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Abstract

This thesis deals with the mathematical and numerical analysis of two models that describe
the behavior of multiple species from partial differential equations. In particular, a system of
conservation laws with a discontinuous flow function and a reaction-diffusion system coupled
with elliptic equations are considered, modeling traffic low problems that distinguish between
free-congested flow and the dynamics of populations that interact with chemotaxis. The main
contents of this thesis is structured as follows:

In Chapter 1, we construct a numerical scheme that is similar to the one proposed by
[J.D. Towers, A splitting algorithm for LWR traffic models with flux discontinuities in the
unknown, J. Comput. Phys., 421 (2020), article 109722], by decomposing the discontinuous
velocity function into a Lipschitz continuous function plus a Heaviside function and designing
a corresponding splitting scheme. The part of the scheme related to the discontinuous flux is
handled by a semi-implicit step that does, however, not involve the solution of systems of linear
or nonlinear equations. It is proved that the whole scheme converges to a weak solution in the
scalar case. The scheme can in a straightforward manner be extended to the multiclass LWR
(MCLWR) model, which is defined by a hyperbolic system of N conservation laws for N driver
classes that are distinguished by their preferential velocities. It is shown that the multiclass
scheme satisfies an invariant region principle, that is, all densities are nonnegative and their
sum does not exceed a maximum value. In the scalar and multiclass cases no flux regularization
or Riemann solver is involved, and the CFL condition is not more restrictive than for an explicit
scheme for the continuous part of the flux. Numerical tests for the scalar and multiclass cases
are presented.

In Chapter 2, we formulate a reaction-diffusion system to describe three interacting species
within the Hastings-Powell (HP) food chain structure with chemotaxis produced by three chem-
icals. We construct a finite volume (FV) scheme for this system, and in combination with the
non-negativity and a priori estimates for the discrete solution, the existence of a discrete solu-
tion of the F'V scheme is proved. It is shown that the scheme converges to the corresponding
weak solution of the model. The convergence proof uses two ingredients of interest for various
applications, namely the discrete Sobolev embedding inequalities with general boundary condi-
tions and a space-time L' compactness argument. Finally, numerical tests illustrate the model
and the behavior of the F'V scheme.
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In Chapter 3, we consider a mathematical model for the spatio-temporal evolution of three
biological species in a food chain model consisting of two competitive preys and one predator
with intra-specific competition. The species move toward higher concentrations of a chemical
substance which is produced by themselves. The resulting reaction-diffusion system consists
of three parabolic equations along with three elliptic equations describing the behavior of the
chemical substance. First, the local existence of nonnegative solutions is proved, then we provide
uniform estimates in Lebesgue spaces which lead to boundedness and the global well-posedness
for the system. Finally we report and discuss some numerical simulation.



Resumen

Esta tesis trata del analisis matematico y numérico de dos modelos que describen el compor-
tamiento de multiples especies a partir de ecuaciones diferenciales parciales. En particular, se
considera un sistema de leyes de conservacién con funcién de flujo discontinuo y un sistema de
reaccién-difusion acoplado a ecuaciones elipticas, modelando problemas de flujo de transito que
distinguen entre flujo libre y congestionado, y la dindmica de poblaciones que interactiian con
quimiotaxis.

Los contenidos principales de la tesis se estructuran como sigue:

En el Capitulo 1, Construimos un esquema numérico, que es similar a uno propuesto por
[J.D. Towers, A splitting algorithm for LWR traffic models with flux discontinuities in the un-
known, J. Comput. Phys., 421 (2020), article 109722], descomponiendo la funciion de velocidad
discontinua en una funciion continua de Lipschitz méas una funcién de Heaviside y disear un
esquema el cudl es dividido en las dos partes en las que se descompuso la funcién de velocidad.
La parte del esquema relacionada con la funcién de flujo discontinuo se maneja mediante un
paso semi-implicito que, sin embargo, no involucra la solucién de sistemas de ecuaciones lineales
o no lineales. Se prueba que todo el esquema converge a una solucién débil en el caso escalar.
El esquema puede extenderse de manera sencilla al modelo LWR multiclase (MCLWR), que se
define por un sistema hiperbdlico de N leyes de conservacion para N clases de conductores que
se distinguen por sus velocidades. Se muestra que el esquema multiclase satisface un principio
de region invariante, es decir, todas las densidades son no negativas y su suma no excede un
valor maximo. En los casos escalar y multiclase, no se involucra la regularizacion de flujo ni el
resolvedor de Riemann, y la condicion CFL no es ms restrictiva que para un esquema explicito
para la parte continua del flujo. Se presentan ejemplos numéricos para los casos escalares y
multiclase.

En el Capitulo 2 formulamos un sistema de reaccion-difusién para describir tres especies
que interactian dentro de la estructura de la cadena alimenticia de Hastings-Powell (HP) con
quimiotaxis producida por tres sustancias quimicas. Construimos un esquema de volumenes
finitos (FV) para este sistema, y en combinacién con la no negatividad y las estimaciones a
priori para la solucién discreta, se demuestra la existencia de una solucién discreta del FV es-
quema. Se muestra que el esquema converge a la correspondiente solucién débil del modelo.
La prueba de convergencia utiliza dos ingredientes de interés para varias aplicaciones, a saber,
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las desigualdades de inclusién de Sobolev discretas con condiciones de contorno generales y un
argumento de compacidad espacio-tiempo en L!'. Finalmente, los ejemplos numéricos ilustran
el modelo y el comportamiento del FV esquema.

En el Capitulo 3 consideramos un modelo matematico para la evolucién espacio tempo-
ral de tres especies bioldgicas en un modelo de cadena alimenticia que consta de dos pre-
sas competitivas entre si y un depredador con competencia intra-especifica. Las especies se
mueven hacia o en contra de concentraciones mas altas de una sustancia quimica la cual es
producida por ellas mismas. El sistema de reaccién-difusiéon resultante consta de tres ecua-
ciones parabdlicas junto de las tres ecuaciones elipticas que describen el comportamiento de
las sustancias quimicas. Primero se prueba la existencia local de soluciones no negativas,
luego proporcionamos estimaciones uniformes en los espacios de Lebesgue que conducen a la
acotacion y al buen planteamiento global del sistema. Finalmente reportamos y discutimos
algunas simulaciones numéricas.
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Introduction

Many fields of science and engineering involve the multispecies flow models, such as fluid me-
chanics [15,59,78,105], heat and mass transfer [83,84,98], ecology [34,57,58,67], and numerous
other applications [9, 23,24, 38,49, 56, 66, 69, 82, 89]. For such flows, a correct mathematical
model describing the interactions between different species is of the utmost importance. A
variety of models have been developed to describe such interactions.

The aim of this thesis work is the mathematical and numerical analysis of two models de-
scribing multispecies behavior based on partial differential equations. Among the applications
mentioned, those that motivated the development of this thesis are mainly related to those
that give rise to a system of conservation laws with discontinuous flux function and reaction-
diffusion system coupled with elliptic equations. Challenges in these mathematical problems
concern to the treatment of discontinuous flux function and the strong nonlinearities involved in
the reaction-diffusion system. We begin by studying conservation laws with discontinuous flux
function through Multiclass Lighthill-Whitham-Richards (MCLWR) traffic model with discon-
tinuous velocity function. We remark that this model its of interest because present a transition
between free and congested flow regimes that can be described by a velocity function that has a
discontinuity at a determined density. Reaction-diffusion system is studying through predator-
prey models with chemotaxis. The novelty in this model is that each species secretes a chemical
substance of corresponding concentration and is able to orient its movement towards a higher
concentration of this chemical substance or away from it.

Let us introduce the two problems to work in this thesis, and then give a description to solve
each.

Chapter 1, is concerned with the conservation laws whose flux is a discontinuous function
of the unknowns. This kind of problem arises in many physical applications including flow in
porous media [48], sedimentation [25,42], and the LWR traffic model [64,94]. We are particularly
interest in the multiclass Lighthill-Whitham-Richards (MCLWR) traffic model

i + Oy (Pvi(9)) =0, i=1,...,N; z€R, t=>0.

Here ¢; = ¢(x,t) represent the densities of vehicles of classi,i = 1,...,N,and ¢ = ¢1+---+¢dn
denotes the total density of vehicles. The velocity function v; is assumed to depend on ¢, where



we assume that

vi(¢) = vV (p), i=1,..., N,

max max

where 0" < v < ... < V™ are the maximum velocities of the N classes of vehicles and V' is
a hindrance function that models the drivers’” attitude to reduce speed in the presence of other
cars. The MCLWR model has been studied intensively in recent years. The system has some
interesting properties and in particular admits a separable entropy function for an arbitrary
number of driver classes. We refer to [12, 13,20, 22,24, 26, 28,43, 44,96, 100, 101, 101-104] for
numerical and analytical treatments and emphasize that to our knowledge a velocity function
discontinuous in the unknowns has not been considered so far for the MCLWR model. The
purpose of Chapter 1 is to present a numerical treatment for the MCLWR model with a
discontinuous velocity function that has one decreasing jump at a density value ¢* € (0, dmax),

that is

W@:{Ww>ﬁxog¢<w’ Vi € CM0,¢%], Vi € CY 0", Dmaxl;

Ve(@)  for ¢ < ¢ < dmax,
‘/}(0) - ]-7 V;f/<¢) < 0 on [07 qb*]a ‘/c,(d)) < 0 on [¢*7 ¢max]7 va(quax) - 07
oy = Vi(6%) — Vald") > 0,

where Vi and V. denote the branches of V' used for the free (f) and congested (c) regimes,
respectively. Then, we introduce a numerical scheme for the scalar case N = 1, which is
based on the numerical scheme given in [90] but with slight differences. Then, after imposing
the appropriate CFL condition we prove the well-known L*° and total variation diminishing
(TVD) properties. We prove additional time continuity estimate to show that the numerical
solutions converge to weak solution when the spatial and temporal mesh widths tend to zero.
The most important novelty is the extension of the method to a generate a model with N > 1
of driver classes.

The second problem, which motivates Chapter 2, is related to a predator-prey model which
incorporates chemotaxis phenomena. Here, we recall that chemotaxis is the is the ability of a
biological species to orient its movement towards high concentrations of a chemical substance
or away from it. In particular, in Chapter 2 we consider a reaction-diffusion system describing
three interacting species with respective density u;, i = 1,2,3, in the Hastings-Powell (HP)
food chain structure [52,71], where each species secretes a chemical substance of corresponding
concentration y;, ¢ = 1,2, 3. The resulting model is a strongly coupled nonlinear system of six
PDEs with chemotactic terms, namely three parabolic equations describing the evolution of
the densities u; coupled with three elliptic equations for the concentrations y;, i = 1, 2, 3.

Opuy — D1Auy + x1 div(ui Vye) = Fi(u),

Oyus — DalAuy + x2 div(uaV(yr — y3)) = Fa(u),

Oyuz — D3Aug + x3div(usVys) = F3(u),
—D;Ay; + 0y; = ou;, i=1,2,3 (x,t) € Qx(0,7T].



The interaction due to competition between the species is specified by the functional responses

U1 L2M2u1u2
R = (1- 1) - LMot
I(U) k’ “ R() + U1
F (u) _ LQMQU1UQ o U — L3M3U2U,3
2 Ry + uq 2 Co + us
L3M3U2U3
F: ; — L
3(u) Co + Uy 3U3

Our propose in this chapter is present a convergent finite volume finite for the previous system
and prove that the limit of the discrete solution constitutes a weak solution for the system
previously mentioned.

We recall that in the Chapter 2 we conduct numerical experiments whose results suggest
that a solution to the problem indeed exists. Then, we wonder whether it is possible to prove
the existence of the weak solution to our problem from an analytical point of view. Thus,
Chapter 3 is motivated in order to answer this question. In this chapter we discuss the
existence of the solution from on the point of view of mathematical analysis, simplified system
analysis parabolic-elliptic with logistic terms was studied in [86]. The model problem is similar
to that of Chapter 2 but with slight differences. The model of chapter 3 is given by the
following PDEs system.

Oyu; — D1Auy — x1div(u; Vys) = Fi(u),
Oyus — DoAug — xodiv(usVys) = Fy(u),
Oyuz — D3Auz + x3div(usV(y1 + y2)) = F3(u),
—D:1 Ay, + 01y1 = d1uy,
—DyAys + Oays = Oaus,
—D3Ays + O3y3 = dzuz, (x,t) € Q x (0,77,

where Holling-type II functional responses F;, 1 = 1,2, 3 are given by

Ul Mlul
Fu(w) = ryan (1= 22 = oy, — 228y,
1('U,> U1 kjl g1U1 UL Al T us

Us Myuy
Fa(w) = raua(1 - 2) My,
2(“) T2U2 o O2U1U2 A2+u2u3

M1u1 2U2

Fi(u) = us + us — Lus — Hu
3(w) 1A1+ 1 ’ 2A2+uQ ° ’ 3

Herein, u;(x,t) and us(x,t) represent the total density of the preys at position & at time ¢
meanwhile uz(x,t) represent the total density of predator. Notice, that here the system of six
PDEs describes a in a food chain model consisting of two competitive preys, furthermore the
predator is in intra-specific competition.



Contribution of this thesis

In Chapter 1 we introduce a numerical scheme for the MCLWR model with discontinuous
flux that is based on the available treatment [90] of the scalar model. The scalar version of the
scheme slightly differs from that of [90] but we prove that it produces approximations that also
converge to a weak solution. Numerical experiments provide evidence that it approximates the
same solutions as the scheme of [90]. In the multiclass case we prove satisfaction of an invariant
region principle, that is, numerical solutions assume values in

D::{(¢17"'a¢N)T€RN:¢1207'-'7¢N>07¢:¢1+"'+¢N<¢max}

under corresponding assumptions on the initial and boundary data.

The contents of this chapter correspond to the article:

e R. Biirger, C. Chalons, R. Ordonez, L.M. Villada, A Multiclass Lighthill-Whitham-
Richards traffic model with a discontinuous velocity function, Netw. Heterog. Media (Ac-
cepted).

In Chapter 2 we prove the existence of weak solutions of the system of six PDEs with chemo-
tactic terms, consisting in three parabolic equations describing the evolution of the biological
species coupled with three elliptic equations for the chemical substance. In order to prove that,
we propose a convergent finite volume (FV) method for their numerical approximation and
we prove that the limit of the discrete solutions constitutes a weak solution. In addition, we
will illustrate numerically the chemotactic movement and the importance of the chemotactic
coefficients in the movement of each species, either towards higher concentrations or towards
low concentrations. Finally, we show that with the specified numerical parameters, this model
exhibits spatial-temporal oscillatory behavior.

The contents of this chapter correspond to the article [27]:

e R. Biirger, R. Ordonez, M. Sepulveda, .M. Villada, Numerical analysis of a three-species
chemotaxis model, Comput. Math. Appl 80 (2020) 183-203.

In Chapter 3 we prove the global classical solutions of the system of six PDEs describing
a predator-prey model in a food chain model consisting of two competitive preys and predator
is in intra-specific competition. First, the local existence of a non-negative solution is proved
using the Banach-fixed-point theorem and the properties of the heat semigroup. In addition,
we show that the solution of problem satisfy the L%-integrability property. Then, using the
local existence of the solution and the L®-integrability we prove existence of a global classical
solution. Our goal is to construct a weak solution as the limit of global classical solutions
of appropriately regularized problems. In order to prove this, first we prove a stability result



for the classical solutions, then we define a sequence of classical (u*,y"*) and prove some k-
independent estimates. Therefore we can invoke the Aubin-Lions Lemma to guarantees the
existence of the limit function that is a weak solution of our problem. Finally we report some
numerical simulations.

The contents of this chapter correspond to ongoing research:

e P. Amorim, R. Biirger, R. Ordonez, L.M. Villada, Global existence in a food chain model
consisting of two competitive preys, one predator and chemotaxis, (In preparation).



Introducciéon

Muchos campos de la ciencia y la ingenieria involucran los modelos de flujo de multiples especies,
tal como la mecénica de fluidos [15,59, 78, 105], transferencia de calor y masa [83, 84, 98],
ecologia [34,57,58,67], y muchas otras aplicaciones [9,23,24,38,49,56,66,69,82,89]. Para tales
flujos, un modelo matematico correcto que describa las interacciones entre diferentes especies
es de suma importancia. Se han desarrollado una variedad de modelos para describir tales
interacciones.

El objetivo de este trabajo de tesis es el andalisis matematico y numérico de dos modelos que
describen el comportamiento multiespecie basado en ecuaciones diferenciales parciales. Entre
las aplicaciones mencionadas, las que motivaron el desarrollo de esta tesis estan relacionadas
principalmente con las que dan lugar a un sistema de leyes de conservacién con funcion de
flujo discontinuo y sitemas de reaccion-difusién acoplados con ecuaciones elipticas. Los desafios
en estos problemas matematicos se refieren al tratamiento de la funciéon de flujo discontinuo
y las fuertes no linealidades involucradas en el sistema de reaccién-difusion. Comenzamos
estudiando las leyes de conservacién con funcién de flujo discontinuo a través del modelo de
trafico Multiclass Lighthill-Whitham-Richards (MCLWR) con funcién de velocidad discontinua.
Observamos que este modelo es de interés porque presenta una transicién entre regimenes de
flujo libre y congestionado que puede ser descrito por una funcién de velocidad que tiene una
discontinuidad en una densidad determinada. Se estudia el sistema de reaccion-difusion a
través de modelos depredador-presa con quimiotaxis. La novedad de este modelo es que cada
especie segrega una sustancia quimica de concentracion correspondiente y es capaz de orientar
su movimiento hacia una concentracién mayor de esta sustancia quimica o alejarse de ella.

Introducimos los dos problemas a trabajar en esta tesis, y luego damos una descripcion para
resolver estos problemas.

El Capitulo 1, es acerca de leyes de conservacion con flujo discontinuo sobre la variable de
estudio. Este tipo de problemas surge en muchas aplicaciones fisicas incluyendo flujo en medios
porosos [48], sedimentacién [25,42], y el modelo de tréfico vehicular LWR [64,94]. Estamos
particularmente interesados en el modelo multiclase de trafico vehicular MCLWR

0 + 0 (divi(9)) =0, i=1,...,N.

Aqui ¢; = ¢(x,t) representa las densidades de los vehiculos de la clase 7, i = 1,..., N,y
¢ = ¢1 + -+ + ¢y denota la densidad total de los vehiculos. La funciéon de velocidad v; es



asumida dependiente de ¢, donde asumimos que
vi(¢) = V™V (¢), i=1,...,N,

donde v{™™* < vy’ < ... < vi™ son las velocidades maximas de las N clases de vehiculos
y V es una funciéon de obstaculo que modela la actitud de los conductores para reducir la
velocidad en presencia de otros coches. Este modelo ha sido exaustivamente estudiado en
los ultimos aos. FEl sistema posee algunas propiedades de interés y en particular admite una
funcion de entropia separable para un ntimero arbitrario de clases de vehiculos. Nos referimos
a [12,13,20,22,24,26,28,43,44,96, 100, 101, 101-104] para el tratamiento numérico y analitico
y enfatizamos que hasta donde sabemos una funcion de velocidad discontinua sobre la variable
de estudio no ha sido considerada hasta ahora para el modelo MCLWR. El proposito del
Capitulo 1 es presentar un tratamiento numérico para el modelo MCLWR con funcién de
velocidad discontinua con un salto decreciente en un valor de densidad ¢* € (0, dmax), €s decir

Vi € M0, ¢"], Ve € CYo", dumanl,

V(o) {Vf<¢> for 0 < ¢ < 6",

Ve(9) for ¢ < ¢ < Puax,
Vi(0) =1, V{(¢) <0on[0,¢7], VI(¢) <Oon[¢" dmax], Vi(Pmax) =0,
ay = Vi(¢") = Ve(¢") > 0.

donde V; y V. denotan las partes de V' usadas para los regimenes libre (f) y congestionado (c),
respectivamente. Entonces introducimos un esquema numérico para el caso escalar N = 1, el
cual estd basado en el esquema numérico dado en [90] pero con una ligera diferencia. Entonces,
después de imponer una apropiada condicién CFL probamos las ya conocidas propiedades L> y
variacién total acotada (TVD). Probamos estimaciones adicionales de continuidad en el tiempo
para mostrar que las soluciones numéricas convergen a la solucién debil cuando los tamaos de
las mallas en espacio y tiempo tienden a cero. La novedad mas importante es la extension del
método para generar un modelo con N > 1 de clases de conductores.

El segundo problema, el cual motiva el Capitulo 2, trata sobre el modelo de depredador-presa
que incorpora fenémenos de quimiotaxis. Recordar que la quimiotaxis es la capacidad de una
especie biologica para orientar su movimiento hacia grandes concentraciones de una sustancia
quimica o alejarse de ella. En particular, en el Chapter 2 consideramos un sistema de reaccion-
difusién que describe tres especies que interactiian con densidad respectiva u;, @ = 1,2, 3, en la
estructura de la cadena alimentacia de Hastings-Powell (HP) [52,71], donde cada especie secreta
una sustancia quimica de concentracion y;, ¢ = 1,2,3. El modelo resultante es un sistema no
lineal fuertemente acoplado de seis PDEs con términos quimiotacticos, a saber, tres ecuaciones
parabdlicas que describen la evolucion de las densidades u; junto con tres ecuaciones elipticas



para las concentraciones y;, 1 = 1,2, 3.

Oyuy — D1Auy + x1 div(uy Vo) = Fi(u),

Oyus — DoAug + 2 diV(UQV(yl — y3)) = Fy(u),

Oyuz — D3Aus + x3div(usVys) = Fs(u),
—D;Ay; + 0y; = ou;, i=1,2,3 (x,t) € Qx(0,7T).

La interaccién debida a la competeticion entre las especies estéd especificada por las respuestas
funcionales

Lo M.
Fi(u) = (1 _ E) u, — e

k Ro + Uy ’
L2M2u1u2 L3M3U2'LL3
FBu) = —————— Loug — ————,
2( ) Ro + Uy 2 Co + U2
L3 Mzugus
F3(u — L3u
3( ) CO T Uy 3u3

Nuestra proposito en este capitulo es presentar un esquema de volimenes finitos convergente
para el sistema anterior y demostrar que el limite de la solucion discreta constituye una solucion
débil para el sistema antes mencionado.

Recordamos que en el Capitulo 2 realizamos experimentos numéricos cuyos resultados sug-
ieren que existe una solucién al problema en estudio. Entonces, nos preguntamos si es posible
probar la existencia de la solucién débil de nuestro problema desde un punto de vista analitico.
Asi, el Capitulo 3 estd motivado en orden a dar una respuesta a esta pregunta, en este
capitulo discutimos la existencia de la solucién del problema desde el punto de vista del analisis
mateatico, El andlisis del sistema simplificado, parabdlico-eliptico con término logistico fue es-
tudiado en [86]. El problema modelo es similar al problema visto en el Capitulo 2 pero con
ligeras diferencias. El modelo del capitulo 3 estd dado el siguiente sistema PDEs.

Oruy — D1Auy — x1div(ui Vys) = Fi(u),
Opug — Daluy — x2div(uaVys) = Fo(u),
Oyuz — D3Auz + x3div(usV(yr + y2)) = F(u),
—D1 Ay, + 01y1 = Sy,
—Dy Ay + Oays = Oaus,
—D3Ays + O3y3 = d3uz, (x,t) € Q x (0,77,

donde las respuestas funcionales Holling tipo I Fj, i = 1,2, 3 estan dadas por

Ul M1U1
Fi(u ::ru<1——>—auu — ——us,
1(u) 1U1 i 1U1U2 A1+u13
U2 M2u2
F(u ::ru<1——>—auu — ———us,
»(w) 2U2 s 2U U2 A2+u23
M1u1 M2U2

F = —
3(u) ’71A1+ulus+72



Aqui uy(x,t) y us(x, t) denotan la densidad total de las presas 1y 2 en la posicién @ y tiempo ¢
mientras que uz(x,t) denota la densidad total del depredator en la posicién « y tiempo t. Tenga
en cuenta que aqui el sistema de seis PDEs describe un modelo en una cadena alimenticia que
consta de dos presas competitivas y un depredador, ademas, el depredador presenta competencia
intra-especifica.

Contribuciones de esta tesis

En el Capitulo 1 presentamos un esquema numérico para el modelo MCLWR con flujo dis-
continuo que se basa en el tratamiento disponible [90] del modelo escalar. La versién escalar
del esquema difiere ligeramente de la de [90] pero demostramos que produce aproximaciones
que también convergen a la solucion débil. Los experimentos numéricos proporcionan evidencia
de que nuestra soluciéon numérica del esquema se aproxima a la misma solucién numérica que
el esquema de [90]. En el caso multiclase, probamos la satisfaccién de un principio de regién
invariante, es decir, las soluciones numéricas asumen valores en

D::{(¢17"'7¢N>TERN:¢1207"‘7¢N207¢:¢1+"'+¢N<¢max}

bajo correspondientes supuestos de la condicion incicial y las condiciones de borde.

Los contenidos de este capitulo corresponden a la siguiente publicacion:

e R. Biirger, C. Chalons, R. Ordonez, L.M. Villada, A Multiclass Lighthill-Whitham-
Richards traffic model with a discontinuous velocity function, Netw. Heterog. Media
(Aceptado).

En el Capitulo 2 demostramos la existencia de soluciones débiles del sistema de seis PDEs
con términos quimiotacticos, que consisten en tres ecuaciones parabodlicas que describen la
evolucion de las especies bioldgica junto con tres ecuaciones elipticas para la sustancia quimica.
Para demostrarlo, proponemos un método de volumenes finitos (F'V) convergente para su aprox-
imacion numérica y demostramos que el limite de las soluciones discretas constituye una solucién
débil. Ademas, ilustraremos numéricamente el movimiento quimiotactico y la importancia
de los coeficientes quimiotéacticos en el movimiento de cada especie, ya sea hacia concentra-
ciones mayores o hacia concentraciones bajas. Finalmente, mostramos que con los parametros
numéricos especificos, este modelo exhibe un comportamiento oscilatorio espacio-temporal.

Los contenidos de este capitulo corresponden a la publicacién [27]:

e R. Biirger, R. Ordonez, M. Sepulveda, ..M. Villada, Numerical analysis of a three-species
chemotaxis model, Comput. Math. Appl 80 (2020) 183-203.

En el Capitulo 3 probamos la existencia de soluciones clasicas globales del sistema de seis
PDEs que describen un modelo de depredador-presa en una cadena alimenticia que consta
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de dos presas competitivas y un depredador con competencia intra-especifica. Primero, se
demuestra la existencia local de una solucién no-negativa usando el teorema del punto fijo
de Banach y las propiedades del semigrupo de la ecuacién del calor. Ademads, mostramos
que la solucion del problema satisface la propiedad de L% integrabilidad. Luego, utilizando
la existencia local de la solucin y la L® integrabilidad, se prueba la solucién clasica global.
Nuesto objetivo es construir una solucién débil como limite de soluciones clasicas globales de
un apropiado problema regularizado. Primero, probamos un resultado de estabilidad para las
soluciones cldsicas globales. Luego defnimos una sucesién de soluciones clésicas (u”,y*) y
probamos algunas estimaciones que son independientes de k. Por lo tanto, podemos invocar el
Lema de Aubin-Lions para garantizar la existencia de la funcién limite, la cual es una solucin
débil de nuestro problema. Finalmente reportamos algunas simulaciones numérica.

Los contenidos de este capitulo corresponde a la investigacion:

e P. Amorin, R. Biirger, R. Ordonez, L.M. Villada, Global existence in a food chain model
consisting of two competitive preys, one predator and chemotaxis, (In preparation).



CHAPTER 1

A multiclass Lighthill-Whitham-Richards traffic model
with a discontinuous velocity function

1.1 Introduction

1.1.1 Scope

The multiclass Lighthill-Whitham-Richards (MCLWR) model is a generalization of the well-
known Lighthill-Whitham-Richards (LWR) model [61,80] to multiple classes of drivers and was
formulated independently by Wong and Wong [96] and Benzoni-Gavage and Colombo [12]. The
model is given by the following system of conservation laws in one space dimension, where the
sought unknowns are the densities ¢; = ¢;(z,t) of vehicles of class ¢, i = 1,..., N, as a function
of distance = and time ¢ [12,96]:

i + O (dvi(9)) =0, i=1,...,N. (1.1)

Here ¢ = ¢+ - -+ ¢ denotes the total density of vehicles. The velocity function v; is assumed
to depend on ¢, where we assume that

vi(¢) = vV (p), i=1,...,N, (1.2)

where v" < v < .. < o™ are the maximum velocities of the N classes of vehicles and
V' is a hindrance function that models the drivers’ attitude to reduce speed in the presence
of other cars. This function is usually assumed to be continuous and piecewise smooth on an
interval [0, @max], where ¢nax > 0 denotes a maximum vehicle density, with

V(O) =1, V/(¢) <0, V(¢max) =0.

The simplest function having all these properties is the linear interpolation V(¢) = 1 — ¢/ dmax-
However, equation (1.1) is studied herein under the assumption that V' is piecewise continuous

11
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with one decreasing jump at a density value ¢* € (0, pyax), that is

V() = {W> rO<o<ed™  J o] Ve C'[6 dunl.

Ve(¢) for ¢* < ¢ < dmax,
V:(0) =1, V(¢) <O0on [0,¢0"], V/(¢)<Oon[¢" dmax], Vi(Pmax) =0,
ay = Vi(¢") — Ve(¢") > 0.

We consider (1.1) on the domain Il := (=L, L) x (0,7), where L > 0 and T" > 0, along with
the initial and boundary conditions

(1.3)

¢z($,0) = ¢; 0($) [ ¢max] T e <_L7L)7
¢i(—L,t) = 1i(t) € [0, Pmax], T €(0,T), (1.4a)
¢i(L,t) = s;(t) €0, pmax), t€(0,T), t=1,...,N;

F(t) € (v™™)Ts(t) (s(t)), t€(0,7); o™ .= (v, .. )T (1.4Db)

The non-standard boundary condition (1.4b) on the total density is required in case that s(t) =
¢*, where s(t) := (s1(t),...,sny(t))" and s(t) = s;(t) + - - - + sy(t). This implies that we assign
values to F(t) according to

) {(vmaX)Ts(t)V(gb*—) if the traffic ahead of x = L is free-flowing, (1.5)

a (v Ts(t)V (¢*+) if the traffic ahead of x = L is congested.

This assumption is motivated in a wider sense by models of phase transitions between free
and congested traffic flow regimes [32,36], and more specifically by treatments of the single-
class scalar version of (1.1)—(1.4). In the scalar case the model can be formulated following
initial-boundary value problem for a scalar conservation law defined on Il7:

00 +0.0(6) =0, (e.) €Ll f(9) = V™0V (6),
#(2,0) = d0(a) € [0,6mn. 7 € (L. L), o
H=Lot) =1(t) € 0. 6mu. 1€ (O.T),

H(L0) = 5(1) € 0, 6uad. F(0) € J(s(1) te (O.T),

with a jump in V(¢) or equivalently, in the flux f(¢), see [90,94], where f denotes the multi-
valued version of f and F(t) € f(s(t)) represents the non-standard boundary condition of the
flux discontinuity, see [90].

1.1.2 Related work

Conservation laws with discontinuous flux function arise in many physical applications includ-
ing flow in porous media [48], sedimentation [25,42], and the LWR traffic model [64,94]. Here
we limit the discussion to analyses where the flux is a discontinuous function of the unknown (as
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opposed to the more widely studied discontinuous dependence on spatial position). This prop-
erty implies that standard numerical methods cannot be applied directly due to the presence of
waves that travel at infinite speed, namely so-called zero waves. These waves carry information
about the flux but this value is transported instantaneously, which excludes applying explicit
schemes due to the lack of regularity of the flux. Gimse [47] was the first to present a solution
to this problem. He studied a conservation law where the flux function has a single jump. He
discussed the existence of the zero wave, generalized the method of convex hull construction,
and solved the Riemann problem using a front tracking algorithm.

Carrillo [31] studied conservation laws with a discontinuous flux function where the flux is
allowed to have discontinuities on a finite subset of real numbers. The proof of existence of
solutions is based on the comparison principle and an entropy inequality involving a version
of semi-Kruzkov entropies. Dias and Figueira [39] studied a related problem by using a mol-
lification technique to smooth out discontinuities. They showed that solutions to a suitably
regularized problem converge to solutions of the original problem in the limit. They also de-
fined the notions of weak solution and weak entropy solution. The mollification technique was
implemented in [40,41]. Moreover, Dias and Figueira [40] proposed a numerical scheme for Rie-
mann problem. Specifically, they introduced a procedure to obtain a new Lipschitz continuous
flux function with the same lower convex envelope of the original flux, and then a standard
Lax-Friedrichs method is employed.

Martin and Vovelle [68] considered the problem of numerical approximation in the Cauchy-
Dirichlet problem for a scalar conservation law with a flux function having finitely many dis-
continuities. The well-posedness of this problem had been proved by Carrillo. An implicit finite
volume scheme is constructed in [68] and Newton’s method is employed to solve the resulting
system of nonlinear equations. Furthermore, convergence to the unique entropy solution is
shown.

Lu et al. [64] explicitly constructed the entropy solutions for the LWR traffic flow model with
a piecewise quadratic flow-density relationship. Their approach is based on constructions of
entropy solutions to a sequence of approximate problems in which the flow-density relationship
is continuous but tends to the discontinuous flux when a small parameter in this sequence tends
to zero.

Bulicek et al. [18] introduced new concepts of entropy weak and measure-valued solutions
that are consistent with the standard ones if the flux is continuous. They identified a given
discontinuous flux function with a continuous curve that consists of the graph of this flux and
abscissae that fill the jumps. Consequently, instead of a discontinuous flux function of the
unknown, they deal with an implicit relation that represents a curve. One has one degree of
freedom to set up the “optimal” unknown (independent variable). These ideas are combined
in [19], where the authors treat the case of a flux function discontinuous in spatial position
and the unknown. Through appropriate estimates for entropy measure-valued solutions well-
posedness is shown.
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Wiens et al. [94] applied Dias and Figueira’s mollification approach to solving a conservation
law with a piecewise linear flux function in which there is a single discontinuity at a critical point.
They introduced a mollified function and then the analytical solution to the corresponding
Riemann problem is derived in the limit. Furthermore they constructed a Riemann solver
that forms the basis for a high-resolution finite volume scheme of Godunov type and used an
alternate approach that eliminates the severe CFL constraint by incorporating the effect of zero
waves directly into the local Riemann solver.

Towers [90] presented a finite difference scheme that implements a splitting consistent with
the decomposition the flux f(u) = p(u) + g(u), where p is a Lipschitz continuous function
and ¢ is a function of Heaviside type that includes the jumps of f. The scheme has the form
(see [90, Eq. (3.11)])

J

{U@+1/2:G~1(U;L_)\g;b:11/2)’ j:M’M—]_,...,l,

n+1/2 n+1/2 n n+1/2 .
9; —(Uj — U+ Ag; 4 VA, j=MM-1,...,1, (1.7)
Urtt = UMY A p(UTH U =1, M,

which can be written in conservation form as follows:

Uﬁ+1/2 _ U]n B )\( n+1/2 g@+1/2)’

J 7+ J
n+l _ yprn+l/2 - n+1/2 n+1/2
Ut = U = MNA (U5 U7).

The first part of the scheme is implicit and consistent with u; + g(u), = 0, but the resulting
equations can be solved by evaluation of a piecewise linear function. Hence, an iterative solver
like Newton’s method is not required. The second part of the scheme is consistent with u; +
p(u), = 0 and is explicit, and can be solved by any scheme suitable for a scalar conservation
law with Lipschitz continuous flux. Towers [90] focused on the Godunov flux for the explicit
part but also presented a simple flux-limited Lax-Wendroff-type modification to the Godunov
scheme.

1.1.3 Outline

The remainder of this chapter is organized as follows. In Section 1.2 we present a numerical
scheme for the LWR traffic flow model. We first introduce some assumptions and the notion of
weak solution in Section 1.2.1. Next, Section 1.2.2 is devoted to the presentation of our scheme
for the scalar case (N = 1) and we imposed the appropriate CFL condition. Then, in Section
1.2.3, we prove that under the CFL condition it satisfies uniform L*° and TVD properties.
Moreover we prove some kind time continuity estimates and to the end this section we prove
the convergence of our numerical solution converge to weak solution in sense of Definition 1.1.
In Section 1.3 we extend the algorithm to the multiclass case (N > 1) and prove that the
scheme preserves the invariant region D. In Section 1.4 we present several numerical examples
to confirm all the results mentioned before. Section 3.6.1 collects some conclusions.
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Figure 1.1: (a) Piecewise continuous velocity function V' (¢) with discontinuity at ¢ = ¢*, (b)
continuous and discontinuous portions py(¢) (solid line) and gy (¢) (dashed line).

1.2 Construction of the numerical scheme in the scalar
case

Before describing the numerical scheme we introduce some assumptions and the definition of
weak solutions proposed in [40], which is employed herein.

1.2.1 Preliminaries

To outline the basic idea, and to make the comparison with [90] transparent, we define the
functions

gv(¢) = avH(¢" —¢), pv(9) :=V(e) —gv(e), (1.8)

where py is a Lipschitz continuous, piecewise smooth and decreasing function, while gy (¢)
is a non-negative and decreasing function, see Figure 1.1. Furthermore, as in [90], we can
equivalently specify

Q(t) S gv(S(tD, (19)

where gy denotes the multivalued version of gy,. With respect to the initial and boundary data
we assume that the initial density function ¢, satisfies

¢0($) S [Oa(lﬁmax] for z € (_L7L>7 ¢0 S BV([_L7L])> gV(¢0) € BV([_Lv L])
The boundary functions r and s are assumed to satisfy
r(t),s(t) € [0, pmax] fort €[0,7], r,s e BV([0,T]).

We also assume that G(t) € [0, ay] for all t € [0,7], and G € BV([0,T]).
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Definition 1.1 (Weak solution [40]). A function ¢ € L*(Ilr) is said to be a weak solution
to the initial-boundary value problem (1.6) if there exists a function q € L®(Ily) satisfying
q(x,t) € f(d(x,t)) a.e. such that for all test functions ¢ € C3([—L, L] x [0,T)),

T L I
/ / (o + quy) da dt+/ do(2)0(x,0) dz = 0.
0 —L _L

1.2.2 Numerical scheme

The domain Ily is discretized as follows. We choose a partition {I;}Z, of [~L, L] composed of
uniform cells I; = [x;_1/2,%j41/2), where ;112 = x; + Az /2, that are centered in z; and have
length |I;| = Az = 2L/M. Then, for At > 0, we let t" = nAt for n = 0,..., N, where N is
an integer such that T' € [tN .tV 4+ At). The unknowns @7 approximate the cell average of the
exact solution ¢(-,¢") in the cell I;. The initial condition is discretized by

1 .
(bng_x/p%(I)dz’ j=1,..., M,

and the boundary conditions with F(t) € f(s) are discretized as follows:
n+1/2 n n n n+1/2 n n n
0+/ = ¢y =r(t") =1", ¢]\/}:—{ = Py = s(t") = 5",
T,n 6 [07 gbmax]y Sn E [07 Qbmax], g]"\?:l/Q 6 [07 O{V}y

ay if s < ¢F, (1.10)

net1)2 . . ay if s" = ¢* and traffic ahead of x = L is free-flowing,
g1 = =G(s") = . . .
if s = ¢* and traffic ahead of x = L is congested,

if 5" > ",

Before proposing our scheme we recall that the basic idea of a splitting scheme consists in
solving within each time step, first the PDE

¢+ 0, (V"™ gy (¢)) =0, (1.11)
followed by the solution of the conservation law with continuous flux
O + 0, (V™™ ¢y (¢)) = 0. (1.12)

max

Note that in the scalar case the constant v™** is immaterial. For the remainder of the analysis

of the scalar case we assume that ¢ or x are rescaled so that v™®* = 1.

Based on the form of the flux function of equations (1.11) and (1.12) and the properties of
the functions ¢y and py, we may write a numerical scheme for (1.6) that is motivated by
Scheme 4 of [23] in the following form:

o7 T =07 = MéGgvh — gy )

ot =gy = A7 Py (675 %) = S P (67), =1 M
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(a) (b)
T — ‘ i ‘ 1 ‘ ‘ ‘

Gv (2 ¢) - Gy (20) 1
08t ] 0.8 ]
0.6 | E 0.6 - _
04t 1 1

04t ]

02t 1 1
02t 1

0 - B - L -
0 02 04 06 082 1 0002 04 06 082 1

Figure 1.2: (a) function z + Gy (z; ) given by (1.16a) with o™ = 1/2, ay = 0.3, and
¢ = 0.8, (b) its inverse z — Gy,'(2; @) given by (1.16b).

The first half-step in (1.13) is semi-implicit and is consistent with (1.11) whereas the second
half-step is explicit and consistent with (1.12).

In order to evaluate the first line in (1.13), we start by computing the values g%l/ ? from
j=M+1toj=1 (in decreasing order). This is motivated by the following argument, where
we start from the semi-implicit equation

07" = 6 = MSav (@) - dagv(¢]77)) (1.14)

along with a known value g(ﬁjj{?) arising from the boundary condition. Next, we write

V(gb?ill ) as g%i/f and then rearrange (1.14) as

¢ NGt gy (67T17) = ot — Aplg (1.15)
Let us now define the function

Gv(z;0) =2z —Abgv(2), 2 ¢ € [0, dmax]

along with its multivalued version (with respect to z) Gy (-;¢). Then Gy is strictly increasing
and has a unique inverse z — G7'(2; ¢), see Figure 1.2. Explicitly, we get

(2 — Ao for z € [0,¢"),

Gy (2¢) == { [¢0" — Aave, ¢*] for ¢ = ¢*, (1.16a)
& for z € [¢*, Gmax),
(24 have for 2 € [“Aave, ¢* — Aavo),

Gy' (2:0) = { ¢* for z € [¢* — Mavé, d*], (1.16D)
z for 2z € [¢", Pmax]-

\
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Consequently, we may express (1.15) as
Gy (67 %5 07 1) = & — Mg
which allows us to obtain ¢?+1/ ? by applying G (2;¢) to both sides, that is
o)1 = Gyt (67 — Mg 07)- (1.17)
Now that cb?H/ ? is available, we solve for g%l/ ? the equation
O = 4 = N(Sgv i — dpagis), (1.18)
provided that ¢} ; > 0. If ¢7_; = 0, we define directly

a5 = 0v (67

The numerical scheme can be summarized in Algorithm 1.1:
Algorithm 1.1 (BCOV scheme, scalar case).

Input: approximate solution vector {qﬁ?}]ﬂil for t =t"

g%}/fl “— Q(gb}‘jj{?) (using (1.10))
doj=MDM-1,...,1
n+1/2 ~N— n n n+1/2 . p
¢j+ / < GVl (¢] - )‘¢jg\/;+/1 >¢j_1)
if ¢7 | # 0 then

n+1/2 n n+1/2 p
nt1/2 ¢j /2 ¢j + )‘gV,j+/1 ¢j

g ] n
Vi >\¢j71
else
n+1/2 n+1/2
gv:; /% 9V(¢j+ / )
endif

enddo
doj=12,...,.M
n n+1/2 n+1/2 n+1/2 n+1/2 n+1/2
O = @ = N7 v (071177) — 43 Py (67117))
enddo

Output: approximate solution vector {qﬁ?“}jj‘i Lfor t ="t =" + At

Next, we demonstrate that the numerical scheme (1.18) is consistent with (1.11).
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Lemma 1.1. Assume that (b"H/Q € [0, pmax] for all j. Then gy, ntl/2 ¢ f]v(¢"+1/ ) for all j. In
particular gy /2 € [0, ay]| for all j.

Proof. Let us first assume that ¢;_; = 0. Then the result follows from the definition of the
function gy (z) and the corresponding assignment to g@l/ * in Algorithm 1.1. If ¢j—1 # 0, then
(1.17) and (1.16) imply that

¢n+1/2 . )\an 1 ‘71/-51/2 c G (¢n+1/27¢ )

J

Therefore, by a straightforward case-by-case study (of the cases arising in (1.16)) we conclude
that ¢ nH/Q € gv(¢n+l/2). O

Now, to derive CFL conditions, we write the scheme (1.13) in incremental form

n+1/2 n+1/2 n+1/2 n+1/2
d)] ¢ + O j+1/2A+¢j g] 1/2A (ZS (1]‘98‘)
n n+1/2 n+1/2 n+1 2 n 1/2 n+1/2
gt = T OB NG - DR At (1.19b)

with the spatial difference operators ALV, = V43 — V; and A_V; := V; — V;_; and the
incremental coefficients

n+1/2 n+1/2
)\gb” (¢ { ) — 9V(¢j+1/ ) ; ¢n+1/2 £ ¢n+1/2
n+1/2 n+1/2 +1/2 Jt+1 J )
C’g,j+1/2 T ¢J+1 N 9257]1
0 otherwise,
n+1/2 n+1/2
9d—1/2 " Agv (9577,
n+1/2 n+1/2
A n+1/2pV(¢ / ) — pv(¢j+1/ ) n+1/2 n+1/2
otz ¢ n+1/2 n+1/2 J+1 7 (b
pj+1/2 ¢J+1 B (bj
0 otherwise,
n+1/2 | n41/2
Dy j-1p2 = Apv(g; )

To have an L* estimate (Lemma 1.2 below) and the Total Variation Diminishing (TVD)
property (Lemma 1.3 below) sufficient conditions are

0 < Dn+1/2 On—i—l/? 1 n+1/2 > 07 0 < Dn+1/2

p.j—1/27 Ypj+1/2 = 97 9:3+1/2 = s 1 forallj.

First, we observe the following fact about gy. If z1, 25 € [0, Pax] and z; # 23, then

v — gv,1

<0. 1.20
i (1.20)

gva € gv(z1), gve € gv(z) =

This property and Lemma 1.1 imply that

n+1/2  ~n+1/2 .
Dy Cg,j+1/2 >0 for all 5.
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Next, the properties of the function py ensure that

n+1/2 n+1/2 ‘
Cp7j+1/2, Dp,j71/2 >0 for all j.

Finally, to enforce the inequalities

1
n+1/2 n+1/2 .
Dp,j—/l/2’ Cpj+1/2 < 5 and D!m._/l/2 <1 forall j,
we impose the CFL conditions
1
/ ) N < = <
A(aﬁmax 12}2’54‘”(%)‘ + lg}iﬁpv(d)J)) <3 AavrslL (1.21)

1.2.3 Convergence of the scalar scheme

The goal is to prove convergence of approximate solution to a weak solution of (1.6). The

discrete solutions {¢;LH/ 2

[I7 by defining the piecewise constant function

} constructed via the scheme (1.13) are extended to the whole domain

N M
¢ (z,1) = > > xi@X ) (1.22)
n=0 j=1
where A = (Az, At) and x;(x) and x"(t) are the characteristic functions of cell I; and the time
interval [t",t" + At), respectively. The ratio A = At/Ax is always kept constant, so the limits
At — 0, Ax — 0, and A — 0 are equivalent.

We start by proving an L™ estimate on ¢®. In the remainder of this section it is always
assumed that the CFL condition (1.21) is in effect.

Lemma 1.2. If ¢9 € [0, ¢max| for j =1,..., M, then

notT? e [0, pmax] forall j=1,... . Mandn=1,... N. (1.23)

VAR
Proof. Taking n =0 and j = M in (1.17) yields

ov” = Gt (0% — Ao arens S0 ). (1.24)

The boundary condition g‘l,/ z 11 =6(t") C [0, ] together with the assumption implies that

1/2
v ddy < 0% — Aoy i < Dumax

Since G,!(+; ¢) is a nondecreasing function and maps [~ Ay @, dmax] 0Nto [0, Gax), (1.24) implies
that ¢}\f € [0, Pmax)- It follows from (1.1) that g‘l// 2 €[0,ay]. Reasoning in this way for j =
M —1,M —2,...,1 yields ¢}/% € [0, ¢nax] for j = 1,..., M. Since ¢y'*, ¢y, € [0, Smax] by
(1.10), and taking into account (1.19), we find that ¢; is a convex combination of gbjli 2 ¢}/ 2
and gb]l-fl. Thus, gbjl € [0, Pmax) for 7 = 1,..., M. Repeating this argument inductively for
n=1,...,N we obtain (1.23). O



1.2. Construction of the numerical scheme in the scalar case 21

Lemma 1.3. The discrete approzimate solutions generated by the scheme (1.19) satisfy the
following spatial variation bounds:

M

D |6 = 0] < TV(60) + TV(r) + TV(s),
L (1.25)
> | = o < TV (o) + TV(r) + TV(s).

=0

Proof. Applying the operator Ay to (1.19a) and rearranging yields
(1 + On+1/2 )A+¢n+1/2 (1 _ Dn—&.-l/2 )A+¢n + Cn+1/2 A+¢n+1/2 n+1/2 A+¢

9,J+1/2 9,J+1/2 9,J+3/2 J+l gJ 1/2
Taking absolute values, summing over j = 1,..., M — 1 and using (1.21) we get
M-1 M-1 M-
DIURRCATAIINE S D DITRULSloS NN N ScO AN
J=1 j=1 j=1

-1
+ > Dy | A .
=1

Cancelling telescoping terms we obtain
M-1 M-1
n+1/2 n+1/2 n+1/2 n n+1/2 n n+1/2 n+1/2
D18y 4 O Aol T < DD |80 | = DYl | As iy ]+ Coarid ol Aoy |
j=1 j=1
n+1/2 n+1/2
+ Dg,l/? ‘A+¢ |
(1.26)

The boundary condition implies

Apoh ™ = (1= Dy ) Adi + Oy Ao,

n 2 n 2 n n+1/2 n+1/2
(1 +C Eilﬂ)AﬂLgb ;! = Ay + Dg,L£l/2A+¢ e

After taking absolute values in the two previous equations, we get

A op P < (1= DI ) AL gy ] + Coa | Ao

(1+ Cot ) A n 2| < A3 + Doy ol Ao ).

Y

(1.27)

From (1.26) and (1.27)
M M
DA< o |A g (1.28)
=0 J=0

Reasoning in the same way as the proof of Lemma 5.2 in [90] we find that

Z|A+¢n+l| Z|A+¢n|+|rn+l n|+|8n+1_sn|.
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It follows by induction that

Z\@H ¢ < TV(¢o) + TV (r) + TV(s). (1.29)

From (1.28) and (1.29) we get (1.25). O

Now, we prove some time continuity estimates. The proof of the first of them is very similar
to that of [90, Lemma 5.5], so we omit the details.

Lemma 1.4. The following discrete L' time continuity estimate holds for n > 0:

M+1

Z 00— ¢ < Q= TV(Go) + TV(r) + TV(5) + 26mas.
Lemma 1.5. The following estimate holds:

M M
Mo = <o = |ov(#21) = gv (#)] + TV (60) + Pma. (1.30)
j=1 Jj=1

Proof. We define g&j = gv(gbg). The first equation in (1.13) with n = 0 implies
1/2 2 1/2
ij/ — 0 = A5 (g 1v/g = 9v;) = A (9V/9+1 Ir1) = A5 (Drgv;) = Agv; (D4 d54)-
Thus
B N~ ) = A shn) ~ASA 4o AL). (LD
Taking absolute values in (1.31) and using (1.20) we find that
(6% = ] + 2001|005 — 9V < A9/ r — gl + A Awgls| + Agd s A .

Summing over j = 1,..., M and cancelling telescoping terms yields

Z|¢1/2_¢0| +)\¢o}91/2 9v1} A(bM‘g{l//]%Hl —Q%,MH‘
o y ; (1.32)

FAY Al [+ A av Ay
Jj=1 j=1

Applying the boundary condition in (1.32), Lemmas 1.1, 1.2, and the CFL condition (1.21) we
get (1.30). O

Lemma 1.6. There exists a constant €23 that is independent of A such that the following time
continuity estimate holds:

M+1
Z|¢n+1/2 n— 1/2| <Qy forn>1. (1.33)
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Proof. For n > 2 and subtracting from the first half-step of (1.13) the corresponding formula
for gzﬁj ? and rearranging terms we get

(bT‘L+1/2 _ ¢@71/2 B >\¢¢'L_1( n+'1/2 . 9‘7;7'1/2)
J V.j J
n+1/2 n n— n+1 2 n— n+1/2 n—1/2
:(1_ VJ+/1)(¢ — 9; ")+ gy, /( -1 Pj- i) - AP} 1( Vj+/1 _gV,j+/1)‘
Taking absolute values and applying the CFL condition (1.21) yields

|¢?+1/2 . d)n 1/2 >\¢ ( n—|—1/2 93;1/2)‘

< (1= 29y 107 = 077 |+ Al Pl
+ |/\¢§L 1(9%312 - 93,;’312) |
From (1.20) we get
|¢7?,+1/2 n— 1/2| + ‘)\¢ ( n+1/2 97‘;—1/2)}
J J
<(1- @i/f)lcb — o 4+ Mg, — (1.34)
+ |)\¢? 1(93:‘41-/12 - g;,j-li-/f) ’
Summing over j and cancelling telescoping terms we obtain
M
Z|¢”“/2 R I B e e P T A YR Vi
j=1
~Agvara ok = oh.

The last inequality implies

M
PR ZW op 7 I =[G ) - G
j=1

We observe that
n— n n n— 1/2 7’1—3/2
¢ o ¢ ' (1 o Bg+11/2 Ag 11/2) (¢ o ¢j ) (1.35)
n—1/2 n—3/2 n n—1/2 n— 3/2 ’
+ A]+1/2 (05" — &) + B)” 11/2(9ZS —¢;17),

where

1
A=A / O (66707 + (1= 0)667 77,0071 + (1 0)0777) de,

Bl = A / 0o (00717 + (1= 000077, 0071 + (1 - 0)097 1) o

Herein ¢(¢j11,¢;) = ¢;pv(¢j41) and 0;¢ denotes the partial derivative of ¢ with respect to
the i-th argument (: = 1,2). Since ¢,py(¢) = 0 and pi,(¢) < 0, the function ©(¢ji1,¢;) is
nonincreasing with respect to ¢4, and nondecreasing with respect to ¢;. This implies (together
with the CFL condition)

O Anl Bnl ]'

G120 TiH1/2 5 (136)

The remainder of the proof is similar to the proof of Lemma 5.6 in [90]. Details are omitted. [
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Now, we are ready to prove the convergence of ¢® as A — 0.

Lemma 1.7. The functions ¢~ defined by (1.22) converge in L'(Il7) and boundedly a.e. a
along subsequence to a limit function ¢ € C([0,T], L' (—L, L)) N L>=(Il7)).

Proof. The proof is a standard argument using the L™ estimate (Lemma 1.2), the uniform
spatial variation bound (Lemma 1.3), and the L' Lipschitz continuity in time estimate (Lemma
1.6). O

In order to show that the limit function ¢ identified in Lemma 1.7 is a weak solution in
the sense of Definition 1.1, we must also prove the convergence of the flux approximations.
Instead of showing that the approximations {g;, 9y +1/2 } converge we show that the approximations
{h?H/ } converge, where we define

h?H/Q —¢n+1/2 3?1/2 forall j=1,...,.M andn=0,...,N,

and extend these quantities to functions defined on Il by

ZZX] n+1/2

n=0 j=1

Now, we require additional time continuity estimates, which is the contents of the following
lemma. Its proof is very similar to that of Lemmas 5.8 and 5.9 in [90], and is therefore omitted.

Lemma 1.8. The following uniform estimates hold for n > 1, where the constant 24 is inde-
pendent of A:

M
ZW?H — 07| <, Qy:=Qy 4+ TV(s) + TV(r), (1.37)
M
N[ — o] < Q4+ (1.38)
=1

The following lemma is needed to establish a spatial variation bound on the approximations
j

Lemma 1.9. There exists a constant Q5 that is independent of A such that
2925 ‘A+ n+1/2 < Q.

Proof. From the first half-step of the scheme we get

¢fb+l/2 o ¢n (¢nA+gn+l/2 + n+1/2A+¢ )

J J
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which can be rerranged as

)\Qb A+ n+1/2 _ (¢@+1/2 . ¢n) _\ n+1/2A+¢] .

J J

Taking absolute values and summing over 7 =1,..., M we get

)\Z¢n|A+ n+1/2 Z|¢n+1/2 ¢n‘ +>\Z n+1/2|A+¢ 1|

From Lemma 1.1 and the CFL condition (1.21) we have

M M
PR A z|¢"+1/2 o5l + D _|Asdh |
j=1 Jj=1

The result is obtained from (1.38) in Lemma 1.8 and Lemma 1.3. O

We are now ready to bound the spatial variation of the approximations hnH/ 2

Lemma 1.10. There ezists a constant Qg that is independent of A such that

Z R < W) < Q. (1.39)
Proof. The first part of scheme (1.13) can be written as

n+1/2 n n n+1/2 n+1 2 n—+1/2 n n+1/2 n+1 2
07 = o = N avst s (7T = 41n)) + g gy

Applying the spatial difference operator to the above equation we get
n+1/2 n+1/2 n n+1/2 n+1/2
ALt = (1= Mg D) ALg? + ALK — o AL it
n+1/2/ n+1/2 n+1/2 n+1/2 n+1/2
— A G (T = )+ g Ay — Ay AL
Thus
n+1/2 n+1/2 n+1/2 n n+1/2
ARG = AT — (1A Vﬁé )Am + A@ngv,ﬂé

After taking absolute values and using |A+g"+1/ 2| < ay, Lemma 1.1 and the CFL condi-
tion (1.21) we get

)\‘A+h?+l/2|
<2\ AL TP 4 | ALl |+ AT | A g |+ 0T — o+ | ALty

Summing over j = 1,..., M we get

M 9 M 5 M M M
Z‘AJL?H/Q X Z A+¢?+1/2’ + X Z‘A#?ﬂ + X Z|¢?+1/2 . ¢ﬂ + Z¢?+1}A+9%i/12 .
j=1 j=1 j=1 j=1 j=1

Finally, the result follows from Lemma 1.3, (1.38) in Lemma 1.8, and Lemma 1.9. []
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The following lemma is required to prove the L' Lipschitz continuity in time and spatial

variation bounds on {h”H/ 1.

Lemma 1.11. There exists a constant 2; that is independent of A such that

n—1| n+1/2 n—1/2
szz¢ 1| V—;+/1 - Vj+/1 < Q7. (1.40)
7j=1 n=1
Proof. From (1.34) we get
A n—1 n+1/2_ n—1/2 1- )\ n+1/2 A n+1/2 n__ an—1
;g Tyt — v | < ( VJ+2)|¢J+1 S| + Ivj+1 |65 — 57|

n+1/2 n—1/2 n+1/2 n—1/2
- ‘¢j+1 - ¢j+1 ‘ + )\¢j+1 ’ng+2 ~O9vj+2 |-

By induction we obtain

M
MG = g < D [0k = oi T+ Ll — sbad
e (1.41)
A Z ‘¢n+1/2 n— 1/2’ + |¢n an_l’.
k=j+1 !
Recalling (1.35) we have
M M
Dok =< D0 (U= Bl — AL |6 - o
k=j+1 k*j—f—l
Z Al = e + Z Byl iy = ).
k=j+1 k=j+1
Cancelling telescoping terms and applying (1.36) yields
= 1
O I Sl R R R e e
k=j+1 k=j+1

Then (1.41) becomes

)\gb”_l} n+1/2 n—1/2

v+l — vt
M
n— n n nf 1 n— n—
< Z ’¢k /2 3/2’ B Z ‘(b +1/2 k 1/2‘ +§‘¢M+1{2 _¢Mf{2‘
k=j+1 k=j+1

1 n— n— n n— n n
+§|¢j 1/2_¢j 3/2|+}¢j — & 1|+‘9vj\}/+21 QVJ\}/+21
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Summing over n > 2 and j = 1, ..., M, cancelling telescoping terms and multiplying the result
by Ax we get

M N
n 1| n+1/2 n—1/2
AQZZZ ‘ng—i-l _guj+1 § Sl+""|‘557
Jj=1 n=2

where we define

N

L n— n—
Sy 1= XZ|S 12 _ g 3/2|,

Z’¢3/2 1/2
n=2
Sy := %ZZW —ol, Sii= Z\ gni = gvaiial,

j1n2

ZZ‘QSTL /2 n 3/2|.

jln2

In view of the bounds established so far, there holds

2L L 2L Q
S1< 0, S < TTV(s), Sy <UT, S < =TV(G), S5 < 73T.

These bounds in conjunction with | gf’/ f — g‘l// JQ | < ay imply that there exists a constant {2; such

that (1.40) is valid. O

Lemma 1.12. There exists a constant §2g that is independent of A such that

AtZZ\hﬁf” — +AxZZ\h"“/2 V2| < Qs (1.42)

n=0 j=1 n=1 j=1

Proof. In light of the spatial variation bound (1.39) we find that

N M
ALY S| = B < QT

n=0 j=1
The first part of (1.13) implies

¢7}+1/2 . qbn 1/2 (1 Y n+1/2) ((;5 o ¢n 1) + )\(hn+1/2 hr}—l/Z) . Ag$;1/2(¢@+1/2 _an )

J J VJ+1 j ] j—1
A7 = a5l =20 U - )
=(1- )\ggjﬁ/l?) (67 — ¢ 1) + )\(hn+1/2 h@—1/2) B )\9%1/2@%1/2 o)
1

J
—Agu PO+ Ay AL 4 gy P (0T — )

n— n+1/2 n—1/2
— AQ’ 1(9\/]+1 - V,j+1)‘
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Consequently,

)\(hn+1/2 . h;;fl/z) _ (¢n+1/2 . (p@’l/Q) B (1 B 3J;J1r/12) (¢n (bn 1) T )\g n+1/2 (¢n+1/2 ¢n)

J J J
+A n+1/2A+¢? = n 1/2A+ B Ag&]l/2(¢n 1/2 ¢n 1)
n+1/2 n— 1/2

+ A5 1(9v]+1 —9vjt1 )
Taking absolute values and using the CFL condition (1.21) we get
n+1/2 n—1/2 n+1/2 n—1/2 n n—1 n n—1
o e N L T I ol el e B FANR Y S FANR
n+1/2 n n—1/2 n— n— n+1/2 n—1/2
{67 T2 = 9f| 10T = o A an i — av i
Multiplying this inequality by Az and summing over j and n we get
szz‘hnﬂ/z 172 <U 4+ +Us
n=1 j=1

where we define

1/2 1/2 Az LI
= 5 ZZW” o Ve =D D 147 -

n= 1] 1 n=1 j=1
2A 2A n
U3: xZZ‘A_l_Qﬁ U4: $22|¢ +1/2 n
n=1 j=1 n=1 j=1
Us := Aﬂ?zz(ﬁ? 1|93J;i/12 - \T;ji/f :

n=1 j=1

From (1.25), (1.33), (1.37), (1.38) and (1.40) we have

Uy T, Uy <UT, Us < 2(TV(¢g) +TV(s) + TV(r))T
<2 + )T, Us <O

Combining these bounds we see that there exists a constant (g that is independent of A such
that (1.42) is valid. O

Lemma 1.13. The functions h® converge in L*(Ily) and boundedly a.e. along subsequence
to some limit function w € L'(—L,L) N L®(—L,L). Moreover, by a suitable choice of a
subsequence, we have w(z,t) € Q(¢(z,t)) a.e. in Iy, where ¢(x,t) is the limit of Lemma 1.7.

Proof. We observe that |h?+1/ 2[ < Omaxv. Then by Helly’s theorem [54] there exists a function
w € LY(II7) such that h® — w along a subsequence in L!(Ilz) and boundedly a.e. in IIz. To
prove the second assertion, we define Q(¢) := pgy (¢) and Q denote the multivalued version of
Q. Assume (by extracting further subsequences if necessary) that ¢ — ¢, h® — w in L'(II7)
and fix a point (z,t) € Iy where ¢>(z,t) — é(x,t) and h™(x,t) — w(x,t) as A — 0. First,
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we consider the case ¢(z,t) = ¢*. Lemma 1.1 implies that 0 < h®(z,t) < ay¢™(z,t). Then
passing to the limit in the above inequality we obtain

w(z,t) € [0,ar¢’] = Q(").

In case ¢(z,t) # ¢* first we consider ¢(z,t) < ¢*, then Q(¢(z,t)) = ay¢(x,t). For sufficiently
small A the inequality ¢*(z,t) < ¢* implies that ¢?+1/2 < ¢* and gv(gb;‘“/?) = {ay}. Then,
by Lemma 1.1 we get

Z Z X (@)X ()R = Z Z @ ()T = ayd® (,1).

n=0 j=1 n=0 j=1

Thus w(z,t) = lim h?(z,t) = ay lim ¢* (z,t) = ay¢(x,t) = Q(o(x,1)).

In the case ¢(x,t) > ¢* there holds Q(é(z,t)) = 0. In this case it is necessary extend {g"H/Q}
to functions defined on Il by

gv (1) ZZX] "(t)gy ',

n=0 j=1

and we need to utilize the following consequence of Lemma 1.1:

g (@,t) € (9 (z,1).  (x,t) € TIr.

For sufficiently small A, ¢ (x,t) > ¢* implies that gy (¢~ (z,t)) = {0}, hence ¢ (z,t) = 0.
Finally observe that 0 < h%(z,t) < ¢®(z,t) - g9 (z,t) = 0 for sufficiently small A. Hence
w(z,t) = Q(o(x, 1)) = 0. O

Theorem 1.1 (Main result). The functions ¢ converge in L*(Il7) and boundedly a.e. along
subsequence to some ¢ € C(|0,T], L*(—L,L)) N L®(Ily). The limit function ¢(x,t) is a weak
solution in sense of Definition 1.1.

Proof. The convergence is ensured by Lemma 1.7. It remains to prove that the limit ¢ is a
weak solution. Let us fix a point (z,t) € IIr, then Lemma 1.13 implies that w(z,t) € Q(¢(z, 1))

a.e. in Iy, If ¢(x,t) # ¢*, then Q(d(z,t)) = Q(é(x,t)). Thus w(z,t) = Q(é(x,t)), then we
define q(x,t) = opy(0) + Q(o(x,t)) = f(é(x,t)). In the case where ¢(x,t) = ¢* we take
w(x,t) € [0,y ¢*] and define

g(z,t) = ¢"pv (") + w(x,t) € ["pv(6), 0" pv(¢7) + ave™] = F(").

In either case q(z,t) € f(é(z,1)).
We note that the two steps of (1.13) imply

n n n n+1/2 n n+1/2 n+1/2 n+1/2 n+1/2 n+1/2
O — &) + NGt — agvy oy T = 6 = . (1.43)
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We now choose a test function ¢ € Cg((—L, L) x [0, T)) and define ¢ := t)(z;,¢"). Multiplying
(1.43) by Axy? and summing the result over j and n yields

n n n+1/2 n n+1/2

n+l .
AxAtZZ¢ ' Ji/}"—i—A Atzz i vt i—19v,; yr

n=0 j=1 n=0 j=1
N M n+1/2 n+1/2 _¢n+1/2 n+1/2

p AR
NI D) Dp AL R S LR

n=0 j=1

A summation by parts yields

n+1 n n
VD) Lk e ROV W 3 ok e P

n=0 j=1 7j=1 nOgl

Farars 30 B

n=0 j=1

(1.44)

An application of (1.19) yields, as Az, At — 0,

AxAtZZgb”“wnH = Az AtZZqﬁ"H/anH ] + O(Ax).

n=0 j=1 n=0 j=1

'I’L

This equation and Lemma 1.2.3 imply that the two first sums in (1.44) converge to

//(bwtdxdtJr/ o (2)(x,0) dz dt

Concerning the last term in (1.44), we get

n—‘rl n+1/2 n+1/2

araryS Y- s
n= 0] 1
_ A‘TAtZZ J+1 n+1/2 n+1/2
n= Oj 1
+1 j n+1 2 n+1/2 n+1/2 n+1/2
Fheary Y B e e
n=0 j=1

By properties of the function py we get the estimate

¢n+1/2 n+1/2 ¢n+1/2 n+1/2 _ ¢@+1/2( n+1/2 n+1/2)

J Pvjr1 — @5 Vi - < (z)mapr%/HooAx

Vij+1 — Pvy

Thus

n+1 j n+1/2 n+1/2 n+1/2 n+1/2
AzAtZZ - J7 j ij / pv]+/1 ¢g / Py / )

n=0 j=1

< 2MT Grnax Az | 01) oo [P [l
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which goes to zero as Az — 0. Therefore the last term in (1.44) converges to

/OT /_LL opv (¢)Y, dr dt

as Az — 0. The second term in (1.44) can be written as

A:cAtZZ Bt g

n= O] 1
= AxAt ?Jrl n+1/2 n+1/2 + Az At ;1+1 J gbn g n+1/2
n n
+AazAtZZ J“ L gril/2 (g — gnt1/?).
n=0 j=1

Using Lemmas 1.9, 1.1, and 1.8 we get

A:mtzz N jch i) < Azl 00| o O5T,

n=0 j=1

AwAtZZ N VI g2 (gn 2| € oy Aal|, o ( + Q4)T.

n=0 j=1

Consequently, as Az — 0,

AxAtZZ ?“ i T AL gyt 0,

n=0 j=1

AmAtZZ ]+1 j n+1/2(¢n . ¢n+1/2) N 0

n=0 j=1

Then substituting g (x;,t") = g"}}r 12 and applying the dominated convergence theorem we

obtain that the second term in (1.44) converges to

T L
/ / w, do dt.
0 J-L

Collecting the previous results we get

T L L
/ / (6t + quiy) dardt + / do(2)(x, 0) dz = 0,
0 —L —L

so ¢ is a weak solution in sense of Definition 1.1. O]
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1.3 Extension to the MCLWR model

Algorithm 1.1 cannot be applied directly in a component-wise manner for each class i in the
multiclass case (1.1)—(1.4), but we can first solve for the total density ¢ and then update the

densities ¢1,...,¢n for each class. The multiclass version of the scalar scheme (1.6) can be
written as
n+1 2 max n n+1/2 n+1/2
QZS / Qb — AY; ( i,jgv<¢j+1/ ) - ’L] 19v (Qb / ))’
n n12 max n+1/2 n+1/2 n+1/2 n+1/2
ot = oI = (o oy (97117%) — 1 v (07 77)), (1.45)

1=1,....N, j=1,..., M,
where the following quantity is an approximate value of the total density ¢:

¢;+1/2 _¢n+1/2 +¢n+1/2'

In order to solve (1.45), we need to impose the non-standard boundary condition (1.4b).
Recalling that V(¢) = gv(¢) + py(¢) we can equivalently specify for the multiclass case the
condition (1.9). The correspondence when s(t) = ¢* is

F(t) = (™) s()V(6"=) & G(t) = av,

max\T * (146)
F(t) = (0") s()V(0™+) & G(t) =
Coming back to (1.45), we define ®7 := (¢7;,...,¢%;)". Summing overi = 1,..., N, assuming
that gy is evaluated at the new time step, and replacmg gv (¢; +1/ ) by g%r +/1 , we get
o7 1 = ) = AT (gL — gv (07 7) @), (1.47)
This can be rearranged as
¢;1+1/2 . /\('UmaX)TCI)?_lgV (¢n+1/2) ¢n . ( max)Tq);L \71/_;-1&-/12 (148)

Let us now define the function
Gy(z;®) == 2z — AM(v™)Tdgy (2)

and denote by Gy (-; ®) its multivalued version (with respect to z). Then G is strictly increasing
and has a unique inverse z — G7'(2; ®). Expressing (1.48) as

Gy (o725 @1) = @) — M) Tpglt (1.49)

which allows us to obtain ¢?+1/ ® by applying é;l(z; ®) to both sides, that is

¢7}+1/2 _ é‘_/l (¢;7, —Aw max)T(I)n n+1/2, (I)n )

J G IVj+15
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Now that qb;-lﬂ/ % is available, we solve for gv "t1/2 the equation

n+1/2 n max n+1/2 n n+1/2 n
¢j+/ = ¢7 — A(w™™)" (QVJ;+/1‘I’ _gvj;/ @7 )
(cf. (1.47)). This yields
n+1/2 n n+1/2/ max n
n+1/2 _ ¢g+ / ¢ + A Vj+/1 (v )T(Dj
Vi A(vmax)T(I)n_l ?
provided that ®7_; # 0. If @7 ; = 0 then we set g ntl/2 gv(¢?+1/ ?). The numerical scheme

for the multiclass model can be summarized in the followmg algorithm.

Algorithm 1.2 (BCOV scheme,

multiclass case).

Input: approximate solution vector {(b ] Lt=1...,Nfort=1t"
97\;;\/1[121 +— Q’(gbﬁ}i{g) (using (1.10) and (1.46))
doj=MM-1,...,1
n+1/2 ~N— n n+1/2/ max n. Hn
07 = G (o — Agrp (wmm) T @)
if &7, # 0 then
n+1/2 n n+1/2/ max n
nt1/2 (b] / ¢ + A Vj+/1 (v )T(I)j
Vg )\(,Umax)T(I)glil
else
n+1/2 n+1/2
QVJJr /% 9V(¢j+ / )
endif
enddo
doj=1,...,.M
do:=1,...,N
n+1/2 pmax (hn n+1/2 n n+1/2
ong / — O : ( i.j v,j+/1 — @ij—19v, /)
enddo
enddo
doj=1,...,.M
do:=1,...,N
e G 1) e (6

enddo
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enddo

Output: approximate solution vectors {gb’”rl My i=1,... Nfort=t""" ="+ At

Remark 1.1. We recall that the boundary condition g%rwfl = (qﬁﬂjf) that appears in Al-

gorithm 1.2 is defined using (1.10) for the total density gbﬁ}if We illustrate this boundary

condition in Section 1.4.5.

The problem of interest to us is to show that D is an invariant region of the scheme. To
this end we first consider the evolution of the total density ¢. Summing over i = 1,..., N the
second equation in (1.45) yields

¢n+1 ¢n+1/2 )\(vmax>T(pV (¢n+1/2)n+1/2q)@+1/2 —py (¢@+1/2)(I)?71).

J+1 J J

The above equation can be written in incremental form as

where we define
( n+1/2 n+1/2
\(pmax T¢n+1/2pV(¢ ) ) pV(¢j+1/ ) .o mtl1/2 n+1/2
o2 (™) /2 ntl/2 it ;" #F o
AR ¢]+1 ¥ ¢j +1/2 +1/2
\0 if ¢j+1 = ij )
( max n+1/2 n+1/2
A n+1/2 ('U )T((P] - _q)] 1/ ) if n+1/2 n+1/2
D?"Hrl//2 — pV((bJ’ ) ¢n+1/2 ¢n+1/2 (75 7 925 ’
i—1/2 -
J \0 J f¢n+1/2 ;z+11/2'

Since py(¢) is a non-increasing positive function we have anll/;, D:fll //22 > 0. To ensure that

|Cn+1/2| < 1/2 and |D"+1/2| < 1/2 we impose the CFL condition

j+1/2 1/2
Admax max [pl(¢})] - max v < E A max p(¢7) - max v"™ < L (1.51)
M G PVATI TGN 2’ <M T iyt T 9] ’
Lemma 1.14. Assume that
0 -
;€D forj=1,...,M. (1.52)
Then ®7,87* € D for j=1,..., M.
Proof. We claim that
P eD forallj=1,....M
(1.53)

:>g$?1/2 0,ay] forall j=1,..., M.
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We consider first the case 7 ; = 0. Then the result follows from the definition of the function
gv(z) and (1.8). Suppose that ®7 ; # 0, summing over i = 1,..., N the first equation in (1.45)
yields

n+1/2 _ A-1(.n max)Tpngntl/2, gn
¢j+ /2 = G (¢j —Av )T(I)j 9V,JJF‘+/1 ;(I)jfl)‘

Using (1.49) and (1.47) we find that

@2 AT gi 2 e Gy (o) T 0n ).

Thus, a straightforward case-by-case study and (1.49) prove that (1.53) is valid. The remainder
of the proof is similar to the proof of Lemma 1.2. O]

1.4 Numerical examples

We now present some numerical simulations to illustrate the behaviour of solutions to system
(1.1) by using Algorithms 1.1 and 1.2 for the scalar and multiclass case, respectively. In the
scalar case, we compare numerical approximations with those generated by the scheme (1.7)
proposed by Towers in [90]. To this end we choose the discontinuous velocity function

V(¢):{1_¢/¢max f0r0<¢<¢*,
_wf(l - ¢max/¢) for (b* < ¢ < ¢max7

where ¢* = 0.5, wr = 0.2, ppax = 1, and ay = 0.3.

In all numerical experiments computations are performed on a finite interval [—1,1] that
is subdivided into M subintervals of length Az = 2/M, and the time step is computed by
At = Az /2 in the scalar case (N = 1) and At = Az /(2 max{v™*, ... v%**}) in the multiclass
case N > 2. These choices ensure that the respective CFL conditions (1.21) and (1.51) are
satisfied.

1.4.1 Example 1.1: scalar Riemann problem (N = 1).

We consider the Riemann problem for the scalar equation d;¢ + 0,(¢pV (¢)) = 0 with initial

data
¢, forx < 0.2,
po(z) =3 " (1.54)
or forx > 0.2

(no boundary conditions are involved). For ¢p, = 0.3 and ¢r = 0.9, the solution consists of
two shock waves with negative velocities of propagation, namely a shock wave connecting ¢r,
with ¢* that travels velocity o1 = —0.55 and another shock wave connecting ¢* with ¢ with
velocity o9 = —0.2. Figure 1.3 (a) shows the numerical approximations to the solution of this
problem computed with M = 800 for both schemes at simulated time 7' = 1.8.
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0.9 | I I 0.9 t— | | —Exactlsolution H
10} 1) o Towers scheme
0.8 - 0.8+ + BCOV scheme ||
0.7 A 0.7r .
0.6 A 0.6 .
0.5 7 0.5 1 -
0.4 —Exact solution 047 i

o Towers scheme
0.3 * BCOV scheme ] 0.3
—1 0.5 2« 1 —1 —0.5 0 05 ¢ 1

Figure 1.3: Example 1.1: numerical solution with M = 800 and comparison with the exact
solution of the Riemann problem (a) with ¢, = 0.3 and ¢r = 0.9 at simulated time 7" = 1.8,
(b) with ¢, = 0.9 and ¢r = 0.3 at simulated time 7" = 1.5. Here and in Figures 1.4 and 1.5
we label with ‘Towers scheme’ the scheme (1.7) proposed in [90] and by ‘BCOV scheme’ the
scheme of Algorithm 1.1 advanced in the present work.

For ¢, = 0.9 and ¢r = 0.3, the solution consists of a shock wave connecting ¢, with ¢* that
travels at velocity o1 = —0.575 and a rarefaction wave connecting ¢* with ¢r. In Figure 1.3 (b)
we display the numerical solutions computed with M = 800 for both schemes at simulated
time 7" = 1.5. In both scenarios, all waves are approximated correctly by both schemes.

1.4.2 Example 1.2: scalar problem (N = 1), smooth initial datum

In this example we compare numerical approximations for equation (1.1) obtained by both
schemes (Towers scheme (1.7) and Algorithm 1.1), starting from the initial function ¢o(z) =
exp(—(z + 0.2)%/(0.04)) for z € [—1, 1]. Numerical approximations are computed at simulated
times 7' = 0.1 and 7' = 0.3 with discretizations M = 100 x 2!, [ = 0,1,...,4. Table 1.1 displays
the corresponding approximate L! errors obtained by utilizing a reference solution computed by
the Towers scheme with M, = 12800, We observe that the approximate L! errors decrease as
the grid is refined. In Figure 1.4 where we display the numerical approximations for M = 100
and compared with the reference solution.
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T=0.1 T=0.3
Towers BCOV Towers BCOV

M en(9%) em(0®) em(9®) enm(0®)

100 1.32e-2  1.76e-2 1.63e-2  2.39e-2
200  6.55e-3  9.22e-3 8.59e-3 1.31e-2
400  3.29¢-3  4.46e-3 4.25e-3  6.46e-3
800 1.72e-3 2.403-3 2.12e-3 3.31e-3
1600 8.00e-4 1.18e-3 9.29e-4 1.563-3

Table 1.1: Example 1.2: approximate L' errors ey (u) with Az = 2/M.

(a) (b)

1 E T T T 3 1 E T T T -
—Reference Solution —Reference Solution

qb o Towers Scheme ¢ o Towers Scheme
0.8 * BCOV Scheme 0.8 1 * BCOV Scheme
0.6 0.6 - k .
0.4 0.4+ i
0.2 02+ i

A

0 05 2« 1

Figure 1.4: Example 1.2: numerical solutions for M = 100 at simulated times (a) 7' = 0.1, (b)
T =0.3.

1.4.3 Example 1.3: scalar problem (N = 1), non-standard boundary
condition

This example comes from [90, Example 6.2] and is designed to illustrate that when s(t") = ¢*,
the solutions depend on the boundary condition F(t) € f(¢*). For this example we consider
the Riemann problem with initial data (1.54) with ¢, = 1/4 and ¢r = 1/2. We compute the
solution twice, once using G(t) = ay (equivalently, F(t) = 1/2), and the second time using
G(t) = 0 (equivalently, F(t) = 1/4). As shown in Figure 1.5, in the first case the solution
corresponds to a shock wave connecting ¢, with ¢r with speed of propagation ¢ = 1, and in
the second case the solution corresponds to a stationary shock (o = 0) connecting ¢, with ¢r.
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(b)
0.5r I 0.5F ﬁ
o) ¢
0.45 - 0.45 - T .
0.4+ 04+ i
0.35 r 0.35 F i
0.3 ——Exact Solution [ 0.3r 3 ——Exact Solution |
o Towers Scheme o Towers Scheme
0.25 D * BCOV Scheme || 0.95 * BCOV Scheme | |
0.5 0.6 0.7 0.8 09 o 1 0 0.2 0.4 xr 0.6

Figure 1.5: Example 1.3: numerical solutions depending on the boundary conditions F(t) €
f(¢*) with M = 1600 at simulated time T = 0.5, with (a) F(t) € f(¢*—) (free flow), (b)
F(t) € f(¢*+) (congested flow).

1.4.4 Example 1.4: multiclass case (/N = 3), preservation of invariant
region

To illustrate the invariant region property of the proposed scheme (Lemma 1.14), we consider
the case N = 3 and the Riemann initial data

(0.1,0.1,0.1)T for z < 0.5,
Po(x) = -
(0.4,0.5,0.1)" for z > 0.5,

with velocities v™® = (1,3,10)™. The solution consists of a stationary shock plus two shock
waves that travel with negative velocities. The numerical simulation at three simulated times
is displayed in Figure 1.6. The profile for each class and the total density are displayed in this
figure. Furthermore we can see that the profile of the total density in Figure 1.6 looks like the
profile of Figure 1.3 (a).

1.4.5 Example 1.5: multiclass case (N = 3), non-standard boundary

condition

It is the purpose of this example to illustrate the boundary condition

n+1/2 n+1/2
g =G, (1.55)
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1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0—1 -05 0 05z 1 0—1 -05 0 05 g1

Figure 1.6: Example 1.4: density profiles simulated with M = 1600 at (a) T'= 0.2, (b) T'= 0.4,
(¢) T =0.6.

(a) (b)
0.5 — 0.5F = 0.5
0.4} 1041 1 04
0.3} 103} 103
0.2}t e 2.4 02} o , B %] 0.2
0.1F 7T P11 0af 1 q0af
0 1

-1 =05 0 05 1 0O 0.1 0.2 2 0.3

0

Figure 1.7: Example 1.5: numerical solution for a free-flow regime (G(t)

= ay): (a) initial
condition, (b, ¢) density profiles with M = 1600 at simulated times (b) 7" = 0.1

, () T=0.2.

where G(+) is specified in (1.10), that appears within Algorithm 1.2. To this end consider N = 3
and the velocities and Riemann initial data

®r, = (0.05,0.08,0.12)T  for x < 0,

M — 1,3’6 T’ (I)x70 = ®y(x) =
(1,3,6) (2,0) = Do(2) {@R:(O.14,0.16,0.12)T for & > 0.

Observe that ¢r = ¢* = s(t), where ¢r is the total density of the right state ®g.

As in Example 3 we show that the solution depends on the boundary condition F(t) €
(v™)Ts(t)V (s(t)). We start with the initial condition shown in Figure 1.7 (a) and compute
the solution twice, once using G(¢) = ay, and the second time using G(¢t) = 0. In Figures 1.7 (b)
and (c) we display the profile for each class and total density for the first case G(t) = ay at two
different simulated times. We can see that in this case a free-flow regime is produced, which is
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(b)
x .
0.8
0.4
: —0.2
—0.8
—0.2 .
0 0.2 04 4 06

0 02 04 06 ; 08

o

Figure 1.8: Example 1.5: simulated total density computed with BCOV scheme with N = 3
and M = 1600: (a) free flow (G(t) = ay ), (b) congested flow (G(t) = 0).

T =002 T =0.12

M en(0®)  en(¢®)

100 1.39e-2 3.87e-2
200 7.90e-3 2.47e-2
400  4.20e-3 1.55e-2
800  2.00e-3 9.20e-3
1600 1.00e-3 5.10e-3

Table 1.2: Example 1.6: approximate L' errors ey (u) with Az = 2/M.

verified in Figure 1.8 (a). In Figure 1.9 we display the profiles for each class and total density
for the second case G(t) = 0 at two different simulation time. In contrast to the previous cases,
a congested flow regime is produced, as is illustrated in Figure 1.8 (b).

1.4.6 Example 1.6: multiclass case (N = 5), smooth initial condition

In this example we consider N = 5, the velocities v™* = (1,2, 3,4,5)T, and the initial condition
®(z,0) = Po(z) = (0.15,0.2,0.3,0.2,0.15)"p(z), (z) = exp(—50(z + 2)*/3).

We display in Figure 1.10 numerical approximation computed with M = 1600 at simulation
times T" = 0.02 and T" = 0.12. We observe the dynamics of each individual densities ¢; and
the total density ¢, which exhibits a shock wave due to the discontinuity in the flux. This
behaviour is similar to that presented in Figure 1.4. In Figure 1.11 we display the evolution of
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Figure 1.9: Example 1.5: numerical solution for a congested flow regime (G(t) = 0): density
profiles with M = 1600 at simulated times (a) 7' = 0.1, (b) 7" = 0.2. The initial condition is
the same as in Figure 1.7 (a).

¢>(-,t) for t € [0,0.12], and we compare the solution with the approximation of the continuous
problem (where oy = 0). For the discontinuous case the shock is more clearly observed than
in the continuous case. In Figures 1.12 and 1.13 we compare the numerical approximation
computed with M = 100, with a reference solution at simulated times T"= 0.02 and 7" = 0.12.
In Table 1.2, we compute the approximate L! error based on a reference solution obtained by
the BCOV scheme with M, = 12800. We observe that the approximate L' errors decrease as
the grid is refined.

1.4.7 Example 1.7: multiclass case (N = 5), bimodal smooth initial
condition

In this example we consider N = 5, the velocity vector v™® = (1,1.5,2,6,7)T, and the initial
condition

®(z,0) = ®o(x) = (0.17,0.17,0.16,0,0) 41 (x) + (0,0,0,0.245,0.245) T opy (),
where we define

Uy (z) = exp(—lO(x — 2)2), Po(z) = exp(—50(x — 1)2/4)

for € [0,5]. We compute numerical approximation at simulated times 7' = 0.1, T'= 0.2 and
T = 0.3 with different discretizations by using M = 100 x 2! and [ = 0,1, ..., 4. In Table 1.3 we
compute the L' error comparing with respect to a reference solution computed by the BCOV
scheme with M, = 12800. We observe that the approximate L! errors decrease as the grid
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Figure 1.10: Example 1.6: numerical solutions obtained with BCOV scheme with N = 5 and
M = 1600 at simulated times (a) 7' = 0.02, (b) 7" = 0.12.

is refined. Again, this behaviour is similar to that observed in Figure 1.4. Figure 1.15 shows
results for M = M, = 12800. The numerical results of Figure 1.15 indicate that jumps in
the total density ¢ only occur from smaller to higher values in an increasing x-direction. This
phenomenon occurs because the speeds of the last two classes are greater than the first three.
Furthermore, in Figure 1.14 we show the simulated total density computed by the BCOV
scheme with N =5 and M = 1600.

T=01 T=02 T=03

M en(9®) em(9®) em(9®)
100  7.42e-2  9.50e-2  1.06e-1
200 4.12e-2 5.50e-2 6.49e-2
400 2.27e-2  3.34e-2  3.8R8e-2
800 1.24e-2 1.97-2 2.35e-2

1600 6.50e-3 1.10e-2 1.35e-2

Table 1.3: Example 1.7: Approximate L' errors ey (u) with Ax = 5/M.
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Figure 1.11: Example 1.6: simulated total density obtained with BCOV scheme with N = 5
and M = 1600: (a) discontinuous problem, (b) continuous problem.
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Figure 1.15: Example 1.7: numerical solution computed with BCOV scheme with N = 5 and
M = 12800 at simulated times (a) 7= 0.1, (b) T'= 0.2 and (c) T"= 0.3.
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Figure 1.12: Example 1.6: comparison of reference solution (M, = 12800) with approximate

solutions computed by BCOV scheme with M = 100 at simulated time 7" = 0.02.
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Figure 1.13: Example 1.6: comparison of reference solution (M, = 12800) with approximate
solutions computed by BCOV scheme with M = 100 at simulated time 7" = 0.12.

Figure 1.14: Example 1.7: simulated total density computed with BCOV scheme with N = 5
and M = 1600.



CHAPTER 2

Numerical analysis of a three-species chemotaxis model

2.1 Introduction

2.1.1 Scope

We consider a reaction-diffusion system describing three interacting species with respective
density u;, ¢ = 1,2,3, in the Hastings-Powell (HP) food chain structure [52, 71], where each
species secretes a chemical substance of corresponding concentration y;, ¢ = 1,2,3. Each bi-
ological species is able to orient its movement towards a higher concentration of a chemical
(chemotaxis) or away from it (chemorepulsion). The resulting model is a strongly coupled non-
linear system of six PDEs with chemotactic terms, namely three parabolic equations describing
the evolution of the densities u; coupled with three elliptic equations for the concentrations y;,
i=1,2,3:

Oyuy — D1Auy + x1 div(uy Vo) = Fi(u),

Oyt — DaAuy + x2 div(uaV(yr — y3)) = Fa(u),

Oyuz — D3Aug + x3div(usVys) = F3(u),
—D;Ay; + 0y; = ou;, i=1,2,3, (x,t) € Qx(0,T],

(2.1)

where u;(x,t), 1 = 1,2, 3 are the population densities of the species at the lowest level of the food
chain (prey; i = 1), of the species that preys upon species 1 (predator, i = 2), and of species 3
that preys upon species 2 (super-predator, i = 3), and w(x,t) == (uy(x,t), us(x, ), us(x, t))T.
Moreover, y;(x,t) denotes the concentration of the chemical substance secreted by species i at
position  at time ¢, and y(x,t) = (y1(x,t), yo(x, 1), y3(x,t))T. The chemotactic movement
of the species is due to chemical substances secreted by the other species, which is determined
by the sign of the chemotactic coefficients x; for ¢ = 1,2,3 [37]. In this work, we consider
that the prey (species 1) moves in the direction of decreasing concentration of the chemical
secreted by species 2 (trying to avoid that species), which means that x; < 0, while the super-
predator (species 3) moves in the direction of increasing concentration of the chemical secreted
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by species 2, which means that y3 > 0. On the other hand, the predator (species 2) moves
in the direction of increasing concentration of the chemical secreted by species 1 and in the
direction of decreasing concentration of the chemical secreted by species 2, such that y, > 0.

The interaction due to the competition between the species is specified by the functional

respomnses
U1 LQMQUIUQ
Rl = (1 1), - Lo
I(U) k “ Ro + Uy
L2M2u1u2 LgMgUQUg
Bu) = ————F — Loug — ————— 2.2
2( ) R0+u1 2m2 C’0+u2 ( )
L3M3U2U3
F : — L
3(u) Co + 1ty 3U3

(see [52,71]). Here, the constant k is the carrying capacity of species 1, and Ry and Cj are
the half-saturation densities of u; and ws, respectively. Moreover, Ly and L3 are the mass-
specific metabolic rates of species 2 and 3, respectively, M, is a measure of ingestion rate per
unit metabolic rate of species 2, and M3 denotes the ingestion rate for species 3 on prey. We
impose, in addition, the zero-flux boundary conditions

(xju;Vys — D;Vuy) - nlog = (x2uaV(y1 — y3) — D3Vug) -nlog =0, j=1,2,

. (2.3)
vyzn|8Q :07 1= 1a2737
where n stands for the outward unit normal vector to 02, and the initial condition
ui(w, 0) = Ui70<w), 1= 17 2, 3. (24)

2.1.2 Related work

The classical Lotka—Volterra predator-prey model (cf., e.g., [72, vol. I]) only reflects population
changes due to predation in a situation where predator and prey densities are not spatially
dependent. Variants of the model have been applied to medicine [77], biology [73], ecology
[8,51,70,75,92], mathematics [72,91], and other fields. This model does not take into account
that population is usually not homogeneously distributed, or that predators and prey naturally
develop strategies for survival. Both considerations involve spatial biological movement that is
usually described by diffusion. The resulting models can become complicated due to hierarchies
of predator-prey dependence that cause complicated patterns of movement of populations. Such
movements can be determined by the concentration of the same species (diffusion) or that of
other species (cross—diffusion). However, systems of two interacting species can account for
only a small number of the phenomena that are commonly exhibited in nature. This limitation
is particularly significant in community studies where the essence of the behavior of a complex
system may only be understood when the interactions among a large number of species are
incorporated; of course, the increasing number of differential equations and the increasing
dimensionality raises additional problems.
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The dynamics of interacting population with chemotaxis has been investigated by numerous
researchers. Lin et al. [62] construct energy functionals to investigate the asymptotic behavior
of solutions under simple choices of parameter. Stability and asymptotic behavior of chemo-
tactic systems with two biological species have been studied in [85,87], where the stability of
homogeneous steady states is obtained for one chemical substance secreted, while in [37, 74]
the authors established the asymptotic behavior and the global existence of solutions for two
secretions. In [4] a reaction-diffusion model for predator-prey interaction is analyzed, featur-
ing both prey and predator taxis mediated by nonlocal sensing. The analysis is supported
by some numerical experiments. On the other hand, Biirger et al. [21] propose and simulate
a three-species spatio-temporal predator-prey system with infected prey where the biological
movement is not directed by the gradient of a chemical, but rather by a non-local convolution
of the density of infected prey that determines a convection term.

Mathematical developments also suggest that models which involve only two species may
miss important ecological behavior. Results that are much more complicated than those seen
in two-species models appeared in early theoretical studies of three species (e.g [81]) based on
local stability analyses. Hastings and Powell [52] studied the three-species food chain, and
among other results they found that there is a “tea-cup” attractor in the system. In [29] the
effects of size of forest remnants on trophically linked communities of plants, leaf-mining insects,
and their parasitoids were evaluated. The time evolution and spatiotemporal pattern in the
Lotka-Volterra model of three interacting species with noise and time delay were investigated
by stochastic simulation in [99]. Anaya et al. [5] proposed a convergent semi-implicit FV
scheme to describe three interacting species in the food chain structure with nonlocal and cross
diffusion. The global existence and boundedness of solutions of the system in bounded domains
of arbitrary spatial dimension and small prey-taxis sensitivity coefficients are proved in [93].
The model considered in that work is a reaction-diffusion system with prey taxis that models a
two-predator-one-prey ecosystem in which the predators collaboratively take advantage of the
prey’s strategy.

2.1.3 Outline

The remainder of this chapter is organized as follows. Section 2.2 is concerned to definition of the
weak solution of (2.1). Before, we collect in Section 2.2.1 some preliminary material, including
relevant notation and assumptions on the data problem, this section ends with definition of a
weak solution of (2.1). Next, in Section 2.3, we specify the FV method, starting with recalling
in Section 2.3.1 the standard notation of an admissible mesh from [45]. Then, in Section 2.3.2
we specify the FV scheme to discretize (2.1)—(2.4). Since the scheme is implicit and requires
the solution of nonlinear algebraic equations in each time step, we need to demonstrate that
the scheme is well defined, that is, that it admits a solution in each time step. This is done
in Section 2.4.3, where we first prove (in Section 2.4.1) that any (discrete) solution produced
by the FV scheme is non-negative, and then establish (in Section 2.4.2) certain a priori L?
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estimates on the discrete solutions. These results allow us to prove in Section 2.4.3 the existence
and uniqueness of a solution for the FV scheme. Section 2.5 is concerned with the proof of
convergence of the FV scheme as the mesh is refined. To this end, we prove in Section 2.5.1
compactness for discrete solutions (in an appropiate sense) and prove in Section 2.5.2 that the
limit of discrete solutions constitutes a weak solution of (2.1)—(2.4). In Section 2.6, we provide
three numerical examples. Example 1 shows that species interact with each other via chemical
substance, while in Example 2 the prey do not interact by via chemical substance. Finally,
Example 3 compares the dynamics of the spatio-temporal model (2.1)-(2.4) with that of the
non-spatial model.

2.2 Weak solutions

2.2.1 Preliminaries

Let Q C R% d =2 or d = 3 be a bounded open domain with piecewise smooth boundary ).
Namely we use standard Lebesgue and Sobolev spaces W™P(Q), H™(Q2) = W™2(Q) and LP(Q)
(with their usual norms [1]) for all m € N and p € [1, c0]. We define for p € [1, 00) the spaces

WP = {u € W*(Q): Vu-n =0},
(LJD(Q))+ = {u : 2 — R measurable and / lu(x)|P dee < oo} :
Q
Furthermore, for later use, we recall the Sobolev inequalities (see e.g. [16]) W'P(Q) — LY with

0 € (2,+00)ifd=2,0=(2d)/(d—2) =6if d = 3.

If X is a Banach space, a < b and p € [1,00], then LP(a,b; X) denotes the space of all
measurable functions u : (a,b) — X such that ||u()||x € L”(a,b). Next , for T > 0 we define
Qpr :=Q x (0,7]. We define

Z1 Y2 by 01 0
z=|zn|=|yw-ys| =By, whee B=|b,|=|1 0 —1
2 Yo B! 01 0
The system (2.1) can then be written as
Oy — DiAu; + x; diV(UiV(b;ry)) = Fi(u), (2.5)

—D;Ay; + biy; = 6w, 1=1,2,3, (x,t) € Or.
In matrix form, (2.5) and (2.6) can be written as

du — div(D1Vu — A(w)V(Byx")) = F(u), —div(D,Vy)+ILy = Iu,
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where Dy = diag(Dy, Dy, Ds), A(u) = diag(uy, uz, us), X = (x1,x2:x3)", F = (F1, Fy, F5)",
D, = diag(Dy, Do, D3), II; = diag(fy, 62,05), and Il = diag(dy, d2,d3). Furthermore, we
assume that D; >0, D; >0, 6; >0, and §; > 0 for : = 1,2, 3.

For later use we point out that the particular choice of the functions F; allows us to write
them as

Fi(u) = Fi(u)u; (2.7)
with bounded functions F}, i = 1,2, 3.

Next, we define what we mean by weak solutions of the system (2.1).

Definition 2.1. A weak solution of (2.1) is a set of non-negative functions u;,y; belongs to
L*(0,T; HY(Q)), fori=1,2,3, such that for all test functions &,v; € D([0,T) x Q), u; and y;
satisfy the following identities for all i =1,2,3:

T
0 Qr

- [ wo@)s@0yd= [ F-Gded (@)
Q

Qr

Qr Qr

Qr

2.3 Finite volume scheme

In this section, we construct approximate solutions of problem (2.1). For this purpose, we
introduce a notion of admissible finite volume mesh (see e.g. [45]).

2.3.1 Admissible mesh

Let Q € RY, d = 2 or d = 3 denote an open bounded polygonal connected domain with
boundary 0. An admissible FV mesh of Q is given by a family .7, of control volumes (open
and convex polygonal subsets of ), a family & C Q of hyperplanes of R? (edges in two-
dimensional case or sides in three-dimensional) and a family of points P = (zk)kes that

0= K =& ox= ] o
Ke, Keo, LeN(K)
Let K,L € 9, with K # L. If K N L =& for some o € £, then 0 = K|L (common edge). We
introduce the set of interior (respectively boundary) edges denoted by iy (resp. Eext), that
is & ={c €& : o g I} (resp. Eext = {0 € E : o C 00N}). The set of neighbours of
K is given by N(K) = {L € ;, : Jo € £,6 = K N L}. The family P is such that for all
K € 9, zx € K, and, if 0 = K|L, it is assumed that x # =, and that the segment Tz

satisfy
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Figure 2.1: Admissible meshes.

is orthogonal to o = K|L (see Figure 2.1). Let d,
and x;, and by dg , the distance from g to . The transmissibility through o € & is defined
by T, = m(K|L)/d,, = m(c)/d, and for o € Ee by Ti; = m(0)/dk . We require local
regularity restrictions on the family of meshes .7,; namely

denote the Euclidean distance between xj,

Iy >0VhVK € 9, VL e N(K): diam(K) + diam(L) < vdk, 1, (2.9)
Iy >0VhVK € Z,VL e N(K): m(K|L)dk <ym(K). (2.10)

A discrete function on the mesh 7, is a set (ux ) gez,. Whenever convenient, we identify it with
the piecewise constant function wu, €  such that u,|x = ug. Finally, the discrete gradient
Vup of a constant per control volume function wy, is defined on K N L by

Uy —uUg

7 N,

K|L

VK,Lui,h = (211)

2.3.2 Description of the finite volume (FV) scheme

To discretize (2.1) we choose an admissible discretization of {21 consisting of an admissible
mesh .7, of ) along with a time step At;, > 0; both At;, and the size maxye s diam(K) tend
to zero as h — 0.We define N, > 0 as the smallest integer such that (N, + 1)At, > T, and
set t, = nAt, for n € {0,..., N}. Whenever Aty is fixed, we will drop the subscript h in the
notation.

To formulate the resulting scheme, we introduce the terms

Pop = min{ (uli ) iz Y, B = F(ul) " (i) " (usi)t),  i=1,2,3.
(2.12)
The computation starts from the initial cell averages
1
0 .
0 = | wo(x)de, i=1,2,3. 2.13
= i [ (o) da, (213)
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We state the FV scheme for (2.1) as follows: for all K € 7, and n € {0,1,..., N}, find
(ul'y ) ke, @ = 1,2,3, such that

=D; Y T Wi =y oK)yt = sm(K)ul, i=1,2,3,  (2.14a)

LeN(K)
u’-“[;l — Ul L L
m(K) === = D 3 mu(uir! - i)
LeN(K)
i Y T AT (i — i) = m(K)FNE, i=1,2,3 (2.14b)
LeN(K)

As usual, homogeneous Neumann boundary conditions are taken into account implicitly. In-
deed, the parts of K that lie in 9Q do not contribute to the sums over L € N(K) terms,
which means that the flux is zero is imposed on the external edge of the mesh.

n+l , nt+l | n+l n+l , n+l | n+l
The sets of values (U1,KaUz,K7“3,1{)Kez?h,ne{O,L.--,Nh} and (yLK,yZK7?/3,[()Kez%“ne{o,l,...,N}L}

satisfying (2.14) will be called a discrete solution. We associate a discrete solution of the
scheme at t = t,,; with the triplets u}*! = (uﬁ;l, u’ﬂl, ugjzl)T and ypt! = (yfgl, y;f,gl, ygf)T

of the piecewise constant on {2 functions given by

qu]K = ul'y yZZI\K =y, forall K € Z, allne{0,1,..., N, — 1} and all i = 1,2,3.

Furthermore, we define the piecewise constant function

T
uh(a:, t) = (ul’h(w, t), u27h(:c, t), u3,h(w, t)) = Z u2+1]]'(t7lytn+l]><K'
Key,
ne{0,1,...,Np}

Herein, the expression 1,4, . ,jxx denotes the characteristic function of set (¢,,t,41] x K, in
similar way we define the piecewise constant function y,(x,t). Finally, it is assumed that At
satisfies the mild restriction

11 1
At - 2.15
< max{z’ ST 2L3M3}’ (2.15)

which will be used to prove the existence of solution to the scheme.

2.4 Existence of a solution for the finite volume scheme

In this section, we assume that any solution (yi' ', 51 51 )", K € Zh, n € {0,1,..., Ny} of
(2.14a) is non-negative. This property will be stated in Theorem 2.1 at the end of this section.
2.4.1 Non-negativity

The non-negativity of any (discrete) solution produced by the FV scheme (2.14b) is given in
the following lemma.
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Lemma 2.1. Any solution u™' = (uf{!, uf il ui i)™, K € Z, n e {0,1,..., Ni} of (2.14)
1S non-negative.

Proof. We fix i € {1,2,3} and prove by induction that min {u"+1 K e, >0foralne
{0,1,..., Ni}. To this end, we recall that u), > 0 for all K € . Forn >0, we fix K € .,
such that uf it = mm{u"Jrl L € ,}. Multiplying (2.14b) by —At(ul'')~, we deduce

m(K)(u?}“{l — ] K)(u”“) =51+ Sy + 53, (2.16)
where we define

Sii=AtD; > o, (ulpt —ul ) (W) T, Sy = Atm(K)ESE (i)

K|L
LeEN(K)

52 = AtXi Z K|L‘A;L}F(1LbT( o szrl)( ?;r(l)i'
LeN(K)

By the choice of K, we have S; > 0, and the choice (2.12) of A7}, implies that S, = 0.
Similarly, by the definition of F'#', we obtain

S = Atm(K) Fy((uid')*) (uii!) " (uii) ™ = 0.

Since m(K) > 0, (2.16) now means that

(u?}l — ulK) (uf}}l)_ > 0. (2.17)
By definition, (uf';')”™ > 0. Since ul'; >0, (2.17) cannot be satisfied for (u}';')~ > 0 (and
therefore u"+1 < 0). We conclude that (u}'}')” = 0, hence ut' > 0. By induction on n, we
infer that u”Jrl >0forallne{0,1,...,Ny}and L € 7. O

2.4.2 A priori estimates

In this section we employ an argument similar to those of [11,30,33] in order to establish the
a priori estimates necessary to prove later the existence of a solution to the discrete problem.

Lemma 2.2. Let (UnKH)Keyh,ne{O,l,...,Nh} be a solution of (2.14b). Then there are constants
C; >0, 1= 1,2,3 depending on Q, T, ||uip| r2(q) fori=1,2,3, Lj, Mj for j = 2,3, Ry, and Cy
such that

3
n+1 <C 2.18
le(ne{g}f?(ﬂh} Z K ) ; | |

Ke,

Np

‘ZNZ Z K‘LZD (w3 —ui)* < Ca, (2.19)

= KeJ, LeN (K

92 Z At Z Z TkiL Z |X1|p;ry7[l<+1 ?—El - Uz—};l)2 < Cs. (2.20)

n=0 KeJ, LeN (K
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Here we define the vectors p] = ps = (0,1,0) and p3 = (1,0,1).

Proof. We multiply (2.14b) by Atu”“ and sum the result over i = 1,2,3, K € 9}, and n €
{0,1..., Ny}. This yields an 1dent1ty T+ 15+ T3+ T, =0, where

3

Np
T, = Z Z m(K) Z(u?}? - u?K)uf}F(l,

n=0 Ke 7h =1

) ) MBS ST

n=0 KeJ;, LEN(K)

My Y Z K‘LszA??LbT PR S

n=0 K€Z, LEN (K

T, = —Atz > m(K)ZFz";El Uik

3
n=0 K€, i=1

Using the inequality a(a — b) > 3(a® — b?) for a,b € R, we obtain

Ny, 3 3
1 d
> 52 2 mUO) D () = (i) ) = 5 Do m) Do (k™) = (wla)”).
n=0 K€, =1 Keg, =1

Gathering by edges, we can write

Nh
EDIDMDY s oD )
n=0 K€.7;, LEN(K) i=1
Next, in order to find a low bound for 73, we must carefully handle the expression bT('g/L'“Jrl

y’}(“) First, we consider ¢ = 1. Then using summation by parts and the definition of A’f}l I

in (2.12), we get

AtZZ Z e AL BT (i — i ur

n=0 Keyh LeN(K

_ n+1 n+1 n+1 n+1 n+1
= E , E : E : TK\LxlAlKL<y2L _yZK)(ulL _ulK)
n=0 K€.7}, LeN(K)
Nh

> - Z > Z T AT R L (it — o) (wi st — ulyd) (2.21)
n=0 Ke€.7;, LGN
> —AtZ > Z T alypiduy T (u ) — up )

n=0 KeJ;, LeN (K

Epop> > bR 057 = o1id)

n=0 Ke€J}, LeEN (K
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Using a similar argument for ¢ = 3 yields

AtZZ Z X AR b (Yt — i un

n=0 K€7, LEN (K

N}L (222)
=308 Z e v
n=0 KeJ, LEN(K)
For i = 2 we obtain
MY S A - v
n=0 Keﬂh LeN(K)
= AtZ DY meXe R - R
n=0 KeJ, LEN(K)
- AtZ DY e AR - s
n=0 K€, LEN (K)
Again, reasoning in the same way as in (2.21) yields
MY Y Z X2 AT (T — i
n=0 K€J}, LEN (K
o (2.23)

Z > Z T Dl (R (s — a5 )+ w3 (s — s 2)”).

n=0 K€%, LEN(K)

Thus, from (2.21)—(2.23) we get

Z Z Z K\L Z |Xz|p?ynK+1 :Lzl - UZ}I)Q,

n=0 K€, LeN(K

Finally, the non-negativity of u”Jrl implies that

Ny, n+1 n+1, n+1
Uk \ LoMpuyeuy i\,
=803 Y m (1T ) - e

n=0 Kéyh
n+1, n+1 n+1, n+l1
Lgﬂ4§ulkgu2K el L3A43U2K{U3K ntl
— Lou +1 +
1 2K n+1 2,K
R() + Un+ ’ O() + Ug ’
n+1 n+1
Lig Muy je ug e n+1 \, ntl
+ — Lsu u
C +_un+1 3U3,K 3,K
0 2,K

>-Aty Y m(K)((U?}l) + LoMo(uq e ) + LyMs (ug ) >
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Collecting the previous inequalities we obtain
1 3 Ny, 3
N +1 2 +1 +1
2 Z Z K Z Z TriL Z 1 Ui — Ui g )
1 n=0 K€, L

KeJ, =

ZZ Z K\LZVXz\p?y%“ ?Zl—UZ?Q)Z (2.24)

n=0 KeJ}, LEN (K
NS m(K)< (W)° + oM (ug 2 + LMy ().
n=0 K€.7;,

In view of the discrete Gronwall inequality, (2.18) follows from (2.24). Consequently, (2.24)
entails the estimates (2.19) and (2.20). This concludes the proof. O

Remark 2.1. For the proof of Lemma 2.2 we have used the non-negativity of (yi k) ke 7 nefo,...,Ny)-
Moreover, this implies that in (2.24) we have pfyi > 0 for all i = 1,2,3.

Lemma 2.3. Let (Y3 ) kegnefo1,..n,} be a solution of (2.14a). Then, there are constants
Cy, C5 > 0 depending on Q, T', |uipo||r2) for i =1,2,3, L;, M; for j = 2,3, Ry, and Cy such
that

3
> (ne{gﬂéﬁv}l} > m(E)(yrE) ) < Cy, (2.25)

=1 Keg,

‘ZNZ > K‘LZD (gt =y < G, (2.26)

= Ke, LEN (K) i=1
Proof. We fix i € {1,2,3}, multiply (2.14a) by y”“ and sum the result over K € .7, to obtain

D D> e Wy i 0 > m(E) (i) = 60 Y m(K )l eyt (2.27)

Ke, LeN(K) Ke, Ke,

Using the Cauchy-Schwarz inequality, we obtain

= Z ST ol Dy =) 0> m(E) (v’

Ke% LeN(K) Keo,
1o 12 (2.28)
<6 (Z m<K>(uZK)2> (Z m(K) (y7;1)2> :
Ke, Ke,

From (2.28) we deduce

1/2 1/2
5 S () () < (zm ) (zmm(y:;l)) |

Ke7, Keg, Ke7,
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Considering the estimates for all i = 1,2,3, we may deduce (2.25) from (2.18). To get the
discrete L?(2) estimate for V,y;, we use the generalized Young inequality and gathering by
edges in (2.27) to obtain

—Z ST ol Dy =) 0> m(E) (v’

KeT), LEN(K) Ke7,
<0, (C(e) > m) (k)" +2 > m(K) () )
Keg, Keg,

for all € > 0. Taking e = 0;/6; we have
n n 2 n \2
3 Z T DL = vik)” < 6C(E) Y mlEK) (uik)
Ke T LEN (K Ke,

Again, considering the estimates for all i = 1,2,3 we may deduce (2.26) from (2.18). O

2.4.3 Existence of a solution for the finite volume scheme
The following theorem shows that the scheme (2.14a) is well defined, and we prove the non-
negativity of y't" for i =1,2,3.

Theorem 2.1. Let T be an admissible discretization of Qr and the initial data (2.13). Then
there exists a unique non-negative solution yj' = (y?}l,yg}}l,yg}?) for all K € 9, and
ne€{0,1,..., Ny} to (2.14a).

Proof. Utilizing an argument similar to that of [14, Section 3|, we rewrite (2.14a) as the linear
system

Ayttt = Rl where Y} = (y'x ) kes, and u = (u]' g )kez,, i = 1,2,3,
and

At = (a”}} LK. Le, {e‘m(K) + X reni) Dity,  for K =1,
7 . 7 h

Dity, for K # 1L,
R — ( ) om(K) for K=1L, L 93
i = \I'i,K, Led, = 1=1,2,3.
FRIREEZ T 0 for K # L,
Since for all L € 9, and i = 1,2, 3,
?zlL - Z |a’?l+(1L - elm Z Dt TriL — Z Dit Tk = elm(L> >0,
K#L LeN(K) LeN (K

the matrix A7 is strictly dominant with respect to the columns and hence (A7)~ is positive.
Finally, under the assumption u? > 0 for ¢ = 1,2,3 we obtain Yix = 0 for i =1,23 and all
n € N. ]
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Theorem 2.1 shows the existence and uniqueness of discrete solution of the FV scheme (2.14a).
The following theorem shows the existence for (2.14b).

Theorem 2.2. Let T be admissible discretization of Q). Then the discrete problem (2.14b)
admits at least one solution (u ;} )keTmefon,...Ny} fori=1,2,3.

Proof. We introduce the Hilbert space Hj, := X}, x X}, x X}, of triples u} ! = (u’l"”,;l, ug”};l, ugf)T
of discrete functions on . Here, we denote by X}, C L?(Q) the space of functions which are
piecewise constant on each control volume K. We define the norm

3

s 8, = (I, + It M )
=1

where the squared discrete seminorm | - |%, is given by

]wh]_%(h == Z Z m(K|L)d,

K€<7h LG./\/

2
wp — Wk

d

K,L

We introduce the discrete operator Gy, : H, — Hj, defined by Gp(u,) = y,,, and let ¥;, =
(V1.4yYan, ¥35)". Multiplying (2.14b) by %;; and summing the result over K € ., we obtain

1 n n n
E(B p(up ™ Ot — By, (up, OETH)

+a1h(uh+1 ‘I’n+1) +a2h(Gh( n+1) (I,Z—f—l) Bh(Fh( n+1) ‘I’Z—H) — 0’

where the discrete bilinear forms are given by

3
Bh(uh+1 \I,nJrl) — § : E :un—&-l n+1
1

KeT, =

a, h(uh+1 \I,nJrl . Z Z K‘L Z D n+1 . u?}l)(¢n+1 wn-ﬁ-l)

KGyh LEN

a2h(Gh( n-‘rl) \I,;ZL—O—I — __ Z Z e ZXlA:HI;lLbT n+l n+1)(,¢n+1 wn-ﬁ-l)

Ke I LEN(K)

Now, we define, by duality, the mapping P from H), into itself: for all ®;, € H,

1
At
+a'2h<Gh( n-i-l) ‘I’Z+1> o Bh(FZ+1>q)Z+1),

[]P)( n+1) (I)n+1] (Bh(u”+1,<1>"+1) _ Bh(UZa‘I)ZJrl)) +a1h(un+1 (I)n+1)

where F = (FZ’"Zr L Fg;l, F;;{l)T. The continuity of P follows from that of the nonlinearities
F AP and of agp(,+), agn(-, ) and By(-,-).
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Now, using the definition of F "l for i = 1,2,3 and the Young’s inequality we deduce

[P(uh ™),y ]

1 +1 n+1
> S ) Y - Yom Zwu

Ke, i=1 Ke9,
DD mLZD AT DY Z K‘Lzlmip?y’%“ (5" = i)
KE%LLEN(K) K€7}LLE/\/
3
— Z Z u?}l) +L2M2(u;1}1) +L3M3(ug}1) )
KeJ, =1
1 3 3
> a2 M) ) (k) > mK) Y (uix)’
2At 2At ,
Ke9y, i=1 Keg, =1
DD o 0 DO
Ke% LEN(K) i=1
3
— > m(K)Y (i) + LaMa(us i) + LsMs(ugi!)?)
Ke, =1

1 1
= (E ) ||u1 ||L2(Q + D1|U1 h1|Xh 3 <2At — L2M2> ||u2 ||L2(Q + D2|u2 h1|Xh

1
* (2At B L3M3) w3 1720y + Dslush x, — C1(At, uy)
> Cy ([up ™ 1%,) — Cr(At,up).

The constant Cy depends on D;, L;, M;, and At, for ¢ = 1,2,3 and j = 2,3, Moreover,
due to (2.15), Cy > 0. This implies that []P’( nth), uZ“] > 0 whenever ||u} |y, =r, where
r > C1/Cy. By induction on n, we deduce (see for e.g [35,63]) the existence of at least one
solution to the discrete problem. O

2.5 Convergence

In this section we prove that the solution approximated by the finite volume scheme constitutes
a weak solution of (2.1). We start giving compactness argument for the family y,, then we will
prove that the family of the discrete solutions wuy, is relatively compact in L'(Qr).

2.5.1 Compactness argument

First, observe that (2.25) and (2.26) imply that the family of discrete solutions y; is bounded
in L*(0,T; H'(©)). This ensures the existence of a subsequence, which is not labeled, such that
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for all + = 1,2, 3 there holds
Yinh = Yi, Viyin — Vy;  weakly in L*(Qg) (2.29)

Next, we use the following lemma proven in [6, Appendix A] to prove that the family of discrete
solutions w;, are relatively compact in L'(Q7).

Lemma 2.4. Let Q be an open bounded polygonal subset of R, T > 0, and Qp = Q x (0,T).
Let (Th), be an admissible family of meshes on Q satisfying (2.9); let (Aty,)y, be the associated
time steps. For all h > 0, assume that the discrete functions (u}*h), (fi*1) and discrete fields
(FYY forn € {0,1,..., Ny} satisfy the discrete evolution equations

n+1 n
Uy~ — Uy

R divy, [FPH + f24Y forn € {0,1,..., Ny} (2.30)

with a family (uY)y of initial data. Assume that for all ' C Q, there exists a constant M ()
such that

Ny, Np, Ny,
> Al ey + Y AU ey + D AHFR ey < ML), (2.31)
n=0 n=0 n=0
and, moreover,
Ny,
> ALVt oy < ML), (2.32)
n=0

Assume that the family (ul);, is bounded in L (). Then there exists a measurable function u

on Qr such that, along a subsequence,

Np,

Z Z WP g e — o in L (2 x [0,T1]) as b — 0.

n=0 K€%,

We have the following convergence results along a subsequence.

Lemma 2.5. There exists uw € [L"(Qr)]? N [L*(0,T; HY(Q))]* with r € (0,4) if d=2, and
r € (0,10/3) if d = 3, and subsequences of w, = (Uyp, ugp,uzp)® not labeled, such that for
1=1,2,3 and as h — 0,

(i) wip — w; in L'(Q7), a.e in Qr,
(1) Vpu;p — Vu; weakly in [L*(Q7)]*,
(ii) A Vi(b]y,) — u;V (bl y) weakly in [L'(Q7r)]?,

(iv) Fy(up) — Fi(w) weakly in L'(Qr).
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Proof. We fix i € {1,2,3}. The evolution of the i-th component (u}™') of the solution is
governed by the system of discrete equations
n+1

ul —ul 1
i K K n+1 n—+1
TP A 239
LeN(K)
n+l .__ n+l  n+l , nitl
where F/'%¢" = Fi(uy , uy e, usy ) and
n+1 n+1 T(, n+l n+1
wrt — b,
n—+ i,L o, K n+l ( S )
F; KL "MK Did— — XAl fe,— d TK.L
KL K,L

— VK Lun-i-l o XZA?}lLvKL(bTyn—H) ]
Equations (2.33) have the form (2.30) required in Lemma 2.4.

It remains to check that the local L' bounds (2.31), (2.32) are satisfied. In fact, we have the
global L'(Qr) uniform estimates on the families

— n+1
Ui,n = E : U; K ]l(tn,tnﬂ]x}(? E : E : E , :‘ tn, 1] XK

KeJp, n=0 Ke.9}, LeN(K)
ne{0,1,..., Ny}

. n+1 B
Fip = E Fe Ly tn)xks  Valin = —E E E VKLU Lty tpin]x K

Keay, n=0 K€J;, LEN (K
ne{0,1,...,Np}

Indeed, the non-negativity of the discrete solutions, the assumption (2.7) and the Cauchy-
Schwarz inequality ensure, for i = 1,2,3, the existence of M;(Qr), My(Q27) > 0 such that
| Finllor@r) < Mi(Q2r) and

1/2 1/2
il < (Z At Z )‘UnH’z) (Z At Z )) < Ma(Qr).

= Keo, Keg,

The estimate (2.19) and the restriction (2.10) guarantee the existence of M3(€7) > 0 satisfying

thui hHLl(QT)

:—ZAtZ Z m(K|L)ulft — it

= KEQ}LLGN
1 |n+1 n+1
YAy Y EIE T
n=0 KeJ, LeN (K K\L

(2.34)

1/2
( ZAt Z Z K\L n+1 _U;HI;I) > X

n=0 KeJ, LeN(K)

(zAtz S i )

Ke., LEN(K
< Ms(
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Using the critical discrete Sobolev embedding (see [6, Appendix B, Prop. B.1]) and the inter-
polation between LPt(0,T; LP=(Q)) spaces, from the L>(0,T; L*(Q)) estimate (2.18) and the
discrete L?(0,T; H'(Q)) estimate (2.19) we get a uniform L"(€27) bound on u; 5, and uniform
L*(Qr) bound on A, ;, (moreover, they are uniformly integrable). The quantity

Z Y A
n=0 Ke€.7;, LGN K)
satisfies the estimate

1A Va6 yn) 2@ = 5 ZNZ Z (K|L)A? 16 (yi =y

= Keg, LEN

ZAtZ Z K|L n+1|bT( n+1 yrlz(+1)|

= KeJ, LeEN(K)

. 2 (2.35)
At KL bT n+1 n+1) )
(iZZ T >
1/2
( ZAtZ Z Wn "+1)> < My(Qr).
= Ke, LeN (K

Since we can write

Fin=Vauin — AL V(b y),
we deduce an L'(Qr) bound on Fj, from (2.34) and (2.35). Thus (2.31) and (2.32) are satisfied;
the uniform L'(Q2) bound on the initial data ug is also clear from (2.13), and Lemma 2.4 can be
applied to derive the L(€27) compactness of (uy,),. Thus we can define the limits w = (uy, ug, u3)

of w;, and from this obtain the claim (i). Furthermore, to deduce the claim (ii), we use (2.19)
to bound Vju;p, in L?*(Qr). Upon extraction of a further subsequence, we have e.g. Uiy — U €

L*(Qr) and Vyu; — G in [L2(Qr)]4. Let us show (as in [46]) that u; € L*(0,T; H'(Q)) and
¢ = Vu, for i =1,2,3. Let ¥; € C>([0,7T) x Q)) be given and

11—/ /thzhmt i(z,t)dedt = ——ZAtZ > et =t v

= KeJ, LeN(K)

T2=3 ZNZ Z m(KL) (]! = wif g, - Wik
n=0 KGthEN

where m,, denotes the unit normal vector to K|L outward to K and we define

1
m(K]|L)

n 1 n
\I[Z-};l = m— /[( \I/i(l',tn+1) dx dt, and V! —;;I‘L =

K) / V(2 tyq1) dy().

IKIL
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Applying summation by parts and the Cauchy-Schwarz inequality, we get

Ti1 — i2|
ZN > Z (KIL) (w7t = uiid) (mg, - (W2 = W75,))
n=0 KG%L LEN
1/2

( Yoy S |) x
= Ke, LEN

1/2

((Eay 5w, m.r)
= KeJ, LeN(K

where we define R, = Uil — ‘Ilﬁ(l'L Regularity properties of the function ¥, give the

existence of C; g, > 0 only dependlng on ¥;, such that |R, Ci,w,h. Therefore,

K\L|

—ZAtz > m(K|L)d,, <dm(Qr)

KeZ, LeEN(K)

and the estimate (2.19) imply that T;; — T;2 — 0 as h — 0. Applying summation by parts
yields

T
Tyo — __ZAt Z Z m(K|Lutin \Ilf}}lw = /0 /Quiyh(a:,t) div(\Di(az,t)) dx dt,

= KeZ, LEN(K)
such that .
Ty — —/ /ui(m,t) div(¥,(x,t)) dedt as h — 0.
Q

This proves that u; € L2(0,T; H*(Qr)) and the function ¢; € [L?(27)]? is almost everywhere
equal to Vu; for ¢ = 1,2, 3 in 7, and the uniqueness of the limit implies that the whole family
Vi, weakly convergence in [L*(Qr)]¢ to Vu; as h — 0. Now, from the a.e convergence of u;
to u; and the Vitali theorem one has A;;, weakly converge to u;. Then, we using (2.29) and
pass the limit to obtain (iii).

To prove (iv), we use the uniform L?*(Qr) estimation of w;;, and the assumption (2.7) of F;
to prove that the family (Fj(uy))y, is uniformly integrable. Finally, using the a.e. convergence
of uy, to u and by the Vitali theorem we get the a.e. convergence of Fj(uy) to Fy(u) in L' (Q7)
and from this we get (iv). O

2.5.2 Convergence analysis

Our final goal is to show that the limit functions w constructed in Lemma (2.5.1) and the limit
y given in (2.29) constitute a weak solution of system (2.1). We start by passing the limit (keep
in mind that ¢ = 1,2,3) in (2.14b) to get the first equation in (2.8).
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Let ¢; € D([0,T) x Q). Set 7 = (g, t,) for all K € F), and n € [0, N, + 1]. Then
multiply the discrete equation (2.14b) by Aty+! and summing the result over K € 7, and
ne{0,1,..., Ny}

Tlh + Tz2h + Tfh = Tfh’

where
Np,
1 n+1 n n+1
T = m(K)(ui,K - ui,K)wi,K )
n=0 Keyh
_ n+1 n+1 n+1
__D § :At § : § : K\L _uzK) i,K

= KeJ, LGN

zh - XlZAt Z Z K\LA?}lLbT< AR n+1) ?I—?’

= KeJ, LeN(K)

T, = Z Aty m(E)FE

Keg,

Item (iv) of Lemma 2.5 implies that

Zh—>/ / w)y;dedt as h — 0.

By a summation by parts in time and keeping in mind that ¥+ = 0 we get

Z S mE ) =) — 3 m(E )

n=0 K€%, KeJ,
n+1
_ n+1 s 1,2
_—zz/ / Rowntartydwat— 3 [ e = 1 17,
n=0 K€, Kegy,

We compare T}, with

n+1 ~ ~
Z Z / / wip(x, )0 (i(z, t) dee dt — /uivo(az)wi(m,O) dx = _Tiill _ Tz‘l,hz

n=0 K€%,
to obtain
77 - 0| = | [ wol@)is(e,0)de — 3 m(K)ul il
Q Ke,
Keg,

1/2
( / s dw) (Z [ 1ta0) - (e >|2da:) < Cith
Keg;
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due to the Lipschitz continuity of ;. Using the regularity properties of 0;1; and the estimates
(2.18) we get

1,1 A1
T — 15

n+1 n+1

= Z Z/ /uzhwtaﬂbzictdmdt—z Z/ / w0 (e, ) da dt
n=0 Ke.7, n=0 K€,
< ZAt Z m(K ”“/ / Opi(x,t) — Opbi(x g, t)) dae dt
Ke9,
1/2
(Z At Y m )|u”+1|2) < Csh.
Ke9,

Thus T1 R ih ! and T R h as h — 0, which proves that

T, — —/ /u(w,t)8t1/)(a:,t) dwdt—/uo(az)ﬁtz/z(x,O) dedt ash —0.
o Jo Q

Next, we deal with T and T3 ;,. Gathering by edges and using the definition (2.11) of V,up,
we get

=—2At Do Y T @ )

KeZ, LEN(K)

n+1 n+1 ¢n+1 wn—i—l

:_Zmz Z (K|L) KLui’Ld_ulK -

_ KeJ, LeN (K K|L K|L
Nh

= = ZAt Z Z K\L K‘L(VK|LUZ;§1 : nK,L)(VK\Lwi<$K,L7tn+1 : nK,L)u
n=0 KeJ, LeN (K

and

ZAtZ S e AL (U — y ) Wi — )

= KeJ, LeN(K)
b (yn—H . yn—i-l) (¢n+1 77bn-i-l)
n+1 L K
XAy ¥ mn A :
= KeT, LEN(K) K|L K|L

Np,

Z At Z Z K|L K‘L-A?;r(lL(VK\L(b;FyZJrl) : nK,L)(VK\L%(iUK,L,th : nK,L)a

n=0 Keo, LGN (K)

where Tk 1, is some point on the segment with the endpoints g, . Since the values Vi
are aligned with ng 1, we have

(Vipup™ ngr) (Ve (@gn, tee1) - nxr) = (Viepup ) - (Ve (@r o, tee))
(Ve BTy ™) - nwr) (Vb (@rn, tes) - nr) = (Ve (0 yr ) - (Ve (@xn, tas)).
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Then

T T
T?,h = Dz/ / thh(V@D)h dax dt, T'z?h = _Xi/ / A%thﬂL(bZTyZ_'—l)(V@ZJ)h da dt,
0 Q 0 Q

where (Vi)n|(tntni)xk = VUi(TK®L, thy1). Here the construction of the diamond Tk, from
the neighboring centers xx and x; and the interface o = K|L (see e.g [5,6]) has been used.

From the continuity of Vi we get (Vi) — Vb in L®(Qr). Hence using the weak L?
convergence of Vyu;, to Vu;, and the weak L' convergence of Ai,hvh(b?yh) to uiV(b?yh), we
obtain

T T
17, — D; / / VuVydzdt, T3 — —xi / / u; V(b y)Videdt as h — 0.
0 Q 0 Q

Gathering the results obtained, we can justify first equation in (2.8). Finally, we use (2.29)
and reasoning in the same way as above, we pass to the limit in (2.14a) to prove that second
equation in (2.8). This concludes the proof of the following theorem.

Theorem 2.3. Assume that u;o € (L*(Q))" fori =1,2,3. Let up, = (uyp,uap,usp)’ be the
discrete solution generated by the finite volume scheme (2.14) on a family of meshes satisfying
(2.9) and (2.10). Then, as h — 0, uy, converges (along a subsequence) a.e on Qr to a limit
u = (uy,us,uz)t that is a weak solution of the system (2.1), (2.2).

2.6 Numerical examples

We present in this section some numerical results obtained by the finite volume scheme (2.14).
To obtain the numerical test, we will reduce the number of the parameters in the model (2.1),
(2.2). For this reason we non-dimensionalize the system following [52]. We choose U; = u;/k
for + = 1, 2,3. Making the substitution and simplifying, we obtain

a Uy

Fl(U) - (1 - Ul)Ul - mUQ,
CL1U1 CLQUQ
BU)= ———Uy— —2_U; — e, U.
V) = 10 ™ T, e~ 9l
CL2U2
F S - _
s(U) = 7,5, el

On the domain 2 = (—2,2) x (—2,2) we define a uniform Cartesian grid

with N, x N, control volumes. For the simulations, we choose N, = N, = 256 and we take the
parameters

a1 =50, a;=01, b =20, by=20 e =04, e=0.0l1
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) u(x,0) us(x, 0) us(x,0) 1

y 09
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Figure 2.2: Example 1: initial condition for the u;, us and us species.

used in [52]. The corresponding diffusion coefficients are given by D; = D; = §; = 1, for
1 = 1,2, 3. The sensitivity chemotactic parameters are chosen by

(51 - 100, 52 - 20, 53 = 10.

The initial distribution for u;, us and ug species correspond to a constant u; o = uso = 0.8 and
Uz, 0 = 1.

In order to illustrate the convergence of the numerical scheme and due to the lack of exact
solutions for each example, we compute approximate errors in different norms using a numerical
solution on an extremely fine mesh as reference. To measure errors between such a reference
solution wu,es and an approximate solution u;, at time ¢", we will use the L?-error

1/2
n n n 1 n n
€9 <u> - ||uref - uh||2 - ( Z Whl’ref,l( - uh,K|2> .

Ke,

Here, uf; ;- stands for the projection of the reference solution onto control volume K. For solv-
ing the corresponding nonlinear system arising from the implicit finite FV, we use the Newton
method, where at each time step, only a few iterations are required to achieve convergence. In

addition, the linear systems involved in Newton method are solved by the GMRES method.

2.6.1 Example 2.1 (species interacting via chemical substance)

For this numerical test, the chemotactic coefficients are x; = —0.8, x2 = 0.8 and y3 = 2, where
X1 < 0 means that movement of the prey is against the presence of the predator. For the initial
condition, the super-predators are concentrated in small pockets at a one spatial point while de
predators and preys are concentrated in small pockets at four spatial points (see Figure 2.2).

In Figure 2.3, we display the numerical solution for each species at three different simulated
times. Initially, at simulated time t = 0.02 (Figure 2.3, top), we can observe the effect of
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uy (z,t), t = 0.02

ui(, 1), t = 0.06

0.5
045
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Figure 2.3: Example 1.1: interaction of the three species at different times ¢ = 0.02, 0.04, 0.06.

the chemotaxis for the super-predators (u3) and predators (ug) feeling their respective preys,
and the preys feeling the presence of the predator. At simulation time ¢ = 0.04 (Figure 2.3,
middle). We notice the rapid movement of the super-predators towards the regions occupied by
the predators and at the same time predators spread out to the areas where the prey (u;) are
located, but it does not move towards the area occupied by the predator. The prey move to the
regions where the predator is not located. At ¢ = 0.06 (Figure 2.3, bottom), we can see that
the super-predators continue moving towards the area occupied by the predators, the predators
occupy almost the entire area, except the region where the super-predators are located while
the prey move toward (running away) the area where the predators are not located. In Table 2.1
we show the L2-error for each species at simulated time ¢ = 0.02, we observe convergence of
the numerical scheme.
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N, x N, h eb(uy) el (uz) el (u3)

32 x 32  1.25e-1 1.33e-03 3.09e-03 4.97e-04
64 x 64  6.25e-2 2.82e-04 6.61e-04 2.09e-04
128 x 128 3.12e-2 4.41e-05 1.16e-04 3.39e-05
256 x 256 1.56e-2 1.07e-05 3.20e-05 8.00e-06

Table 2.1: Example 1.1: approximate L*-errors for each species at simulated time ¢ = 0.02.

©

@
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w

o

Figure 2.4: Example 2.2: initial condition for the u;, us and ug species.

2.6.2 Example 2.2 (prey do not interact via chemical substances)

In Example 2, we choose x; = 0, xo2 = 0.8 and x3 = 2. In this case we do not consider
chemotactic movement of the prey. The initial distribution is as in Example 1, but the super-
predators, predators, and prey are concentrated in small pockets at a one spatial point (see
Figure 2.4). We display in Figure 2.5 the numerical solution for each species at three different
simulations time. We notice the rapid movement of the super-predators towards the regions
occupied by the predators and at the same time predators spread out to the areas where the
preys are located, while the prey present isotropic and homogeneous diffusion (due to the choice
of the chemotactic coefficients x; = 0). In Table 2.2 we show the L?-error for each species at
simulated time ¢t = 0.04, we observe the convergence of the numerical scheme.
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Figure 2.5: Example 2.2: interaction of the three species at different times ¢ = 0.04, 0.06, 0.09.
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2.6.3 Example 2.3: spatio-temporal model versus non-spatial ODE

model

In this numerical example, we wish to compare the dynamics of the spatio-temporal model
(2.1)-(2.4), with that of the non-spatial model

d'LLi
dt

= F(ur (1), us(1), us (1)),

i=1,2,3,

(2.36)
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N, x N, h ef(uy)  eb(ug)  eh(us)

32x32 1.25e-1 1.13e-3 1.60e-3 1.56e-3
64 x 64  6.25e-2 5.47e-4 8.09e-4 7.56e-4
128 x 128 3.12e-2 2.74e-4 4.09e-4 3.7le-4
256 x 256 1.56e-2 1.36e-4 2.08e-4 1.84e-4

Table 2.2: Example 2.2: approximate L*-errors for each species at simulated time ¢ = 0.04.

u(z,0) us(z, 0) uz(x,0)

0.119
0.118
0.117
0.116
0.115
0.114
0.113
0.112
0.111

0.919
0.918
0.917
0.916
0.915
0.914
0.913
0.912
0.911

12.795

12.79

12.785

12.78

Figure 2.6: Example 2.3: initial conditions for species uy, us and us.

where the diffusion and chemotaxis movement are not present. To this end we determine for

each species i at simulated time ¢, the quantities

T(uj, ty) = Z m(K)u; g ~ / wi(z, t,) de,
Q

Ke,

which represents the approximate total number in € of individuals of compartment u at time
t,, and

n

n -
i,min "

min upg.

n
= max u, u
Ko Ke,

Lmax g €T
We consider the diffusion coefficients D; = 0.02, Dy = 0.5 and D3 = 5, the sensitivity chemo-
tactic parameters are chosen by §; = 6, do = 4 and d3 = 2 and the chemotactic coefficients
X1 = —2, x2 = 4 and x3 = 6. The other parameters are the same as in Examples 1 and 2. The
initial condition for ¢ = 1,2, 3 is a spatially distributed random perturbation of the respective
values u; = 0.9, us = 0.1 and ug = 12.75, which is displayed in Figure 2.6. The “random”
initial datum has been chosen to test whether small perturbations would give rise to large-scale
regular structures akin to the well-known mechanism of pattern formation, or rather, the small
fluctuations in the initial datum would simply be smoothed out. In Figure 2.7 we display the
numerical solution at four different times. It turns out that each species aggregates in a kind
of groups structure which forming zones of different densities. This structure varies with time
(not show here), moreover in Figure 2.8 we can observe that the quantities Z(u;,t) and the
solution u; of ODE problem (2.36) have the same behavior even when the total variation of
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2 uy(x,t), t =107 (z,t), t =182 ( t), t =257 uy(x,t), t = 455
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Figure 2.7: Example 2.3: numerical solution at four different times.

cach species ; max — U;min have a oscillatory behavior and remains bounded along the time,
which lends further support to the conjecture that this model (at least with the parameters
chosen) exhibits spatial-temporal oscillatory behavior.
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Figure 2.8: Example 2.3: spatial-temporal model versus non-spatial ODE model and time
evolution of the total variation for each species.



CHAPTER 3

Global existence in a food chain model with two
competitive preys, one predator and chemotaxis

3.1 Introduction

3.1.1 Scope

We consider a reaction-diffusion system describing three interacting species with respective
density u;, i = 1,2,3, in a food chain model on the basis of the following system [65,97], where
each species secretes a chemical substance of corresponding concentration y;, ¢ = 1,2,3. The
resulting model is a strongly coupled nonlinear system of six PDEs with chemotactic terms,
namely three parabolic equations describing the evolution of the densities u; coupled with three
elliptic equations for the concentrations y;, i = 1,2, 3:

Oyuy — D1Auy — x1div(u; Vys) = Fi(u),
Opug — DoAug — xodiv(uaVys) = Fr(u),
Ovuz — D3Auz + x3div(usV(yr + y2)) = F(uw),
—D1 Ay, + 01y1 = Sy,
—Ds Ay + Oays = Oaus,
—D3Ays + O3ys = duz, (x,t) € Q x (0,77,

(3.1)

where w;(x,t), i = 1,2, 3 are the population densities of the species at position x at time ¢. At
the lowest level of the food chain we find the prey (i = 1, 2), while species 3, the predator preys
upon species 1 and 2. Moreover, y;(x,t) denotes the concentration of the chemical substance
secreted by species i at position x at time ¢, and y(x,t) = (yi(x, 1), yo(x, 1), y3(x, 1)) L.

The chemotactic movement of the species is due to chemical substances secreted by the
other species. Its direction is determined by the sign of the chemotactic coefficients y; [37] for
i = 1,2,3. In this work, we consider that the prey (species 1 and 2) move in the direction of

74
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decreasing concentration of the chemical secreted by species 3 (trying to avoid that species),
while the predator (species 3) moves in the direction of increasing concentration of the chemical
secreted by species 1 and 2. Notice that the equations for the chemical substances of the preys
and predator are elliptic, rather than parabolic. This is justified in cases where the diffusion of
the chemical substances occurs on a much faster time scale than the movement of individuals,
which is reasonable in a variety of ecological settings.

The Holling-type II functional responses F;, ¢« = 1,2, 3 are given by

Ui M1u1
1(U) 11Uy 3 O1U1U2 A, +u1u3
U9 MQUQ
Fy(u) = (1 — —) — . , 3.2
2(“) TolUsg s O2U1UL A, + U3 (3.2)
M1u1 MQUQ

U us — Lus — Hu2,
AL+ 2A2+U2 ’ ’ ’

where r; and ry are biotic potentials, k; and ky are environmental carrying capacities of two prey
species, o and o9 are coefficients of inter-specific competition between two prey species, M; and
M, are predation coefficients, v; and 7, are conversion factors, A; and A, are half-saturation
constants, L is the natural death rate of predator, and H is the intra-specific competition
among predator. We assume Neumman boundary conditions

ou; _ Oy N
B 0, 1=1,2,3, (3.3)

and the initial condition

Ui<33, 0) = ui70(m), 1= 17 2, 3. (34)

3.2 Preliminaries

Let 2 C R™ n = 2 be a bounded open domain with piecewise smooth boundary 9€2. We use
standard Lebesgue and Sobolev spaces W™?(Q2), H™(Q)) = W™2(Q) and LP(2) (with their
usual norms [1]) for all m € N and p € [1,00]. If X is a Banach space, a < b and p € [1, 0],
then LP(a,b; X) denotes the space of all measurable functions u : (a,b) — X such that
|lu()|lx € LP(a,b). Next, for T' > 0 we define Qr := Q x (0,7].

Let
21 —Ys brlr 00 —1
z=|2zn| = —3 = By, where B = b;r =10 0 —1
Z3 Y1+ Y2 b3T 1 1 0

Then the system (3.1) can then be written as
—DiAy; + 0iy; = dui, i=1,2,3, (@,1) € Qr.
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Our basic requirements are the following: The functional responses F; are locally Lipschitz
continuous and L; denote a Lipschitz constant for F; for all i = 1,2, 3.

D;>0,D;>0,0 >0, and & >0 for i = 1,2,3.

1My + My — L > 0.

Next, we collect some tools that will frequently be used in this work.

Lemma 3.1. Let uy, uy and uz be a nonnegative functions. Then there exists a constant C' > 0
such that

3
D Flle@ < C (3.7)
=1

Proof. Due the nonnegativity of the functions u; and (3.2) we get

U 1

Fi(w)] < ron (1= 1) < grik,
U 1

20U)| X U2\ 1 — 7— | &S T2,

|Fy(u)] < (1 2) < Srok
ko 4

(MM + oMy — L)?

|F3(u)| < (1M + 72 Ms — L)us — Huj < 17

Taking the supreme in each of the previous inequalities and summing the results yields (3.7). O

We shall need the following consequence of the Gagliardo-Nirenberg interpolation inequality
in two dimensions (see e.g. [17,76])

[ et de < o€l [ [ve da (3.5)
Q Q
and elliptic regularity in the L? sense (cf. [50]): the linear equation
—Av4+v=u in (), @:0 on 0f),
ov
admits a unique solution v satisfying
[ollw2r@) < Cllulle@)- (3.9)

For the proof of the L* integrability property, we shall require the two following lemmas (see [3,
Apendix A))

Lemma 3.2 (ODE comparison). Assume Y and X are non-negative absolutely continuous
functions in [0, T] and such that for every t > 0:

1
Y’(t)+aY°‘(t)>b+5+c(1+t—7) sup Y(s),

T(t)<s<t

1
X’(t)—i—aXo‘(t)éb%—c(qut—v) sup X (s),

T(t)<s<t
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for some continuous mapping t — 7(t) € [0,t] and constants b > 0, ¢ > 0, a > 0, § > 0,
a>ay=0,7>0. IfY(0) > X(0) then Y > X in [0,T]. In particular, if v = 0:

sup X (t) < max{X(0),C},
te[0,7

where the constant C' > 0 depends on all parameters but 7(-), § and T.

Lemma 3.3. Assume X be an absolutely continuous functions in [0,T] and such that

1
X'(t) +aX(t) < b—l—c(l + t_7> sup X(s),

st

withb>0,¢c>20,a>0,a>ay=0,v=>0. Then

1 1 0
< - — - ,
X(t)\0(1+t6)’ B maX{a—l’a—ao}

where the constant C' > 0 depends on all parameters but it is independent of T.

For p € (1,00), let A := A, denote the sectorial operator defined by
2 o
Apu = —Au, for uwe D(A,) =<y eW>P(Q): EY 0. (3.10)
Then we define the operators exp(—tA) by

(exp(—tA)f) (z) = /ﬂ Gx,y.t) () dy,

where G represent the Green’s function and the family (exp(—tA));>o denotes the Neumann
heat semigroup. We use the following property of the Neumann heat semigroup

n

_n(1l_1
||eXp(—tA)w||Lp(Q) < Ct 2(‘1 P)||w||Lq(Q), (3.11)

to prove the existence global classical solution. We refer to [95, Lemma 1.3] for another prop-
erties of Neumann heat semigroup.

Furthermore, the fact to that the spectrum of A is a p-independent countable set of positive
real numbers, namely
0=t < pg < g < -+,
entails the following consequence.

The operator A + 1 possesses fractional powers (A + 1)?, 8 > 0, whose domains have the
embedding properties (see [53, Theorem 1.6.1])

D((A, +1)%) — C°Q)  if28— g >5>0. (3.12)

Moreover, it can easily be seen ( [55, Lemma 2.1]) that for ¢ > 0 the operator (A+1)? exp(—tA) div(-)
possesses a unique extension from C5°(€2) to LP(Q2) that satisfies the following lemma.
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Lemma 3.4. Let B > 0 and p € (1,00). Then for all € > 0 there exists c(e) > 0 such that for
all w € C§° we have

1A+ 1)% exp(~tA4) div(z) | ey < e()t* 3 exp(—pt) ]| ooy 5.13)
<

(P wllpee) V>0,

for some p > 0.

3.3 Global Classical Solutions

The goal of this section is to guarantee the global existence of solution to the system (3.1).
In order to achieve this, first we show the local existence of a nonnegative solution. Then we
prove some a priori estimates and finally we establish the global existence. The local existence
proof is valid for n > 2.

3.3.1 Local existence

This subsection is devoted to proving local existence of a nonnegative solution to the system
(3.1). The proof is based on Banach fixed-point theorem.

Lemma 3.5. Suppose that the functions w; o € C°(Q) for alli = 1,2,3 are nonnegative. Then
there exists Tnax € (0,00] and an unique classical solution (w,y) of (3.5) which is nonnegative
and each u;,y; belongs to C°(Q x [0, Tiee)) N C*H(Q X (0, Thax)) Furthermore, we have the

following extensibility criterion:
3
Tiax = 00 or lim (Z ]| Lo (o)) = 0. (3.14)

t/(Tmax )
i=1

Proof. We claim that for all R > 0 there exists "= T'(R) > 0 such that if in addition to the
above assumptions we have ||u; ||z~ < R for all i = 1,2, 3. Furthermore, L;(R) > 0 denote
a Lipschitz constant for F; on (—R, R).

For a small T' € (0,1), we introduce the Banach space

X =[C°([0, T} ()P
along with its closed subset
S o= {(ur, ug,us)" € X+ |Jugl|poeqoryiroe()) < 2R, i =1,2,3},

where R = max;—1 23 ||ui,0||o<>‘
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For u = (uy,us,u3)T € S and t € [0, T], we introduce a mapping ® on S by
®(u) = (D (ur), Paluz), Py(us))
where, for all i = 1,2, 3, ®;(u;) is defined by
D, (u;) = exp(—D;tA)u; o—xi /Ot exp(—D;(t—s)A) div(uiV(biTy))ds—i—/ot exp(—D;(t—s)A)F;(u(s))ds.
Let 4 € (Nycpeoo L((0,T); W?P(Q)) denote the (weak) solution of

—DiAy; + 0;y; = o, on 2,

. 3.15
% =0, on 0f). ( )
ov
Then, for all : =1, 2,3 we have
[@i(ui)ll L) < I+ Lo + I, (3.16)

where we define

I = || exp(=DitA)uip|l L), I2:= Xz/ | exp(—D;(t — s)A) div(u;(s) V(b y(s))) || () ds,

I3 = / | exp(=D;(t — s)A)F;(u(s))]| Loo(q) ds.
It is clear that for all ¢t € (0, 7)),
Using (3.7), we get
/ |Fu(aa(s) ey ds < |F: ey - T, (3.15)

for all t € (0,7).

Now, in order to control the second member of (3.16), we fix p € (1,00) with p > n. Let
Be(£,4)and e € (0,4 — B). Then, by Lemma 3.4
14

L<C / I(A+ 1)% exp(—D;(t — s)A) div(ui(s) V(b y(s))) | Lo(cr) ds

C/ ~H 35|y () V (B y(5)) | Lo s
C/ ~(B+ 39| |uy (8) | oo o 1B Y () [l gy s

i (5) ]| oo () 107 9 (8) [lwr.e () (3.19)
0/ D g (5) | oo 16T 9 () w2y s

gC(R)/O(t )~ (B+5+e) {4

< C(R)T~B+e)+s
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for all ¢ € (0,T), were have used that 7' < 1, elliptic regularity (cf. 3.9) for (3.15), and that
|| exp(TA)divw|| rg < c(e)t™ T2 ||lwl|» for allw € LP (see Lemma 3.4). From (3.17),(3.18),(3.19)
and 1/2 — 8 — e > 0, it follows that if we choose T small enough, then ® maps S into itself.

Now, let w,uw € S, then for all i = 1,2, 3 we estimate
[ (ui) (t) — @i(t:) ()| () < 1 + Jz,

where we define

A / [lexp(=Di(t — 5)A) div (us(s) V(67 y(s)) — 1s(5)V(BTG(5))) | (e .

Jy = / | exp(—Dit — ) A)(Fi(w) — Fi(@))l| =) d.
The fact of the functional responses F; are locally Lipschitz continuous implies

5o [ ) = E@lnor ds < LR [ =l ds 7 LRl

Using the properties of the operator A + 1 we find that

< C/t 1(A +1)7 exp(=Di(t — 5) A) div (ui(s)V (b y(s)) — @i(s)V(b; §(5))) [lo(e ds

C/ (t = 5)" P59 (i) V(b y(s)) — s(5) V(5] G(5))) [|oods
<0 [ =9 (1 uls) (VT () ~ ) v

0

+IV (b7 g(s)) (uils) — wi(s)) ||Lp(m) ds.

Now, using elliptic regularity (cf. 3.9) and keeping in mind that Equation (3.15) is linear we

get
1679 () lwa@) < ClIBTG(9) w2 < 0T a(s)l|r@) < CllbTw(s) ] L@
and
165 (y(s) — §(5)) [l < OB (y(s) — (s))|lwera)
< O] (u(s) — a(s))|| o)
< CHbT(U(S) —a(s))| L= ()
Thus

t
5 <€ [ (0= 975 (o) i [ ) = )i

i) = () 16T @(5)| (e ) s

< C(R)T —(B+3+e) |u — @ x.
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Therefore collecting the previous inequalities we get
- —(B4lie - -
1@ () () = @i(@) (t)]| oo () < C(R)T~ 2w — || x + T - Li(R)|lu — @ x

for all t € (0,T), which shows that if 7" is chosen sufficiently small, then ® acts as a contraction
on S. Accordingly, the Banach fixed point theorem asserts the existence of some u € S such
that ®(u) = u, along with the existence of y1,y» and y3 as is obtained from (3.15).

Since the above choice of T' depends only on ||u; || L=, the existence of maximal time Ty,
that satisfies (3.14) can be ensured by [79, Proposition 16.1]. Relying on this, the inclusions
up, g, ug € C*1(Q x (0, Tay) result from straightforward regularity arguments including stan-
dard semigroup techniques and parabolic Schauder estimates ( [60, Theorem IV.5.3]). Again
by standard regularity arguments, we are able to establish the regularity of v, yo and ys.

An application of the strong maximum principle applied to (3.5) implies the claim concerning
the positivity of uq,us and us. Hence uq,us and us is positive in € x (0, Thmax) and the strong
elliptic maximum principle applied to (3.6) yields positivity also of y;,ys and ys.

Let us finally prove uniqueness of solutions in the indicated class, without loss of generality,
we assume that D; = 1 for all i = 1,2,3. Assume that 7" > 0 and two classical solutions of the
system (3.1) (u,y) and (@, g) in 2 x (0,7T) are given. We fix Tj € (0,7), and define w; = u; —u;
and z = y; — ;. The system for these differences is given by

dyw; — DiAw; + x; div(w; V(b §)) + x; div(w; V(b 2)) = Fy(u) — Fy(a),

. (3.20)
—DZAZl + (9121 = 5iwi, 1= 1, 2, 3, (m,t) S QT'

Multiplying (3.20) by w; and integrating the result in space, we get
2dt/ |wi|? dx + D; / |Vw;|? dac —XZ/Q(ulV(bT ) — @ V(b §)) Vuw; dx
+ [ (Rlw) - F@)u do
= Xi/ﬂuiV(b;rz)Vwi dx + x; /Q w;V (b §))Vw; da

+ /Q(Fz(u) — Fy(a))w; de,

(3.21)
for all ¢ € (0, 7). By Holder’s, Gagliardo-Nirenberg and Young’s inequalities,
Xi / VIV, dz < [xil|Vewil| 2V (67 ) | ooy will c2v/o-2) 0
< O Vwil| 2@ | V(b7 §) | oo | Ve o0 1w )/
< Ol Vwill 2@ |V (67 §) | ooy | Vel [Ty il o™ (3:22)
<

C
Ol | %P (b7 >||Lp<m!|wzl|2%<$/p
1

< 5 IVwilliag + Cllwillizg,
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were we have used that || V(b §)| 1y < C for t € (0,Tp), and that p > n > 2. Furthermore,
in view of the boundedness of u; and u; in £ x (0,7y) and the Lipshitz continuity of F;, we
obtain

1
% [ wIOTR) Vs do < IV ulg, + CIVE )

and
| (B = F@yus de < ol

We conclude upon (3.21) that
d
a/ |w,|2 da < Cle“%Q(Q) for all t € (O,To)
Q

The Gronwall inequality clearly implies uniqueness in  x (0,7}) and hence the uniqueness in
Q x (0,7) because Ty € (0,T) was arbitrary. O

3.3.2 Global solutions

In this subsection, we prove global solution to the system (3.1). That is we prove Tj.x = 00
which implies that wi, us, us, Y1, yo, y3 belongs to C°(£2 x [0, 00)) N C* (2 x (0,00)). First, we
will prove the L!-integrability.

Lemma 3.6. Let (u,y) be sufficiently smooth non-negative solutions of the system (3.1) with
the boundary conditions (3.3). Then there exists a constant M depending on y1, 2, |, ||wioll L1 (o)
but not on t, such that for all t > 0,

/(u1 + uy + uz) de < M. (3.23)
Q

Proof. Integrating the first, second and third equations of (3.1) and using the Neumann bound-
ary conditions we find

d
— [ (mw + 2us + ug) de < 7“171/%1<1 - ﬂ) dw+7“272/ U1(1 - ﬂ) dx — L/ ug de,
for all t € (0, Thax). From the inequality
i ki(ri +1)°
rzul<1 — Z—) < (TT—E) — Uy

we get

d ki(ry +1)? ko(re + 1)2

d—/(’ylul + Yous + uz) de gfylM/dw—%/ul da:—l—nyZ(m—)/da:

tJo 4ry Q Q 4ry Q

—’)/Q/UQdQZ—L/U:;daS
Q Q

<O - /(71u1 + Yous + ugz) de.
0
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If we take A(t) = yiu1 + Y2u2 + us, then have result £A(t) + A(t) < C|Q| which implies
A(t) < e PA0) + (1 — e H Q).
The conclusion of the lemma readily follows. m

Our main ingredient for the proof of global existence is the following a priori estimate which
asserts that if u; o € L%(£2), then u; is uniformly bounded in L* for some a > 1. We adapt the
proof shown in [4, Proposition 3.2] to our context.

Lemma 3.7. Assume that (u,y) is a pair of vectors of sufficiently smooth non-negative so-
lutions of the system (3.1) with the boundary conditions (3.3) and integrable initial data. Let
t > 0 be arbitrary. Then, for any a € (1,00), we have the estimate

3
1
> luilla < Cla, M) (1 + ta1>' (3.24)
=1

Moreover, if u;o € L*(2) for i =1,2,3, then the following bound is an effect:

3
D Muilla < Clas M, flurollas [luzollas l[usola)- (3.25)
i=1
Proof. For simplicity we put || - [|ze@@) = || - |la- Multiplying the first equation in (3.1) by u{™"
and integrating by parts we obtain
1d -1
——||ui||s + Dy(av — 1) / uf 2| Vuy |* de + M/ VysVuf de = / Fi(uw)us™t de.
(3.26)
Next, we multiply the equation —D3Ays + 03y3 = d3uz by u$ to obtain
a & a
— | VysVul de < = | ysuf de. (3.27)
0 D3 Ja

Then using the equality

4
/wa—2va|2dx: —2/|Vwa/2|2dw
QO (8%

and
/ Fi(u)uf™ de <y / uf de,
Q Q
we get,
d Di(a—1 o a—1)x10, N o
E||uly|g+41<—)\|vul/2”§ < (,Dw/ygul dm+r1a/u1 da. (3.28)
o 3 0 Q



3.3. Global Classical Solutions 84

In order to estimate the right-hand side of (3.28). Take € > 0 (to be specified later). We use
the following consequence of Young’s inequality:

ysus < euStt 4 eyt (3.29)

and also the inequality
a?-1
1
[t do < Pl < CiM.e0) + el
Therefore, for some constant C = C] (M, €, , d3, x1, D3) we have

a—1)x16
%/ngu? dw+r1a/ﬂul de < C] + Clellu |01 + Ctllyslloty.

The last inequality together (3.28) yields

Dl(Oé —1
«

d o ) a/2 o ey
qlullc +4 IVus2 )13 < O + Chelluallgt + CrllyslIST-

From the Gagliardo-Nirenberg-Sobolev inequality (3.8) and for ¢ small enough we get
d (6% 6] (0% (0%
Fllwlls + Crllwligh < G+ Cillwll§ + Crllysliah, (3.30)

for some C] depending on the o, M.

Now we deal with the last term in the right-hand side of (3.30). First we multiply the six
equations in (3.1) by y5~* to get

6
/ Vo de < / usys " de < OY / ug da + Cf / ys de. (3.31)
QO Q

Then from (3.8) and (3.31) we deduce that
lysllaty < Clluslls + CYllyslla < CF + CYlluslly + CYellysllaty-

Taking € small enough yields
lysllaiy < CF + CYlluslla- (3.32)

In view of (3.32), the estimates (3.30) become

d
Eﬂulﬂg + Cillur [|827 < C1 + Cullus]|S, (3.33)

for some C} depending on the o, M, the GNS constant and the parameters of the system.

Reasoning in the same way for the second equation of (3.1), we obtain

d
Sllualls + Crlluall3H < o+ Cilusls, (3:34)
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Performing very similar computations to those of (3.28), we get

d Ds(B—1 ) 82
&HUgHg +4%HW§/2H§ < (B —=1)xs (#/ulug dx + D / Ut dw)
L/ 2 (3.35)

+ (/YlMl + ’YQMQ — L) / Us da.
Q

Therefore, using (3.29) we find that for ¢; > 0 (to be specified later) there exists a constant
CQ = CQ(M, €1, 5, 51, 52)(3, Dl, DQ) such that

d Ds(B—1), o 52
EHU:%H/@ + 4T||VU3/ I3 < Co + Coex|lus||5i1 + Collua 511 + 02||U2||€}L+11(Q (3.36)
Again, from Gagliardo-Nirenberg-Sobolev inequality and choosing €; sufficiently small we get
d
llualls + Callusl| 55 < Ca + Callua |55 + CalluallF 5. (3:37)
In light of (3.34), (3.35) and (3.37) we obtain
d
3 Ul g+ lluall + lusl|5) + C (lualled + luzl|351 + lusl3h1) < €+ CUL + CUs + CUs,
for some constant C' depending on «, § and M, where we define
U = lwlljt, Ue=lluallffy, Us:=|us|.

In order to obtain a conveniently bound the terms on the right-hand side using the left-hand
side, we take f < a < [+ 1.

Now, due the interpolation inequalities

plat1) .
i < i 0 ) 9:—60717 :1a27
oo <l ol 6= 285 € ), i

X B4+ 1)(a—1
sl < sl e 02 = EEE=D e 0,),

and (3.23) we have

d @ @ @ @ 1
a(llullla + [luz |2 + usll3) + O (lur |25 + [luallS + lusl|5T) < C+C (S + S5+ S3).
for some constant C' depending on «, § and M, where we define

. 01(B+1 01(B+1 . 0
Sy= a2, Sy = (lua | 2GSy = flus %0

We observe that 6,(5 + 1) < a+ 1 and 6o < S + 1, so using Young’s inequality with a
sufficiently small e allows the terms on the right-hand side to be absorbed into the left-hand
side. This gives

d (e}
o (lunlls + luall? + lusl3) + C (lunlla5 + lluallZ5 + lusl3i) < C.
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for some constant C' depending on «, § and M. Applying the interpolation inequality

a?—1
lwlla < Jlwlly S lwlby, &= —— €(0.1),

we get
d a «a B a2 a\ 22— B -
5(””1”& + luallg + lluslly) + C((luall8)a=T + (ualla) == + (Juslz) 1) < C

and so, from (||u3||g)ﬁ < (||u3||g)% and the convexity of the function x — a®, we find,

setting
Z(t) =l + fualle + usl3
that d
CZ(t)—1 < C.
S2(0) + CZ(H)T

Now use the ODE comparison (3.3) to conclude

2(t) < c< tal_l).

Furthermore, by invoking (3.2) we obtain the estimate (3.25). O

The following lemma contain a general statement on extensibility and regularity of solutions
that are known to be bounded in L*((0, Tiax); LP(£2)) for some p > 1, it will be used to prove
global existence and boundedness. We adapt the methods used in the proof of [10, Lemma 3.2]
and [7, Lemma 2.6] to our context for its proof.

Lemma 3.8. Let p > 1 such that u;g € LP(Q). Then, Tiax = 00 and

sup(an Do) < o

Proof. For each T' € (0, Tiax), we have

M(T) = sup (Z oy ) < o0

te(0,T)

To estimate M (T') adequately, we fix an arbitrary ¢ € (0,7). Let ¢, := max{t — 1,0}, by the
variation of constants formula,

Jwi(+, D)L= (0) < K1+ K2 + K,

where we define

t
Ky = |lexp(=Dj(t — to) A)ui(-, to) || o), Ko 22/ [ exp(=D;(t — s)A)Fi(u(s))| L=(o) ds,
to

Ky = s / |l exp(—Di(t — 5)A) div (us(s)V (67g())) | (e ds
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Here, if t < 1, then 5 = 0, we use the comparison principle to see
K1 < |uipl L0, (3.38)

whereas in the case ¢ > 1, we invoke (3.11) and (3.23) to estimate
K1 <Ot —to) i+, to)|| 110y < C1M. (3.39)

Again using parabolic maximum principle and (3.7) we get

t
Ky < [ 1Fi(u(s)llpe@) ds < [|Fill =) (3.40)

to

Now, let p > 2. B € (2,3) and € € (0,5 — ). Then

K3 < OQ/t [(A+1)7 exp(—D;(t — s)A) div(ui(s) V(b y(s))) || oo ds

t
<Co [ (0= I ) V() oy ds 1€ (0, Tow)
to

By Lemma 3.7, ||u;(t)||ze < C” holds for any @ > 1, ¢t > 0 and i = 1,2,3 with C" > 0
depending on a, ||u1,0| e (@), |20l Lo [|Us,0]| o) and M but not on ¢. Thus elliptic regularity
theory applied to (3.6) tells us that also ||[Vy;(t)||1e@) < Cs holds for any o > 1 and t > 0.
In particular, ||u;(s)V(b]y(s))|lrr@) < Cs for any s € (0, Tiax) with C3 > 0 depending on
D, |w 0l ze s [[u0ll ) [|us ol e ) and M but not on ¢. Consequently, using Lemma 3.4, arrive
at

t
Ky < Gy [ (1= 5) O () V(6 (5) s ds
C (3.41)
<O3/ (t—s) P2+ ds .= ¢y for all t € (0,T),

to

where C} is independent of . Collecting (3.38)—(3.41) we conclude that
||UZ(, t)”LOO(Q) < C5 for all t € (O,T)
Herein the constant Cs > 0 is independent of ¢. Thus, we obtain T},,x = 0o in view of (3.14) [

The last lemma entails the main result of this section, namely the existence and uniqueness
of the global classical solution to the system (3.1).

Theorem 3.1. Let u;o € C°(Q) N LP(Q) nonnegative for some p > 2 with i = 1,2,3. Then
(3.1) possesses a unique global classical solution (w,y) for which both u; and y; are nonnegative
and each uy, us, us, Y1, Yo, ys3 belongs to C°(Q x [0,00)) N C*H(Q x (0,00)).
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3.4 Weak Solutions

Our goal in this section is to construct the existence of a weak solution as the limit of global
classical solutions of appropriately regularized problems.

Definition 3.1. A weak solution of (3.1) in the time interval (0,T) is a set of non-negative
functions (w,y) such that for alli=1,2,3

Uiy Y € LQ(OaTa Hl(Q)>7 atui € L2(07T1 (WLOO(Q))*)7

and for all test functions &,¢; € L*(0,T;WH>(Q)), u; and y; satisfy the following identities
forallt1=1,2,3:

T
0 Qr

Q

Qr

Qr Qr Qr

Theorem 3.2. Fiz an arbitrary T > 0. Then for all nonnegative u;o € L*(Q) there ezists a
unique weak solution to the system (3.1) in the sense of Definition 2.8.

We postpone the proof of the Theorem to the end of the section, and prove now the auxiliary
results needed. The first is a stability result for the classical solutions of (3.1) obtained in
Theorem 3.1.

Lemma 3.9. Let p > 2 and ufy, uby € C°(Q) N LP(Q) be two sets of nonnegative initial
data with i = 1,2,3. Then, the respective classical solutions (u®,y®) and (u®,y®) obtained in
Theorem 3.1 are stable in the sense that there exists a constant C' > 0 depending only on the
LP norms of the initial data, on 2, and on the constants appearing in (3.1) such that

3 3
D) =)0y < Y o — ulolliz@ exp(Ct). (3.43)
i=1 i=1

Proof. Let w; := u¢ — u?, for i = 1,2, 3, and similarly for y;. The equations for u; read
O; — DA — x; div(T;Vys) — xi div(ulVs) = Fi(u®) — Fi(u’), (3.44)
if 1 =1,2, and for 7 = 3,
O — D3 ATz — x3 div (WV(y] +5)) — X3 div (W4V (7, + 7)) = F3(u®) — Fy(u’).  (3.45)
Multiplying (3.44) by w; and integrating in €2, we find

1d
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where we define
T1 = Xi / EZVyg . Vﬂl d$, T2 = Xi / vagg) . Vﬂz da:, T3 = / (E(’U,a) — E(’U,b))ﬂl dx.
Q Q Q

First note that since n = 2, we find from Sobolev embedding, elliptic regularity and the estimate
(3.25) that
IVysll=@) < Cllysllwze < Clluglre@) < Cllugollr@)- (3.47)

Thus we can write, using an appropriate Young’s inequality,
Ty < il Vi e / @V de
Q
a — |2 DZ — |2
< Clluiollizre) | @l de+ == | |Va|" de,
Q Q

where C(||ufl|zr()) depends also on the constants appearing in (3.1). For the second term in
the right-hand side of (3.46), we find

D; . B
1< 2 [ (vaae + Olutle [ 107 d
& Q
D[ )
= 7/9Wu"Pdw+C(HUQOHLP(Q))HW,II%,

where we used Lemma 3.8 and elliptic regularity. Finally, from the locally Lipschitz property
of F;, and the L estimate of Lemma 3.8, we find that

3
Ty <L) Wiz
i=1
for some constant L > 0. Putting these estimates together in (3.46) gives for i = 1,2,
q 3
il < C Y IIwl[72m)-
j=1
For the third equation of (3.1), similar calculations yields
d 3
Sl < O 1wl
j=1

Therefore, with ((t) = 2321 | ]|3, we find ¢'(t) < C((t) and so ((t) < ¢(0)exp(Ct), which
is (3.43). O

Now we take a sequence of smoothed initial data uf, € C°(Q)NL*(2) such that uf; — u; in
L*(£2). We consider, for k € N, the classical solution (u*, y*) € C°(Qx[0, 00))NC>! (2 x (0, 00))
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of the system

Oyu — DAy — x div (ufV (y3)) = Fi(u"),

Opul — Dy Aub — x, div(uSV( )) = Fy(u®)

Oy — DsAuf + x3 d1v(u3V(y1 + yz)) = F3(u")
—DiAYF + 0yF = duf, i=1,2,3, (x,t) € Qrp,

(3.48)

which is given by Theorem 3.1. The next Lemma provides the remaining estimates needed to
obtain a weak solution.

Lemma 3.10. Let (u*,y*) be the sequence of classical solutions of the system (3.1) described
above. Fix an arbitrary T > 0. Then there exist constants C, Cy, Cs, Cy, C5 > 0 not depending
on k such that for i =1,2,3 we get

10§ || oo 0.752202)) + 1192 | 2o 0,722 () < Cs (3.49)
1 F(u®)|| 20y < Co (3.50)

Vi 2 + VY 22 cr) < Cs. (3.51)
14~ (0F y*) || r200) < Ci (3.52)

1040 || 2207k (2)) < (3.53)

Proof. Multiplying the first equation in (3.48) by u} and integrating by parts yields

1d

— Ui 120 + Dill VUil ey +xa [ i Vs - Vai de < rluf]|72q)- (3.54)
2dt o

We have
[ WV de < 95 o [ IV do
and, by (3.47), [Vysllze@) < Cllufollie)- Since ufy — w;g in L), [[ufl|pa(o) is bounded

uniformly in k. Therefore, ||Vy| 1= < C and we get

HVy];HLoo /]ulHVu |dw<0/\u1HVulf]da:<—/]Vu dw+C/]u’f]2 dx
Q

for some appropriate constant C'. Thus

1d D,

2dt||u1||L2(Q) + ||VU]1€||L2(Q) OHUIfH%z(Q)- (3.55)
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In view of Gronwalls inequality it follows from (3.54) that

sup [uf]| p2() < Cf. (3.56)
(0,7)
Now, we apply elliptic regularity theory and (3.56) to find
sup 1yt 2) < O, (3.57)
for some constant C} > 0. The treatment of the second species u} is exactly the same, and we
obtain
sup ||ub|| 2 < Cy and sup ||ys |12 < Cs, (3.58)
(0,T) (0,T)

for some constant C4 > 0.

For the third species, the procedure is still the same, except that we need to bound ||V (y¥ +
Y3) || 1o () instead of | Vy5||L(q). But in a similar way, we find that

IV (1 + y5) =) < C,
where C% depends on ||u¥,| 14/, which is uniformly bounded in k. We thus get
3 4,0 ()

sup |[uf] 2 < C4 and sup ||y 2 < Cs. (3.59)
(0,7) (0,7)

for some constant C% > 0. Then (3.49) it follows from (3.56), (3.57), (3.58) and (3.59).

The quadratic growth of F; and the L°(0,T; L*(£2)) estimates on the solutions uf, ensure
the L*(Qr) bound for F;, (3.50).

Now from (3.55) and (3.49) we obtain (3.51).
To obtain (3.52), we observe that

T T
/ W3 o) < sup V0 im0 / bl z2en. (3.60)
0 s 0

By (3.47) and (3.25), we have that sup |[Vy/||=@) < C(|lulollr1) < C uniformly in k.
(0,1)

Therefore, using (3.49), we get

T
| 1V e <
0
which is (3.52).
Finally, we deduce from (3.50), (3.51) and (3.52): for all ¢ € L*(0,T; H*(Q)),

/Q(atuf,qs> < //VU V¢+X1/ / ubv (b y*) - V¢+// ’

< Dl Ve[| 2@ IVl 2iry + IXallluf V (0] %) | 2 @) IV 8l 220
+ |1 B (W) | 2o 18] 200
< G5l 2030 ()
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for some constant Cj independent of k. From this we deduce the bound (3.53). This completes
the proof of Lemma 3.10. O]

We are now ready to prove the well-posedness result of Theorem 3.2.

Proof of Theorem 3.2. For k,l € N, consider the Cauchy differences

3
Za(t) = Y s (8) = wi() 2o
=1

constructed from the smooth solutions in Lemma 3.10. From the stability result in Lemma 3.9,
we see that
Zya(t) < Zka(0) exp(C1),

with C' independent of the indices k,l. Therefore, the sequences (u¥); are Cauchy sequences in
L>=(0,T; L*(£2)). As a consequence, there exist u; € L>(0,T; L*(Q2)) with
uf — w; in L=(0,T; L(S2)).
From the equations for y¥ we easily deduce (for instance with 7 = 1) that
i (t) = (Ol < Cllug — ug]|72 — 0,
and so (yF)y are Cauchy sequences in L>=(0,T; H'(2)). Therefore we have
yr =y, in L0, T; HY(Q)).
From the estimates (3.51) and (3.53)we deduce also that
uf — weakly in L*(0,T; H' (1)),
Ol — Oyu;  weakly in L*(0,T; (H'(Q2))").
As a consequence of the previous estimates we find, in addition, that
ubV (bl y") — w;V(bly) in L'((0,T) x Q),
Fy(uf) = Fi(u;) in L>(0,T; L*(Q)).
The above convergences, along with a time continuity property in L2((0,7) x Q) (which is a

consequence of the Aubin-Lions lemma [88, Theorem 2.1]), ensure that for each £ € C* ([0, T) x
Q) we can pass to the limit on each term of

T
_/ uy o€ dt+/ (D;Vuf - V& — xuf V(b y*) - VE) de dt
0 Qr

- [ w0t = [ Fededs,
Q

Qp
D, | VyF- Vﬁdwdt+9i/ yré dae dt = / ulé da dt
Qr Qr Qp
to obtain a weak solution according to Definition 2.8. The uniqueness follows from the fact
that the stability property in Lemma 3.9 holds, by approximation, for weak solutions as well.
This completes the proof of Theorem 3.2. ]
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3.5 Finite Volume Scheme

In this section, we construct approximate solutions of problem (3.1). For this purpose, we
introduce a notion of admissible finite volume mesh (see e.g. [45]). This notion its was mentioned
in Section 2.3.1, in fact is the same definition.

3.5.1 Admissible mesh

Let 2 C R", n = 2 denote an open bounded polygonal connected domain with boundary 0f2.
An admissible FV mesh of € is given by a family .7, of control volumes (open and convex
polygonal subsets of ), a family & C Q of hyperplanes of R? (edges in two-dimensional case
or sides in three-dimensional) and a family of points P = (xx) ke, that satisfy

0= J K =& oxK= ] o
Ke,

Keg, LEN(K)

Let K,L € Z, with K # L. If K N L = & for some o € £, then 0 = K|L (common edge). We
introduce the set of interior (respectively boundary) edges denoted by i (resp. Eext), that
s & ={c€& : og I} (resp. Et = {0 € E : o C 9N}). The set of neighbours
of K is given by N(K) = {L € 9}, : Jo € £,6 = KN L}. The family P is such that for
all K € 9, zx € K, and, if 0 = K|L, it is assumed that xx # x, and that the segment
Txxy is orthogonal to o = K|L Let dK| , denote the Euclidean distance between x) and xj,
and by dg, the distance from xx to 0. The transmissibility through o € &, is defined by
TK|IL = m(K|L)/dK|L
regularity restrictions on the family of meshes .7},; namely

= m(o)/d, and for 0 € Eu by Tk, = m(0)/dk,. We require local

Iy >0VhVK € 9, VL e N(K): diam(K) + diam(L) < vdk, 1, (3.61)
Iy >0VhVK € I, VL e N(K): m(K|L)dg < ym(K). (3.62)

A discrete function on the mesh .7}, is a set (ux ) kez,- Whenever convenient, we identify it with
the piecewise constant function u, € € such that uy|x = ug. Finally, the discrete gradient
Vyuyp of a constant per control volume function uy, is defined on K N L by

Uy —uUg

7 n,, .

K|L

Vi Lty = (3.63)

3.5.2 Description of the finite volume (FV) scheme

We adapt the finite volume scheme given in Chapter 2 our context, and we recall that the
convergence to the weak solution of FV scheme was proved.

To discretize (3.1) we choose an admissible discretization of Qr consisting of an admissible
mesh 7, of () along with a time step At;, > 0; both At;, and the size maxye 7 diam(K) tend
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to zero as h — 0.We define N, > 0 as the smallest integer such that (N, + 1)At, > T, and
set t, = nAt, for n € {0,..., N}. Whenever At is fixed, we will drop the subscript h in the
notation.

To formulate the resulting scheme, we introduce the terms
Alfer = min{ (W), (i), = B((ui) " (upi) T (ui) ™), i=1,2,3.

The computation starts from the initial cell averages

1
0 — | wolx)de, i=123 3.64
U i m(K) /Ku@(w) €, 1 3 4y ( )
We state the FV scheme for (2.1) as follows: for all K € 9}, and n € {0,1,..., N,}, find

(W kes, i = 1,2,3, such that

=D; Y T Wi =y oK)yt = sm(K)ul, i=1,2,3,  (3.65a)

LeN(K
Un+1
m<K) _D Z Tk|L n+1_u;1]+(1)
LeN(K
i Y K‘LA?}QLbT( Pyt ) = (K, i=1,2,3 (3.65b)
LeN(K)

As usual, homogeneous Neumann boundary conditions are taken into account implicitly. In-
deed, the parts of K that lie in 9 do not contribute to the sums over L € N(K) terms,
which means that the flux is zero is imposed on the external edge of the mesh.

n+l , n+l | n+l n+1 , nt+l
The sets of values (u] K’u2K7u3K)K€ Zmefor,...Nyy and (g KoY K 7y3K ke Thme{0,1,...,Np}

satisfying (3.65) will be called a discrete solution. We associate a discrete solution of the

n+1 __ n+1 n+1 n+1 n+1 __ n+1 _n+l  n+1l
(u1h7u2h7u3h) (y1h7y2hﬁy3h)

of the piecewise constant on €2 functions given by

scheme at t = ¢, with the triplets u and yj

uZJ;Ll K= uf}}l, yz}fl| = yf};l, forall K € 9, alln € {0,1,...,N, — 1} and all i = 1,2, 3.
Furthermore, we define the piecewise constant function

T
’U,h(m,t) = (ul,h<m7t)au2,h(m7t)7u3,h(mﬂt)) = Z uZ+1]]-(tn,tn+1]><K'

KeJy,
ne{0,1,..., Np}

Herein, the expression 1 x denotes the characteristic function of set (t,,t,41] X K, in

tn,tn+1]><
similar way we define the piecewise constant function y,,(x,t).

3.6 Numerical Examples

We present in this section some numerical results obtained by the finite volume scheme (3.65).
To obtain the numerical test, we will reduce the number of the parameters in the model (3.1),
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uy(x,0) us(x, 0) us(x,0)
10 0.9

Figure 3.1: Example 1: initial condition for species uy, us and us.

(3.2). For this reason we non-dimensionalize the system following [2]. We choose

Uy My Avug 1K
1 k_la 2 k1A2M27 3 s ) ™
Making the substitution and simplifying, we obtain
FUU) = Uy (1 — Uy) — ey Uh U — 2911
1 = Uy 1 10102 = o Vs
Fy(U) = rUs (k — Uy) — eaUy 0y — —2%2 1
2 =1ty 1 29102 — L O
U U.
RU) = - gy B2y, au, - fUR

Tt U T byt Uy
On the domain 2 = (—10,10) x (—10, 10) we define a uniform Cartesian grid

with N, x N, control volumes. For the simulations, we choose N, = N, = 128. The corre-
sponding diffusion coefficients are given by

D1:D2:5, D3:1, D1:D2:1, D3:10,
and the sensitivity chemotactic parameters are chosen by
(51 == 20, (52 = 20, (53 = 2, 91 = 92 = 10, 93 =1.

The initial distribution for u;, us and ugz species correspond to a constant u; o = 0.5, ugo = 0.8
and Ug}o =1.
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3.6.1 Example 1 (species the interacting via chemical substance)

uy(x,t), t = 0.03 ug(x,t), t = 0.03 ,t=0.03

07
06
05
04
03
02
04

ui(x,t), t = 0.06 ug(x,t), t = 0.06 ,t=0.06

07
06
05
04
03
02
04
us(x,t), t =0.1
08
07
06
05
04
03
02
04

10

10

8
~

ui(zx,t), t =0.1 ug(x,t), t =0.1

)

10

uy(x,t), t =0.14 ,t=0.14 ,t=0.14
10 0.9
Y 0.8
5 0.7
06
0 05
04
03
=5 02
0.1
-10
—-10 -5 0 5 xz 10 -10 5 xz 10 -10 5 x 10

Figure 3.2: Example 1l:interaction of the three species at different times ¢ = 0.03, 0.06, 0.1 and
0.14.
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For this numerical test, the chemotactic coefficients are y; = 5, x2 = 5 and x3 = 10. For the
initial condition we consider the uniform spatial distribution for the preys and predator (see
Figure 3.1).

In Figure 3.2, we display the numerical solution for each species at different simulated times.
Initially, at simulated time ¢ = 0.03 we can see that the predator begins to chase its preys and
its preys feeling the presence of the predator. This characteristic is preserved, the predator
continue movement towards regions occupied by the preys.



Conclusions and future works

Conclusions

Here we present a summary with the main contributions and conclusions of the thesis.

In Chapter 1, we propose a numerical scheme for a multiclass Lighthill-Whitham-Richards
model with a velocity function that is discontinuous in the solution variable. The treatment
is motivated and in part based on the numerical scheme proposed by Towers [90]. Recall
that this model interests us because it present a phase transitions between free and congested
traffic flow regimes. However, in contrast to that approach have assume that the discontinuity
is present in the velocity function (not in the flux); this observation makes it possible to
construct an alternative scheme based on Scheme 4 of [23]. Furthermore, we have seen that
our scheme easily can be extended to the multiclass case. We prove for the scalar case that
the numerical approximations convergence to a weak solution and for the multiclass case that
the scheme preserves an invariant region. Examples 1 to 3 indicate that the scheme converges
to the same weak solution as that of [90], and all numerical examples indicate that our scheme
converges in both the scalar and multiclass cases. The present analysis and numerical method
can be extended in several directions. Concerning the model itself, at the moment a certain
shortcoming is the limitation to the initial-boundary value problem on a fixed road segment.
This is due to the particular boundary condition (1.5). It seems desirable to obtain a formulation
for a closed road with periodic boundary conditions (a configuration that is commonly studied in
traffic modeling to analyze, say, the formation of stop-and-go waves; cf., e.g., [20,26]). However,
it is not obvious whether the way the boundary condition is posed allows “gluing together”
the ends of the computational domain to create a “seamless” closed circuit. Open issues also
include the incorporation of discontinuities in spatial position (akin to the treatment in [24]),
and the discussion of the notion of entropicity. In fact, the issue of convergence to an entropy
solution is an open problem even in the scalar case for both the scheme advanced in [90] as
well as the present approach. Likewise, we recall that for general N the MCLWR model with
a Lipschitz continuous function V' admits a separable entropy function (see [12,13]) that can
be utilized, for instance, to construct entropy stable schemes [28].

In Chapter 2 we proved the existence of a weak solution of a reaction-diffusion system
that describes three interacting species with in the Hastings-Powell (HP) food chain structure
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with chemotaxis produced by three chemicals. For this purpose, we have used a finite volume
(FV) discretization of equations (2.1)—(2.4), then a priori L?-estimates on the discrete solutions
have been established. We have proved, in an appropriate sense, compactness for the discrete
solutions and that the limit of discrete solutions constitutes a weak solution. All numerical
experiments show that the behavior of species is guided by high concentrations of the chemicals
produced by themselves. In particular in Figure 2.7 we can see that each species aggregates in
a kind of groups structure which forming zones of different densities. This structure varies with
time (which not show here), moreover in Figure 2.8 we can observe that the discrete solution
our FV scheme and the solution u; of ODE problem have the same behavior even when the
total variation of each species have a oscillatory behavior and remains bounded along the time,
which lends further support to the conjecture that this model (at least with the parameters
chosen) exhibits spatial-temporal oscillatory behavior.

In Chapter 3 we extend the theoretical background to the model of Chapter 2 in the sense
that in this chapter we discuss the existence of a solution from analytical point of view. To this
end, we consider a mathematical model for the spatio-temporal evolution of three biological
species in a food chain model consisting of two competitive preys and one predator with intra-
specific competition. The global boundedness classical solution is proved and after defining
appropriate approximate problems we prove the existence of the weak solution.

Future work

The methods developed and the results obtained in this thesis have motivated several ongoing
andfuture projects. Some of them are described below:

1. We are interested in exploring whether the notion of entropicity is meaningful for the
MCLWR model with a discontinuous velocity function V. That is, to study the conver-
gence to an entropy weak solution

2. It is clear that the numerical method presented in the Chapter 1 is formally first-order
accurate and can possibly improved by known techniques (e.g., weighted essentially non-
oscillatory (WENO) reconstructions in combination with higher-order time integrators).

3. To use the numerical method presented in the Chapter 1 to predict the vehicle trajecto-
ries. That is, given the traffic density field as ¢(x,t), we can generate a vehicle trajectory
starting from any point, by solving

do(t)
"0y (gt 2(0)).

where V' is the velocity function which is given by

V(o) = {1—¢/¢max for 0< ¢ < ¢,
—U)f(l - ¢max/¢) for ¢* < ¢ g ¢max'
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Figure 3.3: Vehicle trajectories at simulation time ¢ = 0.4 with N = 4.

As a first idea of the vehicle trajectories, in Fig 3.3 we display the vehicle trajectories
starting from zy = —0.9 + 0.2(¢ — 1) with ¢ = 1,2, 3,4,5. This numerical simulation is
based in [27, Example 6] (multiclass case (N = 5), smooth initial condition), we realize
the numerical simulation for N = 4 with the following parameters ¢* = 0.5, wy = 0.2,
Omax = 1 the other parameters are the same that in the mentioned example.

. To extend the results and techniques of Chapter 1 to study a multiclass Lighthill-
Whitham-Richards (MCLWR) model with discontinuous velocity function, which the
velocity function for each classes are not the same. That is, the model is given by the
following system of conservation laws in one space dimension, where the sought unknowns
are the densities ¢; = ¢;(x,t) of vehicles of class i, = 1,..., NV, as a function of distance x
and time t:

Qi + O (div3(9)) =0, i=1,...,N. (3.66)
Where we denote by ¢ = ¢y + -+ + ¢n the total density of vehicles and the velocity
function v; is assumed to depend on ¢, where we assume that

‘/;max 0 < (b g ¢>k

(6) = i =1,...,N, 3.67
u(9) o (1= 22) 6" <O < P 397
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Figure 3.4: (left) discontinuous flux, (Right) discontinuous velocities.
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Figure 3.5: Numerical simulation of (3.66) with velocity function v; given by (3.67) at different

time. (a) initial condition ¢ = 0. (b)

t
Pmax = 60, w = (30,40,50)", V™ = (90, 95,100)".

5. To finish the numerical example of Chapter 3.

= 0.001. (c¢) t =0.004. (d) t = 0.007. With ¢* = 20,
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6. we are interested in studying some kind of pattern formation mechanism for the models
presented in Chapter 2 y 3, but the main difficulty is that we have a three parabolic
equations and three elliptic the equations this leads to consider in the first instance a
characteristic polynomial of degree three which makes that the calculus is very compli-
cated.
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