.69)
(22, Q] = 5 G (6:70)
others = 0. (6.71)

The Maxwell superalgebra s M3 has the particularity to have an additional spinor gener-
ator as we have seen in chapter 4. This superalgebra can be seen as the supersymmetric
extension of a generalized Maxwell algebra introduced in ref. [31]. Interestingly, we
recover the usual three-dimensional minimal Maxwell superalgebra setting Za’ Zab = 0.
Set Zab and Za equals to zero does not violate the Jacobi identities. Indeed, the JI are
satisfied due to the gamma matrix identity (Cv*)(,5 (C7a),4 = 0 (cyclic permutations
of o, 8,7).

In order to write down an Chern-Simons supergravity action for a minimal Maxwell
superalgebra we consider the one-gauge connection

1 -y~ 1 1 1
A=W+ =k Zgy + —kZyy + ~e" Py + ~

.
5 5 5 I [ Za

1 @ i @
%w Qa+ \/Zé Eaa

(6.72)
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whose components are related to the osp (2|1) ® sp (2) ones (d}“b, e, 1/?) through

wab — )\()(Dab, kab — /\2@(117 kab — )\4&ab7

e? = \ge?, ho = Mg, ™ = \1)?,
§% = Azy”.

The corresponding curvature two-form F' = dA + A A A is given by

1 1 1., = 1 1~ -
F=FAT, = 5RabJab + jRaPa + éFabZab + §F“bZab + 7H“Za
1 1

+—TOQ, + —E°%,, 6.73
7 Q 7 (6.73)

with
R™ = dw™ + ww®,
R® = de® + w%e’ — %&F“w,
0 = dh® + wih® + k%e® — ET,
F = ™ 4wt ot — o a4 %@Z_}Fabw’

~ g 1 1-
Fab _ dkab + wack,cb N wbckca 4 kackd) 4 _eaeb + Yfrabw7

l2
1 b
V= d¢ + Zwabra @/)7

1 1- 1
E= ~wap € 4+ ~kay DY + —e Tat).
d£+4wb £—|—4ka’ w—l—Qler

The one-forms w®, e, 1) and & are the spin connection, the vielbein, the gravitino field
and an additional Majorana fermionic ﬁel respectively. While the &%, k% and h®
fields describe bosonic "matter” fields.

According to the Theorem VII.2 of ref. [16], it is possible to show that the compo-

nents of an invariant tensor for the Maxwell superalgebra can be written in terms of an

LA Majorana spinor 1) satisfies the Majorana condition ¢ = 1C, where C' is the charge conjugation

matrix.
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0sp (2]1) ® sp (2) invariant tensor, leading

(JabJed) p1s = G0 <jabjcd> (6.74)
<Jachd>qu = Gy <jabjcd> (6.75)
<Zachd>sMg — (JusZoa) = g <jabjcd> (6.76)

(JavPe) pps = G2 < ~ab15¢> 6.77)

with

S
g
S
R
IS8
I
=
(=)
—
=
S
o
=
I
IS8
I
=
N
(¢
=
=~
U
~—

<@a@ﬁ> = (o — p11) Cap-
Then, considering the following definitions

Qp = Qollp, Q1 = Qigldq, Qi = Qg
Q3 = Qyply, Qg = Qyllo,

the components of an invariant tensor for the minimal Maxwell superalgebra sM3 can

be written as

<Jachd>5M3 = Qg (nadnbc - nacnbd) (682)

<Jab ~cd> ™ = Qo ("7ad7]bc - T}acﬂbd) (6-83)
Ss/M3

<Zachd> M = <Jachd> = Oy (nadnbc - nacnbd> (684)
s/M3
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<Jach>sM3 = (1€ahc ( 5)
<Zach sMs - <Jach> = (3€gpc ( 6)
<Pan>5M3 = 04T)ap (6 87)
(Qu@s) pq, = (2 — 1) Cugp (6.88)
(QaXp) g, = (4 — a3) Cup (6.89)

Then, considering the connection one-form ([6.72)) and the non-vanishing components
of the invariant tensor (/6.82]) — (6.89)) in the general expression of a Chern-Simons action,
we find

2 -
S(Q-H) k/ [% (wabdwba + gwacwcbwba) 4 % (EabcRabec o ww)
M

~ 1 - o b 2 _ _
a 1.b - “3 aby c ab_c\ YA
s (Rbk:a+ lw) o <eabc (R R+ Dk e) £ %)
1 |
ay (R“bkba + Z—QeaTa A —5\11 - —¢E)

—d (21 Eapewe" +2 5 —S. (kabec + w“bhc> Qw‘ﬁ)l;:ba + %w‘ﬁ)k’ba)} . (6.90)

2 2

The three-dimensional action describes a supergravity theory without cosmo-
logical constant and can be seen as a supersymmetric extension of the results in refs
[64], [65]. where new extra fields have been added in order to have well defined invariant
tensors.

The supergravity action is split into five independent terms proportional to
g, a1, (o, a3 and ay, respectively. The term proportional to o describes the so called
exotic Lagrangian [62] [63]. The second term consists of the Einstein-Hilbert term plus
the fermionic contribution describing a pure supergravity action without cosmological
constant invariant under the Poincaré symmetries. The others terms contain the
coupling of the new gauge fields to the original ones. Unlike the action for the usual
Maxwell superalgebra, this action contains an additional spinor field £ which appears
in the a3 and a4 terms.

Let us note that the new bosonic fields (k“b, l;;“b, ﬁ“) appear also in the boundary
term. Although the boundary terms do not contribute to the dynamics of the theory,
they play an essential role in the study of the AdS/CFT correspondence [511 52), 53, [54].
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The presence of boundary terms in (super)gravity theories has been extensively studied
in refs. [I8] 20} 40, 66].

One can see that the minimal Maxwell superalgebra sMs enlarges the previous
action adding new terms to the action allowing to construct a Maxwell-Chern-Simons
Supergravity action which is off-shell invariant under the local gauge transformations

of the minimal Maxwell superalgebra,

Sw® = D,Oab, (691)
- ~ ~ 1
5kab — D/NQab - (kac pbc _ kbcpac) _ Zgryabw’ (692)
5kab — D/ﬁab . (kacpbc . kbcpac) . (];,ac/%bc - ];bcl%ac>
) 11
+l_2€apb_ EQ’Y bw_ iefy bg) (693)
de* = Dp* + e'py' + &, (6.94)
0h® = D" + hPpy" + R%e° + k% p° + 07" + &v*¢ (6.95)
1 1
0 = de + Zwab%bﬁ - Zpab%b% (6.96)
1 1 1 1
5:d —aba —aa__aa__abll
&= do+ 7w al + 576 Va€ = 5P Vet — 1P Vabd
1- 1N
+ Zkab%bﬁ — T *Yas®. (6.97)

where the gauge parameter is given by

p= %pabJab + %%abzab + %n“”Zab + %p“Pa + %ﬁ“Za + %e%)a + \%g“ﬁa.

This result provides one more example of the advantage of the semigroup expansion
in the construction of new (super)algebras and new (super)gravity theories. In partic-
ular, the procedure used here can be useful in order to construct supergravity action
in higher odd dimensions. It should be possible to recover standard odd-dimensional
supergravity from the Maxwell supersymmetries. On the other hand, the same proce-
dure could be applied to the construction of (p,q)-type Chern-Simons models and to

the construction of matter-supergravity theories.



Chapter 7

Supersymmetric Born-infeld theory

from N = 2 Supergravity theory

7.1 Introduction

Recently, there has been growing interest in the study of the supersymmetric Born-
Infeld theory and its multi-vector generalization. The Born-Infeld theory [67] describes
a non-linear electrodynamics in four dimensional space-time. The supersymmetric ex-
tension of the BI theory was constructed in [68, [69]. In particular, the BI theory
and its multi-vector generalization emerge from a low energy limit of partially broken
U (1)" rigid N' = 2 supersymmetric theory [70]. As shown by I. Antoniadis, H. Par-
touche, T.R. Taylor (APT model) [71], the partially supersymmetry breaking requires
the introduction of magnetic Fayet-Iliopoulos (FI) terms besides the electric ones. In-
terestingly, as shown in ref. [72], the partially broken N = 2 rigid theory to N’ =1 in
presence of one vector multiplet, corresponding to ref. [71], can be obtained as a rigid
limit of a N = 2 supergravity theory.

The purpose of this chapter, following ref. [73], is to generalize the procedure of
ref. [72] to n vector multiplets. In particular, we are interested in relate the partially
broken N = 2 rigid theory of n abelian vector multiplets to supergravity. This would
clarify the supergravity origin of the multi-vector generalization of the BI theory of ref.
[r4].

In the rigid limit of ref. [72], the partial breaking of supersymmetry required the use
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of a specific choice of symplectic frame. In particular, in this frame the prepotential of
the special geometry does not exist. This restriction is forced within the framework of
santard electric gaugins due to some no-go theorems [75, [76]. Nevertheless, as shown in
ref. [77], the partial supersymmetry breaking can be achieved in any symplectic frame
using an embedding tensor [78| [79, 80] with both electric and magnetic components.
In particular, a frame in which the prepotential exists can be chosen.

A generalization to n vector multiplets of ref. [72], leads us to relate the FI terms
of the rigid theory not only to the components of the embedding tensor, but also
to constants entering the geometry of the scalar manifold. Interestingly, we shall
show that we can reformulate the theory in a symplectic frame leading to a more clear
interpretation of the FI terms. In particular, in this new frame, the manifest symplectic
invariance is preserved after the rigid limit. Besides, the electric and magnetic FI
terms are related only to the components of the embedding tensor. Indeed, denoting
by Aﬁ = (Ag, Ai), the n+1 supergravity vector fields in the new frame, Ag is identified
with the graviphoton while Ai corresponds to the vector fields of the resulting rigid
theory.

In our approach, we shall consider the construction of a suitable dyonic gauging of an
N = 2 supergravity model coupled to n vector multiplets and to a single hypermultiplet
which, in the rigid limit, leads us to a multi-vector generalization of the APT model
and ref. [72].

Before to present the N/ = 1 rigid supersymmetric theory as a rigid limit of a
N = 2 supergravity partially broken, we give the relevant identities related to the
most general gauging of special Kahler and quaternionic Kahler isometries in a general
N = 2 supergravity model. Some of these identities are already known and have been
proven only for electric gaugings [81, [82] or within superconformal calculus [83]. Here,
following ref. [73], we present some compact proof for the generic dyonic gaugings,
based on the symplectic-covariant description of the local special-geometry and on the
general constraints on the embedding tensor. In particular, a detailed study of the
potential Ward identity [84] [85] for generic dyonic gaugings, which is required by the

supersymmetry invariance of the action, is presented.
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7.2 Geometry of N = 2 matter-coupled supergrav-
ity theory

In the present section we study the underlying geometry of the general N' = 2
supergravity theory. To this aim, we briefly review some useful formulae for special
and quaternionic geometry following refs. [81, 82, 86]. Our purpose is to clarify
the general structure of the four-dimensional N' = 2 supergravity coupled to n vector
multiplets gauging some Lie group G and ny hypermultiplets. In particular, the scalar
sector of the vector multiplets is described by a special Kahler manifold Mggx. On
the other hand, the scalar sector of the hypermultiplets is described by a quaternionic
Kéahler manifold Mgg. Then, the more general N' = 2 supergravity theory coupled
to matter contains 2n + 4ny scalar fields interacting through a o-model based on the
following scalar manifold:

Mscalar - MSK X MQK- (71)

7.2.1 Special Kahler geometry

A special Kahler manifold Mgk is a Hodge-Kéhler manifold endowed with a flat,
holomorphic, symplectic bundle satisfying certain properties. Interestingly, there are
two kinds of special Kahler geometry. The local one describes a N’ = 2 Supergravity
coupled to vector multiplets. While the rigid one describes the scalar field sector of
vector multiplets in rigid N/ = 2 Yang-Mills theories. In particular, a special Kahler

manifold has a complex structure and a hermitian metric
ds® = g;5 (2, 2) dz* ® dz7, (7.2)

such that the 2-form
K =g (z,2)d2" NdZ7,

is closed dK = 0. The Kéahler potential K (z, Z) can be defined such that

95 = 0i0;K, (7.3)
K = dQ.  Q=—5 (9Kd: — 9Kdz). (7.4)
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In particular, under a Kéhler transformation X — K + f (z) + f (), the one-form Q
transforms as an U (1) connection @ — Q +d (Im f).
Let now ® (z, Z) be a field of weight p. Then, its U (1) covariant derivative is given
by
D® = (d +ipQ) ®

or, in components
1 1

A covariantly holomorphic field of weight p is defined by the equation

D;® = 0. (7.6)
On the other hand, setting
O = e P92Q, (7.7)
we have .
D;® = (@ -+ 5pai/c) o, DD = 0,P. (7.8)

Then, ® is a holomorphic section with respect to the holomorphic connection 9;K.
A more intrinsic and useful definition of a special Kahler manifold can be given in-

troducing a (n)-dimensional holomorphic tensor whose holomorphic section are denoted

by
Q(z) = QM (z) = ( X% () ) (7.9)

with A, X =0,...,n
We say that a Hodge-Kéahler manifold M is special Kahler of the local type if, for

some section 2, the Kahler two-form is given by
K = -091og (i (2|%2)) (7.10)

where ( | ) denotes a symplectic inner product given by

ey L (R
i(QIQ) = —iQ (_1 O)Q. (7.11)
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This definition implies that it is possible to relate the Kahler potential I with the

holomorphic section 2,
K =—log (i (QQ)) = —log [i (X" F) — FxX¥)]. (7.12)

Introducing now a covariantly holomorphic section V' such that

V(z,2) = (VM(z,2) = ( L ) = 20 = 12 ( A% ) , (7.13)

which satisfies the condition
1=i(V|V)=1i(L"My — MgL*). (7.14)
Since V is related to a holomorphic section it follows

On the other hand, defining the U (1)-covariant derivatives on V',
1 A
)i
and introducing a symmetric three-tensor Cjj, it follows that

0 i
Din = &UJ + T’CU] — FZUI’C = ZCijkgklUl‘. (717)

Then, the special geometry is defined by the following set of differential equations:

D,V = U, (7.18)
DU; = iCing™ U, (7.19)
DU; = gV, (7.20)
D,V = 0. (7.21)

Let us construct, using V' and its covariant derivatives, the following matrix
—M —M .
L(z, 2"y = (V,e/U, , V", e/'UM),
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where e;" are the inverse vielbein matrices g;; = > 7_7_, e éjf , and N is a holonomy

group index. Then, eqs. (7.18]) — (7.21]) imply

L'CL = w, (7.22)

(1 0
w=—i <O _1>. (7.23)

Interestingly, a symplectic matrix can be define in terms of L,

with

M(z,2) = (Mpyn)=CLLIC = M(z,2)T,
MCM = C. (7.24)

In particular, M encodes all the information about the coupling of the vector fields
to the scalars. From the above properties of V' and U; we find the following general
symplectic covariant relation

Loy _yMynN. (7.25)

. 1
MN _ ifpfMpN _ _ 2 A MN _
urt =g"Un U, 2/\/{ 5

where MM are the components of
M~ = —LL. (7.26)

Let us now consider the Killing vectors k, = k! (2) 0; + k! (z) 0; defining an infinites-
imal isometry and satisfying
[kaa kb] = _fabck:c- (727)

The invariance of the Kahler 2-form K implies
UK =d(t,K) =0 = (K =—dP,, (7.28)

where (, = (), and ¢, = 1, denote, respectively, the Lie derivative and the contraction
along k,. Then, we can define the momentum map P, (the details can be found in
Appendix C) such that

LK =—dP,. (7.29)
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On the other hand, we say that a Hodge-Kahler manifold M is special Kéahler of
the rigid type if for some section €2, the Kahler two form is given by

K = —%85 (i (QI2)), (7.30)

where the holomorphic section €2 have the following structure

Q- ( f;; ) (7.31)

with I,J =1,...,n. Asin the local case, the Kahler potential IC can be related to the

holomorphic section 2,
K=({QQ)) =i Y'F —F;Y7)] (7.32)
The rigid special geometry is then defined by the following set of differential equations:

%2 = 0,
Ui — &Q,
ViU; = iCing"ly,

where V; is the covariant derivative with respect to the Levi-Civita connection.

7.2.2 Hypergeometry

In a N = 2 four-dimensional supergravity theory coupled to hypermultiplets, there
are 4 real scalar fields for each hypermultiplet which can be seen locally as the four
components of a quaternion. As in the special geometry, there are two kinds of hy-
pergeometry. The local one is described by a Quaternionic geometry, meanwhile the
rigid one is described by a HyperKéahler geometry. Both manifolds correspond to a

4n-dimensional real manifold endowed with a metric A

with u,v =1,...,4ng; and three complex structures satisfying the quaternionic algebra
JEJY = =6 + V2 J5. (7.34)
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Let us consider a triplet of K* 2-form named the HyperKéhler form,
K* =K, d¢" Ndg® | K, = hyw (J),, . (7.35)
The HyperKahler 2-form is covariantly closed
VK* =dK* 4+ W NK* =0 (7.36)

with respect to an SU (2) connection w®.

We say that a quaternionic manifold is a 4ng-dimensional manifold such that the
curvature associated to the SU (2) connection is proportional to the HyperKéhler 2-
form

QF = dw” + %exyzwy Aw® = AK". (7.37)
While a HyperKahler manifold is a 4ng-dimensional manifold such that

0 = 0. (7.38)

In particular, the quaternionic Kéhler manifold Mg has a holonomy group Hol (Mgk (ng)) =
SU (2) ® H where H C Sp(2ng,R) is some subgroup of the symplectic group in
D = 2ny. Then, introducing flat indices {A, B,C = 1,2}, {a, 8,7 =1,...,2ny} that
run in the fundamental representation of SU (2) and Sp (2ng, R), respectively, we can

find a vielbein 1-form
U = Y2 (¢) dq*, (7.39)
such that
Py = UL UPPC 3¢ 4, (7.40)
where €45 = —€epa and C,5 = —Cg, are the Sp(2) ~ SU (2) and the flat Sp (2ny,R)
invariant matrix, respectively.

The vielbein 1-form 4 is covariantly closed with respect to the SU (2)-connection

w? and to some Sp (2ny) Lie algebra valued connection A% = AP«

VU = dU + %M (eoue™), AUPT + A% AUAICy, = 0. (7.41)
Additionally, it satisfies the following relations

Uia = (U)" = eapCosd®’, (7.42)

Unou U % huw 6% + % K, (0") 4" . (7.43)
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7.3 General N =2 gauging

In the present section, following ref. [73], we briefly review the most general gauging
of N' = 2 supergravity involving both electric and magnetic charges. In particular,
the discussion presented here generalize the identities given in ref. [81] to electric-
magnetic gaugings. The results discussed here will be relevant to the very specific
electric-magnetic abelian gaugings in which the rigid limit of a spontaneously broken
N = 2 supergravity is approached.

Let us first consider an N = 2 supergravity model coupled to n vector multiplets and
ng hypermultiplets. The theory consist of n complex scalars z* and 4ny hyperscalars
q" parameterizing a special Kahler manifold Mgk and a quaternionic Kahler manifold

Mk, respectively, such that
Mscalar — MSK X MQK (744)

Let us now consider the general gauging of a gauge group G in the isometry of
the scalar manifold Mguq,. According to ref. [83], it is possible to write the gauge
generators as components of an electric-magnetic vector X,, = (X Ay X A). Let t,,1,
be the generators of the isometry groups of Mgk and Mgk, respectively, and let 6,,
be the embedding tensor such that

Xor = 01%ta + Op™ 1, . (7.45)

The symplectic matrices X, = 60,,%,," describe the symplectic electric-magnetic
duality action of X,;. In particular, the following set of linear and quadratic constraints

on the embedding tensor

Xoune) = Xun®Copy = 0, (7.46)
Om“ON"fur” + Xun" ©p° = 0, (7.47)
Ou™ON" frun? + Xun" Op" = 0, (7.48)
O CMNONY = 0,°CMVNON" = O),"CMVeN" =0. (7.49)

assures the consistency of the gauging. One can see that the conditions ([7.47) and

(7.48) are equivalent to
(X, Xy = —Xun" Xp. (7.50)
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It is possible to define gauge Killing vectors and momentum maps as
kv =00m"ke, Pu=03"P,, Py=0u"P,,. (7.51)

Additionally, the equivariance conditions,

s 1
igipkin k) = B Xun" Pp, (7.52)
2KE kY KN+ €V PPy = Xun' P, (7.53)

can be found from the quadratic constraints and the following eqs. (see Appendix C),

o 1.,
L9iy la ki] = _5 fab (Pc - Cc) ) (754)
2 Ky KUK — NV PYPE = — [ Y (7.55)

Interestingly, using the linear constraint ((7.46)) on the embedding tensor it is possible

to prove the following identities
PuM =0, K, QM =0. (7.56)
Indeed, using some relevant relations of the Appendix C,
Py = VLl | =V il 11 VP, (7.57)
we find for the gauge-momentum maps the following relation,
K oVor
PM = —€ XMNPQ Q.
Then, contracting both sides with 2* and using the linear constraint (7.46]), we have
M K oM Nop _ € oN MOP
Q PM:—e Q XMNPQ Q :79 XNMPQ Q 5 (758)
where we have used the symplectic property of the matrices X, given by
2X(MP)N = _XNMP7 (759)
with Xynp =X MNQ(CQ p. Then, using the general property,
tanenQMON =0, Vi,
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we finally find the first identity,
QYPy = 0.

On the other hand, the second identity of ((7.56)) can be proven using the first identity
as

OM KL, =ig7 QM 0Py =i g7 0,(QM Py) = 0. (7.60)
Interestingly, from , the following relations can be deduced
Di(VMPy)=0 = UMPy+VMOP=0 = UMPy+ig;kl,V*=0. (7.61)
Then, contracting the following equation
KUM= —t MVN ip, VM
with the embedding tensor, we find
ki, UP = — XNt VN 4 iPy VP (7.62)

Besides, using the first identity of (7.56)) and contracting both sides with V¥, we find
the relation

Ve UP = — X nE VN (7.63)

Eventually, using the quadratic constraints ([7.50) and contracting both sides with ©p

we have

VY UPOp = —Xyun" VI VY0 = XL VI VYOp = —VMEL T 0p.  (7.64)

7.3.1 The general Ward identity

The supersymmetry variation terms of the gauged Lagrangian, which are quadratic
in the embedding tensor, are canceled by the supersymmetry Ward identity [84] [85].
The Ward identity expresses a relation between the scalar potential V (z, z, ¢) and the

fermionic shift matrices in the following way

G WA W e + 2 NA N, — 1284550 = 65 V(2,2,q) (7.65)
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where W#AC N& S,p are the supersymmetry shift-matrices of the chiral gaugini \,
hyperini (* and gravitini 14, respectively. In particular, we use the following conven-
tion

va = eqp v, v = Phug, va:Caﬁvﬁ, UO‘:CBO‘UB. (7.66)

Let us consider the generic dyonic gauging of N' = 2 supergravity and let us prove
the Ward identity for this particular case. Here, the fermionic shifts is generalized to

the following symplectically-invariant expressions

WiAB — B VY i (0%)PecaPl g0 (7.67)
SAB = % (O'JC)ACEBC 'P]@ VM s (768)
NA = 2ur ke, VY Ny = (NAY = =2 U kL, VM. (7.69)

Then, the right hand side of eq. (7.65) can be decomposed explicitly in a singlet and a
triplet of SU (2)

Gis WHACT Lo + 2 NoA N — 1284830 = 68V(2, 2, q) + i Z° (6%) 5™, (7.70)
where the general symplectic invariant expression of the scalar potential is given by
V(2 2,q) = (Kykhgis + 4 hunkl 30V VY 4 (MY — 3vM 7Y pepy,
generalizing to dyonic gaugings. On the other hand,
7 = (=2 Xun" PE + 26 PPy + AKE K k3)V VY,

which, from the equivariance condition ([7.53)), it equals to zero so that the Ward identity
is proven. The explicit expression of the left hand side of the eq. (7.65) can be found
in Appendix D.

7.3.2 Abelian gauging of quaternionic isometries

Let us now consider the gauging considered in ref. [73], which involves an abelian
group of quaternionic isometries. Since we consider only gauging of quaternionic isome-

tries, such that the generalized structure constants vanish
Xyn =0, (7.71)
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we have that eq. (7.53]) implies
1
K2 iy by, = =5 € PPy (7.72)

Using eq. ([7.72), it is possible to show that the three fermionic-shifts cancel against

one another

g WAL = —evz Py pr v YN (7.73)
OINANY, — —2ew Py PLV VN, (7.74)
—1284CSpe — 3 PYLPLVIVY. (7.75)

The objective of the present chapter it to consider the rigid limit of the Ward identity
(7.65)) to a rigid supersymmetric theory of vector multiplets [70] [71], [72], 87, 88]. In
particular, according to refs. [72, 88], the Ward identity of the rigid theory in presence

of n vector multiplets is given by
o . —J
G WHAOW o = 6 VAFD (2, 2) + Cp2. (7.76)

Here, VAPT)(z %) corresponds to the A/ = 2 scalar potential in the spontaneously
broken rigid theory which reproduce the APT one in the case n = 1 and g;; is the metric
of the rigid special Kahler manifold parameterized by the scalar fields 2. On the other
hand, O is a SU (2)-traceless matrix which allows partial breaking of supersymmetry
if Cx # 0. Interestingly, this occurs for gauging involving non-commuting electric and
magnetic charges [71].

The relations , and allow us to understand the meaning of the
matrix Cp? by relating the supergravity Ward identity to the rigid one .
In fact, rewriting the Ward identity as

gis WA o = 08 V(2,2,¢) — 2N, A N® g + 12 54 S (7.77)

it is possible to show that all squared fermionic shift matrices survive in the rigid limit
in which the Planck mass Mp; is sent to infinity. In particular, the left-hand side of
corresponds to the left-hand side of (7.76). While the constant matrix Cz* have
contributions from the hyperini and gravitini shift-matrices proportional to ¢*. Then,

using eqs. ([7.74]) and ([7.75)), we find that

M _
Cpt= lim A (—iew %PJZVVMVN(O—Z)BA) , (7.78)
P00
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where A corresponds to the supersymmetry breaking scale. The same fermionic shift-
matrices also contribute to the terms proportional to d4 affecting the scalar potential
form in the rigid theory. Indeed, according to the explicit value of N,4 N%g, S4¢Spa
(see Appendix D), we have
) M3 _

PAPD) _ Jim = [V(z, 2.q) — (dhoy KK — 3PE POV VY] L (7.79)
We shall see in the next section that, in the rigid limit, the leading order terms in
On" VY depend only on the hyperscalars ¢*, such that

4
(APT) . Mpl
VN:Q N Ml}lIEOO A4

V(2 z,q)]+ A(q) - (7.80)

Thus, the N’ = 2 scalar potential of the rigid theory vﬁ;‘:’;ﬂ is given by the rigid limit
of the supergravity potential ¥ modulo an unphysical additive constant. Indeed, the
fluctuations of the hyperscalars ¢ are suppressed in the rigid theory by a factor Mp,

so that they are non-dynamical.

7.4 Partial breaking of N/ = 2 to A/ = 1 supersym-

metry in presence of n vector multiplets

In this section, following ref. [73] we present a partial breaking of N =2to N =1
supersymmetry. In particular, we consider a supergravity model which, in the low
energy limit, gives rise to a rigid supersymmetric theory. The rigid supersymmetric
theory obtained here corresponds to a generalization of the APT model [71] to a generic
number n of vector multiplets. Interestingly, the procedure approached here admits
a well defined limit to the supersymmetric Born-Infeld theory generalized to n vector
multiplets.

The N = 2 supergravity model considered here, consists of n vector multiplets and

a single hypermultiplet, whose scalars parameterize the quaternionic manifold

SO (4,1)
= —, 7.81
Max =55 ) (781)
Following the procedure of ref. [72], let us consider a symplectic section
N (XM
oM (2 :( ) A=0,1, I,i=1,...,n, 7.82
( ) FA (Zz) ( )
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in a symplectic frame in the presence of a holomorphic prepotential. Then using special

coordinates 2' = X*/ X6t we have

F (XY = =i (X0 F (X7/X°) (7.83)
so that, choosing
0_
XA = { Xr=1 , (7.84)
Xt=2
we found
_ 0 _ _, _ StH.
Py — Fo =0F/0X" = 'z(2f‘ 2'0; f) 7 (7.85)
F, =0F/0X"' = —i0; f
1
i
Q= : 7.86

—i0; f
In particular the Kahler potential is given by
K=—-In [Z (XAFA — XAFA)} 3
— I [2 (f+f)—-(-2 (aif—m)} .

In order to generalize the procedure of ref. [72] to the n vector multiplets case, it is
necessary to consider a rigid limit y = Mp;/A — oo, leading to partial breaking N = 2
to N =1 in a rigid supersymmetric theory. In particular, Mp; denotes the Planck
scale and A the scale of partial supersymmetry breaking. As shown in ref. [72], the
presence of a linear term in the expansion of the prepotential f(z) in powers of l% was
crucial in the derivation of partial breaking N' = 2 to N' = 1. In particular, in ref.
[72], the prepotenial f(z) was given by

1z ¢z 1
=—-4 — Oo(—=|. 7.87

In our case, the generalization is obtained by introducing a set of n constant parameters

n;, so that the holomorphic prepotential f (2*) takes the form

f(zi)=i+n2”'—j+%+o(%>. (7.88)
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Using the definition introduced in the previous section, we found for the Kahler poten-

tial, up to order pu=3

kD i
TR
L mrA 1 s oy (2000 _O“Z+aﬁ20%%
1 I 2 2 '
Then, from eq. [7.89] one finds
1, 1 1 —
= Egij = l? {Uﬂ]j 5 (@'j@b + az‘j¢)} ) (7.90)

where g;; corresponds to the rigid special Kahler metric, which can be derived, in terms

of the (rigid) Sp(2n)-symplectic section

ov_ # Y- # C M=1,---.2 7.91
(@F> (%(nmjzj_m) . ()

from the (rigid) prepotential

= [(nizi)z y 2(4 . (7.92)

YIS

In fact,

o5

1
Fig = 0;03F =3 (ming — 0:0;0)

(8z‘aj¢ - 8iaj¢) + % (77i77j 3 (aiaj¢ + aiagﬁb))

TSRS

= 7 (3956 — 0:059) + 590

which can be written as
Fiz = Tug + T2,
and where we have defined

r; = (096 - 0.050)

Tgij =



The covariantly holomorphic symplectic section VM = X/2QM has the following

expansion

L= g (2 +2) + 0 (1/?)
M zJ——m(Z+2) 2+ 0 (1/1?)
gt} ron
—5.0 + O (1/1?)

(7.93)

On the other hand, the symplectic section UM denotes the Kéhler-covariant derivative
of the symplectic section given by
oK

M
2V.

UM = D;vM =9,V M ¢

Then using special coordinates (eq. ((7.82)) we can write

X s .
i (3 + i 00— 050 ) 401/1)

i _ az _
+ _—% - % G 0.6+ 0:0] = [ — 2" ;b — Mk [Z+Z]k)1

)

1
| i rowm) | (0
~i(Zroa/m)

o <— (06 + 0i0] + 050 [z — 2 + 3mim; [= + 5]j> +0(1/p%)
# =1 (e 9" +nT) +0 (1)
([(’3<Z> j 0i;0 [z + 2] +2?7mjz7)+0(1/,u)
5z (056 — minj) + O (1/ %)
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The physical meaning of the constant parameters 7; appearing in the symplectic section
OM and in the metric iz of the rigid theory will be clarified in the following subsection.
Let us now consider a gauging of two translational isometries in the hypermultiplet
sector involving both electric and magnetic charges [89, 90]. To this purpose, we
express the gauge generators Xp; = (X, X*) in terms of the isometry generators t,,,
m = 1,...,dim G, of the quaternionic Kahler manifold Mgx through an embedding

tensor [80, [83],
Xy=0u"t,. (7.95)

Then, we choose an abelian gauging involving only two translational isometries %,

(m = 1,2) and the embedding tensor as

Op" O’ e/u? oy

m ;' 8,2 0 0
O,/ = (0,7,6,7) = o0l gz | = 0 0 : (7.96)

@il @iQ m"/u 0

The embedding tensor ©,7" depends on constant charges e, o, m’ and satisfies the lo-

cality condition

0 1
The embedding tensor ©,;" relates the embedded Killing vectors k,; = (kA“, kA “)
to the geometrical Killing vectors &, (m = 1, ..., dim ) generating the isometry group
G of Mgk through
ky' =0,k," (7.98)

In particular, the fermionic shifts 59 of the supersymmetry transformation laws
can be written in a symplectic covariant way using the embedding tensor ©,;*. Indeed,

in our ' = 2 matter-coupled supergravity, we have

SOINA = i ABe (7.99)
5§®)w14 uw = iSABfVueB7 (7100)
69> = Nge, (7.101)
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where

W' 4B = ig7 (0%) " “AUMO, 0P, (7.102)
Sap = % (07) . epcVMO,0P, (7.103)
% = —2UG VMO, 1 (7.104)

Let us note that, since our gauging does not involve special Kéahler isometries, we have
set ki, = 0. Here, L{jm is the vielbein of the quaternionic manifold, which can be

parametrized as [72):
Uy =U3,dg" = 3¢ P [—dpdsa —ie?dq - UBA] . (7.105)

On the other hand, (o%) AC are the standard Pauli matrices and P}, correspond to
the quaternionic momentum maps associated with the quaternionic isometries through
(see Appendix C)

Pr = —k, ‘wi. (7.106)

Here w denotes the SU(2)-connection on the quaternionic Kéhler manifold Mgk. Let

us note that the eigenvalues of the mass matrix Ssp correspond to the gravitino masses
il

In particular, the momentum maps can be chosen as
P = (P1,P3) = 0€%,
with
Pi =(0,1,0)¢?, (7.107)

Pr = (0,0,1) e¥. (7.108)

7.4.1 Partial supersymmetry breaking

The partial supersymmetry breaking is recovered considering the limit y = % —

oo. To explicitly perform the limit on the fermionic shifts (which are written in natural

Tn the supersymmetry partially broken case, only one of them, ms /2is different from zero.
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units ¢ = h = Mp; = 1) it is convenient to reintroduce the appropriate dependence on

the Planck Mass Mp; and on the supersymmetry breaking scale A.  On the other

hand, Taking into account that the gravitino mass is related to the scale A through
2 _ . .. . .

AN =M PIMS, and that the Special-Kahler metric rescales according to |D the

canonically normalized kinetic terms are recovered by the following rescaling [72],

1/2
x“—>Mplx“, 6—)MP{ €,

Yo = My, A= (MpA?)

—1/2

A= MpYRCe
(7.109)

Them, using the rescaling of eq. ([7.109)) we find in the rigid limit that the fermionic
shifts read

N A = —jA2CA lg”_ (e;f e lekmk “T) + %mi g”] (ag”)CB e¥ep,
A2 y
0o u= _7630 [ex _ i%m] x] <O_z>AC’ ecpEB’
5CO = —iA%e [ex - i%mj z] (0%)% e, (7.110)

where we have defined
m'* = (0,m",0) = (0,m™), (7.111)

Let us note that the hypermultiplet decouples in the rigid theory meanwhile the mo-

mentum maps P*M reduce to constant Fayet-Iliopoulos terms
M= (mm, ef) )

The relation between them can be read explicitly from the gaugino shift:

o i) 77 e lir e x L oia ¥ i Mpa
GUuMPY, = m §7 (€] = migem ") 4 5m' 7| = EgJUJMIP’M. (7.112)

Here U ]M are related to the rigid symplectic sections by U ]M = OjQM.
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Interestingly, the case of one vector multiplet (n = 1), is recovering setting 7; = 1
in the eq. reproducing the results of ref. [72] leading to the APT model.

It is important to clarify that the FI terms are expressed not only in terms of the
components of the embedding tensor (e, o, m') but also in terms of the parameters 7;
characterizing the special geometry. We shall show in the next subsection that we can
reformulate the theory in a symplectic frame leading to a more clear interpretation of
the FI terms.

7.4.2 Interpretation of the constant parameters 7,

It is well known that partial supersymmetry breaking in rigid supersymmetry can
occur, provided one evades previously stated no-go theorems [75], [76]. Indeed, the

partial breaking of supersymmetry crucially requires that the quantity &*, defined by

1 4
& = SeEVPHPNCppy = Pelm™ # 0, (7.113)
be different from zero. As shown in [8§], this condition is also necessary to achieve
a multi-field generalization of the Born-Infeld theory in the low energy limit. This
relation seems to be an non-locality condition. Nevertheless, the locality condition is

satisfied in the rigid theory due to the choice of the embedding tensor (7.96)
O Cpy = 201m07 = 0. (7.114)

Thus, recalling the definition of the momentum maps P}, = Ps O, the condition
eVFPYMPENC, - = 0 is satisfied in the chosen frame. Indeed, the momentum maps
in supergravity P%, and the Fayet-Iliopoulos terms P, of the rigid theory are related
through which involves the contribution from the index 0 of the symplectic
section, keeping a memory of the graviphoton. On the other hand, the geometry of
the rigid theory in the chosen coordinate frame depends in a non trivial way on the
constant parameters 7);.

Interestingly, the n; required in order to implement partial supersymmetry breaking
(with its BI low energy limit) can be traded with charges through a symplectic rotation.
This involves a redefinition of the special coordinates in the underlying supergravity
theory.
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In fact, let us consider the symplectic transformation in supergravity

L n/pw 0 0
0 X1, 0 0
S(n,p) = o0 1 o (7.115)

0 0 —n pla

which induces the following rotation in the symplectic section € ([7.82)):

X0 + l%mXi X0

~ 1y X
Q=5-Q= z - . (7.116)

Fy Fy

pFi —niFo F;
The new holomorphic prepotential is then F(X) = F(X). Since the new special
coordinates z* are related to the old ones by 2' = - Jj;jzj = L', then the reduced

prepotential f(Z) is related to f(z) by (see ):
f&) = 1+ n2) (@)
that gives
< 1 1 -~ 1
7= (3+ 5500 +0(1)) (7.117)
where ¢(Z) is related to ¢(z) by

3(2) = 6(2) — 5 (2= 0(w)

Interestingly, after the symplectic rotation, we note that the covariantly holomorphic

symplectic sections VM and UZ-M can be written in the rigid limit 4 — oo as

X0 0
- 1] X!
VM = R () +0 (1/p?) ; (7.118)
Fy H
0 F[(Ld)
0
- 1| 9,x!
oM o= - +0 (1/1°) . (7.119)
Iz 0
O,y
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Here, the special coordinates X7 (w) = w, Fj(w) = gfi describe the symplectic section

of the rigid theory OM = (X!, F}) (I =1,---n). Let us note that in the new frame the
symplectic structure Sp(2n + 2) of the supergravity theory flows in the rigid limit to a

manifest Sp(2n) structure. Interestingly, the O-directions have a different p-rescaling
with respect to the M directions.
On the other hand, the embedding tensor (7.96|) is also modified by the symplectic

transformation ([7.115))

\m m - 1 m m im im L - m
m=Ox- (S 1)NM:E(€ , =™, g™, m™) = /?@M, (7.120)
where @ﬁ corresponds to the embedding tensor of the rigid theory.

In this new frame the parameters 7; play the role of charges, since (:)z” = n;e™

are
the electric charges associated with the vector multiplets. While Qo — nym™™ is the
magnetic charge associated with the graviphoton. Note that in the old frame both of
them were zero.

Consequently, the new embedding tensor obeys the same locality condition

(7.97) as the old one. The difference is given by
AAm Q™ AN\0[m Q™ AimQn 1 m in
oMol =0 = @YImgl = —elmer = e mm £0. (7.121)

Additionally, unlike the old frame, in the new frame the graviphoton is identified with
the 0 direction of the vector field strengths. Due to the decoupling of the graviphoton
from the spectrum, we find that the rigid supersymmetric theory found as low energy
limit of supergravity in the new frame is actually non local. Thus, with the new
embedding tensor, eq. express indeed the non locality of the rigid theory.

The effects of the non-locality is intimately related to the supersymmetric
structure.  Indeed, the supergravity modes associated with the underlying N' = 2
supergravity theory still freely propagate in the rigid theory. Consequently, the SU (2)-
Lie algebra valued term C,® which appears in the rigid Ward identity can be
understood as the contribution to the Ward identity from gravitini and hyperini, still
propagating in the rigid theory.

This non-locality of the rigid theory hints toward a high-energy interpretation in
terms of a non-triviality of the fiber bundle associated with the graviphoton. Interest-

ingly, this non-locality poses no obstruction to a correct definition of the vector fields

117



Af; in the rigid theory, by virtue of an interesting mechanism. According to refs.

An s ro-

[83, 89, 9T}, ©2], the natural symplectic frame to deal with magnetic charges m
tated with respect to the purely electric frame. In particular, this allows the presence

of antisymmetric tensors B, , coupled to the gauge fields A% in the combinations
Bl = Fb, +2m By, (7.122)

A generic feature of magnetic gaugings in supergravity is the fact that the vector fields
Aﬁ corresponding to non-vanishing magnetic components of the embedding tensor ©4™,
are not well defined since the corresponding field strengths F) ZL\V are not covariantly
closed. This poses no problem because such vector fields, in a vacuum, are “eaten” by
the tensor ones B,, and become their longitudinal components by virtue of the “anti-
Higgs” mechanism [93]. In the rigid limit, as we shall show, the antisymmetric tensor
fields decouple, thus preventing the anti-Higgs mechanism from taking place, so that
the vectors Aﬁ survive and become well defined.

The N = 2 supersymmetric Free Differential Algebra in four dimensions contains,

in the case where the antisymmetric tensors dualize scalars in the quaternionic sector

FON = dAN  om "B, + (L (2)ha A hpe?® + h.c.) (7.123)
dB, +5P3 (0°) b At AV (7.124)

VM = L
My,

and P? are functions of the hyperscalars [90]. Then, one can see that the closure of

H®

n

where

the free differential algebra requires
dFN = @A <2Hn — P (0%) P by A yatt A V“) . (7.125)

In the low energy limit the hyperscalars are not suppresed but tend to constants. In-
deed, ©,;Py becomes constants ©,;P¢ # 0 whose non-zero indices © {7 yield the FI
parameters. Then, from the expression ([7.125)), taking account the decoupling of the

tensor fields, the clousure of the supersymmetric free differential algebra gives
dF! oci®1 P2 (0%) P bp A A AVE 4 £ 0. (7.126)
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Thus, the magnetic FI terms parametrize a non-locality only along the fermionic di-
rections of superspace, thus not affecting the well-definiteness of Aﬁ. The eq. ([7.126))
is the superspace counterpart of the fact that, on space-time, the commutator of two
supersymmetries acts on the gauge field Alﬂ as a gauge transformation, as observed in
[72] and, in the multi-vector field case, in [88].

7.5 The rigid limit: N = 1 Supersymmetric La-
grangian

In this section we present the rigid limit of the N' = 2 Supergravity action corre-
sponding to partial breaking of supersymmetry.

Following ref. [73], we shall consider the symplectic frame defined in the previous
section whose gauging structure involve the presence of magnetic charges. Then, the
natural framework to perform the limit is the formalism in which the scalars of the
hypermultiplets are Hodge-dualized to antisymmetric tensor By, [83], 89, 00, 91, 92].

Before to perform the rigid limit, it is convenient to introduce the appropriate scale
dimensions in the Lagrangian. In particular, we shall first explicitly write the cor-
rect Planck-mass Mp; dependence of the physical fields in the N = 2 supergravity
Lagrangian. This leads us, after perform the low energy limit u = % — 00, to the
appropriate redefinitions of the physical fields appearing in the V' = 1 rigid supersym-
metric theory.

The canonical scale dimensions of the fields of the theory in natural units c = h =1

are
[IH] = Mil ) [a,u] = M7 [A;[;] = [Bﬁu] = M7 [’Zécan.)] = [q,(ucan.)} = M7
Al _ VA [ g3/2 Al _ ap-1/2
[l =N =1[C"T=M>", [T =M~
On the other hand, the symplectic-covariant embedding tensor ©%; given by eq. (7.120))
is adimensional. Since the scalars 2, ¢* appear in the theory through non-linear sigma-
models, we will keep them adimensional so that 2 = zécan') [/Mpy, ¢* = U(ean) /Mpy.

Then, the Lagrangian of ref. [90] can be reorganized in terms of Planck-scale powers,

up to four fermions terms,

L= /l(4) + ﬁ(g) + ﬁ(l) + E(o) + ﬁ(_l). (7.127)
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In particular, we have

MpV(2,q) (7.128)
R o
Mg, (—5 + 950" 0,7 + huvé’uqua“q”) (7.129)

Y, {( ehvpo

Pl ,—_g_ 2 -
+ (25apu"™ 0y + g W Nty + 2N Cy
+ M5+ MECAE + MiajpN NP + D)}

1 . 1
) [Q’Hm,,pgAL”é?#q“ + 5 Bt O (J—“,ﬁ}, — Mpi50 A”Bn,,,,)l -

(7.130)
U <NAEﬁ;uAﬁ_E”V — NAEﬁ:yAﬁ+E‘LLV> + 6 M ™ H 0 1P+
G\;y_)‘_; (IZ;?’YV/)AP\U B 1ZA|M7,,/)§}0) — %gij_ (j\iAquV“)\i‘ i E\QVMVH)\M) L
—i (C*Y"Vula + Ca¥*V,uC®) +
— 0,7 (PANA = XA ) — U, (HCa — Co™as + hic)
(7.131)

- o 7 v - FNNT v 1 i vy j
Mpzl {-FWAIAE {in/}A”fﬂB €AB — 41]22 AY %’i—}ﬁAB + ivisz)\ A’Y“ )\]BEAB+

+

—L>( " (gC*] + h.c.t
+2an7—[nlqu [unAa (SiiﬁAu’Yl/pCa + z/_}A,ucoz) + ZAng CB’VNVPCO[} } '
(7.132)

Here, hy,, A" and M™" correspond to the components of the quaternionic metric

after dualization of the scalars ¢™ to antisymmetric tensors B,,|,,. On the other hand
fjl//\ =1 (]-"li‘l, + L€pe F ) and .7:";\1, = Fﬁu+%@AmBuvm are the gauge-field-strengths
undergoing the anti-Higgs mechanism introduced in ([7.123]) ﬂ The mass-matrices are

2In a symplectic frame, where the gauge fields undergo the standard Higgs-mechanism by coupling

to the scalars in the quaternionic sector (not dualized to antisymmetric tensors), the gauge-covariant

derivative in the quaternionic sector is defined as

Vug" = 0uq" + Mp A0,k
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given by

W' AB = g (0%) " “AUMO, [ PE, (7.133)
Sap = % (0%), epcVM O, P, (7.134)

G = —2UG, K VYO, (7.135)
M = —UMUP €450, VIRV (7.136)
& = —A4U%. 0,k UM, (7.137)
Miajp = % (0067") 1y ONPEV,UM. (7.138)

To perform the rigid limit @ — oo of the Lagrangian, we have to consider the limit
of the various couplings in the Lagrangian. We shall identify the fields of the rigid
supersymmetric theory with a ring, in order to distinguish them from the supergravity
fields. In particular, the special-geometry sigma-model metric in supergravity is related
to its counterpart g;; in the rigid limit by:

L,
9i7 = Egija (7.139)

so that the kinetic terms of scalars and spinors in the vector multiplets read

1L, et Tl RV i

Egij M32,0"2'0,7 — 3 (NN N 4+ Ny VA |

This implies that the gaugini of the rigid supersymmetric theory should be related to
the supergravity one as

o 1.
A = 2\ (7.140)
14
On the other hand, the holomorphic scalars should not be rescaled

zZ =Z.

Furthermore, the relations of special geometry imply a low-energy rescaling of the
vector-kinetic-matrix Ny corresponding to the following identification of the matrix
Ny of the rigid theory:

° ° 1 -
Noo =Now, Npy=Nps, Nop= p-/\/’m- (7.141)
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In this way, the gauge vector should not be redefined
iA _ 4A
A=A, (7.142)
and the gauge kinetic term is given by, at low energies
o o 2 o
Ins FO P = [ogFO, O + [y FL P 4+ 210, O FT + O(1/ 1),
1

where Iz = Im(Nayx).
The rescaling of the special geometry sector, in a generic coordinate frame, is given
by

X° 0
0 1| XI(z2)
vM = + = ’ +0(1/p?) ; 7.143
: p i (1/n?) (7.143)
0 Fi(z,2)
0
~ 1 61)%1 = O~I
oM = - Ji +0 (1/p) , (7.144)
iz 0
3,;13} = ;l[i
while the embedding tensor,
1 .
M= E@R}- (7.145)

Then, following the low energy limit of the symplectic sections and embedding tensor
discussed in the previous section, we have that the rescalings of the fermion shifts and

spinor mass matrices are given by

. 1. 1 -
JiAB — LyjriAB. MP = — M (7.146)
e K
1 o I e,
Sap = ESABa iB — E iB > (7‘147)
1 - 1 -
N°¢ = EN%, Misip = EMZ'A]'B- (7.148)

Thus, the scalar potential rescales as

V=_—V. (7.149)



Consequently, using the rescaled fields, the various contributions to the Lagrangian

(7.127) can be written as
Lu = AV(z0) (7.150)
R L
Lo = M};l( o+ hudua" 0" )+A2§m8*‘2’8#2] (7.151)
e m u 1 N\ m A MPZ I An
Loy = Mp {( \/—) [Q’HmWAu N +2—N23m|uu@1\ (fpo_u_ o Bnpa)] +
1
+ o (28l + i PNl + NIt + e ) +
1 af F iB ° NiASjB
o (M oo + MO +hc> A (MiAjBA Y +h.c.>.

(7.152)
Loy = 1 (NAzﬁ;VAﬁ_E“V —NAzﬁ:VAﬁJ“Z“”) + 6M™ Mg 1P+

2N

€ A
Ner (i vupane — YapyvPig) — 2gw (/\““ BN+ VARV, )\““>
—i (C*V*Vla + GV uC®) +
1, o fein fid . .
—pgij[a“zﬂ (¢5;A A \HAH sz,,) + h.c.] = 22U 0,uq" (Vo — (¥ Yar + hec.)

_|_

(7.153)
Ly = A_IJ'—;VI]OIJ [%Vz‘fj]f\MVWS\jBEAB - h.c.] +
+Mp) {«F,:VOIOOOEO WA”@/JBVQAB — foﬁ’“’(g@aﬁ + h.c.} +
~Fuil D |4 f N vl + e
F2MIH I (U (3ihauupCa + DanCa) + 0,5 ComueC®]} . (T.154)
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Then, performing the rigid limit gy = Mp;/A — oo, we find

L = AV(z49) (7.155)

Loy = M}, (—g + huvauq“aﬂq”) + A?G;0"2'0,77 (7.156)
Hvpo o o, o .

Loy = -2 i/__gMszmppgAumauq“ +A (Mi A pANANE h.c.) . (7.157)

Loy = i (NanFt T = NasF AT ) e 6M ™ Hap 1 +

eu,l/)\cr

_ _ 7. 2 o~ o oy
\/_—g <¢37VPA|/\U - ¢A|,u,’}/l/pfa) - §glj <A A,YNVM)\-A + AQWMVMA A) +
—1 (éa’yuvugx + éa’yuvuga) - QZ/{SAa/Lqu (&ZC& - Eafyluyd}Au + hC)
(7.158)

_|_

o o 1 0 o, o <
Ly = ANFJ {ﬁvifji])\’A'y“”AJBeAB+h.c.]. (7.159)

The observable sector corresponds to the N/ = 1 rigid supersymmetric Lagrangian
obtained as a rigid limit of a A/ = 2 supergravity Lagragian partially broken. Let us
note that the N' = 2 supergravity Lagrangian reduce to the multi-vector generalization
of the rigid Lagrangian of the APT model [71]. On the other hand, the hidden sector
is still propagating but fully decoupled from the observable one,

*Csugra — £APT = *Chiddena
where
. in —7 1. 2, o~ o o
Lapr = N§y0"2'0,7 — 29 <>‘ AV N+ NV A A) *
+1 <]\2f1J.7:,:VI.7:_J“” — NIJF:VI.F+JMV> +
FAW A (/\ZiAjBiiAijB + h.c.) +

- o 1 0,2, o .
—i—A’l./Tl;,IIJJ [§Vifjf')\’Afy””)\jBeAB + h.c.] : (7.160)
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Ehz’dden

R . = _ —Ouy o »
My <_§ + hwa#quauqv) +1 (Noo]:uyof O —./\/’00.7::,,0.7:%” ) +

ehvpo
+6an/Hm|MVp/Hn“Vp -2 _gMlemWUAum@uq“ +
GMV)\U 1A 7 A ) ) e
+\/_—g (wu 71/:014\)\0 _wA/f}/up,\g) -1 (C 7 quoz + Ca7 V/LC ) +
— U0, " (Vi Co — GV Par + hec) . (7.161)

Thus, the high-energy supergravity Lagrangian is characterized by a visible sector

surviving the rigid limit and by a hidden one consisting of the gravitational multiplet

and by a hypermultiplet, which decouple when the Planck mass is sent to infinity.
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Chapter 8
Conclusion

In the present thesis we have presented, using a geometrical formalism, diverse
supergravity theories in different frameworks. In particular, we have incorporated
diverse interesting features to supergravity models like enlarged symmetries, three-
dimensional space-time, matter couplings and the presence of cosmological constant.

In chapter 4, we have shown that the Maxwell superalgebras can be derived by
the semigroup expansion procedure. In particular, the minimal Maxwell superalgebra
and its generalizations can be obtained as an S-expansion of the osp (4|1) superalge-
bra with a suitable semigroup S [31]. Interestingly, using the MacDowell-Mansouri
approach, we showed that the supergravity action, constructed out of the curvatures
of a minimal Maxwell superalgebra sM,, describes pure supergravity in four dimen-
sions [32]. This result can be seen as a supersymmetric generalization of ref. [I1] (see
chapter 2) in which four-dimensional General Relativity can be derived from Maxwell
algebra as a Born-Infeld gravity action. Additionally, we presented an analyze of the
invariance of the supergravity action under the Maxwell supersymmetry transforma-
tions.  The Maxwell symmetries could play an important role in higher dimensions
supergravity theories. Indeed, it seems that it should be possible to recover standard
odd-dimensional supergravity from the Maxwell superalgebras.

In chapter 5, we have presented an alternative method of introducing the super-
symmetric cosmological term to a supergravity action a la MacDowell-Mansouri [33].
In particular, we showed the the AdS-Lorentz superalgebra allows to add new terms

to the supergravity action, describing a generalized supersymmetric cosmological con-
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stant. This superalgebra and its AN -extended generalization has been derived through
the S-expansion procedure. Interestingly, this expansion method gives us the com-
ponents of an invariant tensor in terms of particular choice of the invariant tensor of
the osp (4|1) superalgebra, allowing to construct a supergravity action in the geomet-
ric formalism. Although there already exists supergravity theories with cosmological
constant, the supergravity action a la MacDowell-Mansouri suggests a superconformal
structure which represents an additional motivation in our construction.

In chapter 6, we analyzed the construction of a three-dimensional Chern-Simons
supergravity action using a minimal Maxwell superalgebra [59]. To this purpose, we
used the S-expansion method in order to obtain the Maxwell superalgebra sMjs from
the osp (2|1) ® sp (2) superalgebra. Additionally, using the usual Maxwell superal-
gebra, we briefly studied an exotic supersymmetric action combining the expansion
and contraction procedures. Interestingly, the model considered here represents a toy
model in order to approach richer theories in higher dimensions or in higher N -extended
supersymmetric theories.

Eventually, in chapter 7, we presented a multi-vector generalization of a rigid par-
tially broken N = 2 supersymmetric theory as a rigid limit of a suitable gauged N' = 2
supergravity theory in presence of electric and magnetic charges [73]. Interestingly, the
N = 1 rigid supersymmetric theory corresponds to a generalization of the APT model
[71] to a generic number n of vector multiplets. The purpose of this chapter was to
elucidate the supergravity origin of the multifield supersymmetric Born-Infeld theory
and to understand the origin of the dyonic Fayet-Iliopoulos terms. Furthermore, the
N = 2 supergravity Ward identity for generic dyonic gaugings and its rigid limit was

also approached.
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Appendix A

Abelian semigroup expansion

procedure

The derivation of new Lie (super)algebras from a given one is an interesting prob-
lem in Physics since it allows to derive new physical theories from an already known.
Nowadays, there are four different ways to relate and obtain diverse Lie (super)algebras.
Interestingly, the expansion procedure leads to higher-dimensional Lie algebra from a
known one. The expansion method was initially proposed in the context of AdS su-
perstring by M. Hadsuda and M. Sakaguchi in ref. [94]. Subsequently, a method based
on the Maurer-Cartan (MC) forms power-series expansion has been presented in ref.
[95] and subsequently developed in refs. [96], 97] with interesting physical implications.

Recently, F. Izaurieta, E. Rodriguez and P. Salgado have proposed an alternative
expansion method in ref. [I6]. Unlike the Maurer-Cartan expansion, the expansion pro-
cedure introduced in ref. [I6] is based on operations performed on the (super)algebra
generators. Basically, it consists in combining the structure constants of a Lie (su-
per)algebra g with the inner multiplication law of a semigroup S leading to the Lie
brackets of a new Lie (super)algebra & = S x g.

Let g a Lie (super)algebra with basis T4 and structure constants C,< and let
S = {Aa} be a finite abelian semigroup with 2-selector K ;. Then, the direct product
S x g is also a Lie algebra given by

[Tia): Tis.p)] = Koy Cuais T (A.1)
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The Lie (super)algebra & defined by & = S x g is called the S-expanded (super)algebra
of g and is generated by T(4.4) = AT 4.

Interestingly, smaller (super)algebras can be extracted from an S-expanded (su-
per)algebra & = S x g. However, it is first necessary to consider a decomposition of
the original (super)algebra g in subspaces V}, such that g = €P,; V;, where I is a set
of indices. For each p,q € I, one can define i, 4 C I such that

Vi,V < € Vi (A.2)
T€i(p,q)
According to the definitions of ref. [I6], it is possible to consider a particular subset

decomposition of the semigroup S = _; S, such that

pel

Sp=Sgc ] S (A.3)
T€i(p,q)
When such decomposition exists, we say that this subset decomposition is in resonant

with the subspace decomposition of the Lie (super)algebra g and

Or = @ Sp X Vi,
pel
is a resonant (super) subalgebra of = S x g. Therefore, in order to derive a resonant
S-expanded (super)algebra, we just need to solve the resonance condition for a finite
abelian semigroup S.

A smaller (super)algebra can be obtained when the semigroup has a zero element
0s € S such that for all A\, € S, we have 0g)A, = 0g. In particular, the (super)algebra
derived by imposing the Og-reduction condition 0s7’4 = 0 on & is called the Og-reduced
algebra of & = 5 x g.

On the other hand, it is possible to extract a reduced (super)algebra from a resonant
(super) subalgebra. Indeed, let us consider & = P, S, X V,, as the resonant (super)
subalgebra of & = S x g. Let S, = S, U S, be a subset decomposition with S, C S
such that

gp N5, =9, (A4)
Sp-S,c (] S (A.5)
T€i(p,q)



Then, the conditions (A.4) — (A.5)) induce the partition

6r=EP S, xV,, (A.6)
pel
&r =P 5, xV, (A7)
pel
with
|:é5R, QBR} C QBR. <A8)
Thus, |& r| corresponds to a reduced (super)algebra of & [16].

A useful property of this expansion mechanism is that it provides us with the com-
ponents of an invariant tensor for the S-expanded (super)algebra in terms of the com-
ponents of an invariant tensor for the original (super)algebra g. Following theorem
VIL.1 of ref. [16], let S be an abelian semigroup with the n-selector K

Qai-an

N :
, g a Lie
(super)algebra of basis {T4} and let (T4, - - - T4, ) be an invariant tensor for the original

n

algebra g. Then,

<T(A1,Oé1) i T(An,an)> = OéVKoqman . <TA1 U TAn> (Ag)

corresponds to the invariant tensor for the S-expanded (super)algebra & = S X g.
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Appendix B

Gamma matrices identities and

conventions

In this Appendix we briefly review some gamma matrices identities and the con-
ventions used in the present thesis. The Dirac gamma matrices in a four-dimensional

space-time are defined through the relation

{ Y W} = —27ap, (B.1)

where 7, = (—1,1,1,1) is the Minkowski metric. This gamma matrices satisfy the
Clifford Algebra:

Yas ] = 27a, (B.2)
Y5 = —Y071727374s (B.3)

v o= -1, (B.4)
{15:7%t = [ 7w] =0, (B.5)
YabVs = —%Eabcd’fd, (B.6)
YaYo = Yab — Nab, (B.7)
Ve = €y — 40y — 2008, (B.8)
Yyt = 2ylagh _ cabedn o (B.9)
Yt = =216 — ey, (B.10)
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In particular, in the present thesis we are working with the Majorana spinors which
satisfy the Majorana condition ¢ = 9" C, where C' is the charge conjugation matrix.

Furthermore, the gamma matrices satisfy

(C/ya)T = C/Yaa (Bll)
(CYa)" = Capy (B.12)
while
ct = —C, (B.13)
(Cys)" = —Cns, (B.14)
(Cr57)" = —CY5%a, (B.15)

which means that C'y, and C,, are symmetric, while C, Cv; and C~vs57, are antisym-
metric gamma matrices. This leads to the following identities for the p-form 1) and
g-form &:

YE = (-1)"&y, (B.16)
$S8E = —(-1)"¢&y, (B.17)
AL = (=D&, (B.18)

where S and A are symmetric and antisymmetric matrices, respectively.  This prop-

erties allows to write some useful Fierz identities:

B B 1

VB = S - Srn ™y, (B.19)
%WEVWJ = 0, (BQO)
Vb Py = 0. (B.21)
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Appendix C

Relevant relations on the

sigma-model geometry

In the present appendix, following ref. [73], we present some important relations
required to a good understanding of the N' = 2 supergravity model considered in the
present thesis.

A special Kéhler manifold Mg is locally described by a holomorphic section €2 and

a choice of complex coordinates 2,

=¥
Qz) = ( );A((Z; ), A=0,...,n, (C.1)

such that the Kahler potential is given by
K(z, 2) = —1ogli Q(z)TCQ(z)] . (C.2)
We define the covariantly holomorphic section V™ in terms of Q and & as
VM =ez QM. (C.3)

One can associate a holomorphic function f,(z) and a symplectic matrix Mg] =
(M[g]aN) to each element g of the identity component Gy of the isometry group of
the special Kahler manifold Mgg. Indeed, if g : 2* — 2/* = 2"(z), we have

Q) = efs(2) Mlg] ™" Q(2) & K(Z,7)=K(z %) — fo(2) — fg(Z) ) (C4)
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Let {t,} be the infinitesimal generators of Gsx and let k, = k! (2) 0; + Kk (2) &; be the
Killing vectors satisfying

[taa tb] = fabC le 5 [kaa kb] - _fabc kca

then eqs. (C.4]) imply

OM = Eo0M = —t M ON + fu(2)0M (C.5)
K = KOK+KEIK=—(f.+ fo)K, (C.6)
VM = (K0 + ELO)VM = —t MV 4 % v (C.7)

Here t, ™ corresponds to the symplectic matrix representation of the generator ¢, on

covariant vectors,
tapn Canp =0, ()M = =t "M QY. (C.8)

Let P,(z, Z) be the momentum map corresponding to k,, defined as [81],

k. =ig70/P,, kL =—ig"0;P,, (C.9)

a

and satisfying
. Red E 1, .
t9i3 la klj)] = _5 fab (Pc N Cc) . (ClO)

Here, C. is a constant vector which can be reabsorbed by a redefinition of P,.. In what

follows we shall consider the following redefinition,

P.—C.— P.. (C.11)
In particular, using eq. (C.6]), eqgs. (C.9) are solved by
Pu = —5 (KOK — K,0K) + Im(f,)
= iKOK +if,=—ik:0K —if,. (C.12)

Then, using egs. (C.12)) and (C.7]), we find

K UM = —t  MVYN 4P, VM. (C.13)

Interestingly, contracting eq. (C.13)) with CV and using the relations VI'CV =i, VICU; =
0, we obtain
Po= -V tayatV' = V" taxn V7, (C.14)
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where

tanm = tan” Cpar = tann- (C.15)

The general property
tann QMY =0, Vi, (C.16)

follows by contracting eq. (C.5) by CQ and using VI CU; = 0, which implies
QTfcoN =0. (C.17)

Let us now consider infinitesimal isometries of the quaternionic Kéhler manifold
Mgok. These isometries are generated by ¢, whose action on the scalar fields is
described by Killing vectors k,, = k! 0,. In particular, they satisfy the isometry
algebra

[tma tn] = fmnp tp 5 [kma kn] > _fmnp kpa
and leave the 4-form Zizl K* A K* invariant [81], which amounts to requiring

K™ = eV KYWZ . (C.18)

Here, W? corresponds to an SU (2)-compensator. Writing the Killing vectors k,, in
term of tri-holomorphic momentum maps P? it is possible to solve eq. (C.18]) as

1, K* = =VPE = —(dP? 4+ €"*w? P?) | (C.19)
provided

Pr = N ow® — WE) = W" — 10", (C.20)
where we have defined A = —1. In particular, in the case of vanishing compensator,

W7 =0, the momentum maps have the simple expression
Py =—k; wy. (C.21)

As for the special Kéahler manifolds, the momentum maps satisfy Poisson brackets
described by the following condition

2 Koy K K, — N2 PYPE = — [P P (C.22)
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Appendix D

The General Ward Identity for a
generic N = 2 supergravity gauging

In the present appendix, we prove the general Ward identity for the generic dyonic

gauging of N' = 2 supergravity. To this aim, we will evaluate each term in the left

hand side of eq. (7.65)),
Gis WA o + 2 N A N — 1259850 = 65V (2, 2,¢q) . (D.1)

Let us consider the symplectically-invariant generalization of the fermionic shifts

WiAB = EAB k’j\/[ VM —1 (UQC)CBGCA’PJQ\C/[ g”ﬁé\/[ N (DQ)
Sap = 5(0")a%enc Py VY., (D.3)
NA = 2ur kL VY Noy = (NAY = =2 Uy a2k VY (D.4)

Then we have

. —_ . - _M
WA Wpegy = 0 kikhggV o VY
—i (o) (K VT -k, VYUY PR
+(o"a¥) gt Py PLUMN D.5
N

with
UMN = UN gi T (D.6)

137



Splitting the terms proportional to §4 from those proportional to (o%) BA and using eq.

(7-64),
VY, UPOp = —Xyn " VIVYOp = XLV VYOp = —VMEL, TY0p, (D)
we find
WA gy = o (KikkgaV" VY + PP UMY
Fi (0% (-2 Xun TV VN Py v %P;VU[MN}) . (D.8)
Let us now consider the general symplectic covariant relation given by eq. ,
i

S MY — vy (D.9)

and let be the locality constraint given by eq. ([7.49)),

. 1
MN _ i MyrrN __ MN
UMN = g UMUY = —g MMY —

Ox " CMVONY = 0 CMNO ™ = 6 "CMVON™ = 0. (D.10)
Then we can write
PP UM = —% Py PLCMN —pypz M yN = _py p My N (D)
leading to
WA pegy = of (KikhgaV" VY + PEPLUMY)
+i (0%) 5 (—2 Xun VY VN pr v py pr VMVN) (D.12)
Let us now consider the square of the gravitini shifts,

—12 SAC SBC = -3 (O'xO'y)BA 7)]3\:47)]?1\[ VMVN
= 3P PL VMV £ 3iev P PL VI VY (0%) 4. (D.13)

While the square of the hyperini shifts is given by

ONAN, = SUMU, o kb kST VY
— 4 (6phuy + i (0") g KE) K RV VY (D.14)
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where we have used eq. ((7.43]).
Then, we can compute the left hand side of the Ward identity,

Gy WHAW e + 2N AN — 12549 p0 = 04V (2,2,9) +1 2% (0) 5", (D.15)
where the general symplectic invariant expression of the scalar potential is given by
V(2 2,q) = (K gis + 4 huokl k) VT VN 4 (UMN — 3y MY yprpe — (D.16)

and
7% = (=2 Xpn© PE+ 26 PYPL + 4K K k) VI VY (D.17)

In particular, from the equivariance condition ((7.53)),
2 KE kY kX + € PP = Xun' Ph (D.18)

it follows that Z* = 0, so that the Ward identity is proven.
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