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Director de Programa : Dr. Raimund Bürger,
Departamento de Ingenieŕıa Matemática,
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Resumen

Este trabajo de tesis doctoral estudia la solución numérica débil de ecuaciones diferenciales estocásticas
(EDE) con ruido multiplicativo y sistemas de EDE hacia adelante y reversivas (EDEAR), en un con-
texto clásico de hipótesis y vinculadas a ecuaciones diferenciales parciales (EDP) no lineales, respec-
tivamente. En diversos contextos interesa modelar procesos de difusión, por ello la importancia de
métodos de aproximación adecuados. Examinamos casos en los cuales los métodos de integración
de tipo Euler aplicados a EDE conducen a estimaciones numéricas inestables. Ejemplo de ello son
las EDE con ruido multiplicativo, donde usualmente es necesario utilizar discretizaciones temporales
∆ > 0 muy pequeñas o bien incorporar términos impĺıcitos en los esquemas numéricos. Abordamos la
solución débil de EDE, es decir, la aproximación de valores esperados Ef (Xt) donde (Xt)t≥0 es solución

de una EDE d-dimensional y f : Rd → R algún funcional dado. Para tal propósito, consideramos el
desarrollo y análisis de esquemas asintóticamente estables casi seguramente, junto con la propiedad
de preservación del signo, con orden de convergencia igual al tradicional método de Euler-Maruyama.
Proponemos métodos numéricos débiles sin involucrar integrales múltiples ni términos de difusión
impĺıcitos, incluso para EDE que no contengan términos de tendencia. Basado en ello, introducimos
nuevos esquemas numéricos gracias a los cuales es posible simular eficientemente el proceso estocástico
Xt y aśı estimar Ef (Xt) utilizando, por ejemplo, el clásico método de Monte-Carlo. Comenzamos
diseñando esquemas balanceados de primer orden débil para sistemas lineales de EDE, identificando
funciones de estabilización en los coeficientes de tendencia. Presentamos entonces un nuevo enfoque
para el tratamiento numérico de EDE con ruido multiplicativo. Para tal efecto, abordamos el con-
texto de sistemas bilineales de EDE a partir de la estimación eficiente de ‖Xt‖ mediante un nuevo
esquema no lineal escalar junto con la aproximación apropiada del proceso X̂t := Xt/ ‖Xt‖. El notable
desempeño de los nuevos esquemas, y su potencial reflejado para estimar EDE localmente Lipschitz y
exponentes de Lyapunov, es apoyado por resultados teóricos de convergencia y estabilidad e ilustrado
en diversos ejemplos numéricos. Finalmente, nos introducimos en la simulación de las ecuaciones de
Navier-Stokes incompresibles mediante la solución numérica de una nueva clase de sistemas de EDEAR
recientemente introducido. Comenzamos estudiando la ecuación de Burgers resolviendo un sistema
acoplado de EDEAR, lo que provee una aproximación probabiĺıstica v́ıa la fórmula de Feynman-Kac
no lineal, e incorporamos quantización como variable de control para reducir la varianza en el cálculo
de valores esperados. Entonces solucionamos numéricamente vórtices de Taylor-Green y flujos de
Beltrami usando un novedoso algoritmo probabiĺıstico. Mediante aproximaciones de tipo Riemann
y la quantización de variables Gaussianas, estimamos esperanzas de integrales que dependen de las
trayectorias de movimientos Brownianos. Nuestros resultados motivan el diseño y estudio teórico de
algoritmos probabiĺısticos para la estimación de EDEAR y, a su vez, EDP no lineales.
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Abstract

This PhD thesis work studies the weak numerical solution of stochastic differential equations (SDEs)
with multiplicative noise and systems of forward-backward SDEs (FBSDEs), in a classical context
of hypotheses and related to nonlinear partial differential equations (PDEs), respectively. In various
contexts it is demanded to model diffusion processes, therefore the importance of adequate methods for
approximation. We consider cases in which the Euler-type integrating methods applied to SDEs drive
us to unstable numerical estimations. For example we have the SDEs with multiplicative noise, where
usually it is needed a sufficient small discretization step ∆ > 0 or well to incorporate implicit terms on
the numerical schemes. In particular, we deal with the weak solution of SDEs, i.e. the approximation of
expected values Ef (Xt) where (Xt)t≥0 is solution of a d-dimensional SDE and f : Rd → R some given
functional. For this purpose, we consider the development and analysis of almost sure asymptotically
stable schemes, together with the sign-preserving property, with convergence order equals to the
traditional Euler-Maruyama method. We propose weak numerical methods without involving multiple
integrals nor implicit diffusion terms, even if the SDEs have no drift terms. Based on it, we introduce
new numerical schemes that help us to efficiently simulate the stochastic process Xt and then to
estimate Ef (Xt) by using e.g. the classical Monte-Carlo method. We begin designing first-order weak
balanced schemes for systems of linear SDEs, identifying stabilizing functions into the drift terms.
Next we present a new approach for the numerical treatment of SDEs with multiplicative noise. For
this purpose, we consider the context of bilinear systems of SDEs by means of the efficient estimation
of ‖Xt‖ by using a new scalar nonlinear scheme and the appropriate approximation of the process
X̂t := Xt/ ‖Xt‖. The remarkable performance of the new numerical schemes, and their potential
for the estimation of locally Lipschitz SDEs and Lyapunov exponents, is supported by theoretical
results of convergence and stability and illustrated in various numerical tests. Finally, we introduce
in the simulation of the incompressible Navier-Stokes equations by means of the numerical solution
of a new class of FBSDEs recently introduced. We begin studying the Burgers equation by solving a
coupled system of FBSDEs, providing a probabilistic approximation through the nonlinear Feynman-
Kac formula, and we incorporate quantization as a control variate variable to reduce the variance in the
computation of expected values. Then we numerically solve Taylor-Green vortices and Beltrami flows
by using a novel probabilistic algorithm. We estimate expectations of integrals involving trajectories
of Brownian motions by means of Riemann-type approximations together with the quantization of the
Gaussian variables. Our results motivate the theoretical study and design of probabilistic algorithms
for the estimation of FBSDEs and, at the same time, nonlinear PDEs.
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∆ = 1/4. Here, Xt solves (3.34) with ζ = 0.062, σ2 = 0.5 and X0 = (1, 2)> . . . . . . . 52

3.9 Estimations of Eg (Xt); t ∈ [0, 15], obtained by η̄nX̄n (circles) and Ēn (stars) using
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Chapter 1

Introduction

Fortune presents gifts not according to the book
Luis De Góngora (1561-1627)

Imagine a bacterial culture through a fluid in a Petri dish. Mainly the trajectories of bacteria are
governed by the drift field of the fluid. However, the viscosity induces an erratic movement to each
organic bacterium. Definitively Awesome, I could observe a real Wiener process. So, is it possible to
experiment such phenomenon with inorganic particles? The answer is Yes, the pollen particles are
documented...

Diffusion processes have been observed at least from the XIX Century. The botanist Robert
Brown observed through a microscope an unusual movement of pollen particles over a fluid, the
optical developments were very relevant. Ludwig Boltzmann explained the nature of Brownian motion
through the kinetic theory of gases. Some years later mathematician Louis Bachelier related the
Brownian motion by studying finance. Then physicist Albert Einstein developed the basis of the
Brownian motion by means of the physics of matter. In abstract form Norbert Wiener presented the
mathematical description of the Brownian motion. Mathematicians called Wiener processes to such
nice movements in his honour.

The probability theory initiated by Andrey Kolmogorov helps us to understand random phenom-
ena. Then Kiyosi Itô constructed the theory of stochastic differential equations (SDEs for short), a
notable scientific contribution to the study of diffusion processes. The connection between stochastic
processes and the theory of partial differential equations (PDEs) is due to Richard Feynman and Mark
Kac. We refer to such probabilistic representation of deterministic solutions as the Feynman-Kac for-
mula. The seminal Euler-Maruyama method, introduced by Gisiro Maruyama as an extension of the
Leonhard Euler’s method, remains as the usual alternative to deal with the numerical solution of
SDEs.

The Itô SDEs have been intensively studied in the specialized literature during the last decades. In
different contexts and applications such stochastic models naturally appear in the description of diverse
phenomena. Roughly speaking, the stochastic modeling permits us to deal with systems subject to
environmental randomness. We mention, for example, diffusion processes associated to dynamical
systems, physics of fluids, waves, neuroscience, finance, genetic evolution, epidemiology, diffusion
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networks, machine learning and applications on turbulence, oscillators, vortices, superconductivity,
social behavior, among various others phenomena. Nowadays, technological and scientific computing
developments provide a notable scenario for the simulation of mathematical models, and in turn the
research and design of efficient numerical methodologies to approximate such unknown exact solutions.

This Doctor of Philosophy thesis (PhD thesis) studies the weak numerical solution of SDEs driven
by Brownian motion subject to multiplicative noise and the simulation of systems of forward-backward
SDEs associated to nonlinear PDEs models, which provide stochastic algorithms to approximate the
deterministic strong solutions.

1.1 Context

Let us consider a diffusion process governed by an adapted stochastic process (Xt)t≥0 that solves the
d-dimensional Itô stochastic differential equation (SDE), written in matrix notation,

Xt = X0 +

∫ t

0
b (Xs) ds+

∫ t

0
σ (Xs) dWs, (1.1)

in which we have the drift coefficient b : Rd → Rd, a diffusion term σ =
(
σ1 | . . . | σm

)
: Rd → Rd×m

and the m-dimensional Wiener process W =
(
W 1, . . . ,Wm

)>
: Ω→ Rm defined on a filtered complete

probability space
(

Ω,F , (Ft)t≥0 ,P
)

. The Itô SDEs were introduced during the 1940s by K. Itô’s

seminal works [111, 112]. In this PhD thesis work we assume the standard conditions for existence
and uniqueness up to indistinguishability of solutions

X =
(
X1, . . . , Xd

)
∈ L2

F

(
Ω;C

(
[0, T ] ;Rd

))
for the Itô SDEs (1.1), i.e. a fixed final time T > 0, a given F0-measurable initial condition X0 such
that E ‖X0‖2 < ∞ and b, σ globally Lipschitz continuous functions satisfying regularity and linear
growth conditions (see e.g. [9, 108, 117, 125, 138, 161, 178, 181, 191] for the classical theory). Note
that these theoretical hypotheses can be relaxed to non-globally Lipschitz continuous coefficients, like
one-sided and locally Lipschitz functions (see e.g. [105, 117]).

The SDE (1.1) involves the Lebesgue and Itô integrals. The dynamical behavior of X depends on
the noise nature, and then the usage of appropriate numerical methods for computer simulations. The
SDE is said to be subject to multiplicative noise when the diffusion term σ depends on the solution
X of the equation, otherwise is referred as a SDE with additive noise. In particular situations, SDEs
with multiplicative noise can be transformed into SDEs with additive noise (see [188]). The equation
(1.1) is autonomous because the involved coefficients do not depend explicitly on the time. As in the
deterministic context of ordinary differential equations (ODEs) an autonomous SDE can be formed
from a non-autonomous system by adding the trivial equation t =

∫ t
0 ds and taking Yt = (t,Xt) (see

[13]). However, when some component Xi, for i ∈ {1, . . . , d}, is explicitly integrated on time it is
recommended to take its exact values instead of the approximated ones. In this PhD thesis work we
focus on autonomous SDEs systems subject to multiplicative noise, otherwise an additional numerical
analysis is demanded.
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In general exact analytic solutions X of SDEs are unknown, then the application of numerical
methodologies are demanded for their estimation. If we know the initial condition X0, a natural way
to obtain temporal approximations of the process Xt at times t ≥ 0 corresponds to consider a time
discretization 0 = t0 < t1 < . . . and calculate successive estimations Yn ≈ Xtn by setting Y0 = X0

and defining a recursive rule to compute Yn for each n ≥ 0. For simplicity, we fix an equidistant
time discretization tj = j∆, where ∆ > 0 and j = 0, 1, . . . Hence the computational effort required
to simulate (Xtn)n≥0 intrinsically depends on the desire precision, the time discretization step ∆ > 0
and the computing complexity to obtain the successive approximating values of the numerical scheme
Yn.

Various approaches have been proposed to numerically estimate the solutions of Itô SDEs (see
e.g. [91, 120, 121, 147, 150] for related literature). The most classical way, and usual benchmark
to validate or compare alternative numerical schemes, corresponds to the Euler-Maruyama method
defined recursively by

En+1 = En + b (En) ∆ + σ (En) (Wn+1 −Wn) . (1.2)

Here we denote Wn = Wtn . Note that its recursive formula involves the numerical simulation of
independent Gaussian random increments Wn+1 −Wn. This simple and easily implementable novel
approximation introduced by Maruyama (1955) [140] generalizes the Euler method for ODEs and
converges strongly to the exact solution X of globally Lipschitz SDEs with order 1/2 as ∆ → 0, i.e.
fixing a final integration time T > 0 and taking ∆ > 0 sufficiently small we have

E ‖Xtn − En‖ ≤ K (T ) ∆1/2 ∀tn ∈ [0, T ] , (1.3)

with K (T ) > 0 not depending on the time-step. Unfortunately, the Euler-Maruyama method pro-
duces numerical instabilities and poor performances in cases in which the discretization-steps are not
taken small enough. Moreover, it fails to converge in general contexts such as non-globally Lipschitz
coefficients (see e.g. [101, 106]). There are alternative Euler schemes that converge in the context of
non-globally Lipschitz continuous coefficients (see e.g. [25, 33, 107]).

In this PhD thesis work we are concerned with the weak numerical solution of SDEs with multi-
plicative noise, i.e. the estimation of expectations, or mean values,

Ef (Xt) =

∫
Ω
f (Xt (ω))P (dω)

where f : Rd → R is a given smooth functional. Except for particular situations, the laws of X are
explicitly known. In this context, it is well-known that the Brownian increments (Wn+1 −Wn) /

√
∆

can be replaced by alternative, ideally simpler and cheaper to simulate, random variables having similar

moment properties (see e.g. [120]). Taking ξn =
(
ξ1
n, . . . , ξ

m
n

)>
: Ω → Rm, with ξ1

0 , . . . , ξ
m
0 , ξ

1
1 , . . . a

sequence of independent random variables such that P
(
ξkn = ±1

)
= 1/2, the weak Euler-Maruyama

method is defined by

Ēn+1 = Ēn + b
(
Ēn
)

∆ + σ
(
Ēn
)√

∆ξn. (1.4)

The numerical scheme Ē converges weakly to X with order 1, that is∣∣Ef (Xtn)− Ef
(
Ēn
)∣∣ ≤ K (T ) ∆ ∀tn ∈ [0, T ] , (1.5)
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for f in certain smooth class of real valued functions and sufficiently small time step ∆ > 0 [196, 197].
The weak numerical simulation of SDEs involves the computation of mean values Ef (XT ), so a

key point is to choice an appropriate algorithm to calculate expectations. Among various approaches,
the usual way is to consider Monte-Carlo simulation. More precisely, let T > 0 be a final integration
time and denote by {Y (ωi)}i∈{1,...,M } a set of independent realizations of the numerical scheme Y with
time-step ∆ = T/N , for N ∈ N. Combining the Monte-Carlo method with the simulation of Y gives
us the empirical mean approximation

Ef (XT ) ≈ 1

M

M∑
i=1

f (YN (ωi)) . (1.6)

If we consider, for example, the weak Euler-Maruyama scheme Y = Ē and large enough parameters
N,M ∈ N then the error of the estimation (1.6) is bounded by∣∣∣∣∣Ef (XT )− 1

M

M∑
i=1

f (YN (ωi))

∣∣∣∣∣ ≤ |Ef (XT )− Ef (YN )|+

∣∣∣∣∣Ef (YN )− 1

M

M∑
i=1

f (YN (ωi))

∣∣∣∣∣
≤ K (T )

(
T

N
+

1√
M

)
, (1.7)

with K (T ) > 0 a constant independent of N and M . The term T/N follows from the first-order of
weak convergence of the Euler-Maruyama scheme, and the order of error 1/

√
M of the Monte-Carlo

estimation follows from the strong law of large numbers. The estimation (1.6) provides us a general
methodology to deal with the weak numerical approximation of SDEs.

The numerical stability of the concerned scheme Y is of great importance. For example, the
Euler-Maruyama scheme applied to the scalar linear equation

Xt = X0 +

∫ t

0
σXsdW

1
s ,

with diffusion parameter σ > 0, provides trajectories that blows up unless the time-step ∆ > 0 is
small enough. Moreover the variance of Xt exponentially grows as

E |Xt|2 − [E (Xt)]
2 = eσσ

>tE |X0|2 − [E (X0)]2 .

Then, a small enough discretization step and sufficient large quantity of trajectories need to be simu-
lated to capture the dynamical behavior of the unknown solutions and obtain accurate Monte-Carlo
estimations.

Various stability criteria have been proposed for solutions of SDEs (see e.g. [10, 118, 136]). In
particular, the solution X of (1.1) is said to be almost sure (a.s.) exponentially stable when

lim sup
t→+∞

1

t
log ‖Xt‖ < 0 P− a.s. (1.8)

Defining

` := sup
x∈Rd,‖x‖6=0

〈x, b (x)〉+ 1
2

∑m
k=1

∥∥σk (x)
∥∥2

‖x‖2
−
∑m

k=1〈x, σk (x)〉2

‖x‖4



5

and supposing b (0) = σ (0) = 0, by using the Itô’s formula we have

lim sup
t→+∞

1

t
log ‖Xt‖ < ` a.s

and so the inequality ` < 0 becomes a sufficient condition to the a.s. asymptotic stability of X, being
the zero solution an invariant state for the SDE (see [138]). In specific cases, such as bilinear systems of
SDEs, explicit a.s. stability criteria can be achieved by studying the limit involved in (1.8). Naturally
is expected to develop numerical schemes Y inheriting the exact asymptotic behavior. Thus, the
numerical stability region of Y can be defined by studying the limit

lim sup
n→+∞

1

n∆
log ‖Yn‖ , (1.9)

and then a desired property is to reproduce the a.s. asymptotic behavior of the exact solution under
similar hypotheses on the equation. The Euler-Maruyama scheme provides a.s. exponentially stable
results only for small enough discretization parameter ∆ > 0, an additional restriction on the time
step recurrent through the numerical methods. The implicit numerical methods, as the backward
Euler scheme

Bn+1 = Bn + b (Bn+1) ∆ + σ (Bn) (Wn+1 −Wn) , (1.10)

typically have better stability properties in comparison with the explicit ones, but at cost of additional
computations because Bn+1 is recovered by the solution of an algebraic equation (see e.g. [102]). As
above, we consider the weak version of the backward Euler

B̄n+1 = B̄n + b
(
B̄n+1

)
∆ + σ

(
B̄n
)
ξn. (1.11)

Implicitness to the stochastic numerical methods is not only restricted to the drift coefficients. Alterna-
tive approaches such as the balanced implicit method incorporates implicit diffusion terms improving
the stability properties but achieving low rate of weak convergence [148, 186].

The Itô SDEs are connected with PDEs by means of the Feynman-Kac formula (see e.g. [117]). A
classical example corresponds to the heat equation

∂u

∂t
= σσ>∆u ; 0 ≤ t < T,

u (T, ·) = g,
(1.12)

where u (t, x) ∈ R is the temperature at position x ∈ Rd and time t > 0, with terminal condition
g : Rd → R at time T > 0 and thermal diffusivity σ > 0. The Feynman-Kac interpretation gives the
probabilistic representation

u (t, x) = Eg
(
Xt,x
T

)
; ∀ (t, x) ∈ [0, T ]× Rd, (1.13)
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where the diffusion process
(
Xt,x

)
s∈[t,T ]

is governed by

Xt,x
s = x+

∫ s

t
σdWr. (1.14)

Here the indexes t, x recall the dependence of X on the starting position x ∈ Rd at time t ∈ [0, T ].
The probabilistic representation (1.13) motivates the weak numerical solution of the SDE (1.14).

We refer to the equations (1.1) as forward SDEs because the equations describe the diffusion
processes X going forward on time (FSDEs for short). However given a terminal condition YT ∈
L2
(
FT ,Rd

)
an important problem corresponds to find a non-anticipating stochastic process Yt for

times t < T . Motivated by this situation, we study the backward stochastic differential equations
(BSDEs), in integral form,

Yt = YT +

∫ T

t
h (s, Ys, Zs) ds−

∫ T

t
ZsdWs. (1.15)

Here (Y,Z) is a pair of adapted stochastic processes that solve the backward stochastic equation for
a given YT ∈ L2

(
FT ,Rd

)
. The function h : [0,+∞) × Rd × Rd×m → Rd is called the generator

of the BSDE. The process Z appearing in the equation is the key element that permits to find a
non-anticipating stochastic process Y . We refer to [171] for a survey and detailed explanations.
Additionally, see [131, 167, 168] for the classic theory of BSDEs.

Systems of FSDEs and BSDEs are called FBSDEs. More precisely, let T > 0 be a given final time
and take a time interval [t, T ], t ∈ [0, T ). In general, we study stochastic processes (X,Y, Z)s∈[t,T ]

governed by systems of FBSDEs of the form
Xs = x+

∫ s

t
b (r,Xr, Yr, Zr) dr +

∫ s

t
σ (r,Xr, Yr) dWr

Ys = g (XT ) +

∫ T

s
h (r,Xr, Yr, Zr) dr −

∫ T

s
ZrdWr

, (1.16)

where b : [0, T ] × Rd × Rn × Rn×m → Rd, σ : [0, T ] × Rd × Rn → Rd×m, g : Rd → Rn, h : [0, T ] ×
Rd × Rn × Rn×m → Rn and W =

(
W 1, . . . ,Wm

)>
: Ω→ Rm is a multidimensional Brownian motion

on
(

Ω,F , (Ft)t≥0 ,P
)

. Let us remark that an adapted solution of the FBSDEs (1.16) is defined by a

triple of processes

(X,Y, Z) ∈ L2
F

(
Ω;C

(
[t, T ] ;Rd

))
× L2

F (Ω;C ([t, T ] ;Rn))× L2
F
(
Ω;C

(
[t, T ] ;Rn×m

))
such that it satisfies the FBSDEs P-almost surely. In this PhD thesis work we deal with uniformly
elliptic diffusion matrices σσ>, i.e there exists K > 0 such that for each (t, x, y) ∈ [0, T ] × Rd × Rn
the property

ζ>
[
σσ>

]
(t, x, y) ζ ≥ K ‖ζ‖2

holds for all ζ ∈ Rd.
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The classical Feynman-Kac formula is extended by using systems of FBSDEs to obtain probabilistic
representations for the solutions of nonlinear PDEs through a nonlinear Feynman-Kac formula (see
e.g. [51, 131, 167]). The relation between FBSDEs and PDEs introduces probabilistic algorithms to
numerically estimate deterministic solutions of PDEs, and involve the approximation of expectations
taking into account stochastic processes governed by SDEs. The probabilistic algorithms can be
regarded as an alternative to deterministic methods (see e.g. [74, 199]).

As in the spirit of the celebrated Feynman-Kac formula, it is deduced a probabilistic representation
for the solution u : [0, T ]× Rd → Rn of the quasilinear PDE

∂u

∂t
(t, x) + L (t, x, u (t, x)) + h (t, x, u (t, x) , Du (t, x)σ (t, x, u (t, x))) = 0 ; ∀ (t, x) ∈ [0, T )× Rd,

u (T, x) = g (x) ; ∀x ∈ Rd.
(1.17)

Here, the differential operator L corresponds to the infinitesimal generator of the Itô diffusion X given
by the solution of the SDE. If the system of FBSDEs admits unique adapted solutions

(
Xt,x, Y t,x, Zt,x

)
on each subintervals [t, T ] ⊆ [0, T ], indexed by t, x to recall dependence, then we have

Y t,x
s = u

(
s,Xt,x

s

)
, Zt,xs = Du

(
s,Xt,x

s

)
σ
(
s,Xt,x

s , Y t,x
s

)
; ∀s ∈ [t, T ] .

The relation

u (t, x) = Y t,x
t ; ∀ (t, x) ∈ [0, T ]× Rd

is called the nonlinear Feynman-Kac formula.

The d-dimensional Burgers equation (see Burgers (1948) [45])
∂u

∂t
+
ν2

2
∆u+ (u · ∇)u+ f = 0 ; 0 ≤ t < T,

u (T ) = g,
(1.18)

with external force f : [0, T ] × Rd → Rd, terminal condition g : Rd → Rd and viscosity parameter
ν > 0, is related to the coupled system of FBSDEs

∀s ∈ [t, T ] ,


Xt,x
s = x+

∫ s

t
Y t,x
r dr +

∫ s

t
νdWr,

Y t,x
s = g

(
Xt,x
T

)
+

∫ T

s
f
(
r,Xt,x

r

)
dr −

∫ T

s
νZt,xr dWr.

(1.19)

Then, we have

Y t,x
s = u

(
s,Xt,x

s

)
, Zt,xs = Du

(
s,Xt,x

s

)
for all (s, x) ∈ [t, T ]× Rd (see e.g. [130]).

Suppose that u : [0, T ]×Rd → Rn represents the vector field of a fluid over a d-dimensional space
through a time interval. Since the Feynman-Kac formula, one can estimate u in specific time and
position (t, x) ∈ [0, T ]×Rd by knowing the field at a particular time u (T, ·) = g. Indeed, imagine that
we put a particle inside the fluid in position x ∈ Rd at time Tj ∈ [t, T ]. The movement of the particle
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is governed by the diffusion process X
x,Tj
s and its vector field is given by Y

x,Tj
s for each s ∈ [Tj , Tj+1].

To obtain u (t, x) the idea is to apply backward regressions to have successive estimations of

u (T, ·) , u (TN−1, ·) , . . . , u (T1, ·) , u (t, ·) .

In order to make this, observe that
XTj+1 = x+

∫ Tj+1

Tj

b (s,Xs, Ys) ds+

∫ Tj+1

Tj

σ (s,Xs, Ys) dWs,

YTj = u
(
Tj+1, XTj+1

)
+

∫ Tj+1

Tj

h (s,Xs, Ys) ds−
∫ Tj+1

Tj

ZsdWs.

Then if we have u (Tj+1, x) ≈ ū (Tj+1, x) for all x ∈ Rd we can consider, in particular, the following
recursive rule to locally integrate the FBSDEs:{

X̄Tj+1 = x+ b (Tj+1, x, ū (Tj+1, x)) (Tj+1 − Tj) + σ (Tj+1, x, ū (Tj+1, x))
(
WTj+1 −WTj

)
ū (Tj , x) = E

[
ū
(
Tj+1, X̄Tj+1

)]
+ h (Tj+1, x, ū (Tj+1, x)) (Tj+1 − Tj) .

Here, the SDE is numerically solved by means of the Euler-Maruyama method and the martingale
part of the BSDE is neglected by taking conditional expectations. Following the same recursive rule
we complete the sequence until the desire estimation

u (t, x) ≈ ū (t, x) ∀x ∈ Rd.

The above numerical algorithm is completely probabilistic. To apply it, we only need initialize
ū (T, ·) = g. We use the traditional Euler schemes to locally integrate both forward and backward
SDEs in order to be as simple as possible.

We study the backward Navier-Stokes equations for incompressible fluids in Rd, for d ∈ {2, 3},{
∂u
∂t + ν2

2 4u+ (u · ∇)u+∇p+ f = 0 ; 0 ≤ t < T,

∇ · u = 0, u (T ) = g,
(1.20)

which is equivalent to the classical forward formulation by a time-reversing transformation. It was
introduced by C.-L. Navier in 1822 [160] and G. G. Stokes in 1849 [193] by incorporating a pressure
term and the fluid viscosity to the Euler equations due to L. Euler [79]. Here T > 0 is a fixed time,
ν > 0 is the kinematic viscosity, f is the external force field and g is a given initial divergence-free
vector field. The Navier-Stokes equations describes the motion of an incompressible fluid by means of
unknown fields of velocity u (t, x) ∈ Rd and pressure p (t, x) ∈ R defined for each time t ∈ [0, T ] and
position x ∈ Rd. The Burgers equation (1.18) can be seen as a simplified version of the incompressible
Navier-Stokes equations. Under regularity assumptions and supposing a divergence-free external force
field f , an approach to incorporate both the pressure term ∇p and the incompressibility condition
∇ · u = 0 into the Burgers equation is to recover the pressure by means of the Poisson problem

−4p = div div (u⊗ u) ,
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where div := ∇· represents the divergence operator and ⊗ the tensor product (see e.g. [53, 133]).
Then the incompressible Navier-Stokes system is equivalent to

{
∂u
∂t + ν

24u+ (u · ∇)u+∇ (−4)−1 div div (u⊗ u) + f = 0 ; 0 ≤ t < T,

u (T ) = g.
(1.21)

Recently Delbaen, Qiu and Tang (2015) [76] introduced a coupled FBSDEs system (FBSDS) asso-
ciated to the backward Navier-Stokes equations through the nonlinear Feynman-Kac formula u (t, x) =
Y t,x
t and the probabilistic representation ∇p = Ỹ0, where Ỹ is itself solution to a BSDE involving a

Brownian motion independent from the diffusion one. The nonlocal operator ∇ (−4)−1 div div is
represented by means of a BSDE defined on the infinite time interval (0,∞). Then, incorporating
this extra BSDE to the FBSDEs representation of the Burgers equation it is obtained a stochastic
representation to the unsteady Navier-Stokes equations. More precisely, we have the following new
FBSDEs representation



dXt,x
s = Y t,x

s ds+
√
νdWs ; s ∈ [t, T ] ,

Xt,x
t = x,

−dY t,x
s =

[
f
(
s,Xt,x

s

)
+ Ỹ0

(
s,Xt,x

s

)]
ds−

√
νZt,xs dWs ; s ∈ [t, T ] ,

Y t,x
T = g

(
Xt,x
T

)
,

−dỸ s,x
r = 27

2r3
Y i
s · Y

j
s (s, x+Br)

(
Br −B 2r

3

)i (
B 2r

3
−B r

3

)j
B r

3
dr − Z̃s,xr dBr ; r ∈ (0,∞) ,

Ỹ s,x
∞ = 0,

(1.22)

where W and B are two independent d-dimensional standard Brownian motions. Here Ỹ0

(
s,Xt,x

s

)
and Ys (s, x+Br) means Ỹ s,Xt,x

s
0 and Y s,x+Br

s , respectively.

Following Delbaen et al. [76], the infinite interval (0,∞) of the probabilistic representation for the
operator ∇ (−4)−1 div div is restricted to

[
1
N , N

]
, for N ∈ (1,∞). Hence the incompressible velocity

field u on (T0, T ], with T0 ∈ [0, T ), is approximated by uN which solves the PDE

{
∂uN

∂t + ν
24u

N +
(
uN · ∇

)
uN + PN

(
uN ⊗ uN

)
+ f = 0 ; T0 ≤ t < T,

uN (T ) = g
(1.23)

where for N ∈ (1,∞) and smooth enough uN the nonlocal operator is estimated by means of PN

Then, the truncated PDE is associated through the nonlinear Feynman-Kac formula

uN (t, x) = Y t,x
t ; ∀ (t, x) ∈ [0, T ]× Rd
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to the following FBSDS

dXt,x
s = Ys

(
s,Xt,x

s

)
ds+

√
νdWs ; s ∈ [t, T ] ,

Xt,x
t = x,

−dYs
(
s,Xt,x

s

)
=
[
f
(
s,Xt,x

s

)
+ PN (Ys ⊗ Ys)

(
s,Xt,x

s

)]
ds−

√
νZt,xs dWs ; s ∈ [t, T ] ,

YT (T, x) = g (x) ,

PN (Ys ⊗ Ys) (s, x) = E
∫ N

1
N

27
2r3
Y i
s · Y

j
s (s, x+Br)

(
Br −B 2r

3

)i (
B 2r

3
−B r

3

)j
B r

3
dr,

(1.24)

where W and B are independent d-dimensional Wiener processes and, by abuse of notation, we write
Ys (t, y) := Y t,y

s .

Motivated by the above forward-backward probabilistic representations, we can simulate systems
of stochastic particles governed by the FBSDS from a Lagrangian point of view. That is, imagine a
fixed grid of spatial points. Over the covered spatial domain is moving a fluid at specific times. The
velocity field over the discrete domain represents the velocity of fluid particles passing through the grid
at each time. To be clear, the time-space domain [0, T ]×Rd is discretized by {0, h, . . . , N · h}× δ ·Zd,
with spatial discretization parameter δ > 0 and time-step h = T

N such that the spatial step is less than
the time step, that is δ < h. Therefore, for all (Tj , x) belonging to the discrete time-spatial domain,
we compute estimations ū (Tj , x) to the velocity field u (Tj , x) ∈ Rn. At this point, the nonlinear
Feynman-Kac formula

Y = u (·, X)

involves the simulation of diffusion processes and then our interest on the weak numerical solution of
systems of FBSDEs. Various difficulties appeared in such work.

1.2 Objectives and outline

The main goal of this PhD thesis work is to provide of efficient numerical methodologies to obtain weak
approximations for the solutions of Itô SDEs driven by Brownian motion and systems of FBSDEs.
The design of numerical schemes for SDEs with multiplicative noise achieving the same rate of weak
convergence of the traditional Euler-based methods, and guarantying the almost sure asymptotic
exponential behavior and the sign-preserving ability of such exact solutions for any discretization
step. The numerical treatment of systems of FBSDEs associated to nonlinear PDEs and the numerical
simulation of the incompressible Navier-Stokes equations by means of probabilistic algorithms, and
to study alternative Monte-Carlo methods to compute mean values in order to reduce the time for
computer simulations.

We propose the development of first-order weak numerical methods for SDEs with multiplicative
noise without involving stochastic implicit terms nor the computation of multiple integrals. The nu-
merical analysis of the introduced numerical schemes and the computational implementation through
a machine. The validation of dynamical behaviors and theoretical aspects on relevant test equations.
We study the numerical approximation for solutions of nonlinear PDEs by means of probabilistic
algorithms motivated by the numerical treatment of FBSDEs. Moreover, the computer simulation
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of velocity fields governed by the demanding incompressible Navier-Stokes equations, as well as the
Burgers equation, by numerically solving the associated systems of FBSDEs.

The outline of the PhD thesis work is as follows.
In Chapter 2 we begin by designing first-order weak balanced schemes for systems of linear SDEs

with multiplicative noise, identifying stabilizing functions into the drift coefficients. As a motivational
problem, we first study linear scalar SDEs and introduce sign-preserving and stable first-order weak
balanced and trapezoidal schemes with explicit weights. Then we deal with bilinear systems of SDEs
following two approaches to find the appropriate weight functions: through a closed heuristic formula or
well by means of an optimization procedure. We test both approaches, exhibiting better performances
with respect to previously reported balanced schemes.

Chapter 3 introduces the direction and norm decomposition (DND) approach for the numerical
approximation of SDEs with multiplicative noise. For this purpose, we begin by presenting a new
numerical scheme for nonlinear scalar SDEs. Then, we consider the context of systems of linear
SDEs following the novel methodology. The DND method involves the efficient estimation of the
norm process ‖Xt‖ by using the new nonlinear scalar scheme together with the appropriate numerical
solution of the direction process X̂t := Xt/ ‖Xt‖. We put special attention on the cases of well and ill-
conditioned drift term matrices. Additionally, we illustrate the potential of the new numerical schemes
to the approximation of locally Lipschitz SDEs and the estimation of Lyapunov exponents. The good
performance of the presented numerical schemes is supported by theoretical results of convergence
and stability, and illustrated by several numerical examples (see Mora and Mardones (2014)[156] for
manuscript versions of the work).

Chapter 4 deals with the numerical simulation for the strong solutions of the incompressible Navier-
Stokes equations by means of a novel system of FBSDEs, where a SDE component with additive noise
appears (see Delbaen, Qiu and Tang (2015) [76]). Such system of SDEs involve backward SDEs
which generalizes the relation between stochastic equations and PDEs by means of the nonlinear
Feynman-Kac formula, which provides probabilistic representations to the strong solution of nonlinear
PDEs. Following a rather practical approach, we highlight the potential of systems of FBSDEs for the
numerical treatment of PDEs. We incorporate recent tools of computational implementation for the
estimation of expected values by using the quantization of Gaussian random processes and reduction
variance techniques.

Finally, the last Chapter is devoted to conclusions, remarks, discussions and future directions.
YOU are welcome to study, research and continue, forward or backward, on whichever of the presented
problems.
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Chapter 2

First-order weak balanced schemes for
systems of linear SDEs

The immediate ways are not always the best

We introduce some weak balanced schemes for linear systems of stochastic differential equations
(SDEs) with multiplicative noise. First, we consider the test problem of linear scalar SDEs to con-
struct sign-preserving and almost sure asymptotically stable first-order weak balanced schemes based
on the addition of stabilizing functions to the drift terms. Then, we design balanced schemes for mul-
tidimensional linear SDEs achieving the first order of weak convergence, which do not involve multiple
stochastic integrals. To this end, we follow two methodologies to find appropriate stabilizing weights:
firstly based on a closed heuristic formula and then through an optimization procedure. Numerical
experiments show a promising performance of the introduced weak balanced schemes.

2.1 Introduction

Consider the Itô SDE

Xt = X0 +

∫ t

0
b (Xs) ds+

m∑
k=1

∫ t

0
σk (Xs) dW

k
s , (2.1)

where Xt is an adapted Rd-valued stochastic process, the coefficients b, σk : Rd → Rd are smooth
functions and W 1, . . . ,Wm are independent standard Wiener processes (see e.g. [108, 117, 125, 138,
161, 178] for existence and uniqueness results and the general theory). For solving (2.1) in cases the
diffusion terms σk play an essential role in the dynamics of Xt, Milstein, Platen and Schurz (1998)
[148] introduced the balanced implicit method

Zn+1 = Zn + b (Zn) ∆ +

m∑
k=1

σk (Zn)
(
W k

(n+1)∆ −W
k
n∆

)
(2.2)

+

(
c0 (Zn) ∆ +

m∑
k=1

ck (Zn)
∣∣∣W k

(n+1)∆ −W
k
n∆

∣∣∣) (Zn − Zn+1) ,

13
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where ∆ > 0 and c0, c1, . . . , cm are weight functions that should be appropriately chosen for each SDE.
Here Zn corresponds to a numerical approximation of XTn , for time nodes Tn = n∆.

To the best of our knowledge, the schemes of type (2.2) use the damping functions c1, . . . , cm

to control the numerical instabilities caused by σk and the pathwise behavior. Hence their rate of
weak convergence is equal to 1/2, which is lower than the traditional Euler-Maruyama method (see
e.g. [4, 148, 184, 186, 202]). Concrete balanced versions of the Milstein scheme have been developed
only in particular cases, like m = 1, where the Milstein scheme does not involve multiple stochastic
integrals with respect to different Brownian motions [5, 116].

We deal with the problem of constructing balanced Euler schemes having the same rate of weak
converge as the Euler method. More precisely, we are interested in the development of efficient first-
order balanced schemes for computing Ef (Xt), with f : Rd → R smooth. This motivates us to design
balanced schemes based only on c0, without using increments of Brownian motions, and the general
question of whether we can find appropriate weights c0 such that

Zn+1 = Zn + b (Zn) ∆ + c0 (∆, Zn) (Zn+1 − Zn) ∆ +
m∑
k=1

σk (Zn)
√

∆ξkn (2.3)

reproduces the long-time behavior of Xt. Here, ξ1
0 , ξ

2
0 , . . . , ξ

m
0 , ξ

1
1 , . . . are independent discrete random

variables satisfying P
(
ξkn = ±1

)
= 1/2. The Section 2.2 gives a positive answer to this problem when

equation (2.1) reduces to a linear scalar SDE. In this test case, we obtain an explicit expression
for c0 (∆, ·) that makes Zn an almost sure asymptotically stable numerical scheme with the sign-
preserving ability for all time-step ∆ > 0. Moreover, Section 2.2 introduces a stabilized trapezoidal
scheme achieving the same dynamical properties. The Section 2.3 focuses on systems of linear SDEs.
In case b, σk : Rd → Rd are linear, we propose an optimization procedure for identifying a suitable
weight function c0. Section 2.3 also provides a choice of c0 based on a heuristic closed formula. Both
techniques show good results in our numerical experiments, which encourages further studies of the
numerical method (2.3). All proofs are deferred to Section 2.4.

2.2 Linear scalar SDE

In this section, we assume that Xt satisfies the linear scalar SDE

Xt = X0 +

∫ t

0
µXsds+

∫ t

0
λXsdW

1
s , (2.4)

where µ, λ ∈ R. The SDE (2.4) is a classical test equation for studying the stability properties of the
numerical schemes for equation (2.1) (see e.g. [4, 99, 102]). It is well known its explicit solution

Xt = exp

((
µ− λ2

2

)
t+ λW 1

t

)
X0

and the asymptotic stability property

lim
t→+∞

|Xt| = 0 P− a.s.⇔ 2µ− λ2 < 0.
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2.2.1 Stabilized Euler scheme

Set Tn = n∆, with ∆ > 0 and n = 0, 1, . . . For all t ∈ [Tn, Tn+1] we have

Xt = XTn +

∫ t

Tn

(µXs + a (∆)Xs − a (∆)Xs) ds+

∫ t

Tn

λXsdW
1
s ,

where a (∆) is an arbitrary real number. Then

XTn+1 ≈ XTn + µXTn∆ + a (∆)
(
XTn+1 −XTn

)
∆ + λXTn

(
W 1
Tn+1

−W 1
Tn

)
,

and so Xt is weakly approximated by the recursive scheme

Y s
n+1 = Y s

n + µY s
n∆ + a (∆)

(
Y s
n+1 − Y s

n

)
∆ + λY s

n

√
∆ξ1

n, (2.5)

where, from now on, ξ1
0 , ξ

1
1 , . . . is a sequence of independent random variables taking values ±1 with

probability 1/2. In case a (∆) ∆ 6= 1, we have

Y s
n+1 = Y s

n

(
1 +

(
µ∆ + λ

√
∆ξ1

n

)
/ (1− a (∆) ∆)

)
.

Therefore, we wish to find a locally bounded function ∆ 7→ a (∆) such that:

P1) Y s
n preserves a.s. the sign of Y s

0 for all n ∈ N.

P2) Y s
n converges almost surely to 0 as n→∞ whenever 2µ− λ2 < 0.

We check easily that

Property P1⇔ a (∆) ∈ ]−∞, p1[ ∪ ]p2,+∞[ ,

with p1 := min
{

1, 1− |λ|
√

∆ + µ∆
}
/∆ and p2 := max

{
1, 1 + |λ|

√
∆ + µ∆

}
/∆. A close look at

the mean value E log
(

1 +
(
µ∆ + λ

√
∆ξ1

n

)
/ (1− a (∆) ∆)

)
reveals that:

Lemma 2.2.1 Suppose that a (∆) ∆ 6= 1. Then, a necessary and sufficient condition for Property P1,
together with limn→∞ Y

s
n = 0 a.s., is that

a (∆) ∈


]−∞, p1[ ∪ ]p2, p3[ ; in case µ < 0
]−∞, p1[ ∪ ]p2,+∞[ ; when µ = 0 and λ 6= 0
]p3, p1[ ∪ ]p2,+∞[ ; if µ > 0

,

where p3 :=
(
µ2∆ + 2µ− λ2

)
/ (2µ∆).
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Remark 2.2.1 The numerical scheme Y s
n with a (∆) ≡ 0 (i.e. the Euler-Maruyama scheme) satisfies

Properties P1 and P2 iff

∆ ∈



]
0,

(
|λ|−
√
λ2−4µ

2µ

)2
[

; in case µ < 0,]
0, 1

λ2

[
; in case µ = 0 and λ 6= 0,]

0, λ
2−2µ
µ2

[
; in case µ > 0 and λ2 − 4µ < 0,]

0, λ
2−2µ
µ2

[
\
{
λ2

4µ2

}
; in case µ > 0 and λ2 − 4µ = 0,]

0,

(
|λ|−
√
λ2−4µ

2µ

)2
[
∪

](
|λ|+
√
λ2−4µ

2µ

)2

, λ
2−2µ
µ2

[
; in case µ > 0 and λ2 − 4µ > 0.

Using Lemma 2.2.1 we deduce that we can choose

a (∆) =


µ− α1 (∆)λ2 ; if µ ≤ 0
µ− α2 (∆)λ2 ; if µ > 0 and ∆ < 2/µ(

1 + |λ|
√

∆ + µ∆
)
/∆ + β ; if µ > 0 and ∆ ≥ 2/µ

, (2.6)

where β > 0, 1/4 < α2 (∆) ≤ 1/4+
(
λ2 − 2µ

)
(2− µ∆) /

(
8λ2
)

and α1 : R+ → R is a bounded function
satisfying α1 (∆) > 1/4.

Theorem 2.2.1 Let 2µ−λ2 < 0. Then, Y s
n with a (∆) given by (2.6) satisfies Properties P1 and P2.

Remark 2.2.2 In order to reproduce the a.s. exponentially unstable behavior, consider the following
property:

P3) Y s
n doesn’t converge almost surely to 0 as n→∞ whenever 2µ− λ2 ≥ 0.

The next result characterizes ∆ 7→ a (∆) to guarantee the sign-preserving property and the unstable
region of the balanced scheme (2.5), which follows from the proof of Lemma 2.2.1.

Lemma 2.2.2 Suppose that µ 6= 0 and a (∆) ∆ 6= 1. Then

Property P1 and lim
n→∞

Y s
n 6= 0 a.s.⇔ a (∆) ∈

{
]p2,+∞[ ∩ [p3,+∞[ ; in case µ < 0
]−∞, p1[ ∩ ]−∞, p3] ; in case µ > 0

.

Up to now, we have constructed weak balanced schemes according to the underlying dynamical
properties of the exact solutions of the linear scalar SDE (2.4). In order to guaranty the first order of
rate of convergence, we introduce the next notation.

Notation 2.2.1 We denote by C`p
(
Rd,R

)
the set of all `-times continuously differentiable functions

from Rd to R, whose partial derivatives up to order ` have at most polynomial growth.
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Remark 2.2.3 Assume that X0 has finite moments of any order, together with 2µ−λ2 < 0. Suppose
that for every g ∈ C4

p(R,R) there exists K > 0 such that |Eg (X0)− Eg (Y s
0 )| ≤ K (1 + E |X0|q)T/N

for all N ∈ N. Let a (∆) be given by (2.6). Since ∆ 7→ a (∆) is a bounded function, using classical
arguments (see e.g. [120, 147, 154, 184, 199]) we can deduce that there exists N0 ∈ N such that for
any f ∈ C4

p (R,R),

|Ef (XT )− Ef (Y s
N )| ≤ K (T ) (1 + E |X0|q)T/N ∀N ≥ N0, (2.7)

where q ≥ 2 and T 7→ K (T ) is a positive increasing function. Furthermore, it follows that there exists
ε ∈ (0, 1) such that

|1− a (∆) ∆| > ε ∀∆ > 0 (2.8)

(see Section 2.4), and so (2.7) holds for all N ∈ N. This is proved by applying, for instance, Theorem
2.3.2.

Following Milstein et al. [148], we now illustrate the behavior of Y s
n using (2.4) with µ = 0 and

λ = 4. We take X0 = 1. Since µ ≤ 0, we choose α1 (∆) = 1/4 + 1/100; its convenient to keep
the weights as small as possible. Figure 2.1 displays the computation of E sin (Xt/5) obtained from
the sample means of 25 · 109 observations of: Y s

n with a (∆) = −0.26 λ2, the fully implicit method

Ỹn+1 = Ỹn/
(

1 + λ2∆− λ
√

∆ξ1
n

)
(see p. 497 of [120]), and the balanced scheme

Z̃n+1 = Z̃n

(
1 + λ

√
∆ξ1

n + λ
√

∆
)
/
(

1 + λ
√

∆
)
,

which is a weak version of the method developed in Section 2 of [148]. Solid lines identifies the “true”
values gotten by sampling 25 ·109 times exp

(
−8t+ 4W 1

t

)
. In contrast with the incorrect performance

of the Euler-Maruyama scheme when the step sizes are greater than or equal to 1/16 (that is in
concordance with Remark 2.2.1), Figure 2.1 suggests us that Y s

n is an efficient scheme having good
qualitative and convergence properties. In this numerical experiment, the accuracy of Z̃n is not good,
and Ỹn decays too fast to 0 as n→∞.

2.2.2 Stabilized trapezoidal method

The trapezoidal scheme (see p. 497 of [120])

ZTn+1 = ZTn + µ
ZTn+1 + ZTn

2
∆− λ2Z

T
n+1 + ZTn

4
∆ + λ

ZTn+1 + ZTn
2

√
∆ξ1

n

has a good speed of weak convergence to the solution of (2.4), but ZTn fails to preserve the sign of
X0. Analysis similar to that in the above Subsection 2.2.1 shows the next theorem, which ensures the
existence of a ∈ R such that

Y T
n+1 = Y T

n + µ
(
Y T
n+1 + Y T

n

)
∆/2− λ2

(
Y T
n+1 + Y T

n

)
∆/4 (2.9)

+λ
(
Y T
n+1 + Y T

n

)√
∆ξ1

n/2 +
(
Y T
n+1 − Y T

n

)
a∆

verifies the properties:
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Figure 2.1: Computation of E sin (Xt/5), where t ∈ [0, 2] and Xt solves (2.4) with µ = 0, λ = 4 and
X0 = 1. Dashed line: Ỹ , dashdot line: Z̃, dotted line: Y s, and solid line: reference values. Here, ∆
takes the values 1/8, 1/16, 1/32 and 1/64. As we expected, smaller ∆ produce better approximations.
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P1’) Y T
n has the same sign as Y T

0 a.s. for all n ∈ N.

P2’) Y T
n converges a.s. to 0 as n→∞ whenever 2µ− λ2 < 0.

Moreover, as in Remark 2.2.3 using standard arguments we can prove that Y T
n has linear rate of weak

convergence.

Theorem 2.2.2 Let 2µ− λ2 < 0. Consider Scheme (2.9) with a < µ/2− 5λ2/16. Then Y T
n satisfies

Properties P1’ and P2’. Moreover,

Y T
n+1 =

4 +
(
2µ− λ2 − 4a

)
∆ + 2λ

√
∆ξ1

n

4− (2µ− λ2 + 4a) ∆− 2λ
√

∆ξ1
n

Y T
n .

In order to evaluate the sign-preserving property and the accuracy of Y T
n , we compute Eg (Xt) and

Eh (Xt), where g (x) = 100 (π/2− arctan (1000x+ 100)) and h (x) = log
(
1 + x2

)
. We choose X0 = 1,

λ = 4, and µ takes the values −1 and 2. In Table 2.1 we compare the following schemes: Y T
n given by

(2.9) with a = µ/2− 3λ2/8, the trapezoidal scheme ZTn , the weak balanced scheme

Z̃n+1 = Z̃n

(
1 +

(
µ∆ + λ

√
∆ξn1

)
/
(

1− µ∆/2 + |λ|
√

∆
))

and scheme Y s
n given by (2.5) with α1 (∆) = 0.26, α2 (∆) = 1/4+10−4

(
λ2 − 2µ

)
µ/
(
8λ2
)

and β = 0.01.
Indeed, Table 2.1 presents the errors

ε
(
Ŷ
)

:=
∣∣∣Eg (XT )− Eg

(
ŶN

)∣∣∣+
∣∣∣Eh (XT )− Eh

(
ŶN

)∣∣∣ ,
with T = 1 and N = T/∆. For each numerical method Ŷ , we estimate ε

(
Ŷ
)

by sampling 25 · 109

times both Ŷ and the explicit solution exp
(
(µ− 8) t+ 4W 1

t

)
. Table 2.1 shows that Y T

n has good
qualitative properties, and in addition Y T

n inherits the good speed of weak convergence of ZTn . We
can also observe the very good behavior of the stabilized Euler scheme Y s.

2.3 Bilinear systems of SDEs

This section is devoted to the SDE

Xt = X0 +

∫ t

0
BXs ds+

m∑
k=1

∫ t

0
σkXs dW

k
s , (2.10)

where Xt ∈ Rd and B, σ1, . . . , σm are given real matrices of size d × d. The bilinear SDEs describe
dynamical features of non-linear SDEs via the linearization around their equilibrium points (see e.g.
[10, 19]). The system of SDEs (2.10) also appears, for example, in the spatial discretization of stochas-
tic partial differential equations (see e.g. [93, 114]).
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∆

1/4 1/8 1/16 1/32 1/64

ε
(
Y T
) µ = −1 0.1510 0.0668 0.0321 0.0172 0.0110

µ = 2 0.2436 0.1638 0.1074 0.0713 0.0437

ε
(
ZT
) µ = −1 77.935 9.8110 0.0706 0.0402 0.0218

µ = 2 78.527 10.047 0.1983 0.1012 0.0514

ε (Y s)
µ = −1 0.3703 0.1250 0.0545 0.0269 0.0133

µ = 2 0.3633 0.0697 0.0361 0.0178 0.0088

ε
(
Z̃
) µ = −1 0.9259 0.7567 0.5870 0.4353 0.3115

µ = 2 1.4534 1.3128 1.1220 0.9116 0.7092

Table 2.1: Estimation of errors involved in the computation of Eg (XT ) and Eh (XT ) for T = 1. Here,
Xt verifies (2.4) with X0 = 1 and λ = 4.

2.3.1 Heuristic balanced scheme

We now return to (2.3). Since (2.10) is bilinear, for each ∆ > 0 we restrict c0 to be constant, and so
(2.3) becomes

Zn+1 = Zn +BZn∆ +H (∆) (Zn+1 − Zn) ∆ +

m∑
k=1

σkZn
√

∆ξkn, (2.11)

with H : ]0,∞[ → Rd×d and ∆ > 0. The rate of weak convergence of Zn is equal to 1 provided,
for instance, that H (∆) and (I −∆H (∆))−1 are bounded on any interval ∆ ∈ ]0, a] (see [184]).
Generalizing roughly Subsection 2.2.1 we choose

H (∆) = B −
m∑
k=1

αk (∆)
(
σk
)>

σk,

where, for example, αk (∆) = 0.26. This gives the recursive scheme(
I −∆B + 0.26 ∆

m∑
k=1

(
σk
)>

σk

)
Y s
n+1 = Y s

n + 0.26 ∆

m∑
k=1

(
σk
)>

σkY s
n +

m∑
k=1

σkY s
n

√
∆ξkn, (2.12)

which is a first-order weak balanced version of the semi-implicit Euler method.

Remark 2.3.1 Combining (2.12) with ideas of the local linearization method (see e.g. [30, 71]) we
deduce the following numerical method for (2.1):

Un+1 = Un + b (Un) ∆ +

m∑
k=1

σk (Un)
√

∆ξkn +H (∆, Un) (Un+1 − Un) ∆,

where H (∆, x) = ∇b (x)−
m∑
k=1

αk (∆)
(
∇σk (x)

)>∇σk (x); ∀x ∈ Rd, with αk (∆) = 0.26.
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2.3.2 Optimal criterion to select weights

In case I −∆H (∆) is invertible, according to (2.11) we have

Zn+1 = Zn + (I −∆H (∆))−1

(
∆B +

m∑
k=1

√
∆ξknσ

k

)
Zn, (2.13)

where I is the d× d identity matrix. Therefore, a more general formulation of Zn is given by

Vn+1 = Vn + (I + ∆M (∆))

(
∆B +

m∑
k=1

√
∆ξknσ

k

)
Vn, (2.14)

with M : ]0,∞[ → Rd×d. In fact, taking M (∆) =
(

(I −∆H (∆))−1 − I
)
/∆ we obtain (2.13)

from (2.14). The following theorem provides a useful estimate of the growth rate of Vn in terms of
E log (‖A0 (∆,M (∆))x‖), a quantity that we can explicitly compute in each specific situation.

Theorem 2.3.1 Let Vn be defined recursively by (2.14). Then

lim
n→∞

1

n∆
log ‖Vn‖ ≤

1

∆
sup

x∈Rd,‖x‖=1

E log ‖An (∆,M (∆))x‖ , (2.15)

where An (∆,M) = I + (I + ∆M)
(

∆B +
∑m

k=1

√
∆ξknσ

k
)

.

Set ` := supx∈Rd,‖x‖=1

(
〈x,Bx〉+ 1

2

∑m
k=1

∥∥σkx∥∥2 −
∑m

k=1〈x, σkx〉2
)

. Then

lim sup
t→∞

1

t
log ‖Xt‖ ≤ ` a.s. (2.16)

(see e.g. [102]). Fix ∆ > 0. We would like that for all x ∈ Rd such that ‖x‖ = 1,

1

∆
E log ‖A0 (∆,M (∆))x‖ ≈ 〈x,Bx〉+

1

2

m∑
k=1

∥∥∥σkx∥∥∥2
−

m∑
k=1

〈x, σkx〉2.

A simpler problem is to find M (∆) for which the upper bounds of inequalities (2.15) and (2.16) are
as close as possible, and so we can expect that Vn inherits the long-time behavior of Xt. Then, we
propose to take

M (∆) ∈ arg min


(

1

∆
sup

x∈Rd,‖x‖=1

E log ‖A0 (∆,M)x‖ − `

)2

: M ∈M

 , (2.17)

whereM is a predefined subset Rd×d. Two examples ofM successfully used in our numerical experi-
ments are Rd×d and {

(Mi,j)1≤i,j≤d : |Mi,j | ≤ K for all i, j = 1, . . . , d
}
,

with K large enough.
Applying the classical methodology introduced by Talay and Milstein for studying the weak con-

vergence order (see e.g. [91, 150]) we can deduce that Vn converges weakly with order 1 whenever
∆→M (∆) is locally bounded. The next theorem summarizes this result.
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Theorem 2.3.2 Consider T > 0 and f ∈ C4
p(Rd,R). Let Vn be given by (2.14) with ∆ = T/N , where

N ∈ N. Assume that X0 has finite moments of any order, and that for every g ∈ C4
p(Rd,R),

|Eg (X0)− Eg (V0)| ≤ K (1 + E ‖X0‖q)T/N ∀N ∈ N,

with K > 0. Let ∆→M (∆) be bounded on [0, T ]. Then

|Ef (XT )− Ef (VN )| ≤ K (T ) (1 + E ‖X0‖q)T/N ∀N ∈ N, (2.18)

where q ≥ 2 and K (·) is a positive increasing function.

Remark 2.3.2 In some situations, the asymptotic behavior of the stochastic process Xt that solves
(2.1) depends on the properties of the SDE obtained by linearizing (2.1) around 0 (see e.g. [10, 18, 19]).
More precisely, the SDE given by

Yt = Y0 +

∫ t

0
(∇b (0)Ys + b (0)) ds+

m∑
k=1

∫ t

0

(
∇σk (0)Ys + σk (0)

)
dW k

s . (2.19)

In these cases, we can extend the scheme given by (2.14) and (2.17) to the nonlinear SDE (2.1) as

Vn+1 = Vn + (I + ∆M (∆))

(
b (Vn) ∆ +

m∑
k=1

σk (Vn)
√

∆ξkn

)

where now M (∆) is described by (2.17) with M a predefined subset of Rd×d,

` := sup
x∈Rd,‖x‖=1

(
〈x,∇b (0)x〉+

1

2

m∑
k=1

∥∥∥∇σk (0)x
∥∥∥2
−

m∑
k=1

〈x,∇σk (0)x〉2
)

and A0 (∆,M) = I + (I + ∆M)
(
∇b (0) ∆ +

∑m
k=1∇σk (0)

√
∆ξk0

)
.

2.3.3 Numerical experiments

Exponentially stable SDE

We consider the non-commutative test equation

dXt =

(
σ1 0

0 σ2

)
Xt dW

1
t +

(
0 −ε
ε 0

)
Xt dW

2
t , (2.20)

where σ1 = 7, σ2 = 4, ε = 1 and X0 = (1, 2)>. Since 0 < σ2 < σ1 < 3σ2, applying elementary calculus
we get ` =

(
ε2 − σ2

2

)
/2 < 0, and so Xt converges exponentially fast to 0. To illustrate the performance

of schemes of type (2.3), we take Vn defined by (2.14) and (2.17) with

M =
{

(Mi,j)1≤i,j≤2 : |Mi,j | ≤ 20 for all i, j = 1, 2
}
.
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∆ 1/2 1/4 1/8 1/16 1/32 1/64

M1,1 (∆) −1.6099 −5.1036 −4.8804 −7.1499 −1.6758 0.9887

M2,1 (∆) 0.0975 0.2758 0.7667 1.0136 1.1500 0.9918

M1,2 (∆) −0.0975 −0.2752 −0.8505 −0.1814 −1.0448 −1.9947

M2,2 (∆) −1.3173 −5.9305 −2.6136 −2.3003 −1.7421 −1.9005

Order −10 −19 −21 −21 −20 −19

Table 2.2: Approximate values of the weight matrix (Mi,j (∆))1≤i,j≤2 for (2.20) with σ1 = 7, σ2 = 4
and ε = 1, together with the corresponding order of magnitude of the objective function minimum.

∆

1/2 1/4 1/8 1/16 1/32 1/64

ε
(
Ỹ
) T = 1 6.5497 9.4879 12.733 11.0676 0.15183 0.02365

T = 3 18.814 28.8744 38.9743 34.1327 0.0086188 0.00075718

ε
(
Z̃
) T = 1 1.3395 1.1777 0.98272 0.7757 0.58279 0.42137

T = 3 1.0611 0.78255 0.51624 0.30475 0.1643 0.08361

ε (Y s)
T = 1 1.1914 0.85936 0.49789 0.15466 0.042484 0.018271

T = 3 0.81853 0.38585 0.10185 0.0096884 0.0013717 0.00055511

ε (V )
T = 1 1.2544 0.8482 0.36579 0.11998 0.029324 0.0069274

T = 3 0.64867 0.16695 0.035366 0.0065051 0.00068084 0.00031002

Table 2.3: Estimation of errors involved in the computation of E log
(

1 + ‖XT ‖2
)

for T = 1 and T = 3.

Here, Xt solves the equation (2.20) with σ1 = 7, σ2 = 4, ε = 1 and X0 = (1, 2)>.

Table 2.2 provides four-decimal approximations of the components of M (∆), which have been obtained
by running (54-times) the MATLAB function fmincon for the initial parameters{

(Mi,j)1≤i,j≤2 : Mi,j ∈ {−2,−1, 0, 1, 2} for all i, j = 1, 2
}
.

Figure 2.2 shows the computation of E log
(

1 + ‖Xt‖2
)

by means of Vn (dashed line), Y s
n (dotted

line), and

Z̃n+1 = Z̃n +

(
σ1 0

0 σ2

)
Z̃n
√

∆ξ1
n +

(
0 −ε
ε 0

)
Z̃n
√

∆ξ2
n

+
√

∆

(
|σ1|+ |ε| 0

0 |σ2|+ |ε|

)(
Z̃n − Z̃n+1

)
(dashdot line). The scheme Z̃n is a weak version of the balanced scheme proposed in Subsection 5.2 of

[184]. The reference values for E log
(

1 + ‖Xt‖2
)

(solid line) have been calculated by using the weak
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Figure 2.2: Computation of E log
(

1 + ‖Xt‖2
)

, where t ∈ [0, 10] and Xt solves (2.20). Dashed line: V ,

dashdot line: Z̃, dotted line: Y s, and solid line: reference values. Here, ∆ is equal to 1/8, 1/16, 1/32
and 1/64; smaller discretization steps produce better approximations.

Euler method

Ỹn+1 = Ỹn +

(
σ1 0

0 σ2

)
Ỹn
√

∆ξ1
n +

(
0 −ε
ε 0

)
Ỹn
√

∆ξ2
n

with step-size ∆ = 2−13 ≈ 0.000122. Indeed, we plot the sample means obtained from 108 trajectories
of each scheme. Furthermore, Table 2.3 provides estimates of the errors

ε
(
Ŷ
)

:=

∣∣∣∣E log
(

1 + ‖XT ‖2
)
− E log

(
1 +

∥∥∥ŶN∥∥∥2
)∣∣∣∣

where T = 1, 3, N = T/∆, and Ŷ represents the numerical methods Vn, Y s
n , Ỹn and Z̃n. From Table

2.3 we can see that Ỹn blows up for ∆ ≤ 1/16. The Figure 2.2, together with Table 2.3, illustrate that
Z̃n is stable, but presents a slow rate of weak convergence. In contrast, the performance of Vn is very
good, Vn mix good stability properties with reliable approximations. The heuristic balanced scheme
Y s
n shows a very good behavior. In fact, the accuracy of Y s

n is very similar to that of Vn for ∆ ≤ 1/16,
and Y s

n does not involve any optimization process.
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∆ 1/4 1/8 1/16 1/32 1/64 1/128

M1,1 (∆) −0.6568 −0.6683 −0.6745 −0.6805 −0.6887 −0.6949

M2,1 (∆) −0.2573 −0.3220 −0.3587 −0.3777 −0.3867 −0.3911

M1,2 (∆) 0.3123 0.3110 0.3112 0.3130 0.3165 0.3193

M2,2 (∆) −0.6382 −0.6492 −0.6544 −0.6597 −0.6675 −0.6735

Order −18 −19 −19 −20 −21 −26

Table 2.4: Approximate weight matrices (Mi,j (∆))1≤i,j≤2 for (2.21), together with the corresponding
order of magnitude of the objective function minimum.

SDE with an unstable equilibrium point

We numerically solve the SDE

dXt =

(
0 b2

−b2 b1

)
Xt dt+

(
σ1 0

0 σ2

)
Xt dW

1
t +

(
0 −ε
ε 0

)
Xt dW

2
t , (2.21)

with b1 = 0.06, b2 = 1, σ1 = 0.2, σ2 = 0.1, ε = 0.3 and Xt =
(
X1
t , X

2
t

)> ∈ R2. We set X0 =

(1,−1)> /
√

2. We have that 0 is an unstable equilibrium point of (2.21). Indeed, lim inft→+∞ ‖Xt‖ > 0,

because there exists θ ∈ (0, 1/2) such that 〈x,Bx〉+ 1
2

∑m
k=1

∥∥σkx∥∥2 − (1 + θ)
∑m

k=1〈x, σkx〉2 ≥ 0 for
all x ∈ Rd such that ‖x‖ = 1 (see e.g. [8]).

We apply to (2.21) the scheme Vn given by (2.14), where M (∆) is defined by (2.17) with

M =
{

(Mi,j)1≤i,j≤2 : |Mi,j | ≤ 6 for all i, j = 1, 2
}
.

To this end, we first compute M (1/128) by proceeding as in Subsection 2.3.3 with initial parameters
Mi,j ∈ {−1,−0.5, 0, 0.5, 1}. Then, we solve the optimization problem corresponding to ∆ = 1/64
(resp. ∆ = 1/32, . . . , 1/4) by running the MATLAB code fmincon with initial solution M (1/128)
(resp. M (1/64) , . . . ,M (1/8)) (see Table 2.4).

Figure 2.3 presents the computation of E arctan
(

1 +
(
X2
t

)2)
estimated by sampling 108 trajecto-

ries of Vn, the backward Euler scheme

Ỹn+1 = Ỹn +

(
0 b2

−b2 b1

)
Ỹn+1∆ +

(
σ1 0

0 σ2

)
Ỹn
√

∆ξ1
n +

(
0 −ε
ε 0

)
Ỹn
√

∆ξ2
n

and the balanced scheme Z̃n defined by (2.2) with W k
Tn+1
−W k

Tn
replaced by discrete random variables

√
∆ξkn, c0 = −1

2

(
0 b2

−b2 b1

)
, c1 =

(
σ1 0

0 σ2

)
and c2 =

(
ε 0

0 ε

)
(see [4, 184]). Solid line provides

the “exact” values obtained by sampling 108 times the weak Euler-Maruyama scheme with step-size

∆ = 2−13 ≈ 0.000122. Moreover, Table 2.5 provides the errors ε
(
Ŷ
)

:=
∣∣∣Ef (XT )− Ef

(
ŶN

)∣∣∣, where
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Figure 2.3: Computation of E arctan
(

1 +
(
X2
t

)2)
, where t ∈ [0, 20] and Xt solves (2.21). Dashed line:

Ỹ , dashdot line: Z̃, dotted line: V , and solid line: reference values. Here, ∆ takes the values 1/4, 1/8,
1/16 and 1/32; smaller values of ∆ produce better approximations.
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T = 10, 20, N = T/∆, and Ŷ stands for the schemes Vn, Ỹn and Z̃n. Figure 2.3 and Table 2.5 show the
good accuracy of the new scheme Vn. We also see that Vn and Z̃n reply the unstable behavior of the
exact solution and that Ỹn tends to 0 in case ∆ = 1/4. Finally, we have checked that the performance
of the heuristic scheme Y s

n is similar to that of the backward Euler scheme Ỹn.

∆

1/4 1/8 1/16 1/32 1/64 1/128

ε
(
Ỹ
) T = 10 0.30305 0.17473 0.089215 0.04452 0.022189 0.011144

T = 20 0.47504 0.29513 0.14533 0.069623 0.033923 0.016778

ε
(
Z̃
) T = 10 0.10986 0.12667 0.10127 0.069549 0.044963 0.028632

T = 20 0.056883 0.049722 0.051519 0.036835 0.022017 0.0127

ε (V )
T = 10 0.084783 0.051834 0.014313 0.0031168 0.00055984 0.00011417

T = 20 0.025462 0.0080347 0.014935 0.011232 0.0062795 0.0032123

Table 2.5: Estimation of errors involved in the computation of E arctan
(

1 +
(
X2
T

)2)
for T = 10 and

T = 20, where Xt =
(
X1
t , X

2
t

)>
solves (2.21).

2.4 Proofs

Proof 2.4.1 (Proof of Lemma 2.2.1) We first prove that under Property P1, limn→∞ Y
s
n = 0 a.s.

iff

a (∆) ∈


]−∞, p3[ ; if µ < 0

R ; if µ = 0 and λ 6= 0

]p3,+∞[ ; if µ > 0

. (2.22)

Suppose that Property P1 holds. Applying the strong law of large numbers and the law of iterated
logarithm we obtain that Y s

n → 0 a.s. as n→∞ iff

E log
(

1 +
(
µ∆ + λ

√
∆ξ1

n

)
/ (1− a (∆) ∆)

)
< 0 (2.23)

(see e.g. Lemma 5.1 of [99]). Since

E log

(
1 +

µ∆ + λ
√

∆ξ1
n

1− a (∆) ∆

)
=

1

2
log

((
1 +

µ∆

1− a (∆) ∆

)2

− λ2∆

(1− a (∆) ∆)2

)
,

inequality (2.23) becomes 2µ (1− a (∆) ∆) + µ2∆− λ2 < 0, which is equivalent to (2.22). This estab-
lishes our first claim.

From the assertion of the first paragraph we get that Property P1, together with limn→∞ Y
s
n = 0

a.s., is equivalent to (a) a (∆) ∈ ]−∞,min{p1, p3}[∪ ]p2, p3[ for µ < 0; (b) a (∆) ∈ ]−∞, p1[∪ ]p2,+∞[
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for µ = 0 and λ 6= 0; and a (∆) ∈ ]p3, p1[∪ ]max{p2, p3},+∞[ for µ > 0. This gives the lemma, because
p1 < p3 (resp. p2 > p3) whenever µ < 0 (resp. µ > 0).

Proof 2.4.2 (Proof of Theorem 2.2.1) In case λ 6= 0, using differential calculus we obtain that

the function ∆ 7→
(

1− |λ|
√

∆ + µ∆
)
/∆ attains its global minimum at 4/λ2. Then, for all ∆ > 0

and λ ∈ R we have (
1− |λ|

√
∆ + µ∆

)
/∆ ≥ µ− λ2/4. (2.24)

First, we suppose that µ ≤ 0 and α1 (∆) > 1/4. From (2.24) it follows that p1 > µ− α1 (∆)λ2, which
implies a (∆) ∈ ]−∞, p1[. Second, if µ > 0 and ∆ ≥ 2/µ, then a (∆) ∈ ]p2,+∞[. Third, assume that
µ > 0 and ∆ < 2/µ. Since µ > 0, for any ∆ < λ2/µ2 we have 1−|λ|

√
∆+µ∆ < 1. Using 2µ−λ2 < 0

we get λ2/µ2 > 2/µ, and so p1 =
(

1− |λ|
√

∆ + µ∆
)
/∆ whenever ∆ < 2/µ. Applying (2.24) gives

p1 > µ− α2 (∆)λ2, because α2 (∆) > 1/4. On the other hand, we have p3 < µ− α2 (∆)λ2 if and only
if 2µ− λ2 < µ∆

(
2µ− 4α2 (∆)λ2

)
/2, which becomes

2

µ
> ∆

(
1 + (4α2 (∆)− 1)

λ2

λ2 − 2µ

)
(2.25)

since 2µ− λ2 < 0 and µ > 0. By 2/µ > ∆, (2.25) holds in case

2

µ
≥ ∆ + (4α2 (∆)− 1)

λ2

λ2 − 2µ

2

µ
,

which is equivalent to α2 (∆) ≤ 1/4 +
(
λ2 − 2µ

)
(2− µ∆) /

(
8λ2
)
. Then p3 < µ − α2 (∆)λ2, hence

a (∆) ∈ ]p3, p1[.
Combining Lemma 2.2.1 with the above three cases yields Properties P1 and P2.

Proof 2.4.3 (Proof of the inequality (2.8)) If µ ≤ 0, then a (∆) ≤ µ − λ2/4 ≤ 0, and so 1 −
a (∆) ∆ ≥ 1. Let µ > 0, together with ∆ ≥ 2/µ. Then we have 1−a (∆) ∆ = − |λ|

√
∆−µ∆−β∆ ≤ −2.

Finally, suppose that µ > 0 and ∆ < 2/µ. Since 2µ − λ2 < 0, there exists ε ∈ (0, 1) such that
2µ− λ2 < −2εµ. Hence µ− λ2/4 < (1− ε)µ/2 < (1− ε) /∆, which implies(

µ− 1− ε
∆

)
1

λ2
<

1

4
< α2 (∆) .

We thus get 1− a (∆) ∆ > ε.

Proof 2.4.4 (Proof of Theorem 2.2.2) We first prove that Properties P1’ and P2’ hold provided
that 2µ− λ2 < 0 and

a < min
{

1/∆, µ/2− λ2/4 +
(

2− |λ|
√

∆
)
/2∆

}
. (2.26)

From (2.26) we have 4 +
(
2µ− λ2 − 4a

)
∆− 2 |λ|

√
∆ > 0, and so for all ∆ > 0,

4 +
(
2µ− λ2 − 4a

)
∆ + 2λ

√
∆ξ1

n > 0.
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Since 2µ−λ2 < 0, 4−
(
2µ− λ2 + 4a

)
∆−2 |λ|

√
∆ > 0. Hence, for any ∆ > 0, 4−

(
2µ− λ2 + 4a

)
∆−

2λ
√

∆ξ1
n > 0. Therefore Y T

n satisfies Property P1’. Moreover, as in the proof of Lemma 2.2.1, using
the strong law of large numbers and the law of iterated logarithm we deduce that Y T

n → 0 a.s. as
n→∞ iff

E log

(
4 +

(
2µ− λ2 − 4a

)
∆ + 2λ

√
∆ξ1

n

4− (2µ− λ2 + 4a) ∆− 2λ
√

∆ξ1
n

)
< 0. (2.27)

Inequality (2.27) is equivalent to(
4 +

(
2µ− λ2 − 4a

)
∆
)2 − 4λ2∆ <

(
4−

(
2µ− λ2 + 4a

)
∆
)2 − 4λ2∆,

which becomes 16
(
2µ− λ2

)
∆ (1− a∆) < 0, and so Property P2’ holds because a < 1/∆.

Consider λ = 0. Then, the claim of the first paragraph guarantees that Properties P1’ and P2’
holds if a < min {1/∆, µ/2 + 1/∆}. Since 2µ − λ2 < 0 we have µ < 0, and so a sufficient condition
for Properties P1’ and P2’ is a < µ/2.

Finally, suppose that λ 6= 0 and set f (∆) =
(

2− |λ|
√

∆
)
/2∆ for all ∆ > 0. Then, we get

f ′ (∆) =
(
|λ| /4− 1/

√
∆
)
/∆3/2. Note that f is increasing or decreasing depending on

√
∆ > 4/ |λ|

or
√

∆ < 4/ |λ|, respectively. Thus, f attains its global minimum at ∆0 = 16/λ2. Since 2µ−λ2 < 0, we
have µ/2−λ2/4+f (∆0) = µ/2−5λ2/16 < 0. Then, µ/2−5λ2/16 ≤ min

{
1/∆, µ/2− λ2/4 + f (∆)

}
.

Using again the claim of the first paragraph we conclude that Properties P1’ and P2’ holds under
a < µ/2− 5λ2/16.

Proof 2.4.5 (Proof of Theorem 2.3.1) From (2.14) it follows that

Vn = An−1 (∆,M (∆))An−2 (∆,M (∆)) · · ·A0 (∆,M (∆))V0.

Since ξkn are bounded random variables,

sup
x∈Rd,‖x‖=1

E log+ ‖A0 (∆,M (∆))x‖ <∞,

where log+ (x) stands for the positive part of log (x) for each x > 0. Hence, the limit

lim
n→∞

1

n
log ‖Vn‖

exists whenever V0 6= 0, and only depending on V0. Furthermore,

lim
n→∞

1

n
log ‖Vn‖ =

∫
x∈Rd,‖x‖=1

E log ‖A0 (∆,M (∆))x‖µ (dx) ,

where µ is a probability measure (see e.g. Theorem 3.1 of [62]). This gives (2.15).

Proof 2.4.6 (Proof of Theorem 2.3.2) Let q ≥ 2. Iterating (2.14) we obtain

Vn+1 = V0 + (I + ∆M (∆))

∆B

n∑
k=0

Vk +

m∑
j=1

n∑
k=0

√
∆ξjkσ

jVk

 .
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Since ∆→M (∆) is locally bounded,

‖Vn+1‖q ≤ Kq (T )

‖V0‖q +
1

N

n∑
k=0

‖Vk‖q +mq−1
m∑
j=1

∥∥∥∥∥
n∑
k=0

√
∆ξjkσ

jVk

∥∥∥∥∥
q
 ,

where, from now on, Kq (·) is a generic positive increasing function. By ξjk is bounded, applying the
Burkholder-Davis-Gundy inequality yields

E ‖Vn+1‖q ≤ Kq (T )

(
‖V0‖q +

1

N

n∑
k=0

‖Vk‖q
)
,

and so using a discrete Gronwall lemma (see e.g. [10]) we get

E ‖Vn‖q ≤ Kq (T )E ‖V0‖q ∀n = 0, . . . , N. (2.28)

According to (2.14) we have

Vn+1 − Vn = (I + ∆M (∆))

(
∆B +

m∑
k=1

√
∆ξknσ

k

)
Vn. (2.29)

Hence ‖Vn+1 − Vn‖ ≤ K (T ) ∆1/2 ‖Vn‖, which implies

E (‖Vn+1 − Vn‖q� FTn) ≤ Kq (T ) ∆q/2 ‖Vn‖q . (2.30)

From (2.29) it follows∥∥∥∥∥E
(
Vn+1 − Vn −

(
B∆ +

m∑
k=1

σk
(
W k

(n+1)∆ −W
k
n∆

))
Vn� Fn∆

)∥∥∥∥∥
≤ K (T ) ∆2 (1 + ‖Vn‖) .

Moreover, using (2.29) we deduce that the second (resp., third) moments of Vn+1 − Vn coincide

with that of
(
B∆ +

∑m
k=1 σ

k
(
W k

(n+1)∆ −W
k
n∆

))
Vn, except for terms of order O

(
∆2
)
‖Vn‖2 (resp.,

O
(
∆2
)
‖Vn‖3). Here, O

(
∆2
)

stands for different random functions depending on ∆2 that are less
than K (T ) ∆2. Therefore, combining classical arguments [146, 196, 197] with (2.28) and (2.30) we
conclude that (2.18) holds (see also Theorem 14.5.2 of [120]).



Chapter 3

Stable numerical methods for nonlinear
scalar and linear systems of SDEs

Uniqueness up to indistinguishable ability

We propose a new methodology for solving bilinear systems of stochastic differential equations
(SDEs), which allows us to design first order weak numerical schemes that preserve for any step-
size the almost sure exponential stability of the unknown exact solutions, under general conditions.
Moreover, the new numerical methods also keep intact the possible property of being distant from the
origin. To achieve our main goal, we develop a new stable method for non-linear scalar SDEs. The
good performance of the new schemes is illustrated by some numerical experiments.

3.1 Introduction

This chapter addresses the numerical solution of stiff stochastic differential equations (SDEs) with
multiplicative noise, namely, SDEs of the form

Xt = X0 +

∫ t

0
b (Xs) ds+

m∑
k=1

∫ t

0
σk (Xs) dW

k
s (3.1)

whose numerical integrations by the Euler-Maruyama scheme exhibit incorrect behaviors. Here,
W 1, . . . ,Wm are independent real valued Wiener processes on a filtered complete probability space(

Ω,F , (Ft)t≥0 ,P
)

, Xt is an adapted Rd-valued stochastic process, and b, σk : Rd → Rd are smooth.

More precisely, we introduce a new methodology to design almost sure exponentially stable schemes
for bilinear SDEs (i.e. b and σk are linear). To this end, we first develop a promising numerical method
for nonlinear scalar SDEs (i.e. d = 1).

3.1.1 Previous works

In many cases, the semi-implicit and explicit Euler methods preserve the dynamical properties of the
underlying SDEs provided that the step size ∆ > 0 of the discretization is small enough (see [102]).

31
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This does not prevent that the classical Euler schemes have poor numerical performance in situations
where, for example, some partial derivatives of the diffusion coefficients σk are not small. A simple
model problem for such SDEs is

dXt = λXtdW
1
t , (3.2)

with λ > 0 (see e.g. [148, 149]); the trajectories of the Euler-Maruyama method applied to (3.2)
blow up unless ∆ is very small. Using (3.2) as a motivational problem, Milstein, Platen and Schurz
(1998) [148] introduced the general formulation of the balanced implicit methods, a class of fully
implicit schemes for (3.1) whose implementation depends on the choice of certain weights (see e.g.
[4, 99, 148]). The reported balanced schemes present good asymptotic stability properties, but exhibit
low speed of weak convergence (except incipient progress achieved by [155]).

Other implicit integrators for (3.1), together with their predictor-corrector versions, arise from the
Itô-Taylor expansions of Xt (see e.g. [46, 47, 149, 175, 176, 182]). In particular, Kloeden and Platen
(1992) [120] proposed a class of weak implicit schemes that includes, for instance, the trapezoidal

method and the following scheme applied to (3.2): Ẽn+1 = Ẽn +
(

1− λ2∆ + λ
√

∆ξ1
n

)
Ẽn+1, where

ξ1
0 , ξ

1
1 , . . . is a sequence of independent random variables taking values ±1 with probability 1/2. The

trapezoidal method has good asymptotic stability properties, nevertheless it fails to preserve the sign
of X0 in the numerical solution of (3.2). The implicit method Ẽn is almost sure asymptotically stable,
but converges to 0 as n→∞ too much faster than Xt.

Numerical methods adapted to specific types of SDEs with multiplicative noise have been devel-
oped, for instance, in [6, 16, 27, 149, 153, 159]. The numerical integration of mean-square stable SDEs
has been treated, for example, in [1, 30, 43, 99, 152].

3.1.2 Outline

To the best of our knowledge, this is the first time to present numerical methods for SDEs that
preserve, for any step size ∆ > 0, the almost sure asymptotic stability of the solutions of relevant
classes of SDEs (see e.g. [98, 102] and Thm. 3.5 of [184]).

Section 3.2 is devoted to (2.1) with d = 1. Indeed, we develop a new numerical method that,
under general hypotheses, keeps intact the almost sure exponential stability of Xt (i.e. the property
lim supt→∞ (log |Xt|) /t < 0) for all ∆ > 0, as well as the sign of X0. This paves the way for the main
objective of this chapter: to provide stable schemes for computing the mean value of f (Xt), where
f : Rd → R is smooth, and, by abuse of notation,

Xt = X0 +

∫ t

0
BXsds+

m∑
k=1

∫ t

0
σkXsdW

k
s , (3.3)

with B, σ1, . . . , σm real matrices of dimension d × d and X0 ∈ Rd \ {0}. In addition to the fact
that (3.3) is a good test problem for the numerical solution of SDEs with multiplicative noise (see
e.g. [43, 100, 198]), using stable schemes for (3.3) we can design numerical methods for (2.1) via the
local linearization method (see e.g. [30, 49, 71, 153, 154]). Moreover, the bilinear SDE (3.3) arises,
for example, from the spatial discretization of some stochastic partial differential equations (see e.g.
[1, 44]), and describes important dynamical features of non-linear SDEs by means of the linearization
around their equilibrium points (see e.g. [18, 19, 198]).



33

Section 3.3 presents a new technique for constructing almost sure stable methods for (3.3). We
take advantage of ‖Xt‖ and X̂t := Xt/ ‖Xt‖ are described by the SDEs (3.23) and (3.21) given below.
Indeed, we propose to compute Xt = ‖Xt‖ X̂t by solving this coupled system of two SDEs. Essentially,
we first approximate X̂t by an adapted stochastic process taking values in the unit sphere that solves
numerically (3.23), and then we compute ‖Xt‖ by means of schemes that preserve the dynamical
properties of (3.21). Using this idea, we obtain a set of weak numerical schemes for (3.3) that are
almost sure exponentially stable under classical conditions that guarantee the almost sure exponential
stability of Xt. Moreover, the new integrators for (3.3) preserve the property of being distant from 0,
under general hypotheses. Sections 3.2 and 3.3 also contain numerical experiments that illustrate the
very good numerical performance of the new schemes.

3.1.3 Notation

For simplicity, we consider the equidistant time discretization Tj = j∆, where ∆ > 0 and j = 0, 1, . . .
We will use the same symbol K (·) (resp. K) for different positive increasing functions (resp. positive
real numbers) having the common property to be independent of ∆. Similarly, q denotes generic
constants greater than or equal to 2. We write C`p

(
Rd,R

)
for the set of all `-times continuously

differentiable functions f : Rd → R such that f and all its partial derivatives of orders 1, 2, . . . , ` have
at most polynomial growth.

3.2 One-dimensional SDEs

In this section, we restrict our attention to stiff scalar SDEs, that is, we focus on

Xt = X0 +

∫ t

0
b (Xs) ds+

m∑
k=1

∫ t

0
σk (Xs) dW

k
s , (3.4)

where X0 ∈ L2(Ω,P) and b, σk : R → R are continuously differentiable functions. We suppose that
(3.4) has a unique global solution (see e.g. [108, 181] for sufficient conditions).

In this section we use two general methods: the weak version of a Balanced implicit scheme applied
to (3.4) (see Schurz [184], Alcock and Burrage [4])

Bn+1 = Bn + b (Bn) ∆ +

m∑
k=1

σk (Bn)
√

∆ξkn

+

(
−1

2
∇b (Bn) +

m∑
k=1

([
∇σk (Bn)

]
+

+
[
∇σk (Bn)

]
−

)√
∆

)
(Bn −Bn+1) ,

where [·]+ and [·]− represent the positive semidefinite and negative semidefinite parts, respectively.
Additionally, the weak version of the Tamed Euler scheme applied to (3.4) (see Hutzenthaler, Jentzen
and Kloeden 2012 [107])

Ên+1 = Ên +
b
(
Ên

)
1 +

∥∥∥b(Ên)∥∥∥∆
∆ +

m∑
k=1

σk
(
Ên

)√
∆ξkn.
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3.2.1 Derivation of the numerical method

We begin by assuming b (0) = σk (0) = 0. Then, the coefficients µ (x) =

{
b (x) /x if x 6= 0

b′ (0) if x = 0
, and

λk (x) =

{
σk (x) /x if x 6= 0(
σk
)′

(0) if x = 0
, are smooth bounded functions (see Remark 3.2.3). Let X̄n be an FTn-

measurable random variable such that X̄n ≈ XTn . Since we can efficiently compute µ (x) and λk (x)
(see Remark 3.2.3), we locally rewrite (3.4) as

Xt = XTn +

∫ t

Tn

µ (Xs)Xsds+

m∑
k=1

∫ t

Tn

λk (Xs)XsdW
k
s ∀t ∈ [Tn, Tn+1] ,

and so the continuity of µ and λk leads to

Xt ≈ X̄n +

∫ t

Tn

µ
(
X̄n

)
Xsds+

m∑
k=1

∫ t

Tn

λk
(
X̄n

)
XsdW

k
s ∀t ∈ [Tn, Tn+1] .

Hence Xt, with t ∈ [Tn, Tn+1], is approximated by the explicit solution of

Yt = X̄n +

∫ t

Tn

µ
(
X̄n

)
Ysds+

m∑
k=1

∫ t

Tn

λk
(
X̄n

)
YsdW

k
s . (3.5)

This gives XTn+1 ≈ YTn+1 . Replacing W k
Tn+1
−W k

Tn
by random variables with similar laws in the closed

formula of the exact solution of (3.5), we introduce the following weak approximation of XTn+1 :

Scheme 3.2.1 Suppose that Ŵ 1
0 , Ŵ

2
0 , . . . , Ŵ

m
0 , Ŵ 1

1 , . . . are independent and identically distributed
(i.i.d.) random variables with symmetric law and variance 1. Set

X̄n+1 = exp

((
µ
(
X̄n

)
− 1

2

m∑
k=1

λk
(
X̄n

)2)
∆ +

m∑
k=1

λk
(
X̄n

)√
∆Ŵ k

n

)
X̄n.

The Scheme 3.2.1 keeps intact the sign of the initial data. Next, we establish that X̄n is almost sure
exponentially stable for any ∆ > 0 provided that a standard condition for the almost sure exponential
stability of Xt holds (see e.g. [102, 138]).

Theorem 3.2.1 Suppose that b (0) = 0,
∣∣σk (x)

∣∣ ≤ K |x| for all x ∈ R, and

−λ := sup
x∈R,x 6=0

(
b (x) /x−

m∑
k=1

(
σk (x) /x

)2
/2

)
< 0. (3.6)

Let
(
X̄n

)
n≥0

be given by Scheme 3.2.1 with E
(
X̄0

)2
<∞ and X̄0 6= 0 a.s. Then

lim sup
n→∞

1

n∆
log
∣∣X̄n

∣∣ ≤ −λ P− a.s. (3.7)
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Proof 3.2.1 Deferred to Section 3.2.3.

Remark 3.2.1 Assume the hypotheses of Theorem 3.2.1 with (3.6) replaced by the existence of θ > 0

such that b (x) /x − (1/2 + θ)
∑m

k=1

(
σk (x) /x

)2 ≥ 0 for all x 6= 0. Then, an analysis similar to that
in the proof of Theorem 3.3.3 below shows lim infn→∞

∣∣X̄n

∣∣ > 0 a.s.

Scheme 3.2.1 retains important dynamical properties of the solution of (3.4), as well as achieves
a high performance in our numerical tests. This motivates us to adapt X̄n to the framework where
b (0) , σ1 (0) , . . . , σm (0) are not necessarily equal to 0. To this end, we rewrite (3.4) in [Tn, Tn+1] as

Xt = XTn +

∫ t

Tn

(µ (Xs)Xs + b (0)) ds+

m∑
k=1

∫ t

Tn

(
λk (Xs)Xs + σk (0)

)
dW k

s ,

with µ (x) =

{
(b (x)− b (0)) /x if x 6= 0

b′ (0) if x = 0
, λk (x) =

{(
σk (x)− σk (0)

)
/x if x 6= 0(

σk
)′

(0) if x = 0
. If X̄n is an FTn-

measurable random variable approximating XTn , then

Xt ≈ X̄n +

∫ t

Tn

(
µ
(
X̄n

)
Xs + b (0)

)
ds+

m∑
k=1

∫ t

Tn

(
λk
(
X̄n

)
Xs + σk (0)

)
dW k

s .

This leads to locally approximate Xt in [Tn, Tn+1] by the solution of

Yt = X̄n +

∫ t

Tn

(
µ
(
X̄n

)
Ys + b (0)

)
ds+

m∑
k=1

∫ t

Tn

(
λk
(
X̄n

)
Ys + σk (0)

)
dW k

s . (3.8)

The explicit solution of (3.8) is

Yt = Φt

(
X̄n +

(
b (0)−

m∑
k=1

λk
(
X̄n

)
σk (0)

)∫ t

Tn

Φ−1
s ds+

m∑
k=1

σk (0)

∫ t

Tn

Φ−1
s dW k

s

)
,

with Φt = exp
((
µ
(
X̄n

)
− 1

2

∑m
k=1 λ

k
(
X̄n

)2)
(t− Tn) +

∑m
k=1 λ

k
(
X̄n

) (
W k
t −W k

Tn

))
. Using Φ−1

s ≈
Φ−1
Tn

, for all s ∈ [Tn, Tn+1], we get that XTn+1 is approximated by

ΦTn+1

(
X̄n +

(
b (0)−

m∑
k=1

λk
(
X̄n

)
σk (0)

)
∆ +

m∑
k=1

σk (0)
(
W k
Tn+1

−W k
Tn

))
.

This yields the weak scheme:

Scheme 3.2.2 Let Ŵ 1
0 , Ŵ

2
0 , . . . , Ŵ

m
0 , Ŵ 1

1 , . . . be i.i.d. random variables with symmetric law and vari-
ance 1. Define recursively

X̄n+1 = Φ̄n+1

(
X̄n +

(
b (0)−

m∑
k=1

λk
(
X̄n

)
σk (0)

)
∆ +

m∑
k=1

σk (0)
√

∆Ŵ k
n

)
,

where Φ̄n+1 = exp
((
µ
(
X̄n

)
− 1

2

∑m
k=1 λ

k
(
X̄n

)2)
∆ +

∑m
k=1 λ

k
(
X̄n

)√
∆Ŵ k

n

)
.
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The following theorem establishes that X̄ converges weakly to X with order O (∆) under a basic
set of assumptions. In case b (0) = σk (0) = 0, the Scheme 3.2.2 becomes Scheme 3.2.1, and so the
rate of weak convergence of Scheme 3.2.1 is equal to 1.

Theorem 3.2.2 Let b, σ1, . . . , σm be Lipschitz continuous functions belonging to C4
p(R,R) such that

|b (x)|+
∣∣σ1 (x)

∣∣+ · · ·+ |σm (x)| ≤ K (1 + |x|) for all x ∈ R. Fix T > 0 and f ∈ C4
p(R,R). Consider X̄n

as described by Scheme 3.2.2 with ∆ = T/N , where N ∈ N. Assume that E exp
(
rŴ k

n

)
< ∞ for all

r > 0, X0 has finite moments of any order, and that for every g ∈ C4
p(R,R),

∣∣Eg (X0)− Eg
(
X̄0

)∣∣ ≤
K (1 + E |X0|q)T/N for all N ∈ N. Then for all N ∈ N,∣∣Ef (XT )− Ef

(
X̄N

)∣∣ ≤ K (T ) (1 + E |X0|q)T/N. (3.9)

Proof 3.2.2 Deferred to Section 3.2.3.

Remark 3.2.2 If Ŵ k
n are standard Normal random variables, then E exp

(
rŴ k

n

)
= exp

(
r2/2

)
. In

case Ŵ k
n are bounded we also have E exp

(
rŴ k

n

)
<∞.

Remark 3.2.3 Combining Leibniz’s rule with Taylor’s theorem we obtain that µ and λk are j-times
differentiable whenever b and σk have derivatives of order j + 1. Indeed, dj

dxj
µ (0) = 1

j+1
dj+1

dxj+1 b (0) and
dj

dxj
λk (0) = 1

j+1
dj+1

dxj+1σ
k (0). This allows us to avoid the effect of round-off errors in the implementation

of µ (x) and λk (x), when x is near 0, by approximating µ (x) and λk (x), with x ≈ 0, by means of
their truncated Taylor expansions around 0; a technique used successfully in our preliminary numerical
experiments. Alternatively, we can interpolate µ and λk in a neighborhood of 0, or sometimes we can
efficiently evaluate closed analytical expressions for µ and λk like in Subsection 3.2.2.
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3.2.2 Numerical experiments

A nonlinear SDE

Let us consider the nonlinear equation

Xt = 1−
∫ t

0
10 sin (10Xs) ds+

∫ t

0
20 log

(
1 + (Xs)

2
)
dW 1

s , (3.10)

with Xt ∈ R and W 1 a real valued Wiener process. We numerically test the sign-preserving and expo-
nential stability properties by computing the mean values of f (Xt) = 100

(
π
2 − arctan (1000Xt + 100)

)
and g (Xt) = log

(
1 + (Xt)

2
)

. We get the reference values for Ef (Xt) and Eg (Xt) by averaging 106

observations of the weak Euler-Maruyama scheme Ēn with ∆ = 2−20 ≈ 10−6, i.e.

Ēn+1 = Ēn + b
(
Ēn
)

∆ + σ1
(
Ēn
)√

∆ξ1
n,

where b (x) = −10 sin (10x), σ1 (x) = 20 log
(
1 + x2

)
and ξ1

0 , ξ
1
1 , . . . are independent random variables

taking the values ±1 each with probability 1/2.

Consider X̄n described by Scheme 3.2.1 with Ŵ k
n = ξkn, that is to say

X̄n+1 = X̄n exp

((
µ
(
X̄n

)
− 1

2
λ1
(
X̄n

)2)
∆ + λ1

(
X̄n

)√
∆ξ1

n

)
.

In the implementation of X̄n we replace µ (x) and λ1 (x) by

µ (x) ≈

{
b (x) /x ; if |x| ≥ ε
b′ (0) ; if |x| < ε

and λ1 (x) ≈

{
σ1 (x) /x ; if |x| ≥ ε(
σ1
)′

(0) ; if |x| < ε
, (3.11)

with ε = 10−6. This avoids that the round-off errors damage the performance of X̄n. In preliminary
calculations, we check that (3.11) essentially produces the same numerical results that the approxima-
tions obtained by using linear interpolations or Taylor approximations of b (x) /x and σ1 (x) /x when
|x| < ε.

Figures 3.1 and 3.2 compare the results obtained by Monte-Carlo estimations with 106 trajectories
of X̄n, Ēn and the weak Balanced scheme

B̄n+1 = B̄n + b
(
B̄n
)

∆ + σ1
(
B̄n
)√

∆ξ1
n −

(
b′
(
B̄n
)

∆/2−
∣∣∣(σ1

)′ (
B̄n
)∣∣∣√∆

) (
B̄n − B̄n+1

)
(see e.g. [4, 184]). We can see in both figures that the behavior of Scheme 3.2.1 is not affected
by round-off errors. For all ∆ > 0, X̄n preserves the sign of X0. In contrast, B̄n and Ēn need to
use discretization steps less than or equal to ∆ = 2−7 and ∆ = 2−8, respectively, to guarantee the
sign-preserving property of the initial condition (see Figure 3.1). Figure 3.2 shows the estimations of
Eg (Xt) when ∆ = 2−6, 2−7 and 2−8. As we expected, the numerical schemes gives us better results
as ∆ > 0 decreases.
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Figure 3.1: Approximation of Ef (Xt) = E100 (π/2− arctan (1000Xt + 100)), where t ∈ [0, 1] and Xt

satisfies (3.10). The “true” values are plotted with a solid line. The schemes X̄n, Ēn and B̄n are
represented by circles, stars and diamonds, respectively.
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Figure 3.2: Computation of Eg (Xt) = E log
(

1 + (Xt)
2
)

, where t ∈ [0, 1] and Xt satisfies (3.10).

The “true” values are plotted with a solid line. The schemes X̄n, Ēn and B̄n are represented by
black-dotted, green-dashed and blue-dashdot lines, respectively.

Locally Lipschitz SDE

We illustrate the behavior of Scheme 3.2.1 by means of the locally Lipschitz SDE

Xt = X0 +

∫ t

0

(
aXs − b (Xs)

3
)
ds+

∫ t

0
σXsdW

1
s , (3.12)

where b, σ are positive real numbers and a ∈ R. This scalar cubic SDE is known as the stochastic
Ginzburg-Landau equation, and constitutes a classical test equation in the theory of stochastic bifur-
cation (see e.g. [10, 19, 77, 104]). Let ξ1

0 , ξ
1
1 , . . . be independent random variables taking the values ±1

each with probability 1/2. Then, we numerically solve (3.12) using five schemes: X̄n given by Scheme
3.2.1 with Ŵ 1

n replaced by ξ1
n, the backward Euler method

Ēn+1 = Ēn +
(
aĒn+1 − b

(
Ēn+1

)3)
∆ + σĒn

√
∆ξ1

n,

the weak version of the Balanced scheme proposed by Schurz (2005) [184] (see also Alcock and Burrage
(2006) [4])

Bn+1 = Bn +
(
aBn − b (Bn)3

)
∆ + σBn

√
∆ξ1

n +

(
−1

2

(
a− 3b (Bn)2

)
∆ + σ

√
∆

)
(Bn −Bn+1) ,

Z̃sn+1/2 = Z̃sn exp
((
a− σ2/2

)
∆ + σ

√
∆ξ1

n

)
Z̃sn+1 = Z̃sn+1/2

(
1− b∆

(
Z̃sn+1/2

)2
/2

)
/

(
1 + b∆

(
Z̃sn+1/2

)2
/2

)
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Figure 3.3: Computation of E log
(

1 + (Xt)
2
)

, where t ∈ [0, 5] and Xt satisfies (3.12) with a = b = 1,

σ = 2 and X0 = 1. The “true” values are plotted with a solid line. The circles, stars, diamonds and
squares stand for the schemes X̄n, Ēn, Z̃sn and Ên, respectively. The step sizes 1, 0.5 and 0.25 are
represented by dashdot, dashed and dotted lines, respectively.

and

Ên+1 = Ên +

(
aÊn − b

(
Ên

)3
)

∆/

(
1 + ∆

∣∣∣∣aÊn − b(Ên)3
∣∣∣∣)+ σÊn

√
∆ξ1

n.

It is worth pointing out that Ēn entails the solution of a nonlinear equation at each step, the scheme
Z̃sn is a weak version of the splitting-step algorithm for (3.12) introduced by Subsection 4.2 of [159],
and that Ên is a weak version of the tamed Euler method proposed by Hutzenthaler, Jentzen and
Kloeden (2012) [107].

Figures 3.3, 3.4 and Table 3.1 show the features of the computation of E log
(

1 + (Xt)
2
)

obtained

from the sample means of 108 observations of Scheme 3.2.1, Ēn, Bn, Z̃sn and Ên. The solid lines
identify the “true” values gotten by sampling 108 times Ēn with ∆ = 2−11 ≈ 0, 000488. The lengths
of all the 99% confidence intervals are at least of order 10−3, they have been estimated following [120].

First, we take a = b = 1, σ = 2 and X0 = 1, which is the motivating example of [102].

Since b (x) /x −
(
σ1 (x) /x

)2
/2 ≤ −1, lim supt→∞

1
t log |Xt| ≤ −1 a.s. From [102] we have that

the Euler-Maruyama scheme applied to (3.12) blows up, with positive probability, at a geometric
rate. In preliminary numerical experiments, we have seen that Ēn, Z̃sn and Ên fail to preserve the
sign of X0 for ∆ = 1 and ∆ = 0.5 (even ∆ = 0.25 for Ên). To this end, we have computed

10E
(
π/2− arctan

(
103Xt + 102

))
. Figure 3.3 presents the numerical solution of E log

(
1 + (Xt)

2
)

,
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where t ∈ [0, 5], using the step sizes ∆ = 0.25, 0.5, 1. It suggests us that Scheme 3.2.1 replicate very
well the long time behavior of Xt, even for ∆ = 1. Moreover, we can see that the accuracy of X̄n is
very good, even for large step sizes; Scheme 3.2.1 achieves significantly lower errors than Z̃sn and Ên,
which are methods adapted to the characteristics of (3.12).

Second, we choose a = 6, b = 9, σ = 3 and X0 = 1. Then supx∈R,x 6=0

(
a− bx2 − σ2/2

)
> 0,

and so the condition (3.6) does not hold. In this case, (3.12) has three invariant forward Markov
measures (see e.g. [10]). Calculating 10E

(
π/2− arctan

(
103Xt + 102

))
we observe that Ēn (resp. Z̃sn

and Ên) can take negative values when ∆ ≥ 1/8 (resp. ∆ ≥ 1/16). Figure 3.4 displays the numerical

approximation of E log
(

1 + (Xt)
2
)

by means of Scheme 3.2.1 and Ēn with step sizes ∆ = 0.25 and

∆ = 0.0625, as well as by using Z̃sn and Ên with ∆ = 0.0625. Moreover, Table 3.1 shows errors

made in the weak numerical integration of (3.12), where the reference value of E log
(

1 + (X10)2
)

was

obtained by sampling 108 times Ēn with ∆ = 2−11. In this test problem, the new scheme X̄n again
provides very good approximations of Ef (Xt), even for large values of ∆.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time t

տ
∆ = 0.0625

ց

∆ = 0.0625

ւ

∆ = 0.25

տ

∆ = 0.0625

տ

∆ = 0.25

ց

∆ = 0.0625

Figure 3.4: Computation of E log
(

1 + (Xt)
2
)

, where t ∈ [0, 10] and Xt solves (3.12) with a = 6, b = 9,

σ = 3 and X0 = 1. The “true” values are plotted with a solid line. The circles, stars, diamonds and
squares represent the schemes X̄n, Ēn, Z̃sn and Ên, respectively. The step sizes 0.25 and 0.0625 are
denoted by dashed and dotted lines, respectively.

Finally, we select a = 9, b = 1 and σ = 4. In the deterministic context, σ = 0, when a > 0 and
b = 1 the system (3.12) has two stable points ±

√
a and the zero solution becomes an unstable steady

state (see [104]).
We have tested alternative numerical schemes proposed to the stochastic Ginzburg-Landau equa-

tion [28, 50, 101, 183, 185]. Our numerical tests lead to step-size reduction to guarantee the sign-
preserving and stability properties of the exact solution. Moreover, we have observed low rate of weak
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∆
∣∣Ef (XT ) − Ef

(
ĒT/∆

)∣∣ ∣∣∣Ef (XT ) − Ef
(
Z̃s

T/∆

)∣∣∣ ∣∣∣Ef (XT ) − Ef
(
ÊT/∆

)∣∣∣ ∣∣Ef (XT ) − Ef
(
X̄T/∆

)∣∣
1 0.51106 29.0077 20.8951 0.074617

1/2 0.51504 26.1167 25.6113 0.05854

1/4 0.45996 21.5922 14.0218 0.026918

1/8 0.0089311 4.1708 0.56664 0.0078809

2−4 0.048116 0.068864 0.035861 0.003364

2−5 0.015164 0.041187 0.005734 0.0029212

2−6 0.0056366 0.022123 0.0048193 0.0017523

2−7 0.0023573 0.011367 0.0024914 0.00095535

Table 3.1: Estimation of errors involved in the computation of Ef (XT ) for T = 10 and f (x) =
log
(
1 + x2

)
. Here, Xt verifies (3.12) with a = 6, b = 9, σ = 3 and X0 = 1.

convergence.

3.2.3 Proofs

Proof of Theorem 3.2.1

From the formulation of Scheme 3.2.1 we have

log
∣∣X̄n+1

∣∣ = log
∣∣X̄0

∣∣+
n∑
j=0

b (X̄j

)
X̄j

− 1

2

m∑
k=1

(
σk
(
X̄j

)
X̄j

)2
∆ + Sn,

with Sn =
∑n

j=0

∑m
k=1 σ

k
(
X̄j

)
/X̄j

√
∆Ŵ k

j . Using (3.6) yields

1

n+ 1
log
∣∣X̄n+1

∣∣ ≤ 1

n+ 1
log
∣∣X̄0

∣∣− λ∆ +
1

n+ 1
Sn. (3.13)

By
∣∣σk (x)

∣∣ ≤ K |x| for all x ∈ R, we get E
(∑m

k=1 σ
k
(
X̄j

)
/X̄j

√
∆Ŵ k

j

)2
≤ K∆, and so

∞∑
j=0

1

(j + 1)2E

(
m∑
k=1

σk
(
X̄j

)
X̄j

√
∆Ŵ k

j

)2

<∞.

Since E
(∑m

k=1

σk(X̄j)
X̄j

√
∆Ŵ k

j �σ
(
X̄0, Ŵ

1
0 , . . . , Ŵ

m
0 , . . . , Ŵ 1

j−1, . . . , Ŵ
m
j−1

))
= 0, applying a general-

ized law of large numbers we deduce that Sn/ (n+ 1)→n→∞ 0 a.s. (see p. 243 of [81]). Then, letting
n→∞ in (3.13) we obtain (3.7).
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Proof of Theorem 3.2.2

To shorten notation, for any n ≥ 0 we set

fn :=

(
µ
(
X̄n

)
− 1

2

m∑
k=1

λk
(
X̄n

)2)
∆ +

m∑
k=1

λk
(
X̄n

)√
∆Ŵ k

n

and gn :=
(
b (0)−

∑m
k=1 λ

k
(
X̄n

)
σk (0)

)
∆ +

∑m
k=1 σ

k (0)
√

∆Ŵ k
n . Then

X̄n+1 = exp (fn)
(
X̄n + gn

)
= X̄n +

(
efn − 1− fn

)
X̄n +

(
efn − 1

)
gn + fnX̄n + gn,

and hence

X̄n+1 = X̄0 +
n∑
k=0

(
efk − 1− fk

)
X̄k +

n∑
k=0

(
efk − 1

)
gk +

n∑
k=0

(
fkX̄k + gk

)
.

Let q ≥ 2. By
∣∣∣exp (x)−

∑k−1
j=0 x

j/ (j!)
∣∣∣ ≤ |x|k exp (|x|), using Hölder’s inequality yields

∣∣X̄n+1

∣∣q ≤ K
∣∣X̄0

∣∣q +K (n+ 1)q−1

(
n∑
k=0

|fk|2q eq|fk|
∣∣X̄k

∣∣q +

n∑
k=0

|fk|q |gk|q eq|fk|
)

+K (n+ 1)q−1
n∑
k=0

∆q

∣∣∣∣∣∣µ (X̄k

)
− 1

2

m∑
j=1

λj
(
X̄k

)2∣∣∣∣∣∣
q ∣∣X̄k

∣∣q
+K (n+ 1)q−1

n∑
k=0

∆q

∣∣∣∣∣∣b (0)−
m∑
j=1

λj
(
X̄k

)
σj (0)

∣∣∣∣∣∣
q

+K∆q/2
m∑
j=1

∣∣∣∣∣
n∑
k=0

(
λj
(
X̄k

)
X̄k + σj (0)

)
Ŵ j
k

∣∣∣∣∣
q

. (3.14)

For any t > 0,

E exp
(
t
∣∣∣Ŵ j

k

∣∣∣) ≤ E exp
(
tŴ j

k

)
+ E exp

(
−tŴ j

k

)
<∞, (3.15)

and so for all ` ∈ N,

E
(∣∣∣Ŵ j

k

∣∣∣`) < `! E exp
(∣∣∣Ŵ j

k

∣∣∣) <∞. (3.16)

Since µ and λk are bounded functions, we use (3.15), (3.16) and the Burkholder-Davis-Gundy inequal-
ity to obtain from (3.14) that

E
∣∣X̄n+1

∣∣q ≤ KE ∣∣X̄0

∣∣q +K (T ) +K (T ) ∆
n∑
k=0

E
∣∣X̄k

∣∣q ,
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with n = 0, . . . , N − 1. Applying a discrete Gronwall lemma (see e.g. [10]) we deduce that for all
n = 0, . . . , N ,

E
∣∣X̄n

∣∣q ≤ K (T )
(
1 + E

∣∣X̄0

∣∣q) . (3.17)

Consider again q ≥ 2. Using∣∣X̄n+1 − X̄n

∣∣ ≤ ∣∣∣efn − 1
∣∣∣ ∣∣X̄n

∣∣+ efn |gn| ≤ |fn| exp (|fn|)
∣∣X̄n

∣∣+ exp (fn) |gn| ,

together with (3.15) and (3.16), we get

E
(∣∣X̄n+1 − X̄n

∣∣q� FTn) ≤ K (T ) ∆q/2
(
1 +

∣∣X̄n

∣∣q) . (3.18)

Here, we assume without loss of generality that Ŵ 1
n , . . . Ŵ

m
n are FTn+1-measurable and independent

of FTn .

Since
∣∣X̄n+1 −

(
1 + fn + f2

n/2 + f3
n/6
) (
X̄n + gn

)∣∣ ≤ |fn|4 exp (|fn|)
∣∣X̄n + gn

∣∣,
X̄n+1 = X̄n +

√
∆

m∑
k=1

(
λk
(
X̄n

)
X̄n + σk (0)

)
Ŵ k
n

+∆X̄n

µ (X̄n

)
− 1

2

m∑
k=1

λk
(
X̄n

)2
+

1

2

(
m∑
k=1

λk
(
X̄n

)
Ŵ k
n

)2


+∆

b (0)−
m∑
k=1

λk
(
X̄n

)
σk (0) +

m∑
j,k=1

σj (0)λk
(
X̄n

)
Ŵ j
nŴ

k
n


+∆3/2X̄n

(
µ
(
X̄n

)
− 1

2

m∑
k=1

λk
(
X̄n

)2) m∑
k=1

λk
(
X̄n

)
Ŵ k
n

+∆3/2X̄n

(
m∑
k=1

λk
(
X̄n

)
Ŵ k
n

)3

/6

+∆3/2

µ (X̄n

)
− 1

2

m∑
k=1

λk
(
X̄n

)2
+

1

2

(
m∑
k=1

λk
(
X̄n

)
Ŵ k
n

)2
 m∑

k=1

σk (0) Ŵ k
n

+∆3/2

(
b (0)−

m∑
k=1

λk
(
X̄n

)
σk (0)

)
m∑
k=1

λk
(
X̄n

)
Ŵ k
n +Rn

(
∆, X̄n

)
,

where
∣∣Rn (∆, X̄n

)∣∣ ≤ |fn|4 exp (|fn|)
∣∣X̄n + gn

∣∣+K (T ) ∆2
(
1 +

∣∣X̄n

∣∣). This gives∣∣∣∣∣∣E
(X̄n+1 − X̄n

)` −(b (X̄n

)
∆ +

m∑
k=1

σk
(
X̄n

) (
W k

∆(n+1) −W
k
∆n

))`
�FTn

∣∣∣∣∣∣
≤ K (T ) ∆2

(
1 +

∣∣X̄n

∣∣q) (3.19)
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provided that ` = 1, 2, 3.

From (3.17), (3.18) and (3.19) we obtain (3.9). To this end, we can apply the classical methodology
introduced by Milstein [146] and Talay [196, 197], or we can directly use Theorem 9.1 of [147] (see
also Theorem 14.5.2 of [120]).

3.3 Systems of linear SDEs

This section is devoted to the SDE

Xt = X0 +

∫ t

0
BXs ds+

m∑
k=1

∫ t

0
σkXs dW

k
s , (3.20)

where B, σ1, . . . , σm ∈ Rd×d. Without loss of generality we suppose X0 6= 0 a.s., and so, almost surely,
Xt 6= 0 for all t > 0 (see e.g. [102, 138]).

3.3.1 General methodology

We divide the numerical solution of (3.20) into the computations of ‖Xt‖ and X̂t := Xt/ ‖Xt‖, leading
to solve the coupled system formed by (3.21) and (3.24), given below.

Applying Itô’s formula to Xt∧τj/
√∥∥Xt∧τj

∥∥2
we get after a long calculation that

X̂t∧τj = X̂0 +

∫ t∧τj

0
B
(
X̂s

)
X̂s ds+

m∑
k=1

∫ t∧τj

0

(
σk −

〈
X̂s, σ

kX̂s

〉)
X̂s dW

k
s ,

where τj := inf {t > 0 : ‖Xt‖ < 1/j} and, by abuse of notation,

B (x) = B − 〈x,Bx〉+

m∑
k=1

(
3

2

〈
x, σkx

〉2
−
〈
x, σkx

〉
σk − 1

2

∥∥∥σkx∥∥∥2
)

∀x ∈ Rd.

Since almost surely Xt will never reach the origin, τj −→j→∞ ∞ a.s., and so taking limit as j → ∞
gives

X̂t = X̂0 +

∫ t

0
B
(
X̂s

)
X̂s ds+

m∑
k=1

∫ t

0

(
σk −

〈
X̂s, σ

kX̂s

〉)
X̂s dW

k
s . (3.21)

We propose to compute X̂Tn by numerically solving (3.21). Here, Tn = n∆ with ∆ > 0 and
n ∈ Z+. To this end, we can approximate X̂t in [Tn, Tn+1] by

Zt = X̃n +

∫ t

Tn

B
(
Ŷn

)
Zs ds+

m∑
k=1

∫ t

Tn

(
σk −

〈
Ŷn, σ

kŶn

〉)
Zs dW

k
s , (3.22)

where X̃n and Ŷn are FTn-measurable random variables of norm 1 such that X̃n ≈ X̂Tn and Ŷn ≈ X̂s

for all s ∈ [Tn, Tn+1]. Numerically integrating (3.22) by using, for instance, the Euler-Maruyama
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method we obtain Z̄n+1 ≈ ZTn+1 . Since
∥∥∥X̂Tn+1

∥∥∥ = 1, we expect that
∥∥Z̄n+1

∥∥ ≈ 1 in many situations.

Hence, we can improve the performance of the numerical schemes applied to (3.21) by projecting on
the unit sphere at each discretization step; a projection procedure used with success in the numerical
solution of the non-linear Schödinger equations (see e.g. [153, 173]). This gives Z̄n+1/

∥∥Z̄n+1

∥∥ ≈ X̂Tn+1

(see Remark 3.3.1 below).

In order to handle ‖Xt‖, applying Itô’s formula to
√∥∥Xt∧τj

∥∥2
we deduce that

‖Xt‖ = ‖X0‖+

∫ t

0

(
〈Xs, BXs〉+ 1

2

∑m
k=1

∥∥σkXs

∥∥2

‖Xs‖
− 1

2

m∑
k=1

〈Xs, σ
kXs〉2

‖Xs‖3

)
ds

+

m∑
k=1

∫ t

0

〈Xs, σ
kXs〉

‖Xs‖
dW k

s . (3.23)

A close look at Scheme 3.2.1 leads us to rewrite (3.23) as

‖Xt‖ = ‖X0‖+

∫ t

0

(
〈X̂s, BX̂s〉+

1

2

m∑
k=1

(∥∥∥σkX̂s

∥∥∥2
− 〈X̂s, σ

kX̂s〉2
))
‖Xs‖ ds

+
m∑
k=1

∫ t

0
〈X̂s, σ

kX̂s〉 ‖Xs‖ dW k
s .

(3.24)

Since 〈X̂s, BX̂s〉 +
∑m

k=1

(∥∥∥σkX̂s

∥∥∥2
− 〈X̂s, σ

kX̂s〉2
)
/2 and 〈X̂s, σ

kX̂s〉 are smooth functions of X̂s,

‖Xt‖ is well approximated on [Tn, Tn+1] by the solution of

ηt = η̄n +

∫ t

Tn

(
〈Ŷn, BŶn〉+

1

2

m∑
k=1

(∥∥∥σkŶn∥∥∥2
− 〈Ŷn, σkŶn〉2

))
ηs ds

+
m∑
k=1

∫ t

Tn

〈Ŷn, σkŶn〉ηs dW k
s

(3.25)

with η̄n ≈ ‖XTn‖ and Ŷn ≈ X̂s. Let Ŵ 1
0 , . . . , Ŵ

m
0 , Ŵ 1

1 , . . . be i.i.d. random variables with symmetric
law and variance 1. Replacing W k

Tn+1
−W k

Tn
by
√

∆Ŵ k
n in the explicit solution of the linear scalar

SDE (3.25) we obtain η̄n+1 ≈
∥∥XTn+1

∥∥, where η̄n+1 is given by the recursive formula

η̄n+1 = η̄n exp

((
〈Ŷn, BŶn〉+

1

2

m∑
k=1

∥∥∥σkŶn∥∥∥2
−

m∑
k=1

〈Ŷn, σkŶn〉2
)

∆

+
m∑
k=1

〈Ŷn, σkŶn〉
√

∆Ŵ k
n

)
. (3.26)

The simplest selection Ŷn = X̃n yields the following numerical method for (3.20):
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Scheme 3.3.1 Define recursively X̄n+1 =

{
Z̄n+1/

∥∥Z̄n+1

∥∥ ; if Z̄n+1 6= 0

X̄n ; if Z̄n+1 = 0
, where

Z̄n+1 = X̄n +B
(
X̄n

)
X̄n∆ +

m∑
k=1

(
σk −

〈
X̄n, σ

kX̄n

〉)
X̄n

√
∆Ŵ k

n (3.27)

with Ŵ 1
0 , Ŵ

2
0 , . . . , Ŵ

m
0 , Ŵ 1

1 , . . . i.i.d. symmetric random variables having variance 1. The stochastic
process η̄n+1 is given by (3.26) with Ŷn = X̄n.

From (3.26) it follows that η̄n > 0 for all n ∈ N, whenever η̄0 > 0. We next establish that η̄nX̄n

approximates XTn with rate of weak convergence equal to 1.

Theorem 3.3.1 Consider T > 0 and f ∈ C4
p

(
Rd,R

)
. Let η̄nX̄n be described by Scheme 3.3.1 with

∆ = T/N , where N ∈ N. Assume that Ŵ k
n are bounded random variables, X0 has finite moments of

any order, and that for every g ∈ C4
p

(
Rd,R

)
,
∣∣Eg (X0)− Eg

(
η̄0X̄0

)∣∣ ≤ K (1 + E ‖X0‖q)T/N whenever
N ∈ N. Then ∣∣Ef (XT )− Ef

(
η̄NX̄N

)∣∣ ≤ K (T ) (1 + E ‖X0‖q)T/N ∀N ∈ N. (3.28)

Proof 3.3.1 Deferred to Section 3.3.5.

Scheme 3.3.1 reproduces very well the behavior of ‖Xt‖. In fact, Theorem 3.3.2 below asserts
that for all ∆ > 0, Scheme 3.3.1 converges exponentially fast to 0 under a classical condition for
lim supt→∞ (log ‖Xt‖) /t < 0 (see e.g. [102, 138]). Moreover, Theorem 3.3.3 establishes that Scheme
3.3.1 is away from 0 for any step-size in a case where 0 is an unstable equilibrium point of (3.20) (see
e.g. [8]).

Theorem 3.3.2 Consider Scheme 3.3.1 with E (η̄0)2 <∞ and η̄0 > 0. Assume that

−λ := sup
x∈Rd,‖x‖=1

(
〈x,Bx〉+

m∑
k=1

(
1

2

∥∥∥σkx∥∥∥2
− 〈x, σkx〉2

))
< 0. (3.29)

Then lim supn→∞
1
n∆ log (η̄n) ≤ −λ P-a.s.

Proof 3.3.2 Deferred to Section 3.3.5.

Theorem 3.3.3 Let η̄n be described by Scheme 3.3.1 with E (η̄0)2 < ∞ and η̄0 > 0. Suppose that
there exists θ > 0 such that

〈x,Bx〉+
1

2

m∑
k=1

∥∥∥σkx∥∥∥2
− (1 + θ)

m∑
k=1

〈x, σkx〉2 ≥ 0 ∀ ‖x‖ = 1. (3.30)

Then lim infn→∞ η̄n > 0 a.s.

Proof 3.3.3 Deferred to Section 3.3.5.
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Remark 3.3.1 Consider Scheme 3.3.1. From Z̄n+1 ≈ X̂Tn+1 we have
∥∥Z̄n+1

∥∥ ≈ 1, and so we can

expect that
∥∥Z̄n+1

∥∥ is not close to 0. This motivates the approximation Z̄n+1/
∥∥Z̄n+1

∥∥ ≈ X̂Tn+1, which

efficiently reproduces the unit-norm property of X̂Tn+1 and is seldom influenced by the effect of round-
off errors. First,

∥∥Z̄n+1

∥∥ may take small values only for certain special combinations of X̄n and ∆.

For example, Z̄n+1 ≈ 0 implies
〈
X̄n, Z̄n+1

〉
≈ 0, and hence

∑m
k=1

(∥∥σkX̄n

∥∥2 −
〈
X̄n, σ

kX̄n

〉2
)
≈ 2/∆.

Second, suppose, for instance, that Ŵ k
n is distributed uniformly on

[
−
√

3,
√

3
]
. Then, using

∥∥X̄n

∥∥ = 1
we deduce that

∥∥Z̄n+1

∥∥ is uniformly bounded from below by a positive constant whenever ∆ is small
enough. According to Theorem 3.3.4 below we have that Z̄n+1 6= 0 a.s. for all ∆ > 0. Moreover,
the proof of Theorem 3.3.4 suggests us that the special cases where

∥∥Z̄n+1

∥∥ ≈ 0 happen with quite
small probability. In these situations, we can implement Scheme 3.3.1 by using a preconditioner like
X̄n+1 =

(
Z̄n+1/

∥∥Z̄n+1

∥∥
∞
)
/
∥∥Z̄n+1/

∥∥Z̄n+1

∥∥
∞
∥∥, or by setting X̄n+1 = X̄n in the worst case.

Theorem 3.3.4 Adopt the framework of Scheme 3.3.1. Let the distribution of Ŵ k
n be absolutely

continuous with respect to the Lebesgue measure. Then for all n ≥ 0, Z̄n 6= 0 a.s.

Proof 3.3.4 Deferred to Section 3.3.5.

3.3.2 Numerical experiments: well-conditioned drift matrix

A first bilinear test

We study the performance of Scheme 3.3.1 applied to the following test problem [26, 43]:

Xt = X0 +

∫ t

0

(
b 0

0 b

)
Xs ds+

∫ t

0

(
σ 0

0 σ

)
Xs dW

1
s +

∫ t

0

(
0 −ε
ε 0

)
Xs dW

2
s , (3.31)

where Xt =
(
X1
t , X

2
t

)> ∈ R2, b = −2, σ = ε = 4 and X0 = (1, 2)>. In order to avoid variance

problems, we calculate E arctan
(

1 +
(
X1
t

)2)
, whose “true” values (solid line) have been obtained by

sampling 108 times the explicit solution of (3.31). Since −λ = −2 < 0, the test equation (3.31) is
almost sure exponentially stable.
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Figure 3.5: Computation of E arctan
(

1 +
(
X1
t

)2)
, where Xt solves (3.31). The true values are plotted

with a solid line. The circles (resp. stars) represent the approximations of E arctan
(

1 +
(
X1
t

)2)
, with

t = 0, 1, . . . , 10, given by Scheme 3.3.1 (resp. the backward Euler method Ēn).

First, we consider η̄nX̄n defined by Scheme 3.3.1 with Ŵ k
n = ξkn, where ξ1

0 , ξ
2
0 , . . . , ξ

m
0 , ξ1

1 , . . . are
independent random variables taking values ±1 with probability 1/2. In Figure 3.5 we compare the

computation of E arctan
(

1 +
(
X1
t

)2)
by using η̄nX̄n (represented by circles) with that produced by

the backward Euler method

Ēn+1 = Ēn +BĒn+1∆ +
m∑
k=1

σkĒn
√

∆ξkn. (3.32)

All the sample sizes are equal to 106. Figure 3.5 shows the very good qualitative behavior of Scheme
3.3.1 in the numerical solution of (3.31), which is in good agreement with Theorem 3.3.2. We can
observe that the first coordinate of η̄nX̄n decays to 0 with the same speed that the true solution, even
for large step-sizes. In contrast, the trajectories of Ēn blow up when ∆ = 0.1 and ∆ = 0.02. Moreover,
η̄nX̄n achieves an excellent accuracy in cases ∆ = 1 and ∆ = 0.1.
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time t

↓

arctan(1)

Figure 3.6: Long time computation of E arctan
(

1 +
(
X1
t

)2)
by sampling 108 times the Scheme 3.3.1

with ∆ = 1/8, 1 and Ŵ 2
n distributed according to the normal and uniform laws. Here, Xt satisfies

(3.31). The very good accuracy of Scheme 3.3.1 makes difficult to distinguish between the four
simulations (dashdot lines) and the true values (solid line).

Second, we discuss the effect of round-off errors on Scheme 3.3.1 applied to (3.31). Using simple
algebraic transformations we get∥∥Z̄n+1

∥∥2
=
(
1− ε2∆/2

)2
+ ε2∆

(
Ŵ 2
n

)2
. (3.33)

If Ŵ 2
n = ξ2

n, then
∥∥Z̄n+1

∥∥2
= 1 + ε4∆2/4, and so we can calculate Z̄n+1/

∥∥Z̄n+1

∥∥ without problems.

From (3.33) it follows that Z̄n+1 ≈ 0 if and only if ∆ ≈ 2/ε2 and Ŵ 2
n ≈ 0. The latter happens with

a extremely low probability in case Ŵ 2
n is uniformly distributed on

[
−
√

3,
√

3
]
. In fact, Figure 3.6

illustrates the very good behavior of Scheme 3.3.1 with ∆ = 2/ε2 = 1/8 in the long-time computation

of E arctan
(

1 +
(
X1
t

)2)
when Ŵ 2

n is uniformly distributed on
[
−
√

3,
√

3
]
; our implementation of

Scheme 3.3.1 does not take any precaution against Z̄n+1 ≈ 0. If Ŵ 2
n is obtained by means of a

normal pseudorandom number generator, then Ŵ 2
n is equal to 0 with small probability, and hence the

performance of Scheme 3.3.1 is not affected when ∆ = 2/ε2, as we can see in Figure 3.6.
Third, Figure 3.7 addresses the numerical solution of (3.31) with b = −2 replaced by b = 0.5.

We can check that (3.31) satisfies the assumptions of Theorem 3.3.3 whenever b > 0. Furthermore,
it follows from the proofs of Theorem 12 of [8] and Theorem 3.3.3 that the norms of Xt and η̄nX̄n

converge almost surely to +∞ in this case. Figure 3.7 shows that Scheme 3.3.1 reproduces very well
the divergent behavior of Xt.
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Figure 3.7: Computation of E arctan
(

1 +
(
X2
t

)2)
, where Xt solves (3.31) with b = 0.5. The true

values are plotted with a solid line. Scheme 3.3.1, resp. the backward Euler method Ēn, is represented
by circles, resp. stars. For each scheme, 108 samples have been used.

An unstable bilinear system

Let us introduce the second order SDE

dXt =

(
0 1

−1 −2ζ

)
Xt dt+

(
0 0

−σ 0

)
Xt dW

1
t , (3.34)

where ζ ∈ R, σ > 0 and X0 6= 0 (see e.g. [11, 19, 20, 109, 110, 124]). Applying a result due to
Khas’minskii (1967) [119], Kozin and Prodromou (1971) [124] studied the exact stability region of
(3.34) in terms of the parameters

(
ζ, σ2

)
where the Lyapunov exponent is positive or negative by

using numerical integration. In particular it was proved that if σ > 0 and ζ ≤ 0 then system (3.34)
is almost surely exponentially unstable, i.e. the biggest Lyapunov exponent ` := limt→∞

1
t log ‖Xt‖ is

strictly positive independent of how small is the value of σ > 0 (see [19, 124] and references therein).
Further, Imkeller and Lederer [109, 110] obtained an integral representation of the top Lyapunov
exponent and then they gave a explicit formula in terms of hypergeometric functions. If σ = 0, that
is the deterministic case, using (3.29) we have that system (3.34) is a.s. exponentially stable for all
ζ > 0. Further, given ζ > 0 it is possible to destabilize (3.34) by choosing a large enough noise
intensity σ > 0 (see p. 46 in [110]). A more general form of the system (3.34) was studied in [20].

We consider the numerical estimation of expectations Ef (Xt) and Eg (Xt); where Xt =
(
X1
t , X

2
t

)>
,

by averaging 106 realizations of η̄nX̄n defined by Scheme 3.3.1 with Ŵ k
n = ξkn, and the backward Euler
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Figure 3.8: Approximations of Ef (Xt); t ∈ [0, 15], obtained by η̄nX̄n (circles) and Ēn (stars) using
∆ = 1/4. Here, Xt solves (3.34) with ζ = 0.062, σ2 = 0.5 and X0 = (1, 2)>. The true values are
plotted with a solid line. (a) f (x) = log

(
1 + x2

1

)
; (b) f (x) = log

(
1 + x2

2

)
.
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Figure 3.9: Estimations of Eg (Xt); t ∈ [0, 15], obtained by η̄nX̄n (circles) and Ēn (stars) using
∆ = 1/4. Here, Xt solves (3.34) with ζ = 0.062, σ2 = 0.5 and X0 = (1,−1)> /

√
2. The true values

are plotted with a solid line. (a) g (x) = arctan
(
1 + x2

1

)
; (b) g (x) = arctan

(
1 + x2

2

)
.

scheme Ēn given by (3.32). As in [124] we choose σ2 = 0.5 and ζ = 0.062. Thus, from Theorem
5 of [110] we have ` = 0.1347 and so (3.34) is a.s. exponentially unstable. The “true” values were
obtained by means of 106 sample paths of Ēn with time-step ∆ = 2−14. Figures 3.8 and 3.9 show the
performance of η̄nX̄n and Ēn in the approximation of Ef (Xt) and Eg (Xt) for t ∈ [0, 15] and ∆ = 1/4.
In both cases we can observe that Scheme 3.3.1 replies the desired unstable behavior. In turns, the
backward Euler scheme exhibits wrong stable results.

Lyapunov exponents

We illustrate the potential of Scheme 3.3.1 to compute Lyapunov exponents of bilinear SDEs (3.20)
(see e.g. [10, 198, 92] for classical theoretical and numerical references). To this end, we deal with the
approximation of ` (X0) := limt→∞

1
t log ‖Xt‖, where

Xt = X0 +

∫ t

0

(
a− σ2

2 0

0 b− σ2

2

)
Xs ds+

∫ t

0
σ

(
0 −1

1 0

)
Xs dW

1
s , (3.35)
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∆ 0.1 0.05 0.01 0.002 0.001 0.0001

σ = 10, ` = −0.48875

ˆ̀
N (∆) 30.09701 26.77603 −3.71372 −0.57889 −0.48503 −0.48811

˜̀
N (∆) −0.52693 −0.50851 −0.49928 −0.49132 −0.48930 −0.48937

σ = 20, ` = −0.49719

ˆ̀
N (∆) 86.56572 114.26780 93.37706 −9.63927 −2.96739 −0.48334

˜̀
N (∆) −0.55164 −0.51945 −0.50120 −0.49883 −0.49798 −0.49703

Table 3.2: Computed values for a final integration time T = N∆ = 500 of the Lyapunov exponent `

for (3.35) with a = 1, b = −2, X0 =
(
1/
√

2, 1/
√

2
)>

and different diffusion parameters σ.

with a, b ∈ R, σ > 0 and X0 6= 0. In this well-known test problem [17, 120, 198], ` (X0) does not
depend on the initial condition X0, and further

` =
a+ b

2
+
a− b

2

∫ 2π
0 cos (2θ) exp

(
a−b
2σ2 cos (2θ)

)
dθ∫ 2π

0 exp
(
a−b
2σ2 cos (2θ)

)
dθ

. (3.36)

Following [198] we take a = 1 and b = −2. Since ` (X0) = ` (X0/ ‖X0‖) for bilinear SDEs (3.20), there

is no loss of generality in assuming ‖X0‖ = 1 and we choose X0 =
(
1/
√

2, 1/
√

2
)>

.
In case B is well-conditioned, we can approximate the Lyapunov exponent ` by

˜̀
N (∆) :=

1

N∆
log
∥∥η̄NX̄N

∥∥ =
1

N∆

N−1∑
n=0

log

(∥∥η̄n+1X̄n+1

∥∥∥∥η̄nX̄n

∥∥
)
,

where η̄nX̄n is given by Scheme 3.3.1 and N ∈ N is sufficiently large. From (3.26) we have ˜̀
N (∆) =

1
N∆

∑N−1
n=0 Ln

(
X̄n

)
, with

Ln (x) =

(
〈x,Bx〉+

1

2

m∑
k=1

∥∥∥σkx∥∥∥2
−

m∑
k=1

〈x, σkx〉2
)

∆ +

m∑
k=1

〈x, σkx〉
√

∆Ŵ k
n ∀x ∈ R2.

For concreteness, we consider Ŵ k
n uniformly distributed on

[
−
√

3,
√

3
]
. Then

˜̀
n+1 (∆) = ˜̀

n (∆)

(
1− 1

n+ 1

)
+
Ln
(
X̄n

)
(n+ 1) ∆

.

In order to evaluate the performance of ˜̀
n, we also compute ` by means of the algorithm ˆ̀

n introduced
in pp. 1155 and 1156 of [198].

Table 3.2 compares the average of 20 realizations of both ˜̀
N (∆) and ˆ̀

N (∆) applied to (3.35)
with σ = 10 and σ = 20. We have actually computed 1

500 log (‖X500‖) since we choose N = 500/∆.
Numerically integrating (3.36) we obtain the reference value ` = −0.48875 for σ = 10, as well as that
` = −0.49719 whenever σ = 20. Table 3.2 shows the very good accuracy of ˜̀

N . In case σ = 10, the
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relative error
∣∣∣˜̀N (0.1)− `

∣∣∣ / |`| is equal to 0.0781, and so ˜̀
N (∆) provides a good approximation of `

even when ∆ = 0.1. If we increase the noise intensity to σ = 20, then
∣∣∣˜̀N (0.05)− `

∣∣∣ / |`| = 0.0448. In

contrast, ˆ̀
N (0.001) produces the value −2.96739.

3.3.3 Weak exponential schemes for bilinear SDEs

This subsection focuses on (3.20) with drift matrix B ill-conditioned. We return to (3.21) and
(3.24). If the matrix B has very different eigenvalues, then we should carefully approximate the
term 〈X̂s, BX̂s〉 in (3.24). This leads us to the problem of finding good candidates for the ran-
dom variable Ŷn involved in (3.22) and (3.26). Using, for instance, the midpoint rule we can select
Ŷn = exp (B∆/2) X̄n/

∥∥exp (B∆/2) X̄n

∥∥. Then, applying to (3.22) the Euler-exponential method
introduced in [153] we obtain the following almost sure exponentially stable scheme.

Scheme 3.3.2 Let Ŵ 1
0 , . . . , Ŵ

m
0 , Ŵ 1

1 , . . . be i.i.d. random variables with symmetric law and variance

equal to 1. Set X̄n+1 =

{
V̄n+1/

∥∥V̄n+1

∥∥ ; if V̄n+1 6= 0

X̄n ; if V̄n+1 = 0
, where n ≥ 0,

V̄n+1 = exp
(
B
(
Ȳn
)

∆
)(

X̄n +

m∑
k=1

(
σk −

〈
Ȳn, σ

kȲn

〉)
X̄n

√
∆Ŵ k

n

)

and Ȳn = exp (B∆/2) X̄n/
∥∥exp (B∆/2) X̄n

∥∥. Define recursively η̄n+1 by (3.26) with Ŷn = Ȳn.

An alternative to V̄n arises from solving (3.22) by the backward Euler method.
We next develop a different strategy, which has yielded promising results in our numerical exper-

iments. Consider again equations (3.21) and (3.24). Suppose that X̄n and ρ̄n are FTn-measurable
random variables such that X̄n ≈ X̂Tn ,

∥∥X̄n

∥∥ = 1, and ρ̄n ≈ ‖XTn‖. We define Yn (t) to be the
solution of the ordinary differential equation

Yn (t) = ρ̄nX̄n +

∫ t

Tn

BYn (s) ds ∀t ∈ [Tn, Tn+1] ,

that is, Yn (t) = exp (B (t− Tn)) ρ̄nX̄n. Since Ŷn (t) := Yn (t) / ‖Yn (t)‖ satisfies

Ŷn (t) = X̄n +

∫ t

Tn

(
B −

〈
Ŷn (s) , BŶn (s)

〉)
Ŷn (s) ds,

from (3.21) we obtain that for any t ∈ [Tn, Tn+1],

X̂t ≈ Ŷn (t) +

∫ t

Tn

Ψ
(
X̂s

)
X̂sds+

m∑
k=1

∫ t

Tn

(
σk −

〈
X̂s, σ

kX̂s

〉)
X̂sdW

k
s ,

where Ψ (x) =
∑m

k=1

(
3
〈
x, σkx

〉2
/2−

〈
x, σkx

〉
σk −

∥∥σkx∥∥2
/2
)

, for each x ∈ Rd. Hence

X̂t ≈ Ŷn (t) +

∫ t

Tn

Ψ
(
X̄n

)
X̂sds+

m∑
k=1

∫ t

Tn

(
σk −

〈
X̄n, σ

kX̄n

〉)
X̂sdW

k
s .
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In the spirit of the Euler-exponential schemes introduced by [153], we make the approximation X̂t ≈
X̃t, with

X̃t = Ŷn (t) +

∫ t

Tn

Ψ
(
X̄n

)
X̃sds+

m∑
k=1

∫ t

Tn

(
σk −

〈
X̄n, σ

kX̄n

〉)
X̄ndW

k
s . (3.37)

Using (3.24) and ‖Yn (t)‖ = ρ̄n +
∫ t
Tn
〈Ŷn (s) , BŶn (s)〉 ‖Yn (s)‖ ds we can assert that ‖Xt‖ is ap-

proximated by ρt, where t ∈ [Tn, Tn+1] and

ρt = ‖Yn (t)‖+

∫ t

Tn

(
m∑
k=1

(∥∥∥σkX̄n

∥∥∥2
/2− 〈X̄n, σ

kX̄n〉2/2
))

ρs ds (3.38)

+
m∑
k=1

∫ t

Tn

〈X̄n, σ
kX̄n〉 ρs dW k

s .

Approximating the explicit solution of (3.38) we get ρTn+1 ≈ ρ̄n+1, where

ρ̄n+1 = ρ̄n

∥∥∥Ỹn∥∥∥ exp

(
m∑
k=1

(∥∥∥σkX̄n

∥∥∥2
/2− 〈X̄n, σ

kX̄n〉2
)

∆ +
m∑
k=1

〈X̄n, σ
kX̄n〉

√
∆Ŵ k

n

)
(3.39)

with Ỹn = exp (B∆) X̄n.
Relations (3.37) and (3.39) are an alternative to (3.26) and (3.22). For instance, we derive the

following numerical method by combining the property Ŷn (Tn+1) = Ỹn/
∥∥∥Ỹn∥∥∥ with an approximation

of the explicit solution of (3.37) obtained using arguments similar to that in [153].

Scheme 3.3.3 Define recursively X̄n+1 =

{
Un+1/ ‖Un+1‖ ; if Un+1 6= 0

X̄n ; if Un+1 = 0
, where

Un+1 = exp
(
Ψ
(
X̄n

)
∆
)(

Ỹn/
∥∥∥Ỹn∥∥∥+

m∑
k=1

(
σk − 〈X̄n, σ

kX̄n〉
)
X̄n

√
∆Ŵ k

n

)
(3.40)

for any n ∈ Z+. Here Ỹn = exp (B∆) X̄n and Ŵ 1
0 , . . . , Ŵ

m
0 , Ŵ 1

1 , . . . are i.i.d. symmetric random
variables having variance 1. Let (ρ̄n)n≥0 be given by the recursive formula (3.39).

Under the condition (3.41) given below, Higham, Mao and Yuan (2007) [102] proved that the
backward Euler method applied to (3.20) is almost sure exponentially stable in case the step-size of
discretization is small enough. Next, we establish the almost sure exponential stability of Scheme
3.3.3 for any ∆ > 0 provided that (3.41) holds.

Theorem 3.3.5 Consider the Scheme 3.3.3 with ρ̄0 > 0 and E (ρ̄0)2 <∞. Suppose that

−λ̃ := sup
x∈Rd,‖x‖=1

〈x,Bx〉+ sup
x∈Rd‖x‖=1

m∑
k=1

(∥∥∥σkx∥∥∥2
/2− 〈x, σkx〉2

)
< 0. (3.41)

Then lim supn→∞
1
n∆ log (ρ̄n) ≤ −λ̃ P− a.s.
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Proof 3.3.5 Deferred to Section 3.3.5.

Using the relation (3.59) given in the proof of Theorem 3.3.5, we prove the following result in much
the same way as Theorem 3.3.3.

Theorem 3.3.6 Adopt the framework of Scheme 3.3.3. Suppose that E (ρ̄0)2 < ∞, ρ̄0 > 0, and that
there exists θ > 0 for which

inf
‖y‖=1

〈y,By〉+
1

2

m∑
k=1

∥∥∥σkx∥∥∥2
− (1 + θ)

m∑
k=1

〈x, σkx〉2 ≥ 0 ∀ ‖x‖ = 1.

Then lim infn→∞ ρ̄n > 0 a.s.

Analysis similar to that in the proof of Theorem 3.3.4 shows that Ūn 6= 0 a.s. whenever the
distribution of Ŵ k

n is absolutely continuous with respect to the Lebesgue measure. As in Scheme
3.3.1, the performance of Scheme 3.3.3 is rarely affected by round-off errors. For example, we have

‖Un+1‖2 = exp
(
−1

2ε
2∆
)(

1 + ε2∆
(
Ŵ 2
n

)2
)

when we apply Scheme 3.3.3 to (3.31), and hence we can

compute Un+1/ ‖Un+1‖ without taking precautions against Un+1 ≈ 0 unless ∆ is very large. Next, we
assert that the rate of weak convergence of Scheme 3.3.3 is equal to 1 in case Ŵ k

n is bounded.

Theorem 3.3.7 Assume that T > 0, f ∈ C4
p

(
Rd,R

)
and that X0 has finite moments of any order.

Consider ρ̄nX̄n defined by Scheme 3.3.3 with ∆ = T/N , where N ∈ N. Let Ŵ k
n be a bounded random

variable. Given any g ∈ C4
p

(
Rd,R

)
suppose that

∣∣Eg (X0)− Eg
(
ρ̄0X̄0

)∣∣ ≤ K (1 + E ‖X0‖q)T/N for
all N ∈ N. Then ∣∣Ef (XT )− Ef

(
ρ̄NX̄N

)∣∣ ≤ K (T ) (1 + E ‖X0‖q)T/N ∀N ∈ N. (3.42)

Proof 3.3.6 Deferred to Section 3.3.5.

Remark 3.3.2 Applying the Euler approximation to (3.37) we get:

Scheme 3.3.4 Let Ŵ 1
0 , Ŵ

2
0 , . . . , Ŵ

m
0 , Ŵ 1

1 , . . . be i.i.d. symmetric random variables having variance

1. Define recursively X̄n+1 =

{
Vn+1/ ‖Vn+1‖ ; if Vn+1 6= 0

X̄n ; if Vn+1 = 0
, with

Vn+1 = Ỹn/
∥∥∥Ỹn∥∥∥+ Ψ

(
X̄n

)
X̄n∆ +

m∑
k=1

(
σk − 〈X̄n, σ

kX̄n〉
)
X̄n

√
∆Ŵ k

n ,

where n ∈ Z+ and Ỹn = exp (B∆) X̄n. Furthermore, (ρ̄n)n≥0 is described by (3.39).

3.3.4 Numerical experiments: ill-conditioned drift

This subsection addresses the bilinear test (3.31), but with more general drift coefficient B.
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Figure 3.10: Computation of E arctan
(

1 +
(
X2
t

)2)
, where t ∈ [0, 4] and Xt solves (3.43) with b1 =

−100, b2 = 2, σ = 4, ε = 1 and X0 = (1, 2)>. The true values are plotted with a solid line. The circles
and stars represent the approximations obtained by Scheme 3.3.3 and Ēn respectively

Diagonal matrix B

We deal with the numerical solution of the SDE

Xt = X0 +

∫ t

0

(
b1 0

0 b2

)
Xs ds+

∫ t

0

(
σ 0

0 σ

)
Xs dW

1
s +

∫ t

0

(
0 −ε
ε 0

)
Xs dW

2
s , (3.43)

with σ = 4, ε = 1 and X0 = (1, 2)>. In order to study cases where B is ill-conditioned, we take
b1 = −100 and b2 = 2. Since −λ̃ = max {b1, b2} +

(
ε2 − σ2

)
/2 = −11/2, Xt converges exponentially

fast to 0 as t tends to infinity.

As in Subsection 3.3.2, we compute expectations of the bounded process arctan
(

1 +
(
X2
t

)2)
, where

Xt =
(
X1
t , X

2
t

)
. The reference values for E arctan

(
1 +

(
X2
t

)2)
have been obtained by sampling 108

times the Euler-Maruyama scheme

En+1 = En +BEn∆ +

m∑
k=1

σkEn
√

∆ξkn

with step-size ∆ = 2−14 ≈ 0.0000610. Here, ξ1
0 , ξ

2
0 , . . . , ξ

m
0 , ξ

1
1 , . . . are independent random variables

taking values ±1 with probability 1/2. In Figure 3.10 the “true” values are plotted with a solid line.
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∆ Backward Euler Scheme 3.3.1 Scheme 3.3.2 Scheme 3.3.3 Scheme 3.3.4

1/2 − 0.15767 0.16262 0.11463 0.097492

1/4 0.62209 0.15767 0.039728 0.033856 0.033187

1/8 0.45494 0.15767 0.055127 0.028848 0.027073

1/16 0.1167 0.15767 0.031429 0.00092922 0.00001519

1/32 0.051448 0.15765 0.02738 0.0034819 0.0030137

1/64 0.022656 0.057997 0.022279 0.0013437 0.001135

2−7 0.010789 0.015613 0.016977 0.0007307 0.00065061

2−8 0.0052678 0.0061579 0.011165 0.00037132 0.00034013

2−9 0.0031195 0.0032785 0.0059087 0.00034469 0.0003577

2−10 0.001551 0.001571 0.0032079 0.00017328 0.00017914

2−11 0.00045271 0.00044898 0.001994 0.00023427 0.0002315

2−12 0.00031327 0.00030817 0.00092728 0.000029582 0.000028237

Table 3.3: Absolute errors
∣∣Ef (XT )− Ef

(
YT/∆

)∣∣ involved in the computation of Ef (XT ), where Xt

verifies the equation (3.43), T = 0.5 and f (x1, x2) = arctan
(

1 + (x2)2
)

.

Moreover, the circles (resp. stars) represent the estimated values of E arctan
(

1 +
(
X2
t

)2)
produced

by averaging over 106 observations of Scheme 3.3.3 with Ŵ k
n = ξkn (resp. the backward Euler method

Ēn given by (3.32). Figure 3.10 shows that the second coordinate of Ēn does not converge to 0 when
∆ = 0.25, 0.125, and it goes too fast to 0 for ∆ = 0.0625. On the contrary, Scheme 3.3.3 is very
accurate, even with ∆ = 0.25.

Table 3.3 presents the errors produced at time T = 0.5 by the backward Euler and the new
numerical methods. We assign the weak error ε (Y,∆) :=

∣∣Ef (XT )− Ef
(
YT/∆

)∣∣ to every scheme

Y with step-size ∆, where f (x1, x2) = arctan
(

1 + (x2)2
)

. Table 3.3 compares estimates of ε (Y,∆)

obtained by sampling 106 times the backward Euler method Ēn and Schemes 3.3.1, . . . , 3.3.4, each
of them with Ŵ k

n = ξkn. The length of all the 99%-confidence intervals are at least of order 10−3

(see e.g. [120]). Table 3.3 shows that the values of ε (Scheme 3.3.3,∆) and ε (Scheme 3.3.4,∆) are
quite similar. We can also see that Schemes 3.3.3 and 3.3.4 are very accurate. Moreover, the second
coordinate given by Scheme 3.3.1 decays too fast to 0 when ∆ ≥ 1/32. Finally, Scheme 3.3.2 has
exponentially stable trajectories, but tends to 0 slightly more slowly than the reference solution.

Non-normal matrix B

Let us consider the test problem

dXt =

(
b β

0 b

)
Xt dt+

(
σ 0

0 σ

)
Xt dW

1
t +

(
0 ε

−ε 0

)
Xt dW

2
t , (3.44)
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∆ 1/2 1/4 1/8 1/16 1/32 1/64 1/128

σ = 0, T = 6, f (x1, x2) = x1, g (x1, x2) = x2

Ē 3.678 2.2215 1.3374 0.72102 0.37507 0.19127 0.09612

ρ̄X̄ 0.68916 0.84471 0.50458 0.20551 0.083903 0.038641 0.017797

σ = 3/2, T = 6, f (x1, x2) = log
(
1 + x21

)
, g (x1, x2) = log

(
1 + x22

)
Ē 2.8724 0.95405 0.70717 0.38121 0.20104 0.10199 0.051117

ρ̄X̄ 0.30013 0.34581 0.23995 0.20972 0.098283 0.049348 0.024578

σ = 3, T = 4, f (x1, x2) = log
(
1 + x21

)
, g (x1, x2) = log

(
1 + x22

)
Ē 10.873 6.92 1.5617 0.6615 0.30483 0.14916 0.071085

ρ̄X̄ 0.35669 0.41193 0.19277 0.16472 0.078604 0.038411 0.019084

Table 3.4: Estimated values of max {|Ef (Xn∆)− Ef (Yn)|+ |Eg (Xn∆)− Eg (Yn)| : n = 0, . . . , T/∆},
where Xt solves (3.44) and Yn stands for Ēn and Scheme 3.3.3.

with X0 = (−6, 4)>, b = −2, β = 10 and ε = 1/ 4
√
β. Moreover, we choose σ equal to 0, 3/2 and 3. In

case σ = 0, equation (3.44) reduces to a mean-square asymptotically stable SDE of the type studied
in [44, 100]. Since (3.44) is a.s. exponentially stable whenever −λ̃ = b + |β| /2 +

(
ε2 − σ2

)
/2 < 0

(see e.g. [102]), we can ensure that (3.44) with σ = 3 is a.s. exponentially stable. An analysis
similar to that in the proof of Theorem 2.2 of [44] shows that (3.44) is mean-square asymptoti-

cally stable if and only if ε2/3 − 2b − σ2 is greater than 1
3

3

√
8ε6 + 27β2ε2 + 3

√
48ε8β2 + 81β4ε4 +

4
3ε

4/ 3

√
8ε6 + 27β2ε2 + 3

√
48ε8β2 + 81β4ε4. Hence, (3.44) is mean-square “unstable” for σ = 3/2, 3.

Table 3.4 compares the errors arising from averaging 108 samples of both Scheme 3.3.3 with
Ŵ k
n = ξkn and the backward Euler scheme Ēn given by (3.32). The final integration times T > 0 are

large enough in order to guarantee that XT is very small with high probability. The “true” values
have been calculated by sampling 108 paths of Ēn with ∆ = 2−14. In Table 3.4 we can observe that
Scheme 3.3.3 approximates well Xt, even for large step sizes ∆. As we illustrate in Figure 3.11, the
good performance of Scheme 3.3.3 is due to its ability to approximate very well the transient behavior
that Xt has before reaching the equilibrium point (see e.g. [44, 100]).

3.3.5 Proofs

Proof of Theorem 3.3.1

We first establish that for an arbitrary q ≥ 2,

E
∥∥η̄nX̄n

∥∥q ≤ K (T )E |η̄0|q ∀n = 0, . . . , N. (3.45)

To shorten notation, we set λk
(
X̄n

)
=
〈
X̄n, σ

kX̄n

〉
and

µ
(
X̄n

)
=
〈
X̄n, BX̄n

〉
+

m∑
k=1

(∥∥∥σkX̄n

∥∥∥2
−
〈
X̄n, σ

kX̄n

〉2
)
/2.
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Figure 3.11: Estimated values of (Ef (Xt) ,Eg (Xt)) obtained by Scheme 3.3.3 (circles) and the back-
ward Euler scheme Ēn (stars). Here Xt solves (3.44) and the true values are plotted with a solid
red line. (a) ∆ = 1/4, σ = 0, f (x) = x1, g (x) = x2; (b) ∆ = 1/8, σ = 3/2, f (x) = log

(
1 + x2

1

)
,

g (x) = log
(
1 + x2

2

)
; and (c) ∆ = 1/8, σ = 3, f (x) = log

(
1 + x2

1

)
, g (x) = log

(
1 + x2

2

)
.

Similar to the proof of (3.17), we rewrite η̄n+1 as exp (hn) η̄n, and so

η̄n+1 = η̄n + (exp (hn)− 1− hn) η̄n + hnη̄n,

with hn :=
(
µ
(
X̄n

)
− 1

2

∑m
k=1 λ

k
(
X̄n

)2)
∆ +

∑m
k=1 λ

k
(
X̄n

)√
∆Ŵ k

n . Thus

η̄n+1 = η̄0 +
n∑
k=0

(exp (hk)− 1− hk) η̄k +

n∑
k=0

hkη̄k.

Using |exp (hk)− 1− hk| ≤ |hk|2 exp (|hk|) we obtain

|η̄n+1|q ≤K |η̄0|q +K (n+1)q−1
n∑
k=0

|hk|2q eq|hk| |η̄k|q +K∆q/2
m∑
j=1

∣∣∣∣∣
n∑
k=0

λj
(
X̄k

)
η̄kŴ

j
k

∣∣∣∣∣
q

+K (n+ 1)q−1
n∑
k=0

∆q

∣∣∣∣∣∣µ (X̄k

)
− 1

2

m∑
j=1

λj
(
X̄k

)2∣∣∣∣∣∣
q

|η̄k|q . (3.46)

For any k ∈ Z+,
∣∣µ (X̄k

)∣∣ ≤ K and
∣∣λj (X̄k

)∣∣ ≤ K, because
∥∥X̄k

∥∥ = 1. We also have that Ŵ 1
0 is

a bounded random variable. Then, applying the Burkholder-Davis-Gundy inequality we deduce from
(3.46) that

E |η̄n+1|q ≤ KE |η̄0|q +K (T ) ∆
n∑
k=0

E |η̄k|q

for all n = 0, . . . , N − 1. A discrete Gronwall lemma (see e.g. [10]) now leads to (3.45).
We proceed to find a truncated asymptotic expansion of η̄n+1X̄n+1 as ∆ goes to 0. In what

follows, we use the same symbol O (·) for different random functions from
[
0, T 2

]
to R or Rd×d such

that ‖O (s)‖ ≤ K (T ) s. Since∣∣exp (x)−
(
1 + x+ x2/2 + x3/6

)∣∣ ≤ x4 exp (|x|) ,
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η̄n+1 = η̄n

(
1 +

(
µ
(
X̄n

)
− 1

2

m∑
k=1

λk
(
X̄n

)2)
∆ +

m∑
k=1

λk
(
X̄n

)
Ŵ k
n

√
∆

)
(3.47)

+η̄n

µ (X̄n

)
− 1

2

m∑
j=1

λj
(
X̄n

)2( m∑
k=1

λk
(
X̄n

)
Ŵ k
n

)
∆3/2

+
η̄n
2

(
m∑
k=1

λk
(
X̄n

)
Ŵ k
n

)2

∆ +
η̄n
6

(
m∑
k=1

λk
(
X̄n

)
Ŵ k
n

)3

∆3/2 + η̄nO
(
∆2
)
.

Multiplying the right hand sides of (3.27) and (3.47) yields

η̄n+1Z̄n+1 =

(
1 +B∆ +

m∑
k=1

σkŴ k
n

√
∆

)
η̄nX̄n + Γn∆3/2η̄nX̄n (3.48)

+∆
m∑
k=1

(
σk − λk

(
X̄n

)
/2
)
λk
(
X̄n

)((
Ŵ k
n

)2
− 1

)
η̄nX̄n

+∆
∑
k 6=j

(
σj − λj

(
X̄n

)
/2
)
λk
(
X̄n

)
Ŵ j
nŴ

k
n η̄nX̄n +O

(
∆2
)
η̄nX̄n,

where Γn is a random matrix such that ‖Γn‖ ≤ K and E (Γn�FTn) = 0; throughout the proof, we
assume without loss of generality that Ŵ 1

n , . . . Ŵ
m
n are FTn+1-measurable and independent of FTn .

Indeed,

Γn =

(
B +

1

2

m∑
k=1

λk
(
X̄n

)2 − m∑
k=1

λk
(
X̄n

)
σk

)
m∑
j=1

λj
(
X̄n

)
Ŵ j
n

+
1

6

(
m∑
k=1

λk
(
X̄n

)
Ŵ k
n

)3

+

(
µ
(
X̄n

)
− 1

2

m∑
k=1

λk
(
X̄n

)2) m∑
k=1

(
σk− λk

(
X̄n

))
Ŵ k
n .

From (3.27) we have∥∥Z̄n+1

∥∥2
= 1 + ∆

m∑
k=1

(
λk
(
X̄n

)2 − ∥∥∥σkX̄n

∥∥∥2
)(

1−
(
Ŵ k
n

)2
)

(3.49)

+∆
∑
k 6=j

(〈
σkX̄n, σ

jX̄n

〉
− λj

(
X̄n

)
λk
(
X̄n

))
Ŵ k
nŴ

j
n

+2∆3/2
m∑
k=1

〈
B
(
X̄n

)
X̄n, σ

kX̄n − λk
(
X̄n

)
X̄n

〉
Ŵ k
n +O

(
∆2
)
.

Hence, there exists ∆0 > 0 such that
∣∣∣1− ∥∥Z̄n+1

∥∥2
∣∣∣ ≤ 1/2 for all ∆ ≤ ∆0, because

∣∣∣Ŵ k
n

∣∣∣ ≤ K. Using

the power series expansion of x 7→ (1 + x)−1/2 we get

1

‖z‖
= 1 +

1

2

(
1− ‖z‖2

)
+
(

1− ‖z‖2
)2
∞∑
k=2

(2k)!

(k!)2 4k

(
1− ‖z‖2

)k−2
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whenever
∣∣∣1− ‖z‖2∣∣∣ < 1. This, together with (3.49), implies that for all ∆ ≤ ∆0,

1/
∥∥Z̄n+1

∥∥ = 1 +
∆

2

m∑
k=1

(
λk
(
X̄n

)2 − ∥∥∥σkX̄n

∥∥∥2
)((

Ŵ k
n

)2
− 1

)
(3.50)

−∆

2

∑
k 6=j

(〈
σkX̄n, σ

jX̄n

〉
− λj

(
X̄n

)
λk
(
X̄n

))
Ŵ k
nŴ

j
n

−∆3/2
m∑
k=1

〈
B
(
X̄n

)
X̄n, σ

kX̄n − λk
(
X̄n

)
X̄n

〉
Ŵ k
n +O

(
∆2
)
.

Combining (3.48) with (3.50) gives

η̄n+1X̄n+1 =

(
1 +B∆ +

m∑
k=1

σkŴ k
n

√
∆

)
η̄nX̄n + Γ̃n∆3/2η̄nX̄n (3.51)

+∆

m∑
k=1

(
λk
(
X̄n

)
σk −

∥∥∥σkX̄n

∥∥∥2
/2

)((
Ŵ k
n

)2
− 1

)
η̄nX̄n

+∆
∑
k 6=j

(
λk
(
X̄n

)
σj −

〈
σkX̄n, σ

jX̄n

〉
/2
)
Ŵ j
nŴ

k
n η̄nX̄n +O

(
∆2
)
η̄nX̄n,

where ∆ ≤ ∆0 and Γ̃n is a random matrix satisfying
∥∥∥Γ̃n

∥∥∥ ≤ K and E
(

Γ̃n�FTn
)

= 0.

By (3.45), it is sufficient to prove that (3.28) holds for all N ≥ T/∆0. Then, from now we suppose
∆ ≤ ∆0. Looking at (3.51) we easily see that

∥∥η̄n+1X̄n+1 − η̄nX̄n

∥∥ ≤ K (T ) ∆1/2
∥∥η̄nX̄n

∥∥, and so

E
(∥∥η̄n+1X̄n+1 − η̄nX̄n

∥∥q� FTn) ≤ K (T ) ∆q/2
(
1 +

∥∥η̄nX̄n

∥∥q) . (3.52)

Moreover, (3.51) leads to∥∥∥∥∥E
(
η̄n+1X̄n+1 − η̄nX̄n −

(
B∆ +

m∑
k=1

σk
(
W k
Tn+1

−W k
Tn

))
η̄nX̄n�FTn

)∥∥∥∥∥
≤ K (T ) ∆2

(
1 +

∥∥η̄nX̄n

∥∥) .
Using again (3.51) we deduce that, up to terms of order O

(
∆2
) ∥∥η̄nX̄n

∥∥q, the second and third
moments of η̄n+1X̄n+1 − η̄nX̄n coincide with that of

Bη̄nX̄n∆ +

m∑
k=1

σkη̄nX̄nŴ
k
n

√
∆,

and then with that of
(
B∆ +

∑m
k=1 σ

k
(
W k
Tn+1

−W k
Tn

))
η̄nX̄n. Therefore, combining classical argu-

ments [146, 196, 197] with (3.45) and (3.52) we can assert that (3.28) holds for all T/N ≤ ∆0 (see
also Theorem 14.5.2 of [120]).
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Proof of Theorem 3.3.2

Using (3.26) yields

log (η̄n+1) = log (η̄0) +
n∑
j=0

(
〈X̄j , BX̄j〉+

1

2

m∑
k=1

∥∥∥σkX̄j

∥∥∥2
−

m∑
k=1

〈X̄j , σ
kX̄j〉2

)
∆ + Sn, (3.53)

where Sn =
∑n

j=0

∑m
k=1〈X̄j , σ

kX̄j〉
√

∆Ŵ k
j . Then, (3.29) leads to

1

n+ 1
log (η̄n+1) ≤ 1

n+ 1
log (η̄0) +

1

n+ 1
Sn − λ∆. (3.54)

Since

E

(
m∑
k=1

〈X̄j , σ
kX̄j〉

√
∆Ŵ k

j

)2

≤ E

(
m∑
k=1

∥∥∥σk∥∥∥∥∥X̄j

∥∥2√
∆
∣∣∣Ŵ k

j

∣∣∣)2

≤ K∆,

applying a generalized law of large numbers, as in the proof of Theorem 3.2.1, we obtain that
Sn/ (n+ 1)→ 0 a.s. From (3.54) it follows that

lim sup
n→∞

1

n+ 1
log (η̄n+1) ≤ −λ∆ a.s.

Proof of Theorem 3.3.3

We return to the proof of Theorem 3.3.2. By (3.30), it follows from (3.53) that

log (η̄n+1) ≥ log (η̄0) + θAn + Sn, (3.55)

where An =
∑n

j=0

∑m
k=1〈X̄j , σ

kX̄j〉2∆. Since Sn is a square integrable martingale with quadratic
variation process An, Sn converges a.s. on {A∞ <∞} to a finite random variable η (see Section 2.6.1
of [70]). Therefore lim infn→∞ log (η̄n) ≥ log (η̄0) + θA∞ + η almost surely on {A∞ <∞}, and so
lim infn→∞ η̄n > 0 a.s. on the event {A∞ <∞}.

Applying the strong law of large numbers for martingales (see Section 2.6.1 of [70]) we obtain
that Sn/An −→n→∞ 0 a.s. on {A∞ =∞}. Hence (3.55) yields lim infn→∞ log (η̄n) /An ≥ θ a.s. on
{A∞ =∞}, which implies

lim inf
n→∞

η̄n = +∞ a.s. on {A∞ =∞} .

Proof of Theorem 3.3.4

Let n ∈ Z+. Suppose that there exist x ∈ Rn satisfying ‖x‖ = 1 and an event A having positive
probability such that

x+B (x)x∆ +

m∑
k=1

(
σk −

〈
x, σkx

〉)
x
√

∆Ŵ k
n (ω) = 0 ∀ω ∈ A. (3.56)
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Fix ω0 ∈ A. By (3.56),

m∑
k=1

(
σk −

〈
x, σkx

〉)
x
(
Ŵ k
n (ω)− Ŵ k

n (ω0)
)

= 0 ∀ω ∈ A. (3.57)

Since

{(
Ŵ 1
n (ω)− Ŵ 1

n (ω0) , . . . , Ŵm
n (ω)− Ŵm

n (ω0)
)>

: ω ∈ A
}

has positive Lebesgue measure, this

subset contains a basis of Rm. Then, (3.57) leads to σkx−
〈
x, σkx

〉
x = 0. Therefore, x is an eigenvector

of all σk, and so (3.56) becomes

x+ ∆ (Bx− 〈x,Bx〉x) = 0. (3.58)

Hence x is an eigenvector of B, which yields Bx − 〈x,Bx〉x = 0. From (3.58) it follows that x = 0,
contrary to ‖x‖ = 1. Thus, we have obtained that x+B (x)x∆ +

∑m
k=1

(
σk −

〈
x, σkx

〉)
x
√

∆Ŵ k
n 6= 0

a.s. whenever ‖x‖ = 1. Finally, using regular conditional distributions we deduce that Z̄n+1 6= 0 a.s.

Proof of Theorem 3.3.5

From (3.39) we have

log (ρ̄n+1) = log (ρ̄0) +
n∑
j=0

(
log
∥∥eB∆X̄j

∥∥+
m∑
k=1

(
1

2

∥∥∥σkX̄j

∥∥∥2
−〈X̄j , σ

kX̄j〉2
)

∆

)
+ Sn,

where Sn =
∑n

j=0

∑m
k=1〈X̄j , σ

kX̄j〉
√

∆Ŵ k
j . Set Yj (t) := exp (B (t− Tj)) X̄j . Since dYj (t) /dt =

BYj (t), combining
∥∥X̄j

∥∥ = 1 with the fundamental theorem of calculus yields

log ‖Yj (t)‖ =

∫ t

Tj

〈Yj (s) / ‖Yj (s)‖ , BYj (s) / ‖Yj (s)‖〉ds,

and so

log (ρ̄n+1) = log (ρ̄0) + Sn

+
n∑
j=0

(∫ Tj+1

Tj

〈 Yj (s)

‖Yj (s)‖
, B

Yj (s)

‖Yj (s)‖
〉ds+

m∑
k=1

(
1

2

∥∥∥σkX̄j

∥∥∥2
− 〈X̄j , σ

kX̄j〉2
)

∆

)
. (3.59)

Combining (3.41) and (3.59) we obtain

log (ρ̄n+1) ≤ log (ρ̄0)− (n+ 1) ∆λ̃+ Sn.

As in the proof of Theorems 3.2.1 and 3.3.2, a generalized law of large numbers gives Sn/ (n+ 1)→ 0
a.s., and the theorem follows.
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Proof of Theorem 3.3.7

Set Yn (t) = exp (B (t− Tn)) X̄n and Ŷn (t) := Yn (t) / ‖Yn (t)‖. Then

‖Yn (t)‖ = 1 +

∫ t

Tn

〈Ŷn (s) , BŶn (s)〉 ‖Yn (s)‖ ds.

Hence
∥∥∥Ỹn∥∥∥ = exp

(∫ Tn+1

Tn

〈
Ŷn (s) , BŶn (s)

〉
ds
)

, and so ρ̄n+1 = exp (hn) ρ̄n, where

hn =

(
µ̃
(
X̄n

)
− 1

2

m∑
k=1

λk
(
X̄n

)2)
∆ +

m∑
k=1

λk
(
X̄n

)√
∆Ŵ k

n ,

with µ̃
(
X̄n

)
= 1

∆

∫ Tn+1

Tn

〈
Ŷn (s) , BŶn (s)

〉
ds +

∑m
k=1

(∥∥σkX̄n

∥∥2 −
〈
X̄n, σ

kX̄n

〉2
)
/2 and λk

(
X̄n

)
=〈

X̄n, σ
kX̄n

〉
. We can now proceed as in the first part of the proof of Theorem 3.3.1 to deduce that for

any q ≥ 2, E |ρ̄n|q ≤ K (T )E |ρ̄0|q whenever n = 0, . . . , N , and that

ρ̄n+1 = ρ̄n

(
1 +

(
µ̃
(
X̄n

)
− 1

2

m∑
k=1

λk
(
X̄n

)2)
∆ +

m∑
k=1

λk
(
X̄n

)
Ŵ k
n

√
∆

)
(3.60)

+ρ̄n

µ̃ (X̄n

)
− 1

2

m∑
j=1

λj
(
X̄n

)2( m∑
k=1

λk
(
X̄n

)
Ŵ k
n

)
∆3/2

+
ρ̄n
2

(
m∑
k=1

λk
(
X̄n

)
Ŵ k
n

)2

∆ +
ρ̄n
6

(
m∑
k=1

λk
(
X̄n

)
Ŵ k
n

)3

∆3/2 + ρ̄nO
(
∆2
)
.

Here and subsequently, O (·) denotes generic random functions from
[
0, T 2

]
to R or Rd×d satisfying

‖O (s)‖ ≤ K (T ) s.

Since Ŷn (t) = X̄n +
∫ t
Tn

(
B −

〈
Ŷn (s) , BŶn (s)

〉)
Ŷn (s) ds, for all t ∈ [Tn, Tn+1] we have Ŷn (t) =

X̄n +
(
B − 〈X̄n, BX̄n〉

)
X̄n (t− Tn) + O

(
(t− Tn)2

)
X̄n. Therefore, (3.60) still holds with µ̃

(
X̄n

)
replaced by

µ
(
X̄n

)
=
〈
X̄n, BX̄n

〉
+

m∑
k=1

(∥∥∥σkX̄n

∥∥∥2
−
〈
X̄n, σ

kX̄n

〉2
)
/2.

Moreover, Ỹn/
∥∥∥Ỹn∥∥∥ = X̄n +

(
B − 〈X̄n, BX̄n〉

)
X̄n∆ +O

(
∆2
)
X̄n. From (3.40) it follows that

Un+1 =
(
I + Ψ

(
X̄n

)
∆ +O

(
∆2
)) (

X̄n +
(
B − 〈X̄n, BX̄n〉

)
X̄n∆

+

m∑
k=1

(
σk − 〈X̄n, σ

kX̄n〉
)
X̄nŴ

k
n

√
∆ +O

(
∆2
)
X̄n

)
,

which implies

Un+1 = Z̄n+1 + Ψ
(
X̄n

) m∑
k=1

(
σk − 〈X̄n, σ

kX̄n〉
)
X̄nŴ

k
n∆3/2 +O

(
∆2
)
X̄n,
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where Z̄n+1 is defined as in (3.27). We are now in position to complete the proof by using an analysis
similar to that in the second part of the proof of Theorem 3.3.1.



Chapter 4

A forward-backward probabilistic
algorithm for the incompressible
Navier-Stokes equations

Expectations are conditioned by talking about dreams

We study forward-backward stochastic differential equations (FBSDEs) and, especially, their role
as probabilistic representations for deterministic solutions of partial differential equations (PDEs).
The forward stochastic differential equations (SDEs) appear as diffusion components in systems of
FBSDEs. The drift and diffusion terms of the SDEs depend on the processes (Y, Z) that solve the
backward SDEs (BSDEs) and, in turn, the terminal condition and the drift coefficient of the BSDEs
involve the solution X of the SDEs. The FBSDEs systems are connected with PDEs through the
nonlinear Feynman-Kac formula, which provides a forward-backward stochastic algorithm for the
PDEs by numerically solving the concerned FBSDEs. Recently Delbaen, Qiu and Tang (2015) [76]
introduced a probabilistic approach to study the incompressible Navier-Stokes equations in two and
three space dimensions by means of a new type of systems of FBSDEs. Essentially Delbaen et al.
incorporate the pressure term and the incompressibility condition to the Burgers equation, seems as
simplified Navier-Stokes equations, by means of additional BSDEs defined on an infinite time interval.
The authors propose a numerical algorithm to approximate strong solutions of the incompressible
Navier-Stokes equations in the whole Cartesian space by truncating the time interval of the extra
BSDEs in the novel FBSDEs representation. Motivated by their work, we deal with the computational
simulation of the incompressible Navier-Stokes equations by means of the numerical treatment of the
proposed FBSDEs system. We begin by replying some experiments in the case of the Burgers equation
by the numerical solution of FBSDEs as proposed in the works of Delarue and Menozzi [73, 74]. Then
we test the performance of the novel probabilistic approach by means of the numerical simulation of
two-dimensional Taylor-Green vortices and a Beltrami flow in three spatial dimensions, both exhibiting
spatially periodic explicit solutions.

67



68

4.1 Introduction

An important interest to discover, study and understand natural phenomena have been a constant
challenge through our existence. Addressed by Sciences as essential pillar in the recent evolution, we
have managed to significantly learn from Nature. A captivating and complex problem corresponds to
the fluid dynamics. From Physics and Mathematics the system of Navier-Stokes equations allows us
to model the movement of fluids, which was introduced by Navier (1822) [160] and Stokes (1849) [193]
incorporating a pressure term and viscosity to the Euler equations (see Euler (1757) [79]).

We study the numerical simulation of the Navier-Stokes equations for incompressible fluids in Rd
∂u

∂t
+ (u · ∇)u = ν∆u−∇p+ f ; 0 < t ≤ T,

∇ · u = 0, u (0, ·) = g,
(4.1)

for spatial dimensions d ∈ {2, 3}, given g (x) an initial divergence-free vector field on Rd, f (t, x) the
external force field and kinematic viscosity parameter ν > 0, until a final time T > 0. The system
of equations (4.1) describes the motion of an incompressible fluid by means of unknown fields of
velocity u (t, x) ∈ Rd and pressure p (t, x) ∈ R defined for each position x ∈ Rd and time t ∈ [0, T ],
and involving a nonlinear convective term (u · ∇)u, the diffusion term ν∆u, the pressure term ∇p
and the incompressibility condition ∇ · u = 0 (see e.g. Chorin and Marsden (1979) [61]). Although
its deduction goes back to the nineteenth century, there are still open problems concerned to it (see
Fefferman (2000) [80]). Nonetheless it is usual to find works that deal with fluid dynamics by using the
Navier-Stokes equations (Ocean modelling, atmosphere of Earth, gas dynamics, flow around vehicles,
weather prediction, dynamic of storms, air pollution, blood circulation, etc.), or simplifications such as
the Burgers equation or the Boussinesq equations (see e.g. [134, 162, 192]). By its way, the Lagrangian
modeling approach appears as an alternative to the Navier-Stokes equations for the study of turbulent
flows (see e.g. [34, 177]).

Stochastic processes and deterministic solutions of PDEs are related, for example through the
Feynman-Kac formula [82, 115] or well by means of branching processes [96, 141, 203] to obtain
probabilistic representations for the unknown solutions. Nowadays probabilistic representations for
solutions of deterministic models are active and important research fields in probability theory. It bring
us the possibility to develop known results by using probabilistic arguments as well as to obtain new
mathematical properties and interpretations to mathematical models. Additionally they incorporate
new methodologies for computational simulations, because the original solutions are rewritten in
terms of expected values of certain functionals depending on stochastic processes. There are various
probabilistic approaches that deal with specific PDEs [2, 3, 14, 31, 32, 53, 57, 63, 73, 74, 84, 113,
126, 174, 179, 180, 189, 190, 194, 204, 206]. In general, probabilistic representations incorporating
the boundary conditions of PDEs present additional challenges. In particular, we are awake of some
stochastic approaches related to the incompressible Navier-Stokes equations (see Benachour, Roynette
and Vallois (2001) [23], Bouchard and Menozzi (2009) [38], Constantin and Iyer (2011) [64], Milstein
and Tretyakov (2012) [151]).

There exists a huge literature about Navier-Stokes equations and during the last years have been
proposed probabilistic methodologies to deal with it. One of the first approaches involving stochastic
processes corresponds to the seminal Chorin’s random vortex method by considering the Navier-Stokes
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equations in vorticity form (see [57, 58, 59, 60] and additionally [190]). The vortex method is connected
with stochastic particle systems (see e.g. [142, 143, 144]). The two-dimensional incompressible Navier-
Stokes equations in vorticity form belongs to a class of McKean-Vlasov equations which admits a
probabilistic interpretation in terms of stochastic particle systems (see e.g. [36, 37, 195, 200]). In
the three-dimensional context, a stochastic particle approximation was introduced by associating a
generalized nonlinear diffusion of the McKean-Vlasov type with the solution of a vortex equation (see
[85]). Moreover, the branching processes gives us another way to study PDEs (see McKean (1975)
[141]). Meanwhile, the stochastic cascades approach introduced by Le Jan and Sznitman (1997) [126]
essentially studies a nonlinear integral equation whose solution coincides with the Fourier transform of
the vector Laplacian of the velocity field. Then, this new equation is interpreted in terms of a branching
process and a composition rule through its associated random tree (see additionally [29, 163, 179, 204]).
This approach appears in the study of nonlinear parabolic PDEs too (see e.g. [31, 180]).

The systems of FBSDEs associated to the incompressible Navier-Stokes equations is a novel ap-
proach (see Cruzeiro and Shamarova [68, 69]). Recently Delbaen, Qiu and Tang (2015) [76] introduced
a new class of coupled FBSDEs associated to the incompressible Navier-Stokes equations in the whole
space. Delbaen et al. proved the existence and uniqueness of local solutions and, additionally, existence
and uniqueness of global solutions in specific cases. Auxiliary results are presented to the Burgers
equation. Since their probabilistic representation involves a BSDE defined on an infinite time interval,
it is deduced an approximated solution to the incompressible Navier-Stokes equations by truncating
the infinite time interval associated to the proposed FBSDEs system. Their approach is connected
to stochastic Lagrangian particle systems (see e.g. Constantin and Iyer (2008) [63] and Zhang (2010)
[206]). Following a classical methodology to the treatment of FBSDEs [73, 74], the authors in [76]
propose a numerical algorithm to the simulation of the incompressible Navier-Stokes equations in the
whole Cartesian space.

In general probabilistic representations linked to deterministic PDEs are more studied from a theo-
retical point of view, there are not many works concerning to their computational implementation and
numerical approximation of PDEs (see e.g. Acebrón, Rodŕıguez-Rozas and Spigler (2010) [3], Bossy
(2005) [32], Chorin (1973) [57], Henry-Labordère, Tan and Touzi (2014) [97], Ramirez (2006) [179]).
Such approaches take into consideration expected values of specific stochastic processes needed to esti-
mate to obtain numerical approximations. An usual way to compute mean values is the Monte-Carlo
method, at cost of to simulate repeatedly independent and identically distributed (i.i.d.) random
variables. Alternatively, there exists the quantization method for which is necessary to know certain
optimal parameters to guarantee an appropriate order of approximation in terms of the spatial di-
mension d = 1, 2, 3, . . . In particular, the numerical treatment of FBSDEs considers the computation
of conditional expectations involving Gaussian processes in whose case the optimal quantization pa-
rameters are known (see Corlay, Pagès and Printems [66]). Regarding to the computational effort,
when d = 1 is convenient the quantization method. In case d = 2 they have the same estimation
order. Nonetheless if d = 3 the Monte-Carlo method seems to be suitable. In this last situation, it
is necessary to incorporate variance reduction techniques because the simulation of a large number of
samples for each expected values, i.e. for each discretization node in the associated temporal-spatial
grid. Some of the variance reduction alternatives are control variate and the stratification method.

This chapter is organized as follows. In Section 4.2 we recall the link between Itô SDEs and
PDEs through the celebrated Feynman-Kac formula. We motivate the introduction of BSDEs and
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then we focus on FBSDEs to specify their role as probabilistic representations of PDEs by means
of the nonlinear Feynman-Kac formula. Section 4.3 introduces the context of numerical schemes
for FBSDEs by means of a methodology due to Delarue and Menozzi [73, 74]. We consider the
numerical approximation to the Burgers equation and, additionally, we incorporate variance reduction
techniques to deal with the estimation of conditional expectations (see e.g. Corlay and Pagès (2015)
[65]). In Section 4.4 we study a probabilistic algorithm recently introduced by Delbaen, Qiu and Tang
(2015) [76] to the numerical simulation of the incompressible Navier-Stokes equations. We numerically
solve a two-dimensional Taylor-Green vortex flow and a Beltrami flow in three spatial dimensions by
simulating the novel Delbaen et al. system of FBSDEs.

4.1.1 Notations

Let
(

Ω,F , {Ft}t≥0 ,P
)

be a filtered complete probability space. For each d ∈ Z+ and q ≥ 1 consider

the space Lq
(
Ft,Rd

)
:=
{
ξ : Ω→ Rd : ξ a Ft-measurable and E ‖ξ‖q <∞

}
. For k ∈ N, α ∈ (0, 1)

and l ∈ Z+ denote by C∞c
(
Rd,Rl

)
the Rd-valued set of infinitely differentiable with support compact

functions on Rl and Ck,α
(
Rd,Rl

)
, or simplified as Ck,α, the Hölder space of functions φ : Rd → Rl

having continuous derivatives up to order k and such that the k-order partial derivatives are Hölder
continuous with exponent α. The space Ck,α is equipped with norm

‖φ‖Ck,α := sup
x∈Rd

‖φ (x)‖+

k∑
|β|=1

sup
x∈Rd

∥∥∥Dβφ (x)
∥∥∥+

∑
|β|=k

sup
x,y∈Rd,x 6=y

∥∥Dβφ (x)−Dβφ (y)
∥∥

‖x− y‖α
,

where the multi-index notation is considered. Given T > 0 and t ∈ [0, T ) we take C
(
[t, T ] ;Ck,α

)
the

space of continuous functions φ : [t, T ]→ Ck,α equipped with the norm

‖φ‖C([t,T ];Ck,α) := sup
s∈[t,T ]

‖φ (s)‖Ck,α ,

and C2+α
b

(
Rd
)
, α ∈ (0, 1), the space of all bounded twice differentiable functions on Rd being α-

Hölder continuous. Let L2
F (Ω;C ([t, T ] ;Rn×m)) be the set of all {Ft}t≥0-progressively measurable

continuous processes X taking values in Rn×m, such that E sups∈[t,T ] ‖Xs‖2 <∞. Finally, for m ∈ N
and q ∈ [1,∞) denote by Lq

(
Rl
)

and Hm,q
(
Rl
)

the usual Rl-valued Lebesgue and Sobolev spaces on
Rd. By abuse of notation we refer to Lq, Hm,q, or simply by Hm when q = 2. Moreover, denote by
Hm,q
σ the completion of the set

{
φ ∈ C∞c

(
Rd,Rl

)
: ∇ · φ = 0

}
under the norm

‖φ‖m,q :=

‖φ‖qLq +

m∑
|α|=1

‖Dαφ‖qLq

1/q

.

4.2 Probabilistic representations for PDEs

In this section we recall some classic results and notions concerning to the probabilistic representation
for solutions of PDEs by means of the celebrated Feynman-Kac formula and its generalization through
FBSDEs.
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4.2.1 Feynman-Kac formula

The Feynman-Kac formula due to Feynman (1948) [82] and Kac (1949) [115] provides a link between
Itô SDEs and deterministic PDEs. More precisely, fix a final time T > 0 and let (Xs)s∈[0,T ] be an
adapted solution of the SDE

Xs = X0 +

∫ s

0
b (r,Xr) dr +

∫ s

0
σ (r,Xr) dWr,

whereX0 ∈ L2
(
F0,Rd

)
, b =

(
b1, . . . , bd

)>
: [0,∞)×Rd → Rd, σ =

(
σ1 | . . . | σm

)
: [0,∞)×Rd → Rd×m

and W =
(
W 1, . . . ,Wm

)>
a m-dimensional Brownian motion defined on

(
Ω,F , (Ft)t≥0 ,P

)
. As usual,

for each t ∈ [0, T ) and x ∈ Rd the process
(
Xt,x
s

)
s∈[t,T ]

denote the solution of

Xt,x
s = x+

∫ s

t
b
(
r,Xt,x

r

)
dr +

∫ s

t
σ
(
r,Xt,x

r

)
dWr.

Define the second-order differential operator L by

Lv (t, x) :=
1

2

d∑
i,j=1

(
σσ>

)i,j
(t, x)

∂2v

∂xi∂xj
(t, x) +

d∑
i=1

bi (t, x)
∂v

∂xi
(t, x)

for v : [0,∞) × Rd → R smooth enough. Consider the solution u : [0, T ] × Rd → R of the Cauchy
problem 

∂u

∂t
(t, x) + Lu (t, x) + c (t, x)u (t, x) + f (t, x) = 0 ; ∀ (t, x) ∈ [0, T )× Rd,

u (T, x) = g (x) ; ∀x ∈ Rd,

where c, f : [0,∞) × Rd → R and g : Rd → R. Then, for every (t, x) ∈ [0, T ] × Rd the Feynman-Kac
formula gives the stochastic representation

u (t, x) = Et,x
[
exp

{∫ T

t
c (r,Xr) dr

}
g (XT ) +

∫ T

t
exp

{∫ s

t
c (r,Xr) dr

}
f (s,Xs) ds

]
(4.2)

= E
[
exp

{∫ T

t
c
(
r,Xt,x

r

)
dr

}
g
(
Xt,x
T

)
+

∫ T

t
exp

{∫ s

t
c
(
r,Xt,x

r

)
dr

}
f
(
s,Xt,x

s

)
ds

]
,

where Et,x := E (·�Xt = x) means the conditional expectation given the event {ω ∈ Ω : Xt (ω) = x} ∈
Ft (see e.g. Karatzas and Shreve (1988) [117] for hypotheses about functions b, σ, c, f and g). There-
fore, from Feynman-Kac formula (4.2) we have that the solution u of the Cauchy problem evaluated
at (x, t) can be obtained by computing the expectation of certain functional depending on the process(
Xt,x
s

)
s∈[t,T ]

.
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4.2.2 Backward stochastic differential equations

Let us look at the Itô SDE

dXs = b (Xs) ds+

m∑
k=1

σk (Xs) dW
k
s ,

or in matrix notation

dXs = b (Xs) ds+ σ (Xs) dWs, (4.3)

where b : Rd → Rd, σ : Rd → Rd×m are smooth functions and W =
(
W 1, . . . ,Wm

)>
is a m-

dimensional standard Brownian motion on the filtered complete probability space
(

Ω,F , {Ft}t≥0 ,P
)

.

Taking an initial condition X0 ∈ L2
(
F0,Rd

)
it is possible to find an adapted Rd-valued stochastic

process (Xt)t≥0 that solves the equation (4.3). On another hand, fixing T > 0 and given a terminal

condition XT ∈ L2
(
FT ,Rd

)
a different problem corresponds to find an Ft-measurable process Xt at

time t < T . As it was pointed out by Peng (2010) [171], from the SDE (4.3) we have

Xt = XT −
∫ T

t
b (Xs) ds−

∫ T

t
σ (Xs) dWs, (4.4)

and so, in general, Xt is FT -measurable and thus b (Xs) and σ (Xs) are not Fs-measurable, i.e. antic-
ipating processes. Then the Itô integral becomes invalid and the key point corresponds to guarantee
Xt ∈ L2

(
Ft,Rd

)
. Motivated by this situation, Pardoux and Peng (1990) [168] introduced the back-

ward stochastic differential equation (BSDE)

dYs = −h (s, Ys, Zs) ds+ ZsdWs ; s ∈ [0, T ] ,

or in integral form

Yt = YT +

∫ T

t
h (s, Ys, Zs) ds−

∫ T

t
ZsdWs. (4.5)

Here (Y, Z) is a pair of adapted processes that solve (4.5) for a given YT ∈ L2
(
FT ,Rd

)
. The function

h : [0,∞) × Rd × Rd×m → Rd is called the generator of the backward equation. The process Z
appearing in the BSDE (4.5) is the key element that permits to find a non-anticipating process Y . We
refer to [171] for a survey and detailed explanations. Additionally, see [131, 167, 168] for the classic
theory of BSDEs.

4.2.3 Forward-backward stochastic differential equations

Since their introduction and development during the early 1990s, the theory of backward stochastic
differential equations (BSDEs) initiated by Pardoux and Peng (1990) [168] has incorporated novel
probabilistic notions and new results with various applications (see e.g. Pardoux and Peng (1992)
[167], Peng (2010) [171]). The BSDEs together with SDEs constitute systems of forward-backward
stochastic differential equations (FBSDEs) that are connected with deterministic PDEs through the
nonlinear Feynman-Kac formula, generalizing the classical Feynman-Kac formula (see e.g. Antonelli
(1993) [7], Ma and Yong (1999) [131], Lejay (2004) [127], Cheridito et al. (2007) [51]).
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The connection between branching processes and differential equations gives us another way to
study PDEs by means of stochastic processes (see McKean (1975) [141], Le Jan and Sznitman (1997)
[126]). Recently Henry-Labordère, Tan and Touzi (2014) [97] presented a new approach that use
branching processes to solve decoupled systems of FBSDEs associated to semi-linear parabolic PDEs.
Following [97], it is possible to directly solve FBSDEs by means of branching processes, generaliz-
ing the relation between PDEs and stochastic equations through the notion of viscosity solutions of
path dependent PDEs, even in non-Markovian context. Quasi-linear parabolic PDEs involve coupled
FBSDEs, hence it is necessary to extend the approach introduced by [97] to more general contexts.

Let T > 0 be fixed and take a time interval [t, T ], t ∈ [0, T ). We study stochastic processes
(X,Y, Z)s∈[t,T ] governed by the FBSDEs system


Xs = x+

∫ s

t
b (r,Xr, Yr, Zr) dr +

∫ s

t
σ (r,Xr, Yr) dWr

Ys = g (XT ) +

∫ T

s
h (r,Xr, Yr, Zr) dr −

∫ T

s
ZrdWr

, (4.6)

where b : [0, T ] × Rd × Rn × Rn×m → Rd, σ : [0, T ] × Rd × Rn → Rd×m, g : Rd → Rn, h : [0, T ] ×
Rd × Rn × Rn×m → Rn and W =

(
W 1, . . . ,Wm

)>
is a m-dimensional Brownian motion defined on(

Ω,F , (Ft)t≥0 ,P
)

. The BSDEs in the system (4.6) depends on the diffusion process X that solves

the forward SDEs. When the coefficients of the diffusion process X do not depend on Y nor Z, the
system (4.6) is referred as decoupled FBSDEs. Otherwise we have coupled FBSDEs. Let us remark
that an adapted solution of the FBSDEs (4.6) is defined by a triple of processes

(X,Y, Z) ∈ L2
F

(
Ω;C

(
[t, T ] ;Rd

))
× L2

F (Ω;C ([t, T ] ;Rn))× L2
F
(
Ω;C

(
[t, T ] ;Rn×m

))
such that it satisfies (4.6) P-almost surely. From now on, we denote

(
Xt,x, Y t,x, Zt,x

)
to recall the

dependence on the parameters t ∈ [0, T ) and x ∈ Rd (see e.g. Ma and Yong (1999) [131]). We refer to
[72, 167] for the classic theory of FBSDEs.

As in the spirit of the classical Feynman-Kac formula, it is possible to obtain a probabilistic
representation for the solution u : [0, T ]× Rd → Rn of the quasilinear PDE

∂u

∂t
(t, x) + L (t, x, u (t, x)) + h (t, x, u (t, x) , Du (t, x)σ (t, x, u (t, x))) = 0 ; ∀ (t, x) ∈ [0, T )× Rd,

u (T, x) = g (x) ; ∀x ∈ Rd,
(4.7)

where Du (t, x) =
(
∂ui

∂xj
(t, x)

)
i,j

; for i ∈ {1, . . . , n} , j ∈ {1, . . . , d}, and

L (t, x, u) :=


L
(
t, x, u,Du1, D2u1

)
...

L
(
t, x, u,Dun, D2un

)
 , (4.8)
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with Duk =
(
∂uk

∂x1
, . . . , ∂u

k

∂xd

)>
, D2uk =

(
∂2uk

∂xi∂xj

)
i,j

and

L (t, x, u, p,Q) :=
1

2
tr
{
σσ> (t, x, u)Q

}
+ 〈b (t, x, u,Duσ (t, x, u)) , p〉, (4.9)

for p ∈ Rd and Q ∈ Sd+; the set of d×d real valued symmetric non-negative (definite) matrices, that is
Q = Q> and x>Qx = 〈x,Qx〉 ≥ 0 for all x ∈ Rd. More precisely, if the FBSDEs (4.6) admits unique
adapted solutions

(
Xt,x, Y t,x, Zt,x

)
on each subintervals [t, T ] ⊆ [0, T ] then we have

Y t,x
s = u

(
s,Xt,x

s

)
, Zt,xs = Du

(
s,Xt,x

s

)
σ
(
s,Xt,x

s , Y t,x
s

)
; ∀ (s, x) ∈ [t, T ]× Rd.

Therefore, the function u (t, x) := Y t,x
t is a viscosity solution to the associated PDE (4.7). The relation

u (t, x) = Y t,x
t ∀ (t, x) ∈ [0, T ]× Rd

is called the nonlinear Feynman-Kac formula (see, additionally, Crandall, Hitoshi and Lions (1992)
[67], Delarue and Menozzi (2006) [73]). From now on, it is assumed that σσ> is uniformly elliptic, i.e.
there exists λ > 0 such that for each (t, x, u) ∈ [0, T ]× Rd × Rn we have

〈ζ,
[
σσ>

]
(t, x, u) ζ〉 ≥ λ ‖ζ‖2 ; ∀ζ ∈ Rd.

In particular, when h (t, x, y, z) = c (t, x) y + f (t, x) and n = 1 the BSDEs in (4.6) has explicit
solution

Y t,x
s = exp

{∫ T

s
c
(
r,Xt,x

r

)
dr

}
g
(
Xt,x
T

)
+

∫ T

s
exp

{∫ r

s
c
(
θ,Xt,x

θ

)
dθ

}
f
(
r,Xt,x

r

)
dr

−
∫ T

s
exp

{∫ r

s
c
(
θ,Xt,x

θ

)
dθ

}
Zt,xr dWr

and the solution u : [0, T ] × Rd → R of the concerned equation (4.7) can be expressed as u (t, x) =

Y t,x
t = Et,x

(
Y t,x
t

)
, that is

u (t, x) = E
[
exp

{∫ T

t
c
(
r,Xt,x

r

)
dr

}
g
(
Xt,x
T

)
+

∫ T

t
exp

{∫ s

t
c
(
r,Xt,x

r

)
dr

}
f
(
s,Xt,x

s

)
ds

]
, (4.10)

which corresponds to the classical Feynman-Kac formula (4.2) (see e.g. Pardoux and Tang (1999)
[169], Pardoux and Peng (1992) [167], Mao (1995) [137], Pardoux (1998) [166]).

As application, in case of the d-dimensional Burgers equation (see Burgers (1948) [45])
∂u

∂t
+ (u · ∇)u+

ν

2
∆u+ f = 0 ; 0 ≤ t < T,

u (T ) = g,
(4.11)
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where f : [0, T ]× Rd → Rd, g : Rd → Rd and ν > 0, we can associate the coupled FBSDEs

∀s ∈ [t, T ] ,


Xt,x
s = x+

∫ s

t
Y t,x
r dr +

∫ s

t

√
νdWr,

Y t,x
s = g

(
Xt,x
T

)
+

∫ T

s
f
(
r,Xt,x

r

)
dr −

∫ T

s

√
νZt,xr dWr.

(4.12)

Then, we have Y t,x
s = u

(
s,Xt,x

s

)
and Zt,xs = Du

(
s,Xt,x

s

)
for all (s, x) ∈ [t, T ]×Rd (see Theorem 4.1

in Ma, Protter and Yong (1994) [130]). Alternatively, the Burgers equation (4.11) admits a decoupled
FBSDEs representation

∀s ∈ [t, T ] ,


Xt,x
s = x+

∫ s

t

√
νdWr,

Y t,x
s = g

(
Xt,x
T

)
+

∫ T

s

[
f
(
r,Xt,x

r

)
+

1√
ν
Zt,xr Y t,x

r

]
dr −

∫ T

s

√
νZt,xr dWr.

(4.13)

Note that to approximate the solution component Y t,x of the coupled FBSDE (4.12) it is not necessary
to estimate the process Zt,x. This is an advantage in comparison to the decoupled representation (4.13)
when we only are interested in the estimation of the process Y x,t

s without information about Zx,ts .

4.3 Numerical schemes for FBSDEs

In this section we follow a probabilistic approach introduced by Delarue and Menozzi (2006) [73],
and improved in Delarue and Menozzi (2008) [74], to study the numerical approximation of solutions
(X,Y, Z) of FBSDEs (4.6). Numerical schemes for FBSDEs is a recent field of research, we refer to
Ma, Protter and Yong (1994) [130], Douglas, Ma and Protter (1996) [78], Chevance (1997) [52], Ma,
Protter, San Mart́ın and Torres (2002) [129], Ma and Zhang (2002) [132], Bally and Pagès (2003) [15],
Zhang (2004) [205], Bouchard and Touzi (2004) [39], Gobet, Lemor and Warin (2005) [89], Zhao, Chen
and Peng (2006) [207], Bender and Zhang (2008) [24], Peng and Xu (2011) [172], Henry-Labordère,
Tan and Touzi (2014) [97], for additional literature and methodologies in such theory.

We are interested in FBSDEs (4.6) whose drift terms b and h are independent of the diffusion
coefficient Z of their BSDEs. More precisely, FBSDEs of the form

∀s ∈ [t, T ] ,


Xs = x+

∫ s

t
b (r,Xr, Yr) dr +

∫ s

t
σ (r,Xr, Yr) dWr,

Ys = g (XT ) +

∫ T

s
h (r,Xr, Yr) dr −

∫ T

s
ZrdWr.

(4.14)

As usual, we can remove the martingale part of the BSDEs by taking the conditional expectation
E (·�Xt = x) and so the dependance of Y on the process Z. Thus we focus on the numerical solution
of the process Y and, because the nonlinear Feynman-Kac formula, the estimation of the strong
solution u of the related PDE (4.7) by means of the probabilistic numerical algorithm.
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Given an integer N ≥ 1, consider a regular mesh of [0, T ] with time-step h := T/N , i.e. we set
tk := k ·h; ∀k ∈ {0, . . . , N}, and the infinite Cartesian grid Cδ := δ ·Zd of spatial-step δ > 0. Moreover,
Πδ stands for the projection mapping on the grid Cδ defined by

Πδ (x) := arg min {‖x− x̄‖ : x̄ ∈ Cδ} ∀x ∈ Rd.

Supposing an α-Hölder continuous function F : Rd → Rd, observe that

‖F (x)− F (Πδ (x))‖ ≤ K ‖x−Πδ (x)‖α ≤ Kδα.

For each k ∈ {0, . . . , N − 1}, we denote ∆Wk = Wtk+1
−Wtk and refer as q (∆Wk) =

√
hq
(

∆Wk√
∆

)
to

the optimal quantization of the underlying Gaussian variable ∆Wk/
√

∆ (see Subsection 4.3.1 below).

We consider the following numerical scheme ū that approximates the processes Y involved in the
FBSDEs (4.14) (see Delarue and Menozzi (2006) [73]):

Algorithm 4.3.1 Let T > 0. Fix h = T/N , with N ≥ 1, and δ > 0 such that δ ∈ ]0, h[. Then

ū (T, x) = g (x) ∀x ∈ Cδ.

Moreover, ∀k ∈ {0, . . . , N − 1}, ∀x ∈ Cδ, define recursively

T (tk, x) = b (tk+1, x, ū (tk+1, x)) · h+ σ (tk+1, x, ū (tk+1, x)) q (∆Wk) ,

ū (tk, x) = E [ū (tk+1,Πδ (x+ T (tk, x)))] + h (tk+1, x, ū (tk+1, x)) · h.

Usually, numerical schemes for FBSDEs involve a backward regression to compute the estima-
tions of the processes (X,Y, Z) (see [97] for a different approach using branching processes). The
process T (tk, x) corresponds to the Euler-Maruyama scheme applied to the SDEs component when
not considering the quantization of the Brownian increment (see [145]). In general situations we can
incorporate the numerical schemes introduced in the previous chapters to deal with the approxima-
tion of the SDEs involved in the system of FBSDEs (4.14). The discretization parameters of time
h > 0 and space δ > 0 are sufficient small and they must verify δ < h to take into account the local
influence of the drift b in the approximations T (tk, x). Obviously we cannot deal with infinite-space
grids and so, usually, it is necessary to incorporate a truncation procedure, where it is convenient
to have solutions vanishing at infinity, or to consider spatially-periodic solutions. In this PhD thesis
work we deal with the numerical estimation of space-periodic Navier-Stokes equations. The projection
operator onto the grid Πδ incorporates an extra source of error and affects the order of convergence of
the numerical algorithms, which can be improved, e.g., using linear interpolation but at cost of higher
computational effort. Moreover, the quantization of the underlying Gaussian variables q (∆Wk) be-
come a more efficient method to deal with the expectation approximations, instead of the classical
Monte-Carlo procedure. All this elements are intrinsically bounded to the computational effort of the
Algorithm 4.3.1 (see Section 4 of [73] for details and its convergence).
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4.3.1 Estimation of conditional expectations

Let (Ω,A,P) be a probability space. Suppose that U : (Ω,A,P)→ Rm is a square integrable random
variable and F : Rm → Rd is uniformly α-Hölder continuous, α ∈ (0, 1], such that F (U) ∈ L2

(
A,Rd

)
.

The usual way to estimate expectations is by means of the Monte-Carlo approximation

E [F (U)] ≈ 1

M

M∑
i=1

F
(
U (i)

)
, (4.15)

where U (i) are M independent realizations of the underlying random variable U . From now on, the
averages are computed in a component-wise manner. It is well-known that the error of approximation
by the Monte-Carlo method (4.15) depends on M−1/2 as M tends to infinity.

Alternatively, we can use the quantization method to estimate mean values. Indeed, let q (U) be
a quantizer of U , i.e. an approximation of U by a discrete random variable q (U) taking values in a
finite set Γ = {v1, . . . , vM} ⊂ Rm. Suppose that

q (U) =

M∑
i=1

vi1Ci (U)

where C = {C1, . . . , CM} is a partition of Rm associated to Γ be means of vi ∈ Ci for all i ∈ {1, . . . ,M}.
Then we have

E [F (U)] ≈ E [F (q (U))] =

M∑
i=1

P (U ∈ Ci) · F (vi) . (4.16)

Since F is α-Hölder continuous, applying the Jensen’s inequality the estimation error is bounded by

‖E [F (U)]− E [F (q (U))]‖ ≤ K
(
E
[
‖U − q (U)‖2

])α/2
,

where the quantization error in the L2-norm (to the power 2) is given by

‖U − q (U)‖22 =
M∑
i=1

E1Ci (U) ‖U − vi‖2 .

Thus, the key point is to provide convenient sets Γ and C such that the quadratic quantization error
is optimal.

We deal the context of m-dimensional Brownian increments ∆Wk =
√
hξ, where ξ ∼ N (0; Im), and

so the optimal quantization of the Normal distributionN (0; Im). In such situation, it is known that the
L2-optimal M -quantizer of the N (0; Im) distribution is obtained by means of Voronöı M -quantizers
(see Graf and Luschgy (2000) [90], Pagès and Printems (2003) [164], Corlay, Pagès and Printems
(2005) [66], Corlay and Pagès (2015) [65] for details on optimal quantization). Thus, considering

q (∆Wk) =
√
hq

(
1√
h

∆Wk

)
,
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with q
(

1√
h

∆Wk

)
the L2-optimal M -quantizer of the N (0; Im) distribution, we have(

E
[
‖∆Wk − q (∆Wk)‖2

])1/2
≤ K (m)h1/2M−1/m (4.17)

with K (m) > 0 only depending on the dimension m of the Gaussian process (see [73]). Then, we
obtain that the error of the quantization method (4.16) depends on M−α/m as M tends to infinity.

Additionally, we use quantization as control variate variable to reduce the variance of the Monte
Carlo estimation. More precisely, we make

E [F (U)] ≈ E [F (q (U))] +
1

M

M∑
i=1

[
F
(
U (i)

)
− F

(
q
(
U (i)

))]
. (4.18)

In general, we obtain an error of estimation in terms of
√

Var [F (U)− F (q (U))]/
√

M . In case of
Gaussian variables, the error of the estimation (4.18) is then M−1/2M−α/m, that reduces the error of
the Monte-Carlo method (4.15) and the quantization approach (4.16). We refer to Glasserman (2003)
[88], Fishman (2005) [83], Pagès and Printems (2005) [165], Lejay and Reutenauer (2012) [128], Corlay
and Pagès (2015) [65] for reduction variance techniques.

As especial case, let U1, . . . , Um be m independent and identically distributed square integrable
random variables Uk : (Ω,A,P)→ Rd and F :

(
Rd
)m → Rd a α-Hölder continuous function such that

F
(
U1, . . . , Um

)
belongs to L2

(
A,Rd

)
. Then, since U1, . . . , Um are independent we have

E
[
F
(
U1, . . . , Um

)]
≈ E

[
F
(
q
(
U1
)
, . . . , q (Um)

)]
=

M∑
i1,...,im=1

P
(
U1 ∈ Ci1

)
· · ·P (Um ∈ Cim)F (vi1 , . . . , vim)

In case Uk = ∆Wk =
√
hξk, with ξk ∼ N (0; Id), we obtain∥∥E [F (U1, . . . , Um

)]
− E

[
F
(
q
(
U1
)
, . . . , q (Um)

)]∥∥ ≤ Khα/2M−α/d.
Moreover, we can use quantization as a control variate variable, i.e.

E
[
F
(
U1, . . . , Um

)]
≈ E

[
F
(
q
(
U1
)
, . . . , q (Um)

)]
+

1

Mm

Mm∑
i=1

[
F
((
U1
)(i)

, . . . , (Um)(i)
)
− F

(
q
((
U1
)(i))

, . . . , q
(

(Um)(i)
))]

.

Therefore, the estimation error depends on (Mm)−1/2M−α/d.

4.3.2 Burgers equation

We study the numerical approximation to the strong solution of the d-dimensional Burgers equation
∂u

∂t
(t, x)− ((u · ∇)u) (t, x) +

ε2

2
∆u (t, x) = 0 ; (t, x) ∈ [0, T [× Rd,

u (T, x) = H (x) ; x ∈ Rd,
(4.19)



79

with ε > 0, H ∈ C2+α
b

(
Rd
)
; α ∈ (0, 1), and u = (u1, . . . , ud)

> : [0, T ] × Rd → Rd (see e.g. Bossy,
Fezoui and Piperno (1997) [37], Bossy and Jourdain (2002) [35], Delarue and Menozzi (2006) [73],
Delarue and Menozzi (2008) [74]). To this end we use the probabilistic representation u (t, x) = Y t,x

t ,

where
(
Y t,x
s

)
s∈[t,T ]

satisfies the coupled FBSDEs
Xt,x
s = x−

∫ s

t
Y t,x
r dr +

∫ s

t
εdWr,

Y t,x
s = H

(
Xt,x
T

)
−
∫ T

s
εZt,xr dWr,

(4.20)

where W is a d-dimensional Brownian motion. We reply some numerical experiments appearing in [73,
74] by incorporating quantization as control variate variable to compute the conditional expectations.

In order to numerically approximate the solution u of (4.19) we apply the Algorithm 4.3.1 to the
FBSDEs representation (4.20), i.e. we consider the following scheme:

Algorithm 4.3.2 Define
ū (T, x) = H (x) ∀x ∈ Cδ.

Then, consider ∀k ∈ {0, . . . , N − 1}, ∀x ∈ Cδ,

ū (tk, x) = E [ū (tk+1,Πδ (x− ū (tk+1, x) · h+ εq (∆Wk)))] .

We test the effect on Algorithm 4.3.2 when the quantization technique is replaced by the Monte-
Carlo method to estimate the expectations, i.e. the following scheme:

Algorithm 4.3.3 Define
ū (T, x) = H (x) ∀x ∈ Cδ.

Then, ∀k ∈ {0, . . . , N − 1}, ∀x ∈ Cδ, consider

ū (tk, x) =
1

M

M∑
m=1

ū
(
tk+1,Πδ

(
x− ū (tk+1, x) · h+ ε∆W

(m)
k

))
.

Although the convergence of the Algorithm 4.3.2 involves the optimal quantization of the under-
lying Gaussian variables ∆Wk, motivated by Pagès and Printems (2005) [165] (additionally Corlay
and Pagès (2015) [65]) we modify the above algorithm by considering quantization as a control variate
variable to compute the mean values. More precisely, we introduce the following numerical scheme

Algorithm 4.3.4 For all x ∈ Cδ, define

ū (T, x) = H (x) .

Then ∀k ∈ {0, . . . , N − 1}, ∀x ∈ Cδ,

ū (tk, x) = E [ū (tk+1,Πδ (x− ū (tk+1, x) · h+ εq (∆Wk)))]

+
1

M

M∑
m=1

ū
(
tk+1,Πδ

(
x− ū (tk+1, x) · h+ ε∆W

(m)
k

))
− 1

M

M∑
m=1

ū
(
tk+1,Πδ

(
x− ū (tk+1, x) · h+ εq

(
∆W

(m)
k

)))
.
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Here ∆W
(m)
k ; 1 ≤ m ≤ M , are M independent realizations of ∆Wk.

First, we consider the one-dimensional Burgers equation (4.19), i.e. when d = 1. The explicit
solution is given by

u (t, x) =
E [H (x+ εBT−t)φ (x+ εBT−t)]

E [φ (x+ εBT−t)]
∀ (t, x) ∈ [0, T ]× R, (4.21)

where B is a standard Brownian motion and

φ (y) = exp

(
−ε−2

∫ y

0
H (u) du

)
∀y ∈ R.

As in [73], we take H (x) = sin (2πx), T = 1, h = 0.01, δ = 10−3 and ε = 0.15. Thus, from (4.21) we
have a spatially 1-periodic exact solution u. Figure 4.1 summarizes the results obtained to the one-

dimensional Burgers equation. The data of the optimal quantizers q
(

∆Bk/
√

∆
)

have been obtained

from Corlay, Pagès and Printems (2005) [66]. As we expected, the Algorithm 4.3.3 produces worse
results than Algorithm 4.3.2. In turns, Algorithm 4.3.4 produces similar results as Algorithm 4.3.2
but reduces the computational effort required.

Now, we deal with the 2-dimensional context. The explicit solution is known when H = ∇H0,
where H0 is a real-valued function. More precisely, the explicit solution is

u (t, x) =
E
[
∇H0 (x+ εBT−t) exp

(
−ε−2H0 (x+ εBT−t)

)]
E [exp (−ε−2H0 (x+ εBT−t))]

∀ (t, x) ∈ [0, T ]× R. (4.22)

As in [74], we choose a spatially periodic H0 (x) =
∏
i=1,2 sin2 (πxi), T = 3/8, h = 2.5×10−2, δ = 0.01

and ε2 = 0.4. In Figure 4.2 we observe that the Algorithm 4.3.4 reduces the quantization errors to
the estimation of conditional expectations of the Algorithm 4.3.2 and so it improves the resulting
approximation errors. The Algorithm 4.3.4 has point-wise errors at most of 0.06879, reducing the
value 0.09481 in case of the Algorithm 4.3.2.
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ū
(
t
,
x
)|

(d) Algorithm 4.3.4

Figure 4.1: Reference values and absolute point-wise errors to the one-dimensional Burgers equation.
(a) Reference values for the profile of u in function of time computed by using (4.21) using quantization
techniques with M = 500 grid points; (b) Absolute point-wise error between the approximated and
true solution. As in [73], we use M = 160 quantized points to compute the numerical solution by
means of Algorithm 4.3.2; (c) Absolute point-wise error by using the Algorithm 4.3.3 with M = 160
realizations to the Monte Carlo method; and (d) Absolute point-wise error obtained by Algorithm
4.3.4 using Quantization (M = 40) as a control variate variable for Monte Carlo simulation (M = 16
realizations).
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Figure 4.2: Numerical estimations for the two-dimensional Burgers equation. (a) Terminal condition
u1 (T, ·); (b) Reference u1 (0, ·) via the explicit solution (4.22) using quantization with M = 600 points;
(c) Absolute point-wise error for u1 (0, ·) using Algorithm 4.3.2 with M = 4 points for quantization;
and (d) Absolute point-wise error for u1 (0, ·) by means of Algorithm 4.3.4 using quantization (M = 4)
as a control variate variable to the Monte-Carlo estimations (M = 4).
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4.4 Incompressible Navier-Stokes equations

We consider the Navier-Stokes equations for incompressible fluids in Rd, with d ∈ {2, 3}, written in
backward form 

∂u

∂t
+ (u · ∇)u+

ν

2
∆u+∇p+ f = 0 ; 0 ≤ t < T,

∇ · u = 0, u (T ) = g,
(4.23)

which is equivalent to the classical formulation (4.1) by a time-reversing transformation.
Indeed, let (u, p, f) be the concerning functions of the forward form (4.1) and consider the trans-

formation

(u, p, f) (t, x)→ (−u, p,−f) (T − t, x) =:
(
ũ, p̃, f̃

)
(t, x) ∀ (t, x) ∈ [0, T ]× Rd.

Thus the incompressible Navier-Stokes equations system (4.1) is rewritten by
∂ũ

∂t
+ (ũ · ∇) ũ = −ν∆ũ−∇p̃− f̃ ; 0 ≤ t < T,

∇ · ũ = 0, ũ (T ) = −g.

Then defining g̃ := −g and ν̃ := 2ν, with g and ν as in (4.1), we obtain the backward form
∂ũ

∂t
+ (ũ · ∇) ũ+

ν̃

2
∆ũ+∇p̃+ f̃ = 0 ; 0 ≤ t ≤ T,

∇ · ũ = 0, ũ (T ) = g̃.

The Burgers equation (4.11) can be seen as a simplified version of the incompressible Navier-Stokes
equations (4.23). Under regularity assumptions and given a divergence-free external force field f , an
approach to incorporate the pressure term ∇p and the incompressibility condition ∇ · u = 0 into the
Burgers equation (4.11) is be means of the Poisson problem

−∆p = div div (u⊗ u)

where div := ∇· represents the divergence operator and ⊗ the tensor product (see e.g. Chorin (1967)
[53], Majda and Bertozzi (2002) [133]). Then the incompressible Navier-Stokes equations (4.23) is
equivalent to

∂u

∂t
+ (u · ∇)u+

ν

2
∆u+∇ (−∆)−1 div div (u⊗ u) + f = 0 ; 0 ≤ t < T,

u (T ) = g.
(4.24)

Recently Delbaen, Qiu and Tang (2015) [76] introduced a coupled FBSDEs system (FBSDS) as-
sociated to the backward equation (4.24). Delbaen et al. give a probabilistic representation for the
nonlocal operator ∇ (−∆)−1 div div by means of BSDEs defined on the infinite time interval (0,∞).
Then, incorporating the extra BSDEs in the FBSDEs (4.12), which is associated to the Burgers equa-
tion, the authors obtain a new FBSDEs representation to the incompressible Navier-Stokes equations
in the whole space. Using their approach, it is possible to numerically approximate the strong solution
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u of (4.24) on (T0, T ], with T0 < T depending on the involved parameters. More precisely, the infinite
interval (0,∞) of the probabilistic representation for the operator ∇ (−∆)−1 div div is truncated by[

1
N , N

]
, for N ∈ (1,∞), and the velocity field u is approximated by means of uN , with N ∈ (1,∞),

which solves the truncated PDE
∂uN

∂t
+
(
uN · ∇

)
uN +

ν

2
∆uN + QN

(
uN ⊗ uN

)
+ f = 0 ; T0 ≤ t < T,

uN (T ) = g.

(4.25)

Here, for each N ∈ (1,∞) is defined

QN (φ⊗ ψ) := E
∫ N

1
N

27

2s3

d∑
i,j=1

φi·ψj (x+Bs)
(
Bi
s −Bi

2s
3

)(
Bj

2s
3

−Bj
s
3

)
B s

3
ds ∀φ, ψ ∈ Hm,m >

d

2
+1,

where B is a d-dimensional Brownian motion. Given ν > 0, g ∈ Hm
σ and f ∈ C

(
[0, T ] ;Hm−1

σ

)
with

m > d
2 + 1 we have the estimation∥∥u− uN∥∥

C([t,T ];Ck,α) ≤
C

N
α
4

; ∀t ∈ (T0, T ] , (4.26)

for some T0 ∈ (0, T ), k ∈ Z+, α ∈ (0, 1) and C > 0 independent of N . Note that from Morrey’s
inequality

Hm = Wm,2
(
Rd
)
⊂ Cm−[ d2 ]−1,γ ,

where γ =
[
d
2

]
+ 1 − d

2 = 1
2 when d = 3 or any number γ ∈ (0, 1) if d = 2 (see e.g. Theorem 6.6 in

[76]). Then, the equation (4.25) is associated through the nonlinear Feynman-Kac formula

uN (r, x) = Y r,x
r

to the following FBSDS:

dXt,x
s = Ys

(
s,Xt,x

s

)
ds+

√
νdWs ; s ∈ [t, T ] ,

Xt,x
t = x,

−dYs
(
s,Xt,x

s

)
=
[
f
(
s,Xt,x

s

)
+ QN (Ys ⊗ Ys)

(
s,Xt,x

s

)]
ds−

√
νZt,xs dWs,

YT (T, x) = g (x) ,

QN (Ys ⊗ Ys) (s, x) =

d∑
i,j=1

E
∫ N

1
N

27

2r3
Y i
s · Y j

s (s, x+Br)
(
Bi
r −Bi

2r
3

)(
Bj

2r
3

−Bj
r
3

)
B r

3
dr

=
d∑

i,j=1

E
∫ N

3

1
3N

3

2r3
Y i
s · Y j

s

(
s, x+ B̄r + B̃r + B̂r

)
B̄i
rB̃

j
rB̂rdr,

(4.27)

where W,B, B̄, B̃ and B̂ are independent d-dimensional Brownian motions and, by abuse of notation,

we write Ys (t, y) := Y t,y
s . Moreover, it is worth pointing out that Y t,·

s = Y s,Xt,·
s

s (see Theorem 6.4 and
Remark 6.2 in [76]).
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Following the works of Delarue and Menozzi [73, 74], Delbaen et al. [76] introduced a numerical
algorithm to approximate the process Y that solves (4.27) and then to simulate the velocity field u
of the incompressible Navier-Stokes equations (4.23) in the whole space Rd. Motivated by this, we
consider the following numerical algorithm:

Algorithm 4.4.1 Let T > 0. Fix h = T/N , with N ≥ 1, and δ > 0. Define

ūN (T, x) = g (x) ∀x ∈ Cδ.

Then ∀k ∈ {0, . . . , N − 1}, ∀x ∈ Cδ,

T (tk, x) = ūN (tk+1, x) · h+
√
νq (∆Wk) ,

QN (tk, x) = E
∫ N

3

1
3N

3

2r3
ūNi · ūNj

(
tk+1,Πδ

(
x+ q

(
B̄r
)

+ q
(
B̃r

)
+ q

(
B̂r

)))
qi
(
B̄r
)
qj
(
B̃r

)
q
(
B̂r

)
dr,

ūN (tk, x) = E
[
ūN (tk+1,Πδ (x+ T (tk, x)))

]
+
(
f (tk+1, x) + QN (tk, x)

)
· h.

Here, the terms QN (tk, x) involve the Einstein summation convention.

Therefore, the Algorithm 4.4.1 guides us to compute the approximations

ūN (tk, x) ≈ uN (tk, x) ∀k ∈ {0, . . . , N − 1} , ∀x ∈ Cδ.

Thus a simple piecewise continuous extension of the vector-valued function ūN follows from

ūN (t, x) := ūN (tk,Πδ (x)) ∀t ∈ [tk, tk+1[ , ∀x ∈ Rd.

Since the additive noise in the involved SDEs, we approximate T (tk, x) by the Euler-Maruyama
scheme instead of the stable schemes introduced in Chapters 2 and 3. The drift coefficients correspond
to successive numerical approximations ūN of the incompressible velocity field u. In some cases, like
the Taylor-Green vortices, it is of physical importance to preserve dynamic properties of the random
particles moving according to such SDEs. As an alternative to the Euler-Maruyama scheme we refer,
for example, to the stochastic splitting method introduced by Pavliotis, Stuart and Zygalakis (2009)
[170] for the numerical approximation of particles moving in fluid flows under uncertainties.

To compute expectations of integrals depending on path of Brownian motions introduces an addi-
tional source of error in the numerical treatment of the terms QN , which approximate the gradient of
the pressure. For the local integration of (4.27) we have the approximations∫ tk+1

tk

QN (Ys ⊗ Ys)
(
s,Xtk,x

s

)
ds ≈

∫ tk+1

tk

QN (Ys ⊗ Ys)
(
s,Xtk,x

tk

)
ds

≈
∫ tk+1

tk

E
∫ N

3

1
3N

3

2r3
Y i
tk+1
· Y j

tk+1

(
tk+1, x+ B̄r + B̃r + B̂r

)
B̄i
rB̃

j
rB̂rdrds

≈ E
∫ N

3

1
3N

3

2r3
ūNi · ūNj

(
tk+1,Πδ

(
x+ B̄r + B̃r + B̂r

))
B̄i
rB̃

j
rB̂rdr · h.
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The estimations involve the Einstein notation. Therefore, the key point is to consider an efficient
estimation of the term QN which provides us the convergence of ūN defined by Algorithm 4.4.1 to the
strong solution uN of (4.25). We use simple Riemann sum approximations to the integrals, together
with the quantization to the underlying Gaussian processes. To be clear, we take

QN (tk, x) ≈
d∑

i,j=1

E
NR−1∑
l=0

3

2
(
sNl
)3 ūNi · ūNj (tk+1,Πδ

(
x+

√
sNl

[
q
(
ξ̄sNl

)
+ q

(
ξ̃sNl

)
+ q

(
ξ̂sNl

)]))
(√

sNl

)3

qi
(
ξ̄sNl

)
qj
(
ξ̃sNl

)
q
(
ξ̂sNl

)
· δ2, (4.28)

where NR ∈ Z+, δ2 :=
(
N
3 −

1
3N

)
/NR, sNl := 1

3N + l · δ2, and

ξ̄r :=
B̄r√
r
, ξ̃r :=

B̃r√
r
, ξ̂r :=

B̂r√
r
.

We highlight some identities in order to deal with the numerical estimation of QN involved in the
Algorithm 4.4.1. Since u (T, x) = uN (T, x) = YT (T, x) = ūN (T, x), for each x ∈ Rd

∇p (T, x) = ∇ (−∆)−1 div div (u⊗ u) (T, x)

=
d∑

i,j=1

∇ (−∆)−1 ∂2

∂xi∂xj

(
ui · uj

)
(T, x)

= E
∫ ∞

0

27

2s3

d∑
i,j=1

ui · uj (T, x+Bs)
(
Bi
s −Bi

2s
3

)(
Bj

2s
3

−Bj
s
3

)
B s

3
ds

= lim
N→∞

E
∫ N

1
N

27

2s3

d∑
i,j=1

ui · uj (T, x+Bs)
(
Bi
s −Bi

2s
3

)(
Bj

2s
3

−Bj
s
3

)
B s

3
ds

= lim
N→∞

QN (u⊗ u) (T, x)

= lim
N→∞

d∑
i,j=1

E
∫ N

3

1
3N

3

2r3
ūNi · ūNj

(
T, x+ B̄r + B̃r + B̂r

)
B̄i
rB̃

j
rB̂rdr. (4.29)

Hence, we can test the approximation of QN by applying our methodology to the right term of
(4.29) and comparing our results directly with the exact values from ūN (T, x) = g (x) and ∇p (T, ·).
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Moreover, note that

lim
N→∞

d∑
i,j=1

E
∫ N

1
N

27

2r3
ūNi · ūNj (T, x+Br)

(
Bi

2r
3

−Bi
r
3

)(
Bj
r −B

j
2r
3

)
B r

3
dr

= lim
N→∞

d∑
i,j=1

∫ N

1
N

1

2r
E
[

∂2

∂xi∂xj

(
ūNi · ūNj

)
(T, x+Br)Br

]
dr

= lim
N→∞

d∑
i,j=1

∫ N

1
N

1

2r
E
[

∂2

∂xi∂xj
(gi · gj) (x+Br)Br

]
dr

= lim
N→∞

∫ N

1
N

1

r
E

[(
∂g1

∂x2

∂g2

∂x1
+

(
∂g2

∂x2

)2
)

(x+Br)Br

]
dr,

which helps to preliminary test the numerical estimation of QN (tk, x).

Alternative approaches to deal with path-dependent functionals of Brownian motions consider,
for example, to use reduction variance techniques based on the Karhunen-Loève expansion of the
Brownian motion, the Brownian bridge or well by conditioning the desired expectations by convenient
events (see Lejay and Reutenauer (2012) [128], Kolkiewicz (2014) [122]).

4.4.1 Numerical experiments

Taylor-Green Vortex

We begin studying the numerical simulation of the incompressible Navier-Stokes equations by solving
the Taylor-Green vortices introduced by Taylor and Green (1937) [201]. It corresponds to a classical
turbulence model used to test numerical schemes applied to the Navier-Stokes equations and give us
a benchmark to the Algorithm 4.4.1 with respect to finite difference methods (see e.g. Chorin (1968)
[55], Frisch, Morf and Orszag (1980) [86], Brachet et al. [41, 42], Brachet (1991) [40], Canuto et al.
(2007) [48]). Let us consider the incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u− ν

2
∆u+∇p = 0 ; 0 < t ≤ T,

∇ · u = 0, u (0) = g.
(4.30)

As we saw this classical formulation is equivalent to the previous one (4.23) with f ≡ 0 by a time-
reversing transformation, and so we deal with the approximation of the strong solution u of (4.30) by
using the Algorithm 4.4.1. From now on, by abuse of notation, we denote in the same way ūN (tk, x)
the estimation of u (tk, x) obtained from Algorithm 4.4.1.

We consider the 2d Taylor-Green vortex flow that solves (4.30) with initial condition{
g1 (x) = − cos (x1) sin (x2) ,

g2 (x) = sin (x1) cos (x2) .
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The advantage of this model is that we can directly compare our results with its explicit solution


u1 (t, x) = − exp (−νt) cos (x1) sin (x2) ,

u2 (t, x) = exp (−νt) sin (x1) cos (x2) ,

p (t, x) = −1

4
exp (−2νt) (cos (2x1) + cos (2x2)) ,

(4.31)

for x = (x1, x2)> ∈ [0, 2π]2. That is,


u1 (t, x) = exp (−ν (T − t)) cos (x1) sin (x2) ,

u2 (t, x) = − exp (−ν (T − t)) sin (x1) cos (x2) ,

p (t, x) = −1

4
exp (−2ν (T − t)) (cos (2x1) + cos (2x2))

solves the backward incompressible Navier-Stokes equations (4.23).

Chorin [54, 55] approximated this test model by introducing a finite-difference method. Assuming
that the discretization steps verify h = O

(
δ2
)
, for smooth enough spatially periodic solutions and

sufficiently small discretization parameters its order of error in the maximum norm is of order δ and√
δ in two and three spatial dimensions, respectively (see Theorem 3 of [56]).

As in [55] we numerically solve the 2d Taylor-Green vortex flow (4.31) with viscosity parameter
ν = 2 and h = O

(
δ2
)
. The top plots in Figure 4.3 represent the initial velocity field u (0, ·) =

(u1 (0, ·) , u2 (0, ·))>. The left bottom plot shows the reference velocity component u1 (T, ·) from (4.31).
The right bottom one describes the estimation of the first component ūN1 (T, ·) obtained from Algorithm
4.4.1 together with the estimation (4.28) by using truncation parameter N = 6, time-step h = 2δ2,
space-discretization step δ = π/39 and M = 6 quantization points, until a final time T = 20 · h. We
compute the terms QN by taking a left Riemann sum approximation of the integral using NR = 18
subintervals of

[
1

3N ,
N
3

]
.
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Figure 4.3: Two-dimensional Taylor-Green vortex for ν = 2. Here (a) Initial condition u (0, ·); (b)
First component u1 (0, ·); (c) Reference u1 (T, ·) at time T = 20 · h; and (d) Estimation ūN1 (T, ·) at
time T = 20 ·h by means of Algorithm 4.4.1 and the approximation (4.28) (N = 6, time-step h = 2δ2,
spatial discretization δ = π/39, M = 6 quantization points and NR = 18 subintervals).
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Table 4.1 shows the estimation errors

ei (tk) := sup
x∈Cδ

∣∣ui (tk, x)− ūNi (tk, x)
∣∣2 ; i ∈ {1, . . . , d} , k ∈ {1, . . . , T/h} .

In comparison with the reported values [55], the results given by Algorithm 4.4.1 are not accurate.
This is in part explained because δ > h, i.e. the spatial-step δ = π/39 is greater than the time-step
h = 2δ2, and so the “Burgers equation part” estimation is not completely valid.

As in Algorithm 4.3.1, from now on we consider only discretization-steps such that δ < h. Thus,
we now take discretization steps h = 0.025 and δ = π/126. Figure 4.4 and Table 4.2 depict the
better new results. Note that the discretization steps are related linearly, instead of the restrictive
assumption h = O

(
δ2
)

in case of the finite-difference scheme [56].

Algorithm 4.4.1

k e1 (tk) e2 (tk)

1 0.00023 0.00030

2 0.00085 0.00096

3 0.00174 0.00188

4 0.00284 0.00314

5 0.00417 0.00459

6 0.00562 0.00620

7 0.00717 0.00790

8 0.00879 0.00968

9 0.01045 0.01153

10 0.01219 0.01343

20 0.02938 0.03221

Table 4.1: Estimation errors ei (tk) to the two-dimensional Taylor-Green vortex with viscosity param-
eter ν = 2 obtained from Algorithm 4.4.1 and the estimation (4.28) with N = 6, h = 2δ2, δ = π/39,
M = 6 and NR = 18.
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Figure 4.4: Two-dimensional Taylor-Green vortex for ν = 2 at time T = 10 · h. Here (a) Reference
u1 (T, ·); and (b) Estimation ūN1 (T, ·) by means of Algorithm 4.4.1 and the estimation (4.28) (N = 6,
time-step h = 0.025, spatial discretization δ = π/126, M = 6 quantization points and NR = 18
subintervals).

Algorithm 4.4.1

k e1 (tk) e2 (tk)

1 0.000208 0.000213

2 0.000651 0.000663

3 0.001206 0.001307

4 0.001899 0.002094

5 0.002656 0.002998

6 0.003385 0.003950

7 0.004020 0.004906

8 0.004668 0.005875

9 0.005401 0.006822

10 0.006076 0.007745

Table 4.2: Estimation errors ei (tk) to the two-dimensional Taylor-Green vortex with viscosity param-
eter ν = 2 using Algorithm 4.4.1 and the estimation (4.28) with N = 6, h = 0.025, δ = π/126, M = 6
and NR = 18.
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Concerning to the computation of QN (tk, x), from (4.29) and (4.31) we have checked that our
above preliminary estimation leads to a simple and reliable way to approximate the pressure terms
(see Figure 4.8).
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Figure 4.5: Estimation of pressure terms ∇p (t, x); x = (x1, x2)>, to the 2d Taylor-Green vortex at
t = 0. The reference values are plotted in solid red lines. Here (a) Estimation of the first component
for x1 ∈ [0, 2π] and x2 = 0; and (b) Estimation of the second component for x1 = 0 and x2 ∈ [0, 2π].
The approximated values have been obtained by means of QN as in Algorithm 4.4.1 and (4.28) (N = 6,
spatial discretization δ = π/126, M = 6 quantization points and NR = 18 subintervals).
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Beltrami Flow

The Beltrami flows, introduced by E. Beltrami in 1889 [22], are characterized by the property that the
vorticity vector ω = curlu, with rotational operator curl := ∇×, satisfies ω = λu for some parameter
λ. That is, the vorticity and the velocity vectors are aligned, or well the vorticity is an eigenvector of
the rotational operator. Observing

(u · ∇)u = ∇‖u‖
2

2
− u× ω,

from the vorticity form of the Navier-Stokes equations is deduced the Bernoulli equation

p (t, x)

ρ
+
‖u (t, x)‖2

2
+ g · 〈(0, 0, 1) , x〉 = ps (t) ,

being ps (t) a constant stagnation pressure at the ground level, g > 0 the acceleration due to gravity
and ρ > 0 the constant density of the fluid. Then, constructing an explicit velocity field u the pressure
term p can be recover from the Bernoulli law.

We study the three-dimensional viscous Beltrami flow
u (t, x) = e−νλ

2tg (x) ,

p (t, x) = ps − ρ

[
‖u (t, x)‖2

2
+ g · 〈(0, 0, 1) , x〉

]
,

(4.32)

with non-divergence initial velocity field
g1 (x) = − A

k2 + l2
[λl cos (kx1) sin (lx2) sin (mx3) +mk sin (kx1) cos (lx2) cos (mx3)] ,

g2 (x) =
A

k2 + l2
[λk sin (kx1) cos (lx2) sin (mx3)−ml cos (kx1) sin (lx2) cos (mx3)] ,

g3 (x) = A cos (kx1) cos (lx2) sin (mx3) .

Here, ν > 0 is the constant kinematic viscosity, the parameter ps a time-independent stagnation
pressure at ground level, the amplitude constant A of the vertical velocity and Beltrami parameter

λ =
√
k2 + l2 +m2,

with k, l,m > 0 (see Shapiro (1993) [187]). The Beltrami flow (4.32) solves the Navier-Stokes equations
∂u

∂t
+ (u · ∇)u = ν∆u− 1

ρ
∇p− g · (0, 0, 1)> ; 0 < t ≤ T,

∇ · u = 0, u (0) = g (x) .

(4.33)

That is the incompressible Navier-Stokes equations (4.1) with external force f (t, x) = −g · (0, 0, 1)>

and initial divergence-free vector field g (x) as above.
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Defining the potential φ (t, x) = −g · 〈(0, 0, 1) , x〉, observe that f (t, x) = ∇φ (t, x). Thus, the
constant density ρ > 0 and the conservative external force field f are considered as part of the
pressure term p (t, x). As above, fixing a time scale T > 0 and taking a convenient transformation we
obtain that

u (t, x) = −e−2νλ2(T−t)g (x) ,

p (t, x) =
ps
ρ
−

[
‖u (T − t, x)‖2

2
+ g · 〈(0, 0, 1) , x〉+ φ (T − t, x)

]
=
ps
ρ
− ‖u (T − t, x)‖2

2
,

(4.34)

for t ∈ [0, T ] and x ∈
[
0, 2π

k

]
×
[
0, 2π

l

]
×
[
0, 2π

m

]
, is the solution of the backward incompressible Navier-

Stokes equations (4.23) with viscosity parameter ν > 0 and without external force field. Observe that
the pressure at a given position corresponds to the difference between a constant pressure and the
kinetic energy per mass unit of the particle of fluid located at such point. Then, motivated by the
previous sections we deal with the numerical approximation of the three-dimensional space-periodic
velocity field in (4.34) by means of the Algorithm 4.4.1 and the proposed estimation (4.28).

Figure 4.6: Initial spatially-periodic velocity field to the three-dimensional Beltrami flow with param-
eters A = 1/2 and k = l = m = 1.
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Algorithm 4.4.1

k 1 2 3 4 5 6 7 8 9 10

ẽ1 (tk) 0.0994 0.2719 0.5046 0.7557 1.0427 1.3278 1.6278 1.8934 2.1408 2.3464

ẽ2 (tk) 0.0762 0.2097 0.3906 0.5483 0.7490 0.8825 1.0559 1.2134 1.3037 1.3780

ẽ3 (tk) 0.0661 0.1944 0.3166 0.4872 0.6616 0.7902 1.0241 1.1166 1.2321 1.3769

Table 4.3: Estimation errors ẽi (tk) := ei (tk) · 102 to the three-dimensional Beltrami flow by using
Algorithm 4.4.1 and the approximation (4.28) (N = 6, time-step h = 1/5, spatial discretization
δ = π/20, M = 6 quantization points and NR = 18 subintervals).
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Figure 4.7: Estimation of velocity field u (t, x); x = (x1, x2, x3)>, to the 3d Beltrami flow for ν = 0.1,
A = 1/2, k = l = m = 1 at T = 10 · h. The reference values are plotted in solid black lines. Here
(a) Estimation of u (T, ·, ·, 0); (b) Estimation of u (T, ·, ·, π/4) and (c) Estimation of u (T, ·, ·, π/2).
The approximated values have been obtained by Algorithm 4.4.1 with QN approximated as in (4.28)
(N = 6, time-step h = 1/5, spatial discretization δ = π/20, M = 6 quantization points and NR = 18
subintervals).
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Figure 4.8: Estimation of velocity field u (t, x); x = (x1, x2, x3)>, to the 3d Beltrami flow for ν = 0.1,
A = 1/2, k = l = m = 1 at T = 10 · h. The reference values are plotted in solid black lines. Here
(a) Estimation of u (T, ·, 0, ·); (b) Estimation of u (T, ·, π/4, ·) and (c) Estimation of u (T, ·, π/2, ·).
The approximated values have been obtained by Algorithm 4.4.1 with QN approximated as in (4.28)
(N = 6, time-step h = 1/5, spatial discretization δ = π/20, M = 6 quantization points and NR = 18
subintervals).



Chapter 5

Conclusions

Among the numerical methods for the approximation of Itô diffusions

Xt = X0 +

∫ t

0
b (Xs) ds+

∫ t

0
σ (Xs) dWs,

the Euler-Maruyama and the implicit Euler methods appear as the usual alternatives. The multi-
plicative noise intensifies the role of the diffusion term σ on the dynamic of the stochastic process X
and various stability criteria have been proposed for solutions of SDEs driven by Brownian motion.
The almost sure asymptotic exponential behavior and the sign-preserving ability of the exact solutions
bring us a starting point to the design of adequate weak numerical schemes. In general, various numer-
ical schemes converge with some specific order and inherit the dynamical properties of the unknown
solutions provided that the step-sizes for time discretizations are small enough. In practice is difficult
to choice the best candidate to numerically solve a specific stochastic equation and to identify the
maximum time-step to guarantee accurate weak numerical estimations. The convergence and stability
properties of traditional Euler methods, and alternative Euler-based schemes, are valid as well as the
step size tends to zero. Then it is necessary to reduce the concerned discretization step, increasing
the computational effort to the numerical solution of stiff SDEs or in case of the long-time simulation
of X.

In some applications the noise structure is represented by means of the Stratonovich integral.
Hence, by rewritten it on an appropriate Itô integral we can study stochastic processes governed by
Stratonovich SDEs by using the introduced methodologies. Under appropriate assumptions the Itô

diffusion process X =
(
X1, . . . , Xd

)>
can be equivalently expressed by the Stratonovich SDE

dXi
t =

(
bi (Xt)−

1

2

m∑
k=1

〈
σk (Xt) ,∇σi,k (Xt)

〉)
dt+

m∑
k=1

σi,k (Xt) ◦ dW k
t ; ∀i ∈ {1, . . . , d} .

The implicit balanced Euler method is well-known to improve the stability properties of the Euler-
Maruyama method, at cost of to identify appropriate weight functions to capture the correct dynamical
behavior of the exact solutions. By incorporating such additional terms, the order of convergence of
the Euler method is affected and additional time is needed to solve of implicit equations at each time
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step. To the best of our knowledge, the balanced schemes presented in specialized literature involves
stabilizing functions that depend on the drift term, the diffusion coefficient and the Brownian motion.
The incorporation of the Wiener process on implicitness reduce the order of weak convergence of the
original Euler scheme. Concerning to the weak numerical estimation of SDEs, it is well-known that the
Brownian increments can be replaced by discrete random variables having similar moment properties.
This permits us to introduce first-order weak methods by studying the explicit stability region and
the sign-preserving ability of the presented schemes.

In case of the linear scalar pure diffusion

Xt = X0 +

∫ t

0
σXsdWs

we introduce the balanced Euler scheme

Zn+1 = Zn + σZn
√

∆ξn − α (∆)σσ> (Zn+1 − Zn) ∆,

with bounded weight α (∆) > 1/4 for all ∆ > 0 and ξn a two-point estimation of the Gaussian
increment (Wn+1 −Wn) /

√
∆, i.e. P (ξn = ±1) = 1/2 for each n ∈ N. In the same direction, we

construct the stabilized trapezoidal scheme

Yn+1 = Yn +
σ

2
(Yn+1 + Yn)

√
∆ξn −

σσ>

4
(Yn+1 + Yn) ∆ + β (∆) (Yn+1 − Yn) ∆,

where β (∆) ∈
]
−∞,− 5

16σσ
>[. Observe that the weight functions α, β : ]0,+∞[ → R do not involve

random variables. The novel stabilized schemes Z and Y are almost sure asymptotically stable and
preserves the sign of the initial data for any discretization step ∆ > 0. Moreover, the first order of
weak convergence of the balanced Euler scheme Z is inherited from the classical Euler-Maruyama
method.

In general, we study the weak balanced Euler method

Zn+1 = Zn + b (Zn) ∆ + σ (Zn)
√

∆ξn + c (∆, Zn) (Zn+1 − Zn) ∆,

for which is needed to identify adequate weights c (∆, x) for each x ∈ Rd, and ξkn a convenient two-point
discretization of the Gaussian variable

(
W k
n+1 −W k

n

)
/
√

∆ for each k ∈ {1, . . . ,m}, for all n ∈ N and
any given ∆ > 0. Motivated by the above successful equation test, we propose two methodologies for
constructing weight terms. The first one, inspired by the linear scalar test, involves the closed formula

c (∆, x) = ∇b (x)−
m∑
k=1

αk (∆)∇σk (x)
(
∇σk (x)

)>
; ∀x ∈ R,

where αk (∆) > 1/4 are bounded for each k ∈ {1, . . . ,m} and for all ∆ > 0. At cost of to invert a
d× d matrix, under appropriate assumptions on the drift and diffusion coefficients we obtain explicit
first order weak balanced Euler schemes that reproduce the stability properties of the exact solution



99

as well as ∆ tends to zero. Second, given a time-step ∆ > 0 we suggest an optimization procedure to
construct the stabilizing function c (∆, ·). Basically, we study the maximum asymptotic exponential
rate of the resulting balanced scheme and choose its weight function in order to have upper bounds
as close as possible to the exact unknown solution.

In the context of systems of linear SDEs

Xt = X0 +

∫ t

0
BXsds+

m∑
k=1

∫ t

0
σkXsdW

k
s ,

with real matrices B ∈ Rd×d and σ1, . . . , σm ∈ Rd×d, it is well-known that

lim sup
t→+∞

1

t
log ‖Xt‖ ≤ ` := sup

x∈Rd,‖x‖=1

(
〈x,Bx〉+

m∑
k=1

(
1

2

∥∥∥σkx∥∥∥2
− 〈x, σkx〉2

))
a.s.

That is, the a.s. asymptotic long-time behavior of X depends on the top Lyapunov coefficient `.
Then, in order to avoid time-steps restrictions and additional computational efforts we propose to
design stabilized weak Euler schemes of the form

Vn+1 = Vn + (I + ∆M (∆))

(
B∆ +

m∑
k=1

σk
√

∆ξkn

)
Vn,

with weight function M : ]0,∞[→ Rd×d. For any given time step ∆ > 0 the stabilizing factor M (∆) is
obtained previously to each simulation by means of the solution of an auxiliary optimization problem.
More precisely, we find the stabilizing factor M (∆) by taking the upper bound of

lim sup
n→+∞

1

n∆
log ‖Vn‖

as close as possible to the top Lyapunov exponent `. An optimization algorithm is then demanded to
construct optimal weak balanced schemes.

In the general case of multidimensional nonlinear SDEs with multiplicative noise, the optimal
weight function ∆→M (∆, ·) is difficult to obtain. We consider weak Euler schemes of type

Vn+1 = Vn + (I + ∆M (∆, Vn))

(
b (Vn) ∆ +

m∑
k=1

σk (Vn)
√

∆ξkn

)
,

with M : ]0,∞[ × Rd → Rd×d. Under smoothness, growth bounds and Lipschitz assumptions on the
drift and diffusion terms, first-order stabilized weak Euler schemes are obtained under appropriate
restrictions on the stabilizing terms. Moreover, it is possible to improve the order of convergence by
using Romberg extrapolation techniques.

Finally, we highlight some methodologies to construct stabilizing functions in general contexts.
First, consider the stochastic Duffing-Van der Pol equation

ẍ = αx+ βẋ− ax3 − bx2ẋ+ σxẆ 1
t ,
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with given parameters α, β, a, b ∈ R. Defining X1 := x and X2 := ẋ, we obtain the 2-dimensional
nonlinear system

dXt =

(
X2
t

αX1
t + βX2

t − a
(
X1
t

)3 − b (X1
t

)2
X2
t

)
dt+

(
0 0

σ 0

)
XtdW

1
t ,

where Xt =
(
X1, X2

)>
(see e.g. [10, 12, 20, 21, 105], additionaly [94] in the deterministic context).

Then the linearized Duffing-Van der Pol system around the zero solution results

Yt = X0 +

∫ t

0

(
0 1

α β

)
Ysds+

m∑
k=1

∫ t

0

(
0 0

σ 0

)
YsdW

1
s . (5.1)

Motivated by Remark 2.3.2 we consider the weak numerical scheme V =
(
V 1, V 2

)>
defined by

Vn+1 = Vn + (I + ∆M (∆))

 V 2
n∆(

αV 1
n + βV 2

n − a
(
V 1
n

)3 − b (V 1
n

)2
V 2
n

)
∆ + σV 1

n

√
∆ξ1

n

 , (5.2)

where the weight function M (∆) is constructed according to the linearized solution Y .
The local linearization technique permits us to introduce novel numerical schemes incorporating

general stabilizing forms. As in Biscay et al. (1996) [30], we locally approximate a nonlinear SDE as

Xt ≈ XTn +

∫ t

Tn

(∇b (XTn) (Xs −XTn) + b (XTn)) ds

+
m∑
k=1

∫ t

Tn

(
∇σk (XTn) (Xs −XTn) + σk (XTn)

)
dW k

s

for each t ∈ [Tn, Tn+1], and so XTn+1 can be weakly approximated by

Un+1 = Un + b (Un) ∆ +
m∑
k=1

σk (Un)
√

∆ξkn

+∆M (∆, Un)

(
∇b (Un) ∆ +

m∑
k=1

∇σk (Un)
√

∆ξkn

)
Un,

with correction factor M : ]0,∞[×Rd → Rd×d. The numerical method Un generalizes the above weak
scheme Vn introduced in (2.14) for bilinear systems of SDEs .

The usage of modifying factors to deal with stability issues is not only associated to the balanced
Euler method. We mention, for example, the θ-method, the Runge-Kutta method, the S-ROCK
method, Row-type methods and the tamed Euler method. Additional stabilizing techniques involves
the local linearization techniques, splitting procedures, predictor-corrector schemes, composite meth-
ods and adaptive-step schemes. A key point is to propose a procedure to obtain stabilizing terms.
From a mathematical point of view, additional work is spent to prove the rate of convergence and the
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dynamic properties of the introduced numerical methods. On the basis of the theoretical results, we
identified at least two ways to design weight functions used with successful in various classical test
equations. Our computational tests motivate the extension of the stabilizing techniques for the nu-
merical solution of general SDEs. The ongoing researches on the numerical solution of SDEs motivate
future works in this way. A manuscript with some advances has been recently submitted (Mardones
and Mora (2017) [139]).

The second part of the PhD thesis work introduces explicit stable schemes for SDEs with multi-
plicative noise. At a first step, we study the linear scalar SDE

Xt = X0 +

∫ t

0
µXsds+

∫ t

0
σXsdWs

and consider its unique adapted closed solution

Xt = e(µ−
1
2
σσ>)t+σWtX0.

Then we have the weak exponential scheme

X̄n+1 = e(µ−
1
2
σσ>)∆+σ

√
∆ŴnX̄n,

with independent and identically distributed random variables Ŵn with symmetric law and unit vari-
ance. In the same direction, the approximation of nonlinear scalar SDEs by linear equations ones pro-
vides us to take advantage of the above closed exponential solution. Indeed, we introduce first-order
weak explicit exponential schemes inheriting the sign-preserving ability and asymptotic exponential
behavior of the unknown exact solutions for any discretization step ∆ > 0.

The work presented in Chapter 3 and introduced in earlier manuscripts [156] began the collabo-
ration research with Dr. Juan Carlos Jiménez, Dra. Mónica Selva and Dr. Rolando Biscay, and the
introduced methodology have been extended to nonlinear SDEs. In general, the diffusion process X
is decomposed by means of

Xt = ‖Xt‖ ·
Xt

‖Xt‖
.

Hence we consider a coupled system of SDEs governing the stochastic processes ‖Xt‖ and Xt/ ‖Xt‖ in
order to estimate the exact solution X. We named to this approach direction and norm decomposition
method (DND method for short). That is, the norm process involves

‖Xt‖ = ‖X0‖+

∫ t

0

(
〈Xs, b (Xs)〉+ 1

2

∑m
k=1

∥∥σk (Xs)
∥∥2

‖Xs‖2
− 1

2

m∑
k=1

〈Xs, σ
k (Xs)〉2

‖Xs‖4

)
· ‖Xs‖ ds

+

m∑
k=1

∫ t

0

〈Xs, σ
k (Xs)〉

‖Xs‖2
· ‖Xs‖ dW k

s
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and the direction process drives us to

Xt

‖Xt‖
=

X0

‖X0‖
+

∫ t

0

(
b (Xs)

‖Xs‖
−
〈

Xs

‖Xs‖
,
b (Xs)

‖Xs‖

〉
Xs

‖Xs‖

)
ds

+
1

2

m∑
k=1

∫ t

0

(
3

〈
Xs

‖Xs‖
,
σk (Xs)

‖Xs‖

〉2

−
〈
σk (Xs)

‖Xs‖
,
σk (Xs)

‖Xs‖

〉)
Xs

‖Xs‖
ds

−
m∑
k=1

∫ t

0

〈
Xs

‖Xs‖
,
σk (Xs)

‖Xs‖

〉
σk (Xs)

‖Xs‖
ds

+

m∑
k=1

∫ t

0

(
σk (Xs)

‖Xs‖
−
〈

Xs

‖Xs‖
,
σk (Xs)

‖Xs‖

〉
Xs

‖Xs‖

)
dW k

s .

Then the coupled system of SDEs can be accurately solved be taking advantage of the underlying
properties of each SDE. Indeed, the norm process ‖Xt‖ is governed by a scalar SDE with multiplicative
noise, then locally rewriting its SDE on [Tn, Tn+1] and freezing the coefficients at the time node Tn
we can compute the estimation of

∥∥XTn+1

∥∥ by explicitly solving the resulting linear scalar SDE with
initial data ‖XTn‖. The key idea is to approximate the drift and diffusion coefficients by linear ones.
This novel scalar scheme shows a notable performance solving various numerical tests. On the other
hand, the stochastic process Xt/ ‖Xt‖ belongs to the unit sphere at each time and hence preserves its
norm. Our first approximation for the direction process is obtained by applying the Euler-Maruyama
scheme to its SDE together with a projection technique to guarantee the unit norm property. In case
of multidimensional linear SDEs, we conveniently rewrite the concerned SDEs for the direction and
norm processes in order to construct specific numerical schemes. Moreover, the numerical solution
of systems of bilinear SDEs is studied by taking into account the cases of well and ill-conditioned
drift matrices. In both cases, we modify the Euler-Maruyama scheme applied to the angle process
improving the performance of our preliminary proposed schemes.

Given the drift coefficient b and a diffusion matrix σσ>, the infinitesimal Itô generator L of the
diffusion process X is defined by the second-order differential operator

Lu = 〈b,∇u〉+
1

2
tr
{
σσ>Hu

}
.

Here, ∇u and Hu represent the gradient vector and Hessian matrix of the scalar field u : Rd → R,
respectively. Fix T > 0 and let

u (t, x) = E (f (XT )�Xt = x) = E
(
f
(
Xt,x
T

))
be the transition probabilities of the Itô diffusion. Moreover, let p (t, x, ·) = P ◦

(
Xt,x
T

)−1
(·) be the

transition density of the process Xt,x. Under certain hypotheses on the terminal condition f we have

u (t, x) =

∫
Rd
f (y) p (t, x, dy) ; ∀t ∈ [0, T ) .
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Here, the stochastic process Xt,x is given by

Xt,x
T = x+

∫ T

t
b
(
Xt,x
s

)
ds+

∫ T

t
σ
(
Xt,x
s

)
dWs.

Then u : [0, T ]× Rd → R is governed by the backward Kolmogorov equation
∂

∂t
u (t, x) = −Lu (t, x) ; ∀ (t, x) ∈ [0, T )× Rd,

u (T, x) = f (x) ; ∀x ∈ Rd.

By a time-reversing transformation we can rewrite the Kolmogorov PDE in the forward equivalent
form

∂

∂t
u = Lu.

In general, to prove the weak convergence of numerical methods applied to Itô SDEs needed
the regularity of the Kolmogorov equation. In this PhD thesis work we deal with SDEs on a classical
theoretical setting where the desired regularity holds. More generally, we highlight some methodologies
to study the regularity of the Kolmogorov equation. First, we have the seminal Kolmogorov’s work
(1934) [123] on which is demonstrated the hypoellipticity of a non-elliptic operator, and then the
regularity of the involved solutions. Then the celebrated Hörmander’s theorem (1967) [103] permits
us to study the hypoellipticity of differential operators and thus the regularity of solutions. By its way,
the theory of stochastic flows studies the differentiability of Xt,x with respect to the initial data x ∈ Rd
and t ∈ R and hence, by means of the Itô formula, to study the regularity of the Kolmogorov equation
(see Gihman and Skorohod (1972) [87]). On another hand, the theory of Malliavin calculus helps us to
determine the hypoellipticity of differential operators at cost of additional boundedness assumptions
on the coefficients (see e.g. Malliavin (1997) [135]). Finally, the regularity of transition densities
for diffusion processes governed by SDEs establishes another direction to study the smoothness of
solutions for PDEs (see e.g. Delarue and Menozzi [75]). To the best of our knowledge, necessary and
sufficient conditions to the existence and smoothness of solutions of the Kolmogorov equation is an
open problem (see e.g. Hairer, Hutzenthaler and Jentzen (2015) [95] and references therein).

The DND method provides us the introduction of first-order weak numerical schemes with a
promising performance in a broad class of numerical tests. From a theoretical point of view, the
almost sure asymptotic exponential behavior of the exact solution is studied be means of the norm
process. Hence, the new stable scalar exponential schemes permit us to reproduce the a.s. asymptotic
exponential behavior of the unknown exact solutions for any discretization step. The sign-preserving
ability of the scalar schemes holds because their exponential-type formulation. The introduced weak
numerical schemes are explicitly given by derivative-free formulas, up to evaluation at zero.

Recently, the DND method have been extended to systems of nonlinear SDEs (see Mora, Mardones,
Jiménez, Selva and Biscay (2017) [157]). The dynamical properties of exact solutions are recovered
by the numerical schemes for any time-step, new test equations have been performed and additional
references included. The introduced stable schemes converges weakly with order one and strongly a
half under smoothness and growth assumptions on the globally Lipschitz assumptions. The same rate
of convergences hold for non-globally Lipschitz drift coefficients under the hypotheses of existence and
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smoothness of solutions of the associated Kolmogorov equation. The manuscript versions of the work
can be found in [158].

The last part of the PhD thesis work is devoted the numerical simulation of the Navier-Stokes
equations for incompressible fluids in Rd, for space dimension d ∈ {2, 3},{

∂u
∂t + (u · ∇)u = ν4u−∇p+ f ; 0 < t ≤ T,
∇ · u = 0, u (0) = g,

(5.3)

where T > 0 is a fixed time, ν > 0 is the kinematic viscosity, f is the external force field and g is a
given initial divergence-free vector field.

Among different probabilistic representations, the FBSDEs associated to the unsteady Navier-
Stokes equations is a novel approach. Assuming that the solution is known on a time interval [0, T ] and
taking a convenient time-reversing transformation, a d-dimensional diffusion process X is associated
to the differential operator u · ∇ − ν4 part. Then, defining

Ys := −u (T − s,Xs) , Zs := −Du (T − s,Xs) ,

the process (X,Y, Z) is governed by the FBSDEs system{
Xs = x+

∫ s
t Yrdr +

∫ s
t

√
2νdWr,

Ys = −g (XT ) +
∫ T
s [∇p (T − r,Xr)− f (T − r,Xr)] dr −

∫ T
s

√
2νZrdWr,

(5.4)

where W is a d-dimensional standard Brownian motion. The simplified model obtained by removing
the pressure term ∇p from the FBSDEs is associated to the Burgers equation [45], which remains a
non-linear equation due to the term u · ∇u. Under appropriate conditions, the pressure term p can be
recovered by solving a Poisson problem

4p = P (u)

for a given functional P of the solution. The numerical solution of the system of incompressible
Navier-Stokes equations involves various difficulties due to the presence of a nonlinear term, the
incompressibility condition as well as the computation of the pressure term.

Recently Delbaen, Qiu and Tang (2015) introduced in [76] a new class of coupled FBSDEs as-
sociated to the incompressible Navier-Stokes equations. Since their probabilistic approach involves
a BSDE defined on an infinite time interval for the stochastic representation of the pressure term,
Delbaen et al. deduced an approximated solution to the velocity field by truncating the infinite time
interval of the associated FBSDEs system. Hence it is proposed a numerical simulation algorithm to
simulate the incompressible Navier-Stokes equations in the whole space that follows from a classical
methodology of Delarue and Menozzi [73, 74] for FBSDEs.

The passive tracers model considers the diffusion process X representing the position of a particle
moving over a fluid flow subject to molecular diffusion

Xt = X0 +

∫ t

0
u (s,Xs) ds+

d∑
k=1

∫ t

0
σdW k

s , (5.5)
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where u : [0,∞[ × Rd → Rd is an incompressible fluid velocity field (i.e. ∇ · u :=
∑d

i=1
∂u
∂xi

= 0),

W =
(
W 1, . . . ,W d

)>
a d-dimensional Brownian motion, σ the molecular diffusivity and X0 the initial

position of the particle. The additive noise changes the nature of the noise concerned on this PhD thesis
work. The banishing viscosity phenomenon, i.e. low viscosity parameter or high Reynolds number,
becomes the fluid on a turbulent flow and numerical instabilities appears. In the new FBSDEs system
representation for the incompressible Navier-Stokes equations [76], we apply the Euler-Maruyama
method to approximate the forward SDE with additive noise. In our numerical tests we do not see
the necessity to modify such scheme. The presented work deals with the numerical simulation of
non-turbulent flows.

The approximation of expectations of integrals involving path of Brownian motions appears as an
additional source of error in order to deal with the pressure gradient estimation, because the Poisson
problem and the additional BSDE representation of the concerned nonlocal operator. In the Burg-
ers equation case, we consider quantization as control variate variable for the Monte-Carlo method
in the computation of conditional expectations, reducing the approximation error or improving the
computational effort of the algorithms. We do not recommend such technique to the Navier-Stokes
context because the increasing computational costs especially in the three dimensional space. In our
numerical tests, the quantization of the underlying Gaussian processes together with the Riemann sum
estimation of integrals appear as a first approach to deal with this problem. The implementation of
these algorithms involves the optimality of quantization parameters to the underlying Gaussian ran-
dom variables. Moreover, adequate reduction variance methods to compute conditional expectations
appearing in the FBSDEs is demanded. We mention the usage of the Karhumen-Loève expansion for
the Brownian motion and the Brownian bridge as potential alternatives.

In this PhD thesis work we do not consider the theoretical analysis of the proposed numerical
algorithms for the estimation of systems of forward-backward SDEs. In the Navier-Stokes equations
context, a detailed error analysis of the probabilistic algorithms in terms of the regularity of the
external force field f , the given data g, the kinematic viscosity ν > 0 and the discretization parameters
is desired. On the current state of arts on weak numerical methods for FBSDEs we are not in position
to demonstrate the convergence and to present a detailed numerical analysis of the involved algorithms.
Our computational results motivate us to the theoretical study of convergence of the probabilistic
numerical algorithms associated to the incompressible Navier-Stokes equations.

Information says a lot about phenomena, helps us understand and improve our comprehension only
if it can be quantified. Dealing with the solution of real world applications involves the knowledge of
quantities associated to diffusion processes hence the simulation of systems of stochastic differential
equations. Randomness appears, then data analysis must be appropriate and the scientific study can
be confusing with respect to our sense of intuition. The expectation parameters are important in any
application and can be approximated by the simulation of mathematical models, where the precision
of the results must be considered. Last but not least, the distribution of the diffusion processes is
relevant and essential for the correct interpretation of data.
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The computational effort must be considered before any numerical computation and the complexity
and estimation of the computer work is necessary. The error analysis of the numerical schemes
helps us choose an appropriate discretization setting for computational estimations. The appropriate
implementation of computable operations together with the accuracy of the computer machine are very
important. The application of adequate numerical methodologies is a key element to the simulation
of SDEs. The sample paths are of stochastic nature, the regularity assumptions and hypotheses on
parameters are crucial to the correct usage of the mathematical models. A notable example is the
context of stable SDEs:

We can initialize all the sample paths in the same state knowing that their continuous trajectories
will never touch again, and in fact they will tend to the same place as well as time goes to infinity.
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and N. Ikeda, eds., Academic Press, Boston, 1987, pp. 31–54.

[18] , Invariant measures for nonlinear stochastic differential equations, in Lyapunov Exponents,
Proc. Oberwolfach 1990, L. Arnold, H. Crauel, and J.P. Eckmann, eds., Lect. Notes Math. 1486,
Springer, Berlin, 1991, pp. 123–140.

[19] , A stochastic Hopf bifurcation, Probab. Theory Relat. Fields, 99 (1994), pp. 581–616.

[20] , Stochastic averaging and asymptotic behavior of the stochastic Duffing-Van der Pol equa-
tion, Stoch. Proc. Appl., 113 (2004), pp. 235–272.

[21] P. H. Baxendale and L. Goukasian, Lyapunov exponents for small random perturbations
of Hamiltonian systems, Ann. Probab., 30 (2002), pp. 101–134.

[22] Eugenio Beltrami, Considerations on Hydrodynamics, Int. J. Fusion Energy, 3 (1985), pp. 53–
57. Translated by Dr. Giuseppe Filipponi from original paper appeared in 1889 in Rendiconti
del Reale Inst́ıtuto Lombardo, Series II, Vol. 22.

[23] S. Benachour, B. Roynette, and P. Vallois, Branching process associated with 2d-Navier
Stokes equation, Rev. Mat. Iberoam., 17 (2001), pp. 331–373.

[24] C. Bender and J. Zhang, Time discretization and Markovian iteration for coupled FBSDEs,
Ann. Appl. Probab., 18 (2008), pp. 143–177.

[25] A. Berkaoui, M. Bossy, and A. Diop, Euler scheme for SDEs with non-Lipschitz diffusion
coefficient: strong convergence, ESAIM Probab. Stat., 12 (2008), pp. 1–11.

[26] G. Berkolaiko, E. Buckwar, C. Kelly, and A. Rodkina, Almost sure asymptotic stability
analysis of the Euler-Maruyama method applied to a test system with stabilising and destabilising
stochastic perturbations, LMS J. Comput. Math., 15 (2012), pp. 71–83.

[27] F. Bernardin, M. Bossy, C. Claire, J. F. Jabir, and A. Rousseau, Stochastic Lagrangian
method for downscaling problems in computational fluid dynamics, ESAIM Math. Model. Numer.
Anal., 44 (2010), pp. 885–920.

[28] W.-J. Beyn, E. Isaak, and R. Kruse, Stochastic C-stability and B-consistency of explicit
and implicit Euler-type schemes, J. Sci. Comput., 67 (2016), pp. 955–987.



109

[29] R. N. Bhattacharya, L. Chen, S. Dobson, R. B. Guenther, C. Orum, M. Ossian-
der, E. Thomann, and E. C. Waymire, Majorizing kernels and stochastic cascades with
applications to incompressible Navier-Stokes equations, Trans. Amer. Math. Soc., 355 (2003),
pp. 5003–5040.
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[79] Euler, Principes généraux du mouvement des fluides, Mém. Acad. Roy. Sci. Berlin, 11 (1757),
pp. 274–315.

[80] C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation.
http://www.claymath.org/, 2000.

[81] W. Feller, An introduction to probability theory and its applications, vol. 2, Wiley, New York,
second ed., 1971.

[82] R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys.,
20 (1948), pp. 367–387.

[83] George S. Fishman, A first course in Monte Carlo, Duxbury Press, 2005.

[84] E. Floriani and R. Vilela Mendes, A stochastic approach to the solution of magnetohydro-
dynamic equations, J. Comput. Phys., 242 (2013), pp. 777–789.

[85] J. Fontbona, A probabilistic interpretation and stochastic particle approximations of the 3-
dimensional Navier-Stokes equations, Probab. Theory Relat. Fields, 136 (2006), pp. 102–156.

[86] U. Frisch, R. H. Morf, and S. A. Orszag, Spontaneous singularity in three-dimensional,
inviscid, incompressible flow, Phys. Rev. Lett., 44 (1980), pp. 572–575.

[87] I. I. Gihman and A. V. Skorohod, Stochastic differential equations, Springer-Verlag, Berlin-
Heidelberg, 1972.

[88] P. Glasserman, Monte Carlo methods in financial engineering, vol. 53 of Stochastic Modelling
and Applied Probability, Springer-Verlag, New York-Berlin-Heidelberg, 2000.

[89] E. Gobet, J.-P. Lemor, and X. Warin, A regression-based Monte Carlo method to solve
backward stochastic differential equations, Ann. Appl. Probab., 15 (2005), pp. 2172–2202.

[90] Siegfried Graf and Harald Luschgy, Foundations of quantization for probability distribu-
tions, vol. 1730 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000.



113

[91] C. Graham and D. Talay, Stochastic simulation and Monte Carlo methods. Mathematical
foundations of stochastic simulation, Springer-Verlag, Berlin-Heidelberg, 2013.

[92] A. Grorud and D. Talay, Approximation of Lyapunov exponents of nonlinear stochastic
differential equations, SIAM J. Numer. Anal., 56 (1996), pp. 627–650.
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