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RESUMEN

La presente tesis contiene contribuciones asociadas a tres contextos distintos. La primera pro-

pone un esquema de diferencias finitas que resuelve una ecuación nolineal de Schrödinger de

alto orden en una dimensión, esquema que además está dotado con propiedades de conser-

vación, y de estabilización de la norma L2 en caso que el problema presente ciertos elementos

disipativos. El segundo aborda un problema nolineal de Schrödinger en dos dimensiones, us-

ando un esquema de volúmenes finitos que aproxima la solución cuando el dominio presenta

disipación localizada. Los resultados numéricos replican un resultado de estabilización ex-

ponencial demostrado por Cavalcanti, Corrêa, Özsari, Sepúlveda y Véjar-Asem. El tercero

resuelve numéricamente un problema de puente colgante usando un esquema de diferencias

finitas, que también logra replicar un resultado de estabilización previamente demostrado en

[DCMCC+].
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ABSTRACT

The present thesis contains contributions associated to three different contexts. The first one

proposes a finite difference scheme that solves a High Order Nonlinear Schrödinger equation

(HNLS) in one dimension, scheme that also has conservation and stabilization properties, if

a certain damping function is present. The second one deals with a Nonlinear Schrödinger

equation (NLS) in two dimensions, where a finite volume scheme was used to approximate the

solution when a localized damping function is present. The scheme replicates a stabilization

result proved by Cavalcanti, Corrêa, Özsari, Sepúlveda y Véjar-Asem. In the third contri-

bution, a hanging bridge problem is solved numerically using a finite difference scheme. The

scheme also manages to replicate a stabilization result proved in [DCMCC+].

vii



Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The Hanging Bridge Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Finite Difference Scheme for a conservative HNLS Equation. . . . . . . . 16

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Well posedness of weak and strong solutions . . . . . . . . . . . . . . . . . . . . 18

1.3 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Fundaments of the Numerical Scheme. . . . . . . . . . . . . . . . . . . . 19

1.4 Properties of the scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 Behavior of the numerical L2-norm . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.3 Behavior of the Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.5.1 Computing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.5.2 Single travelling soliton. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5.3 Collision of 2 Solitons for a HNLS equation. . . . . . . . . . . . . . . . . 41

1.5.4 3 Soliton solution for a modified KdV problem. . . . . . . . . . . . . . . 41

1.5.5 HNLS equation with a imaginary parameter. . . . . . . . . . . . . . . . 42

2 Finite Difference scheme for a HNLS Equation with localized dissipation 45

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.1 Description of the Problem. . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.1 Convergence of the Numerical Solution . . . . . . . . . . . . . . . . . . . 49

2.2.2 Exponential Decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



2.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.1 Initial condition from Potasek and Tabor. . . . . . . . . . . . . . . . . . 61

2.3.2 Initial condition from Kumar. . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.3 Effects of a strong damping. . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Finite Volume scheme for a 2D NLS Equation with localized dissipation. 64

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Numerical Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Presentation of the Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Properties and convergence analysis. . . . . . . . . . . . . . . . . . . . . 67

3.2.3 Example I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.4 Example II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.5 Example III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.6 Example IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Finite Diffference scheme for a bridge with localized nonlinear damping. 77

4.1 Well-posedness and stabilization. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Description of the numerical scheme. . . . . . . . . . . . . . . . . . . . . 79

4.2.2 Treatment of the boundary . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.3 Integration over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.4 Numerical experiments for a static problem. . . . . . . . . . . . . . . . . 84

4.2.5 Numerical experiments for a conservative problem. . . . . . . . . . . . . 86

4.2.6 Numerical experiments with active damping. . . . . . . . . . . . . . . . 86

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ix



List of Figures

1 The Clifton Suspension Bridge in Bristol, UK. . . . . . . . . . . . . . . . . . . . 11

1.1 First case results. Left: time evolution of the absolute value of the solution.
Right: numerical error of the solution. . . . . . . . . . . . . . . . . . . . . . . . 40

1.2 Time evolution of the preserved quantities for the first case. Left: L2 norm.
Right: energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.3 Left: numerical error in function of time. Right: time evolution of the 3-
soliton solution for the KdV equation. . . . . . . . . . . . . . . . . . . . . . . . 42

1.4 Preserved quantities for the 2 soliton experiment (second case). Left: L2 level
energy. Right: H1 level energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.5 Left: the 2 soliton solution over time. Right: numerical error. . . . . . . . . . . 43

1.6 Numerical solution when Im(a5) 6= 0. . . . . . . . . . . . . . . . . . . . . . . . 44

1.7 Left: L2 level energy. Right: H1 level energy. . . . . . . . . . . . . . . . . . . . 44

2.1 First case results. Left: time evolution of the absolute value of the solution.
Right: evolution of the energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2 Second case results. Left: time evolution of the absolute value of the solution.
Right: evolution of the energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3 First case results. Left: time evolution of the L2 energy. Right: time evolu-
tion of the H1 energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4 Time evolution of the travelling soliton for the first case. . . . . . . . . . . . . . 63

3.1 Numerical solution at different timesteps. Cells with black dots indicate the
zone where the damping function is in place. . . . . . . . . . . . . . . . . . . . 74

3.2 Energy decays for both examples. Left: decay for Example I. Right: decay for
Example II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Results for the experiment with an exterior domain. Left: the initial condi-
tion. Right: semi-log plot for the time-evolution of the mass function. . . . . . 76

3.4 Left: the initial condition. Black dots denote the cells where the damping
function is acting effectively. Right: time evolution of the mass functional,
at semi-log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



4.1 Left: numerical solution obtained for problem (4.15). Right: difference be-
tween the exact and the numerical solution at each node. . . . . . . . . . . . . 85

4.2 Left: numerical solution obtained for problem (4.15). Right: difference be-
tween the exact and the numerical solution at each node. . . . . . . . . . . . . 85

4.3 Left: numerical solution obtained for problem (4.15). Right: difference be-
tween the exact and the numerical solution at each node. . . . . . . . . . . . . 85

4.4 Time behavior of the numerical energy when using a(x, y) ≡ 0, ∀x ∈ Ω. . . . . . 86

4.5 Energy evolution for all three forms of g(s). . . . . . . . . . . . . . . . . . . . . 87

4.6 Numerical solution when using g(s) = s at four different instants. . . . . . . . . 88

xi



1



Introduction

In this chapter, we will introduce the problems to be studied through the dissertation.

The Schrödinger Equation

The first deduction of the Schrödinger Equation

Erwin Schrödinger, in his series of papers Quantisation as a Problem of Proper Values, pro-
posed the now celebrated Schrödinger Equation. Originally, the equation models a Hydrogen-
like1 Atom without external forces, magnetic fields, and relativistic effects. It can be con-
structed using the traditional approach of building the Hamilton function of the system; but
rather than considering a scalar function as in Classical Mechanics, Schrödinger considered it
as an operator acting over a given space of functions. When obtaining its eigenvalues, we can
predict the correct energy values for an unperturbed Hydrogen atom, previously discovered
using atomic spectroscopy. Another interesting feature is that the equation sees the system as
a wave, different from what the Classical Mechanics deals with where the atom is viewed as a
system of particles.

The equation comes from considering the Hamiltonian of the hydrogen atom

Ĥ(x) = K̂(x) + V̂ (x) (1)

where K̂ is its kinetic energy operator, and V̂ is its potential energy operator. The Hamiltonian
operator is such that its eigenvalues corresponds to the energy of the described system:

Ĥψ = Eψ

where ψ is assumed to be the state function that describes the system, in the sense that
quantities like the energy, the velocity, or the position of an electron can be computed from
ψ. From the quantum mechanics, the kinetic energy operator is defined by

K̂ =
p̂2
x + p̂2

y + p̂2
z

2µ

where p̂x := ~
i
∂
∂x , ~ is the Planck constant2 and µ is the reduced mass3 of the system. p̂y and

p̂z are defined in a similar fashion. Hence,

K̂ = − ~2

2m
∇2.

1A Hydrogen-like system is composed by two particles: the proton at the center, and the electron orbiting
outside.

2In the International System of Units (SI), ~ = 1.054571800× 10−34 J · s
3For two masses m1 and m2, µ = m1m2

m1+m2
. It allows a two-body problem to be considered as one whose

mass is given by µ.

2



On the other hand, for the case of the Hydrogen atom composed by one proton and one
electron, its potential energy will come from the Coulomb potential

V̂ = − e2

4πε0r

where e is the electric charge of the electron4, ε0 is the permittivity of vacuum5, and r =√
x2 + y2 + z2. Hence, the Hamiltonian will be given by

Ĥ = − ~2

2m
∇2 − e2

4πε0r

and due to its properties for a state function ψ = ψ(x), we have

Ĥψ = − ~2

2m
∇2ψ − e2

4πε0r
ψ = Eψ.

We’ve deduced, then, the so called time independent Schrödinger equation for a Hydrogen
atom:

~2

2m
∇2ψ +

( e2

4πε0r
+ E

)
ψ = 0. (2)

Another similar expression was postulated by Schrödinger in order to get a representation of
mechanics using a wave equation. Modelling an atomic-level system through waves comes from
the failure of Classical Mechanics to describe quantum-scale phenomena such as the Zeeman
effect. The time dependent Schrödinger equation is given by6

~2

2m
∇2ψ − 1

E2

( e2

4πε0r
+ E

)∂2ψ

∂t2
= 0.

where the function ψ depend on time exclusively through a periodic factor given by

ψ ∼ Re
(
ei
E
~ t
)

(3)

However, Erwin Schrödinger stated that the main drawback of this equation is that it remains
valid only for previously known values of E. It also fails when dealing with non-conservative
problems; this is, for V̂ = V̂ (x, t). For this reason, Schrödinger attempted to modify the
equation through getting rid of the energy term E. From (3), we have

∂2ψ

∂t2
= −E

2

~2
ψ

Applying two times (1) to some state function ψ = ψ(x, t) and for some potential V̂ = V̂ (x, t),
and after using the recently obtained result, we get(

− ~2

2m
∇2 + V̂

)2
ψ + ~2∂

2ψ

∂t2
= 0.

4In SI units, e = 1.602176634× 10−19 C
5In SI units, ε0 = 8.8541878128× 10−12F ·m−1

6A complete and reasonable deduction of this expression can be found in Sakurai [SC95]
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Thus, the problem of the energy was solved at the price to deal with a fourth-order PDE
which is difficult to solve if V̂ depends on time. To overcome this difficulty, and from (3),
Schrödinger added its imaginary part to obtain

∂ψ

∂t
= i

E

~
ψ,

replacing this in (2) and re-ordening

i
∂ψ

∂t
=

~2

2
∇2ψ − V̂ ψ. (4)

This is the first of many forms of the Schrödinger Equation. In addition to hydrogen-like
systems, variations of equation (4) were used to describe waves propagating in plasmas, or
solitons propagating in optical fibers. For this dissertation, we will put our focus on the
second case.

The Nonlinear Schrödinger Equation

Many years after the publication of Erwin Schrödinger’s papers, similar equations came to
light in different areas of physics. One of the most remakful and still in use up to this day,
is the propagation of an electromagnetic wave while produces its own dielectric guide. One
of the first proposals comes from Chiao, Garmire and Townes [CGT64], where they proposed
the NonLinear Schrödinger (NLS) Equation to describe the propagation of an electromag-
netic beam travelling inside a dielectric such that its diameter has a size comparable to is
wavelength. The dielectric responds with nonlinearly over the beam, where self-focusing and
self-phase modulation effects appear.

Regarding the self-focusing effect, it manifests after a certain distance travelled by the light
beam, and is such that it will tend to focus over the regions with higher intensities; as such, the
intensity at the center of the beam will increase. This is because the light beam changes the
refraction index of the dielectric as it travels through it. This effect is called the Kerr effect,
where the change in the refraction index ∆n can be computed using the following equation

∆n = λK|E|2

where λ is the wavelength of the beam, K is the Kerr constant which depends on the material,
and E is the electric field carrying the light beam. In Kelley’s work [Kel65], a deduction of
the distance needed for the pulse to experiment self-focusing is obtained, and then the NLS
equation is solved using a Finite Difference scheme proposed by Harmuth [Har57] in 1957 using
cyllindrical coordinates.

A reasonable form of the NLS equation reads as follows from the work of Zakharov and Shabat
[ZS72]

2ik
∂E

∂z
+
∂E

∂x2
+ k2λK

n0
|E|2E = 0 (5)

4



where k = ω
c

√
ε0, ω is the frequency of the beam, c is the speed of light, and n0 is the

initial refraction index of the dielectric. Variable z is considered to have the role of the time
coordinate. This equation, however, can be rewritten as

i
∂E

∂t
+
∂2E

∂x2
+ κ|E|2E = 0 (6)

for some κ constant containing the frequency of the soliton and the Kerr effect. In the lit-
erature, it is common to find equations similar to (6) with the time and space coordinates
exchanged. In Agrawal [Agr00], and starting from Maxwell equations, a clear deduction of the
NLS equation can be found for a light pulse travelling in an optical fiber. It reads as

i
∂A

∂z
− β2

2

∂2A

∂t2
+ γ|A|2A = 0 (7)

where A is the envelope of the electromagnetic pulse; β2 is a parameter that accounts a phase
shift of the beam, which could in turn lead to dissipative effects; and γ accounts for the Kerr
effect. The z coordinate is the distance travelled by the light pulse through the fiber. On the
other hand; while (7) has a strong physical meaning, the form (6) is suitable for the study of
well-possedness and numerical integration. Through this dissertation in particular, will stick
to a more general form of (6) for u = u(x, t) and a1, a2 some real constants:

i
∂u

∂t
+ a1

∂2u

∂x2
+ a2|u|2u = 0 (8)

This model was proved to be a successful model for the transmission of light pulses through
dielectric guides [MSG80], which with time turned into the study of information transmission
in optical fibers. We must emphasize that equation (7) no longer models the physical situation
of the original Schrödinger Equation (4). However, this equation rettained its name due to its
ressemblance to the original expression.

Equation (8) presents an infinite number of conservation laws [ZS72], from where two of them
will be recurrently used through this dissertation: the mass or the L2− norm

H1 =

∫
Ω
|u(x, t)|2dΩ (9)

and the energy

H2 := a1

∫
Ω

∣∣∣∂u
∂x

∣∣∣2dΩ− a2

2

∫
Ω
|u|4dΩ. (10)

This is a key feature that is recurrently used when working with numerical simulations; as
they are an indicator of the quality of the approximation obtained by the scheme. This is an
element that will also be considered in this thesis.

In Chen and Liu [CL76], equation (6) is solved for κ = 2 and assuming E(x, t) = A(x, t)eiϕ(x,t)

for real functions A and ϕ given by

A(x, t) = 2η sech
(
2η(x− 4ξt− x0)

)
, ϕ(x, t) = 2ξx− 4(ξ2 − η2)t+ ϕ0

5



which is a travelling soliton. Parameter η represents the amplitude and pulse width, ξ repre-
sents the speed, and ϕ0 is its initial phase [Has89]. Another way yo obtain solutions is through
an inverse scattering problem, first implemented by Zakharov and Shabat [ZS72]. They also
proved that the solution can be written as a combination of N solitons. Glassey proved [Gla77]
that, under certain conditions, the solution may suffer blow-up in finite time; this is, there
exist T0 ∈ R+ : limt→T0 ||u(t)||L2(Ω) = +∞.

Dark solitons can also rise a solutions for (7) for β2 > 0. They were first observed by Emplit
et al. [EHR+87], and Krökel et al. [KHGG88] as gaps forming from a single dip travelling
though a fiber. The initial gap is formed after manipulating the modulator while it is emitting
a longer signal. In Krökel et al., they compared their results with numerical experiments using
a splitting scheme, obtaining a reasonable agreement. Those dark solitons have the following
form when β2 = 1 and γ = 1:

A(z, t) = η
(
B tanh(ζ)− i

√
1−B2

)
eiη

2z

for ζ = ηB
(
t− t0 − ηB

√
1−B2

)
. The parameter η denotes the background amplitude of the

soliton, while t0 indicates the position of the gap; B controls the depth of the gap.

Equation (8) can be extended to 2D, where it can be written as follows

i
∂u

∂t
+ a1∆u+ a2|u|2u = 0. (11)

It can model the amplitude of progressive waves in superposed fluids under the presence of
magnetic fields (see, for instance, [KM82]). As in the one-dimensional case, those waves
can also behave as travelling solitons [KCS03]. This form also has applications in small-
amplitude gravity waves on the surface of deep inviscid water, Langmuir waves in hot plasmas,
slowly varying packets of quasi-monochromatic waves in weakly nonlinear dispersive media,
Bose-Einstein condensates, Davydov’s alpha-helix solitons, and plane-diffracted wave beams
in the focusing regions of the ionosphere (see for instance [SS99], [Mal05], [PS03], [Bal85], and
[Gur78]).

The High-order Nonlinear Schrödinger Equation

Hasegawa and Kodama, in [HK81], hinted out that equation (8) is no longer valid when the
pulse has a wide smaller than a picosecond. In that same publication (and also [Kod85],
[KH87]), another NLS equation was deduced which takes into account high order dispersion,
soliton splitting, self-steeping, and retarded Raman effect for ultra-short light pulses; this
is, pulses shorter than 100 [fs]. The now called High-order NonLinear Schrödinger (HNLS)
equation obtained in Hasegawa and Kodama is the following

i
∂q

∂z
+

1

2

∂2q

∂t2
+ |q|2q + iε

(
β1
∂3q

∂t3
+ β2

∂

∂t
(|q|2q) + β3q

∂

∂t
|q|2
)

= 0 (12)

A more general version can be written for u = u(x, t)

i
∂u

∂t
+ a1

∂2u

∂x2
+ a2|u|2u+ i

(
a3
∂3u

∂x3
+ a4

∂

∂x
(|u|2u) + a5u

∂

∂x
|u|2
)

= 0 (13)
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for some real or complex constants a1, . . . , a5. One of the most remarkable properties of this
equation is to be able to model the propagation of solitons trough optical fibers without being
modified in its shape or intensity, which opens a new way to send information at high speeds
and with minimal losses [Pot89]. Most of the literature consider the HNLS equation as a one
dimensional evolution problem, due to the symmetries of the fibers.

In (13), the third order dispersion term a3 is associated with the group dispersion velocity
of the soliton, and can take an approximate value of −0.002 if the wavelength of the pulse is
near 1.3 [µm] [HK81]. If certain conditions are met, this term can decompose the bound-state
of the soliton, leading to its splitting into individual solitons [KH87]. The imaginary part of
the a5 term can produce a frequency shift in the soliton, proportional to the distance trav-
elled [KH87] inside the fiber. This, in turn, will lead to a change in the propagation velocity,
which is what describes the Raman effect observed by Mitschke and Mollenauer [MM86] for
120 [fs] pulses. In Chapter 1, Example 1.5.5, we managed to numerically replicate this effect.
Meanwhile, in Anderson and Lisak [AL83] is stated that the a4 term can produce self-steeping
effects, which could end in the formation of shocks in the trailing part.

Travelling solitons can be obtained as solutions only for some values of a3, a4 and a5. Anderson
and Lisak [AL83] managed to obtain sech-shaped soliton solutions for (13) for a1 = a3 = a5 =
0. For a4 + a5 = 0 and 3a2a3 = a1a4, Hirota [Hir73a] proposed an N soliton solution for (13).
Sasa and Satsuma [SS91] also obtained explicit solutions when a3 : a4 : a4 + a5 = 1 : 6 : 3
through the Inverse Scattering Transform (IST) method. Potasek and Tabor [PT91a] found
bright and dark soliton solutions for a2 = 1, a4 = ρ and a5 = δ−2ρ, for ρ and δ real parameters
depending on the carrier frequency and the geometry of the fiber. Kumar and Chand [KC13]
proposed a solitary wave solution as ansatz, using 2a5 + 3a4 = 0 as a constraint.

If in (13) we consider u as a real function instead of complex, and make a1 = a2 = a5 = 0,
a3 = 1, and a4 = 6; we obtain a modified Korteweg de-Vried (KdV) equation:

ut + uxxx + 6u2ux = 0

this expression models surface waves on conducting nonviscous incompressible liquid under the
presence of a transverse electric field [PFE74]. The KdV equation has also great importance
in the study of surface water waves [KDV95]. In this sense, the study of the HNLS equation
(13) gets an increased value of solving many problems at once.

In case the fiber presents some losses, equation (13) is modified to

i
∂u

∂t
+ a1

∂2u

∂x2
+ a2|u|2u+ i

(
a3
∂3u

∂x3
+ a4

∂

∂x
(|u|2u) + a5u

∂

∂x
|u|2 + a(x)u

)
= 0 (14)

where, generally speaking, the function a(x) describes the loss of energy from the soliton, and
could be acting over the whole fiber or some part of it. This is what the literature calls the
damping function. Considering Ω ⊆ R as the space domain and for some real parameter a0:
if a(x) ≥ a0 > 0, ∀x ∈ Ω, then we say that the problem has full damping; otherwise, we say
that the damping is localized. For an ideal fiber with small loss, a0 ≈ 0.03 [HK81]. Anderson
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and Lisak [AL83] obtained solutions for a full damping case with a1 = a3 = a5 = 0; where the
probability of creation of a shock due to self-steeping is still present, but delayed thanks to
the damping term. The damping function can be considered as a defocusing damping when,
for a = a(x, t), a→ 0 when |x| → ∞ and t→∞.

Cavalcanti et al. [CCSN10] proved existence and uniqueness of solutions for a damped cubic
NLS equation:

i
∂u

∂t
+
∂2u

∂x2
+ a2|u|2u+ ia(x)u = 0, R× (0,∞)

u(x, 0) = u0(x), x ∈ R.

for a(x) a function with the coercivity properties described previously. They also proved the
exponential decay rate of the L2−norm. An improvement was obtained in 2017, now for a
damping function a = a(x, t) such that a→ 0 when |x| → ∞ and t→∞ [CCCT17].

No explicit solution for (14) with all his coefficients has been obtained up to this day.

Numerical Methods

Since the first appearance of computers, many attempts to solve equations like (4), (5) or
(12) have been made, where the Finite Difference Method appears to be the most popular
and the most successfull. One of the first efforts comes from Harmuth [Har57], where he
proposed a finite difference scheme to solve equation (4). Assuming V = V (x) in (4), and for
a one-dimensional problem, the scheme proposed for some given ∆x and ∆t reads as follows

− i~ 1

2∆t

(
ψj,n+1 − ψj,n−1

)
=

~2

2∆x2

(
ψj+1,n − 2ψj,n + ψj−1,n

))
− Vjψj,n, (15)

where ψj,n = ψ(j∆x, n∆t). The scheme is stable if the following conditiond holds:(
2
~∆t

∆x2

(
1 +

∆x2

2~2
V
))2
≤ 1

This scheme was used and adapted by Kelley [Kel65] to solve (7) in order to compute the
increase in intensity of the a light beam with travelled axial distance due to self-focusing
effects. However, the scheme cannot achieve the preservation of the L2− norm when V ≡ 0;
nor the energy of the numerical solution. This issue was solved by a Crank-Nicolson scheme
proposed in Delfour, Fortin and Payre [DFP81], which solves (8) while preserving the L2−
norm and the energy. The numerical solution is computed by the following expression

i
un+1
j − unj

∆t
+ a1

u
n+ 1

2
j−1 − 2u

n+ 1
2

j + u
n+ 1

2
j+1

∆x2
+ a2

|un+1
j |2 + |unj |2

2
|un+ 1

2
j |2 = 0 (16)

where un+ 1
2 = 1

2(un+1 + un). Because the scheme is nonlinear, a fixed-point problem must
be solved in each iteration. Nevertheless, its conservation properties makes it one of the most
succesfull schemes proposed. Akrivis [Akr93] proved existence and uniqueness of numerical
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solutions for scheme (16). He also proved the local error estimate to be of order 2 in time and
space variables for ∆t small enough.

Conservation properties are a key feature when proposing a numerical scheme for NLS equa-
tions. Sanz-Serna and Verwer [SSV86] tested five numerical schemes for equation (7) un-
der three initial conditions: a soliton, a solliton collision, and bounded-state solitons. A
Crank-Nicolson scheme preserving the discrete L2− norm, proposed in Verwer and Sanz-Serna
[VSS84], was the one that performed better in comparison to an explicit scheme, a pseudo-
linear conservative scheme, and two splitting schemes. In particular: the explicit scheme
exhibits blow-up solutions for a single-soliton case, while the splitting schemes fail to replicate
the collision of solitons due to the dominance of numerical dissipation over the self-focusing
effect. Similar successfull results are obtained a relaxation scheme proposed by Besse [Bes04],
which also preserves the numerical L2− norm and the energy.

In Gao, Li, Liu and Wei [GZD13], a Finite Volume scheme was proposed to solve (7). The
remaining derivatives were approximated using a Compact Finite Difference method [Lel92],
which can handle arbitrary error estimates for the numerical solutions. No conservation prop-
erties were proved for the scheme; nevertheless, they managed to control numerical diffusion
in their examples. Galerkin methods were also proposed to solve (7): the scheme proposed
in Xu and Shu [XS05] can control the error and the numerical dissipation of the L2 norm,
but it cannot preserve it; while in Lu, Huang and Liu [LHL15] its proposal can preserve the
discrete L2− norm, but not the energy. Both schemes can be extended to the two dimen-
sional case. Another attempts to solve (7) considered the Finite Element Method approach
([Zou01]), Spectral methods ([FFJS82]), Splitting methods ([Gra07], [BJM02]), multigrid and
adaptive algorithms [CW90], among others.

Regarding numerical approximations of the HNLS equation (13), the literature is much less
abundant than the NLS case. Smadi and Bahloul ([SB11], [SB15]) attempted to solve the
problem with an extra fourth-order dispersion term using Compact Finite Differences scheme
with split step. No conservation property or convergence of the numerical solution is proved.
Furthermore: we will show in Chapter 1 that the scheme has some difficulties when dealing
with some situations different from the travelling soliton.

From this lack of work in the field, it is clear that the formulation of a numerical scheme which
solves (13) is a challenge in itself. The challenge is further increased if we want a scheme that
achieves the numerical L2− norm and energy preservation. From our knowledge, there is no
numerical scheme that replicates, for the HNLS equation, the success achieved by Delfour,
Fortin and Payre in their numerical proposal for the NLS equation. In addition, there are
no detailed results for what happens when a damping function is present. Chapter 1 of this
dissertation tries to fill one of these voids, where we will propose a Finite Difference scheme
for equation (13) which not only preserves the discrete L2− norm, but also can control the
Energy. These results were published in the following article:

• M. M. Cavalcanti, W. J. Corrêa, M. Sepúlveda, R. Véjar Asem: Finite Differ-
ence Scheme for a High Order Nonlinear Schrödinger Equation. To appear in Calcolo,
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2019.

Next, in Chapter 2, we will modify the scheme to replicate another novel result: exponential
decay for the L2 norm when a localized damping is present. This decay not only is proved,
but it is also obtained from numerical experiments. Some of those results were published in
the following article

• M. M. Cavalcanti, W. J. Corrêa, M. Sepúlveda, R. Véjar Asem: Finite Differ-
ence Scheme for a High Order Nonlinear Schrödinger Equation with Localized Damping.
Studia Universitatis Babes-Bolyai, Mathematica, Vol. 64 (2019), No. 2.

Chapter 3 replicates an extension of these stabilization results to 2D through a Finite Volume
scheme for equation (11) using a polygonal mesh. These results were published in the following
pre-print:

• M. M. Cavalcanti, W. J. Corrêa, T. Özsari, M. Sepúlveda, R. Véjar Asem:
Exponential Stability for the Nonlinear Schrödinger Equation with Locally Distributed
Damping. Preprint, Departamento de Ingenieŕıa Matemática, Universidad de Concep-
ción, 2019.
ftp://ftp.ci2ma.udec.cl/pub/ci2ma/pre-publicaciones/2019/pp19-14.pdf

The Hanging Bridge Problem

Chapter 4 presents some new stabilization results regarding a hanging bridge problem, which
will be presented in the following pages.

The Governing Equation

The last chapter of this thesis deals with a different topic: the modelling of a hanging bridge,
which is given by a plate subject to a reasonable set of boundary conditions. The study of
hanging bridges gain a significant impulse after the failure of the Tacoma Narrows Bridge in
1940. One of the reasons this problem is challenging is because the bridge can oscillate greatly
with winds of moderate strength, while it can show no oscillation at all after strong winds
[LM90]. The study of the collapse of the Tacoma Narrows Bridge shows also the formation
of torsional oscillations after a long period of vertical oscillation, and shortly before its final
collapse. McKenna and Walter [MW90] proved the existance of travelling wave solutions for
this situation, motivated from a report written after the storms that affected the Golden Gate
bridge in 1938 and 1941, entitled Observations of motions of Golden Gate wind storms of
February 9, 1938 and February 11, 1941. Thus, any attempt to model this kind of situation
must consider the possibility of transversal and torsional oscillations, as well as generation of
oscillations using weak external forces. Many big bridges also use dampers to prevent further
oscillations for the tresspassing vehicules.
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Fig. 1: The Clifton Suspension Bridge in Bristol, UK.
https://en.wikipedia.org/wiki/Clifton_Suspension_Bridge

This problem can be approximated by long rectangular plate anchored at both ends, while the
sides remain free to move but under the action of dampers in order to improve stability. To
this end, vertical hangers are attached to the sides of the bridge, which in turn are connected
via a horizontal cable anchored at both ends of the bridge. One of the numerous examples
can be seen in the case of the Clifton Bridge shown in Figure 1.

We will consider a static rectangular plate at its initial state, whose domain can be given as
Ω := [x0, xf ]×[y0, yf ] for some real parameters x0, xf , y0, yf . It is assumed that the thickness of
the plate is not altered during its deformation; and thus, we can neglect it in our calculations.
After the proposals of Kirchhoff [Kir76], Lazer and McKenna [LM90], McKenna and Walter
[MW87], and Al-Gwaiz et al [AGBG14], we will consider the model proposed in Gazzola
[Gaz13], which starts from a Kirchoff-Love plate bending model, and adds the corresponding
effects like external forces, vertical dampers, and internal friction and torsional forces. That
model reads as follows:

utt(x, y, t) + ∆2u(x, y, t) + φ(u)uxx + a(x, y)g(ut(x, y, t)) = f(x, y, t), in Ω× (0,+∞),

u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, (y, t) ∈ (−l, l)× (0,+∞),

uyy(x,±l, t) + σuxx(x,±l, t) = 0, (x, t) ∈ (0, π)× (0,+∞),

uyyy(x,±l, t) + (2− σ)uxxy(x,±l, t) = 0, (x, t) ∈ (0, π)× (0,+∞),

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in Ω,

(17)
where the function u(x, y, t) denotes the amplitude of the oscillation of the plate at the point
(x, y) and at the instant t; the function φ(u) carries a nonlinear effect to the model over the
x coordinate and was first proposed by Kirchhoff in 1876 [Kir76] (see algo: [FGdS16]). It is
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given by

φ(u) = −P + S

∫
Ω
u2
xdx

where the parameter S depends on the elasticity of the material composing the plate, and
S
∫

Ω u
2
xdx measures the geometric nonlinearity of the plate due to its stretching; the parame-

ter P is the prestressing constant: when P > 0 the plate is compressed, while for P < 0 the
plate is stretched [AGBG14].

The constant σ is called the Poisson Ratio, and it is related to the Poisson Effect where the
material expands/contracts perpendicularly to the direction of compression. f(x, y, t) repre-
sents the external force such as the wind or a seismic wave.

The function a(x, y)g(ut) carries the damping effect. It is responsible for the dissipation of
energy from the structure, and it is of critical importance when the structure itself is oscil-
lating. The bridge can vibrate thanks to vehicle/pedestrian transit, external wind, or seismic
waves; among other factors. Furthermore: those oscillations can be larger if the bridge enters
in resonance; this is, the external force transfers energy to the bridge in such a way that re-
inforces the oscillations along the bridge. Given that those factors are of common appreance,
and because the resonance effect can lead to the collapse of the structure, it is important to
consider special arrangements or devices along the bridge such that they can dissipate the
energy contained in the oscillations; with that, we can prevent the collapse of the bridge if the
oscillations are too big.

Because we are modelling a bridge, the plate is assumed to have two opposing edges much
longer than the others; this is |xf − x0| � |yf − y0|. For simplicity, we assume that the bridge
has a long equal to π, and has a wide equal to 2l. Frequently, we have l ≈ π

200 . Thus, we will
use x0 = 0, xf = π, and yf = −y0 = l.

The boundary conditions of this problem can be explained from two facts. One of those is
that we are assuming the vibrating plate is such that two of its extremes are simply supported;
this is, those two edges (here: x0 and xf ) will remain sticked to ground level, and no bending
moment will act over them. The other two edges located at y0 and yf will be considered as
free; in those regions the edges will not be contracted, nor expanded towards the inner part
of the bridge, and will not be twisted or bent over the respective edge. Kirchhoff made a
modification to this condition, by adding the assumption that the conditions imposed on the
twisting moment and the shear force applied over the free edges are not independent from each
other. This leads to the two boundary conditions imposed for y0 = −l and yf = l. A more
detailed deduction of these boundary conditions can be seen in Ventsel and Krauthammer
([VK01]).

For the conservative case (i.e. φ(u) ≡ 0, a(x, y) ≡ 0, and f(x, y, t) ≡ 0 ), the energy of the
system is defined by

E(t) :=
1

2
||ut(t)||2L2 +

1

2
||u(t)||2H2

∗
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where it remains preserved ∀t ≥ 0. The space H2
∗ is defined as follows

H2
∗ (Ω) = {w ∈ H2(Ω) : w = 0 on {0, π} × (−l, l)}

which in turn is accompanied by the following inner product

(u, v)H2
∗

=

∫
Ω
F (u, v)dxdy

where
F (u, v) = uxxvxx + uyyvyy + σ(uxxvyy + uyyvxx) + 2(1− σ)uxyvxy.

The following Lemma was proved by Messaoudi and Mukiawa in [MM15]

Lemma 0.0.1. For v ∈ H2
∗ (Ω), and ∀u ∈ H4(Ω) ∩H2

∗ (Ω) such that
uxx(0, y) = uxx(π, y) = 0

uyy(x,±l) + σ(uxx(x,±l) = 0

uyyy(x,±l) + (2− σ)uxxy(x,±l) = 0

then the following identity holds

(∆2u, v)L2(Ω) = (u, v)H2
∗(Ω) =

∫
Ω
F (u, v)dxdy

Ferrero and Gazzola [FG15] studied the case when an external force, a restoring force h due
to the action of hangers, and a global damping term δ ∈ R, are present:

utt(x, y, t) + ∆2u(x, y, t) + h(x, y, u) + δut(x, y, t) = f(x, y, t), in Ω× (0,+∞),

u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, (y, t) ∈ (−l, l)× (0,+∞),

uyy(x,±l, t) + σuxx(x,±l, t) = 0, (x, t) ∈ (0, π)× (0,+∞),

uyyy(x,±l, t) + (2− σ)uxxy(x,±l, t) = 0, (x, t) ∈ (0, π)× (0,+∞),

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in Ω,

(18)

where the following energy functional is defined

ET (u) =

∫
Ω

(1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy) +H(x, y, u)− fu
)
dxdy

where H(x, y, s) :=
∫ s
s h(x, y, τ)dτ, s ∈ R. The following result holds

Theorem 0.0.2. For σ ∈ (0, 1
2), and for f ∈ H(Ω) := the dual space of H2

∗ (Ω), then there
exists a unique u ∈ H2

∗ (Ω) such that∫
Ω

[
∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)

]
dxdy = 〈f, v〉, ∀v ∈ H2

∗ (Ω).

Moreover: u is the minimum point of the convex functions ET . If f ∈ L2(Ω), then u ∈ H4(Ω);
and if u ∈ C4(Ω), then u is a classical solution of the static problem

∆2u(x, y, t) = f(x, y, t), in Ω,

u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, (y, t) ∈ (−l, l)× (0,+∞),

uyy(x,±l, t) + σuxx(x,±l, t) = 0, (x, t) ∈ (0, π)× (0,+∞),

uyyy(x,±l, t) + (2− σ)uxxy(x,±l, t) = 0, (x, t) ∈ (0, π)× (0,+∞),

(19)
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This is, both the conservative case and equation (18) admit a variational formulation; a key
element when attempting to implement a Finite Element scheme for this problem. Solutions
for the static case (19) has been found in [FG15]; for the case with full damping, solutions
were computed in [AGBG14].

In the last years, numerous authors have studied well-posedness and time evolution of the
energy on different situations. For instance: Bochicchio et al. [BGV10] considered a similar
model using full damping over the domain. They managed to prove well-posedness and the
existence of a global attractor. Messaoudi and Mukiawa [MM15] proved an exponential sta-
bility result for Problem (17) using full damping. Gazzola et al. [FGdS16] proved existence,
uniqueness and asymptotic behavior for the solutions for all initial data in suitable functional
spaces for the same model (17) using a full and constant damping.

It is worth of mention that the function a(x, y), responsible for the location of the damping,
should not be acting over the full domain, and its behavior could not be linear. This is why, in
(17), we will consider the damping function a : a(x, y) > 0 for (x, y) ∈ ω such that ω ∩ Γ 6= ∅.
The function g(ut), which could be linear or not linear, describes the behavior of the damping,
and it can be due to special structures like dampers or internal friction effects due to different
material composition over ω. We will consider a nonlinear function because it has been em-
pirically proved that the damping depends nonlinearly on the oscillation amplitude and the
velocity ([GZD13], [HS96]).

In Cavalcanti et al. [DCMCC+], a new stability result was obtained for the model (17) using
a minimal damping a(x, y). In this regard, in Chapter 4 we will propose a Finite Difference
scheme that solves this hanging bridge problem; where at the same time, numerically replicates
the exponential decay of the energy that is theoretically proved. These results can be revised
in the following preprint:

• A. D. Domingos Cavalcanti, M. Moreira Cavalcanti, W. J. Corrêa, Zayd
Hajjej, M. Sepúlveda Cortés, R. Véjar Asem: Uniform decay rates for a sus-
pension bridge with locally distributed nonlinear damping. Preprint, Departamento de
Ingenieŕıa Matemática, Universidad de Concepción, 2018.
ftp://ftp.ci2ma.udec.cl/pub/ci2ma/pre-publicaciones/2018/pp18-47.pdf

Regarding the numerical modellation of Problem (17), the literature that deals with the prob-
lem in particular is rather scarce. For the PDE itself: one of the most traditional boundary
value problems involving the biharmonic operator is given by∆2u(x, y) = f(x, y), (x, y) ∈ Ω ⊂ R2

u|∂Ω = g(x, y),
∂u

∂ν
|∂Ω = h(x, y)

for some functions g and h defined over the boundary ∂Ω. Most of the Finite Element software
can solve the problem with ease7 by using an auxiliar variable z(x, y) = ∆u(x, y), and solving

7See, for instante: https://www.um.es/freefem/ff++/pmwiki.php?n=Main.ComputingTheBilaplacian.
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two coupled Poisson problems instead; idea which originally came from Ciarlet and Raviart
[CR74] where they solved the problem using a mixed method. Other authors (see: [BOP80],
[Mon87], [BG11]) kept studying the problem from a Finite Element perspective. Discontinuous
Galerkin methods were also proposed to solve the biharmonic problem with Dirichlet bound-
ary conditions (see: [GH09], [CDG09], [Bar18]). For the suspension bridge case, Preidikman
and Mook [PM97] implemented a predictor-corrector method which solves the Euler-Lagrange
equations of motion in one dimension; while Arena and Lacarbonara [AL12] solved for the
shear and stress forces, which leads to a coupled problem of order 1 in space and order 2 in
time.

Up to our knowledge, there are no other results regarding a numerical approximation of Prob-
lem (17) with any existing numerical method.
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Chapter 1

Finite Difference Scheme for a conservative
HNLS Equation.

1.1 Introduction

This chapter is devoted to the numerical analysis of the following HNLS equation

iut + a1uxx + ia2uxxx + a3|u|2u+ ia4|u|2ux + ia5u|u|2x = 0 (1.1)

where we will consider a1, a2, a3, a4, a5 ∈ R, and u = u(x, t), x, t ∈ R a complex valued
function.

iut + a1uxx + a3|u|2u = 0 (1.2)

Carvajal proved in [Car06] for a3, a5 6= 0 the global well-posedness of the Cauchy Problem
given by the equation (1.1), and an initial condition u(x, 0) = u0(x) in Hs(R), s > 1

4 when
3a2a3 = a1a4. Meanwhile, Takaoka proved in [Tak00], for a3 = 1, the local well-posedness
for the Cauchy Problem (1.1) in Hs(T), s > 1

2 , where T is a unidimensional torus. Similar
conclusions were obtained also by Takaoka in [Tak99] for a3 = 0, where the well-posedness is

over H
1
2 (R). Regularity properties were studied by Alves et al. [ASV09] when δ = ε = 0.

Several works regarding the equation (1.1), concerning the well-posedness and analytic behav-
iors of the solution are studied in the whole real line, or in the torus (for periodic boundary
conditions) when it comes to bounded domains. In this chapter, we will focus our interest
in the following initial value problem for equation (1.1), with null boundary conditions in a
bounded domain Ω := [x0, xf ] ⊂ R:

iut + a1uxx + a2|u|2u+ ia3uxxx + ia4|u|2ux + ia5u|u|2x = 0 in Ω× (0, T ) ⊂ R2

u(x0, t) = u(xf , t) = 0, ux(xf , t) = 0, t ≥ 0

u(x, 0) = u0 for x ∈ Ω

(1.3)

Null-boundary conditions like (1.3) are generally used in dispersive equations with third-order
derivatives such as KdV ([BSZ03]), and not commonly in Schrodinger or HNLS. However,
there are some works, such as for the Sasa-Satusma equation in that if boundary conditions
of this type are considered in bounded domains [XZF18].

Exact solutions for (1.1) can be found using the Inverse Scattering Transform (IST) [AS81],
proposed originally in Zakharov et al. [ZS72]. Its integration depends on the values of a2, a4

and a5. In particular: for a1 = 1
2 , a3 = 1, and rewriting equation (1.1) as

iut +
1

2
uxx + |u|2u+ iε(β1uxxx + β2|u|2ux + β3|u|2xu) = 0 (1.4)
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for some real constants β1, β2, β3, ε; then exact solutions can be obtained via IST for the
following cases:

• For the derivative NLS equation of type I: β1 : β2 : β3 = 0 : 1 : 1 [AL83].

• For the derivative NLS equation of type II: β1 : β2 : β3 = 0 : 1 : 0 [CLL79].

• For the Hirota equation: β1 : β2 : β3 = 1 : 6 : 0 [Hir73a].

• For the Sasa-Satsuma equation: β1 : β2 : β3 = 1 : 6 : 3 [SS91].

Exact solutions are all of solitonic form. N -soliton solutions can also be obtained [Hir73a].
Potasek [PT91b] shows some particular solutions that has been proven experimentally. But
even when continuous solutions can be found for some specific initial conditions and some
values for the real constants in (1.1), numerical solutions can prescinde from those require-
ments when computed. We can even use non-solitonic initial conditions in order to obtain a
result. One way to compute numerical solutions is using the Finite Difference Method, whose
computational implementation can be done in an fast and efficient way.

Other ways to obtain numerical solutions for (1.1) has been studied by different authors in the
recents years. One of the first scheme were proposed by Delfour, Fortin and Payre [DFP81],
which solves the NLS equation (1.2) proposing a rule to discretize powers of the nonlinearity
multiplying the a2 term. Their method has a strong property: it preserves the discrete versions
of both the L2 norm and the energy of the numerical solution, where their continuous versions
are given by the following relations:

||u||2L2(Ω)(t) =

∫
Ω
|u(x, t)|2dx

E(t) :=
a1

2

∫
Ω
|∇u(x, t)|2dx− a3

4

∫
Ω
|u(x, t)|4dx

for u = u(x, t) ∈ Ω ⊂ R × R+ 7−→ C the exact solution of (1.1). The convergence of the
numerical method is proved in Matsuo and Furihata [FM11]. Pazoto et al [PSV10] proposed
a finite difference scheme which solves the critical generalilzed Kortewetg-de Vries equation
(GKdV-4) in a bounded domain. The higher-power term u4ux was rewritten as a linear
combination of other derivatives in order to obtain specific conservation properties. Smadi
and Bahloul [SB11] [SB15] combined a Compact Padé Finite Difference scheme [Lel92] with
a fourth order Runge-Kutta (RK4) scheme. They splitted the problem in two parts: a linear
section which is solved using the finite difference scheme; and the nonlinear, which is solved
using the RK4 scheme. The method was implemented with an interesting success, but no
analysis of the error, convergence, or preserved quantities was made.

The purpose of this chapter then, is to search for numerical solutions of the IVP (1.3) using a
Finite Difference scheme which preserves the numerical L2 norm and controls the energy.

17



1.2 Well posedness of weak and strong solutions

Multiplying (1.3) by v with v ∈ H2
0 (Ω) = {w ∈ H2(Ω) | w(x0) = w(xf ) = wx(x0) = wx(xf ) =

0}, and integrating by part, we have

i < ut; v >− a1

∫
Ω
uxvx dx+ a2i

∫
Ω
uxvxx dx+ a3

∫
Ω
|u|2uv dx (1.5)

+ ia4

∫
Ω
|u|2uxv dx− ia5

∫
Ω
|u|2 (uxv + uvx) dx = 0.

Definition 1.2.1. u ∈ L2(0, T ;H1
0 (Ω)), with ut ∈ L2(0, T ;H−2(Ω)) is called weak solution of

(1.3) if it verifies (1.5), for all v ∈ H2
0 (Ω).

We have the following result of existence and uniqueness for the problem (1.3)

Theorem 1.2.2. Let u0 ∈ H1
0 (Ω). Then, there exists T > 0 and a weak solution of (1.3) in

L2(0, T ;H1
0 (Ω)). Moreover, if u0 ∈ H1

0 (Ω)∩H3(Ω), then there exists a unique strong solution
of (1.3), such that

u ∈ L∞(0, T ;H3(Ω))

ut ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

Proof. The existence of a weak solution is result of the convergence of the numerical solution
and passing to the limits in the proof of Theorem 2.2.2 (see later in Section 4). In order to
prove the existence and uniqueness of the strong solution, we consider the gauge transformation
[Car06]:

v(x, t) = exp(iλx− i(a1λ+ 2a2λ
3)t)u(x− (2a1λ+ 3a2λ)t, t)

Then u solves (1.3) if and only if v satisfies the system

ivt + (a1 + 3λa2)vxx + ia2vxxx + (a3 + λa4)|v|2v
+ ia4|v|2vx + ia5v|v|2x = 0, (x, t) ∈ Qt,

v(x0 + (2a1λ+ 3a2λ)t, t) = v(xf + (2a1λ+ 3a2λ)t, t) = 0, t ≥ 0,

vx(xf + (2a1λ+ 3a2λ)t, t) = 0, t ≥ 0,

v(x, 0) = exp(iλx)u0(x), x ∈ Ω,

(1.6)

with Qt = {(x, t) ∈ R2 | x0 < x − (2a1λ + 3a2λ)t < xf}. Thus, if we take λ = − a1

3a2

and a3 =
a1a4

3a2
, the function v(x, t) satisfies a complex modified Korteweg-de Vries equation

with moving boundaries. The result of existence and uniqueness of strong solution for KdV
equation in domains with moving boundaries proved in [DL07] can be easily generalized for the

complex modified Korteweg-de Vries equation (1.6) with λ = − a1

3a2
and a3 =

a1a4

3a2
. Moreover,

if a3 6=
a1a4

3a2
, the a priori estimates and the Faedo-Galerkin method argument of the proof in

[DL07, Theorem 1] is also valid, with which Theorem 1.2.2 is proved.
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1.3 Numerical Scheme

1.3.1 Notation.

For the sake of the following analysis, and for a given M ∈ N, we will introduce the vector
space

XM :=
{
u = [u0 u1 . . . uM ]T ∈ CM+1 : u0 = uM−1 = uM = 0

}
Let us introduce the classical finite differences operators for complex-valued arrays:[

D+u
]
j

:=
uj+1 − uj

∆x
,

[
D−u

]
j

:=
uj − uj−1

∆x
,

Du :=
1

2

(
D+u+ D−u

)
,

D2u := D+D−u, D3u := DD+D−u.

For u, v ∈ XM , L := xf −x0, and ∆x := L
M+1 ; we will make use of the following inner product

and their respective norm

(u, v)2 :=

M∑
j=0

ujvj∆x, ||u||22 := (u, u)2. (1.7)

For p ∈ [1,∞], we will use other similar norms for u:

||u||p :=

(
M∑
j=0

|uj |p∆x

) 1
p

(p <∞), ||u||∞ := max
j∈[0,M ]

|uj |

For u, v ∈ XM , we will introduce the following inner product and their respective norm:

(u, v)x :=
M∑
j=0

j∆x2ujvj , ||u||2x := (u, u)x (1.8)

1.3.2 Fundaments of the Numerical Scheme.

In order to construct the numerical method, we will write a similar form of equation (1.1).
The modification of equation (1.1) will proceed by adding and substracting the same nonlinear
term as follows:

iut + a1uxx + a3|u|2u+ ia2uxxx + ia4

(
|u|2ux + (|u|2u)x

)
+ ia5u|u|2x − ia4(|u|2u)x = 0 (1.9)

For the time being, we will not discretize this expression directly. We will focus instead on
the last term in (1.9). For a sufficiently differentiable function u(x, t) : R2 −→ C, we can write
(|u|2u)x as a convex combination of itself, (|u|2xu+ |u|2ux) and (u2ux + 2|u|2ux). Hence,

∂

∂x

(
|u|2u

)
= α0

∂

∂x

(
|u|2u

)
+ β0

(
u2∂u

∂x
+ 2|u|2∂u

∂x

)
+ (1− α0 − β0)

(
u
∂

∂x
(|u|2) + |u|2∂u

∂x

)
(1.10)
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where α0, β0 ∈ [0, 1]. Using (1.10), equation (1.9) can be written as

iut + a1uxx + a3|u|2u+ ia2uxxx + ia4

(
|u|2ux + (|u|2u)x

)
+ ia5u|u|2x

−ia4

[
α0

(
|u|2u

)
x

+ β0

(
u2ux + 2|u|2ux

)
+ (1− α0 − β0)

(
u|u|2x + |u|2ux

) ]
= 0

(1.11)

and using α0 = 3
4 −

γ0

2 and β0 = 1
4 −

γ0

2 for γ0 ∈
[
0, 1

2

]
,

iut + a1uxx + a3|u|2u+ ia2uxxx + ia4

(
|u|2ux + (|u|2u)x

)
+ ia5u|u|2x

−ia4

[
(3

4 −
γ0

2 )
(
|u|2u

)
x

+ (1
4 −

γ0

2 )u2ux + 1
2 |u|

2ux + γ0|u|2xu
]

= 0
(1.12)

Which will be the expression to discretize using the finite differences, whose coefficients were
choosen in order to help the preservation of the L2 norm of the numerical solution. At this
point, it is straightforward to write unj ≈ u(xj , tn); this is, the approximation of the exact

solution u(x, t) at the time tn = n∆t and at the coordinate xj = j∆x. We also write u
n+ 1

2
j :=

1
2

(
un+1
j + unj

)
. Using the notation already presented, we will define the approximations that

will lead us to the numerical scheme. The time derivative will be discretized using the forward
finite difference quotient in time:

∂u

∂t
(xj , tn) ≈

un+1
j − unj

∆t
= Dt(u

n
j )

The terms multiplied by a1 and a2 are discretized as follows:

∂2u

∂x2
(xj , tn) ≈ D2(u

n+ 1
2

j ), and
∂3u

∂x3
(xj , tn) ≈ D3(u

n+ 1
2

j )

The discretization of the term multiplied by a3 will be given by:

|u(xj , tn)|2u(xj , tn) ≈ |un+ 1
2

j |2
(
u
n+ 1

2
j

)
For the terms multiplied by a4 and −a4, we write:

|u(xj , tn)|2 (u(xj , tn))x +
(
|u(xj , tn)|2u(xj , tn)

)
x
−
(
|u(xj , tn)|2u(xj , tn)

)
x

≈ (α0 − β0)|un+ 1
2 |2D

(
un+ 1

2

)
+ (1− α0)D

(
|un+ 1

2 |2un+ 1
2

)
− β0(un+ 1

2 )2D
(
un+ 1

2

)
− (1− α0 − β0)D

(
|un+ 1

2 |
)2
un+ 1

2

using α0 = 3
4 −

γ0

2 , β0 = 1
4 −

γ0

2 , and γ0 ∈
[
0, 1

2

]
, we define the operator Fa4 : CZ −→ CZ

[Fa4(u(p))]j :=
1

2

∣∣∣∣∣u
p
j + unj

2

∣∣∣∣∣
2

D

(
upj + unj

2

)
+
(1

4
+
γ0

2

)
D

(∣∣∣∣∣u
p
j + unj

2

∣∣∣∣∣
2
upj + unj

2

)
(1.13)

+
(γ0

2
− 1

4

)(upj + unj
2

)2

D

(
upj + unj

2

)
− γ0

upj + unj
2

D

(∣∣∣∣∣u
p
j + unj

2

∣∣∣∣∣
2)
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The ε term will be discretized directly:

u(xj , tn)
∣∣∣u(xj , tn)

∣∣∣2
x
≈ un+ 1

2
j D

(
|un+ 1

2
j |2

)

where we define its representing function Fa5 : CZ −→ CZ

[Fa5(u(p))]j :=

(
upj + unj

2

)
D

∣∣∣∣∣u
p
j + unj

2

∣∣∣∣∣
2


Hence, ∀j ∈ Z, ∀n ∈ N, and for a given u0 ∈ XM the numerical scheme will be given
component-wise by


iDtu

n
j + a1D

2(u
n+ 1

2
j ) + ia2D

3(u
n+ 1

2
j ) + a3|u

n+ 1
2

j |2un+ 1
2

j

+ia4[Fa4(u(n+1))]j + ia5[Fa5(u(n+1))]j = 0

un ∈ XM , n ∈ N
(1.14)

where the initial condition u0 is such that u0
j = u0(xj), for u0 ∈ L2(Ω) an initial condition of

Problem (1.3).

1.4 Properties of the scheme

1.4.1 Behavior of the numerical L2-norm

This numerical scheme was designed to control the numerical dissipation of the L2-norm. In
order to demonstrate that property, we will start by proving the next lemma

Lemma 1.4.1. ∀ϕ ∈ XM , we have

Im(D2ϕ,ϕ)2 = 0 (1.15)

Re(D3ϕ,ϕ)2 = 0 (1.16)

Re(|ϕ|2Dϕ+ D
(
|ϕ|2ϕ

)
, ϕ)2 = 0 (1.17)

(ϕ2Dϕ+ D(|ϕ|2ϕ), ϕ)2 = 0 (1.18)

(ϕD|ϕ|2, ϕ)2 = 0 (1.19)

Proof. To get (1.15), note that

[D2(ϕ)]j = D2(ϕj) =
ϕj+1 − 2ϕj + ϕj−1

∆x2
=

1

∆x
(D+ϕj −D−ϕj)

Which can be extended to the other elements of D2(ϕ). Hence, we have.

(D2(ϕ), ϕ)2 =
1

∆x
(D+ϕ−D−ϕ,ϕ)2 =

1

∆x
(−(D−ϕ,ϕ)2 + (D+ϕ,ϕ)2) = (D2(ϕ), ϕ)2

21



from here, we get (1.15). A similar approach is used to prove (1.16). To obtain (1.17), we
have

(ϕ2Dϕ,ϕ)2 = (|ϕ|2ϕ,Dϕ)2 = −
(
D(|ϕ|2ϕ), ϕ

)
2

From here, both (1.17) and (1.18) can be concluded. A similar procedure can be applied to
prove (1.19).

Remark 1.4.2. Lemma 1.4.1 will give us reasons to write the expression (1.9) and define
the numerical scheme (1.14). From the convex combination (1.10), we want to re-write it in
function of the conserved quantities of the Lemma 1.4.1. In other words, we want to write the
following equality

∂

∂x
(|ϕ|2ϕ) = α̂

(
|ϕ|2ϕx + (|ϕ|2ϕ)x

)
+ β̂(ϕ2ϕx + (|ϕ|2ϕ)x) + γ0(|ϕ|2xϕ) (1.20)

for some real constants α̂, β̂ and γ0 to be found. Comparing the previous expression with the
convex combination (1.10), and solving the resulting linear system of equations, gives α̂ = 1

2

and β̂ = 1
4 −

γ0

2 ; or α0 = 3
4 −

γ0

2 and β0 = 1
4 −

γ0

2 , for γ0 ∈
[
0, 1

2

]
. On the other hand, to

simplify the calculations, we will preferably choose γ0 = 1/2. In effect, with this value one of
the terms in (1.13) is simplified, and the convergence proof of the numerical scheme also.

Theorem 1.4.3. Let u0 ∈ XM . Then, ∀n ∈ N, and for un ∈ XM , we have

||un+1||22 = ||un||22 (1.21)

Proof. We will multiply the numerical scheme (1.14) by
(
un+1
j +unj

)
∆x, sum for j, and extract

the imaginary part. On the time derivative term, we have

i

M−1∑
j=0

un+1
j − unj

∆t
(un+1
j + unj )∆x =

i

∆t

M−1∑
j=0

(
|un+1
j |2 − |unj |2 + 2iIm(un+1

j unj )
)

∆x (1.22)

and thus,

Im
(
iDtu

n, un+ 1
2

)
2

=
1

∆t

(
||un+1||22 − ||un||22

)
(1.23)

The Theorem can be then concluded using the results obtained in Lemma 1.4.1 for ϕ =
un+ 1

2 .

1.4.2 Convergence

Before presenting the next results, we will introduce some extension operators, presented
already in [TTZ03], [PSV10]; and originally, [Lio69]. For v ∈ XM with v = (vj)

M
j=0, for the

space variable we define:

p∆v∆(x) =

{
the continuous function, linear in each interval [j∆x, (j + 1)∆x]

such that p∆v∆(j∆x) = vj , j = 0, . . . ,M

q∆v∆(x) =

{
the step function, defined in each interval

((
j − 1

2

)
∆x,

(
j + 1

2

)
∆x
)
∩ (Ω)

such that q∆v∆(j∆x) = vj , j = 0, . . . ,M
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and for the time variable, we have

P∆v∆(x, t) =

{
the continuous function, linear in each interval [n∆t, (n+ 1)∆t]

such that P∆v∆(x, tn) = p∆v
n
∆(x), n ∈ N, x ∈ (Ω)

P
1
2

∆v∆(x, t) =

the continuous function, linear in each interval [n∆t, (n+ 1)∆t]

such that P
1
2

∆v∆(x, tn) = 1
2

(
p∆v

n
∆(x) + p∆v

n+1
∆ (x)

)
, n ∈ N, x ∈ (Ω)

Q∆u∆(x, t) =

{
the step function, linear in each interval [n∆t, (n+ 1)∆t]

such that Q∆v∆(x, tn) = q∆v
n
∆(x), tn ≤ t ≤ tn+1, n ∈ N, x ∈ (Ω)

Q
1
2
∆u∆(x, t) =


the step function, linear in each interval [n∆t, (n+ 1)∆t]

such that Q
1
2
∆v∆(x, tn) = 1

2

(
q∆v

n
∆(x) + q∆v

n+1
∆ (x)

)
,

tn ≤ t ≤ tn+1, n ∈ N, x ∈ (Ω)

With this, it is easy to see that

||Qn+ 1
2

∆ u∆||2L2(0,T ;L2(Ω)) =

∫ T

0

∫ L

0
|Qn+ 1

2
∆ u∆(x, t)|2dxdt

=

N−1∑
n=0

M−1∑
j=0

|un+ 1
2

j |2∆x∆t =

N−1∑
n=0

||un+ 1
2 ||22∆t

||p∆u∆||2H1
0 (Ω) =

∫ L

0
|(p∆u∆)x|2dx =

M−1∑
j=0

∣∣∣uj+1 − uj
∆x

∣∣∣2∆x

In order to prove the main results of this section, we will present some lemmata:

Lemma 1.4.4. For u ∈ XM such that ||u||∞ <∞, we have

||q∆u∆||2L∞(Ω) ≤ 2||q∆u∆||L2(Ω)||p∆u∆||H1
0 (Ω) (1.24)

||q∆u∆||4L4(Ω) ≤ 2||q∆u∆||3L2(0,T )||p∆u∆||H1
0 (Ω) (1.25)

||q∆u∆||6L6(Ω)) ≤ 4||q∆u∆||4L2(Ω)||p∆u∆||2H1
0 (Ω) (1.26)

Proof. To prove (1.24), we will need the algebraic identity (a2 − b2) + (a− b)2 = 2a(a− b) for
any constants a, b ∈ C. For ui ∈ u = [u0 u1 . . . uM−1 uM ]T ∈ CM+1, we have:

u2
i =

1

2

[
i∑

j=1

(u2
j − u2

j−1) +

i−1∑
j=0

(u2
j+1 − u2

j )

]

=
1

2

[
i∑

j=1

2uj(uj − uj−1)− (uj − uj−1)2

]
− 1

2

[
i−1∑
j=0

2uj(uj − uj+1)− (uj+1 − uj)2

]

=
i∑

j=1

[
∆x ujD

−uj −
∆x2

2
(D−uj)

2

]
+

i−1∑
j=0

[
∆x ujD

+uj +
∆x2

2
(D+uj)

2

]

=

i∑
j=1

∆x ujD
−uj +

i−1∑
j=0

∆x ujD
+uj +

i−1∑
j=0

∆x2

2
(D+uj)

2 −
i−1∑
j=0

∆x2

2
(D+uj)

2.
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Taking the modulus at both sides, using Hölder Inequality, and recalling that u0 = 0,

|ui|2 ≤
i∑

j=1

∆x |ujD+uj |+
i−1∑
j=1

∆x |ujD+uj |

≤

√√√√ i∑
j=1

∆x|uj |2

√√√√ i∑
j=1

∆x|D−uj |2 +

√√√√ i−1∑
j=1

∆x |uj |2

√√√√ i−1∑
j=1

∆x |D+uj |2

≤ 2

√√√√ i∑
j=1

|uj |2∆x

√√√√ i∑
j=1

|D+uj |2∆x

≤ 2||u||2||D+u||2.

Inequality (1.24) is then proved since this is valid to any i = 0, 1, . . . , M . To get (1.25), and
combining Hölder Inequality with (1.24),

||q∆u∆||4L4(Ω) =
M−1∑
j=1

|uj |4∆x ≤ ||u||2∞
M−1∑
j=1

|uj |2∆x

≤ 2||u||2||D+u||2||u||22 = 2||q∆u∆||3L2(0,T )||p∆u∆||H1
0 (Ω)

In order to conclude (1.26), we will again use Hölder inequality with (1.24) and (1.25):

||q∆u∆||6L6(Ω)) =
M−1∑
j=1

|uj |6∆x ≤ ||u||2∞
M−1∑
j=1

|uj |4∆x

≤ 2||u||2||D+u||2 2||u||32||D+u||2 = 4||u||42||D+u||22

which can then lead us to conclude (1.26), and hence, the lemma is proved.

Another lemma is presented below:

Lemma 1.4.5. For z ∈ CM , w ∈ XM , we have(
D+z, w

)
x

= −
(
z,D−w

)
x

+ ∆x
(
z,D−w

)
2
−
(
z, w

)
2

(1.27)(
D−z, w

)
x

= −
(
z,D+w

)
x
−∆x

(
z,D+w

)
2
−
(
z, w

)
2

(1.28)(
Dz, w

)
x

= −
(
z,Dw)x +

∆x

2

(
z,D−w

)
2
− ∆x

2

(
z,D+w

)
−
(
z, w

)
2

(1.29)

Re
(
D+w,w

)
x

= −1

2
||w||22 −

∆x

2
||D+w||2x (1.30)

Re
(
D3w,w

)
x

=
3

2
||D+w||22 (1.31)

Proof. Starting with (1.27), and using the definition (1.8), we have
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(
D+z, w

)
x

=

M∑
j=2

1

∆x
∆x2(j − 1)zjwj−1 −

M−1∑
j=1

1

∆x
∆x2jzjwj

=
1

∆x
∆x2(M − 1)zMwM−1 +

M−1∑
j=1

1

∆x
∆x2(j − 1)zjwj−1

− 1

∆x
∆x2(0)z1w0 −

M−1∑
j=1

1

∆x
∆x2jzjwj

Since w ∈ XM , we can conclude (1.27). The same argument can be used for (1.28) after
observing that(

D−z, w
)
x

= −(z,D+w)x −∆x(z,D+w)2 − (z, w)2 +M∆xzM−1wM (1.32)

On the other hand, (1.30) can be proved combining (1.27) with (1.28). For (1.30), we have

Re
(
D+z, z

)
x

=

M−1∑
j=1

1

2∆x
j∆x2|zj+1|2 −

M−1∑
j=1

1

2∆x
j∆x2|zj |2 −

M−1∑
j=1

1

2∆x
j∆x2|zj+1 − zj |2

= −1

2
||z||22 −

∆x

2
||D+z||2x.

In order to obtain (1.31), we need to combine (1.27), (1.28) and (1.30). First: because w ∈ XM ,
we have(

D3w,w
)
x

= −1

2
(D−D+w,D+w)x −

1

2
(D−D+w,D−w)x (1.33)

+
∆x

2
(D+D−w,D−w)2 −

∆x

2
(D+D−w,D+w)2 + ||D+w||22 (1.34)

At this point, we can use (1.27), (1.28), and sum by parts if we assume that w−1 = 0. This
leads to D+w−1 = D+w0 = 0. We also have D+wM = D−wM = 0. Hence, so far we have(

D3w,w
)
x

=
1

2
(D−w,D2w)x −

∆x

2
(D−w,D2w)2 +

1

2
(D−w,D+w)2

+
1

2
(D+w,D2w)x +

∆x

2
(D+w,D2w)2 +

1

2
(D+w,D−w)2

+
∆x

2
(D2w,D−w)2 −

∆x

2
(D2w,D+w) + ||D+w||22

using again (1.27) and (1.28) and summation by parts,(
D3w,w

)
x

= −(w,D3w)x + ||D+w||22 + (D−w,D+w)2 + (D+w,D−w)2

the identity (1.31) then follows.
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Lemma 1.4.6. Let {un}n∈N be a sequence in XM induced by the numerical scheme (1.14) with
3a3 ≥ |a4 + 2a5|, γ0 = 1/2, and u0 ∈ XM . Then, there exist some constant K = K(T, L) > 0,
independent of ∆x and ∆t, such that

||P
1
2

∆u∆||2L2((0,T );H1
0 (Ω)) ≤ K||u

0||22 (1.35)

||Q
1
2
∆(|u|2ux)∆||2L2(0,T ;L2(Ω)) ≤ K||q∆u

0
∆||6L2(Ω) (1.36)

||q∆(|u|2x)∆||2L2(Ω) ≤ 32(1 + ∆x2)||q∆u∆||2L∞(Ω)||p∆u∆||2H1
0 (Ω) (1.37)

Proof. In order to prove (2.15), we need to multiply (1.14) component-wise by j∆xu
n+ 1

2
j , sum

over j = 0, 1, . . . ,M − 1, and extract the imaginary part. Initially we have

i
(
Dtu

n+ 1
2 , un+ 1

2

)
x

+ a1

(
D+D−un+ 1

2 , un+ 1
2

)
x

+ ia2

(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
x

+ia3

(
DD+D−un+ 1

2 , un+ 1
2

)
x

+ ia4

(
Fa4(un+1), un+ 1

2

)
x

+ia5

(
Fa5(un+1), un+ 1

2

)
x

= 0

(1.38)

We will study each term in (1.38). First, and using the definition (1.8), it is easy to see that

Im

(
i
(
Dtu

n, un+ 1
2

)
x

)
=

1

2∆t
(||un+1||2x − ||un||2x) (1.39)

Using (1.27), we can write(
D+D−un+ 1

2 , un+ 1
2

)
x

= −||D−un+ 1
2 ||2x + ∆x||D−un+ 1

2 ||22 −∆x
(
D−un+ 1

2 , un+ 1
2

)
2
.

Hence,

Im
(
D+D−un+ 1

2 , un+ 1
2

)
x

= −∆xIm
(
D−un+ 1

2 , un+ 1
2

)
2
. (1.40)

We can also write

Im
(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
x

= 0. (1.41)

Using now the identity (1.31) for w = un+ 1
2 , we have

Im

(
i
(
D3un+ 1

2 , un+ 1
2

)
x

)
=

3

2
||D+un+ 1

2 ||22 (1.42)

For the nonlinear terms Fa4 and Fa5 with γ0 = 1
2 ; this is,
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(
Fa4(un+1), un+ 1

2

)
x

:=

(
1

2
|un+ 1

2 |2D
(
un+ 1

2

)
, un+ 1

2

)
x

+

(
1

4
D
(
|un+ 1

2 |2un+ 1
2

)
, un+ 1

2

)
x

(1.43)

−

(
1

4

(
un+ 1

2

)2
D
(
un+ 1

2

)
, un+ 1

2

)
x(

Fa5(un+1), un+ 1
2

)
x

:=

(
un+ 1

2D
(
|un+ 1

2 |2
)
, un+ 1

2

)
x

(1.44)

Using (1.29), we have

(
D(|un+ 1

2 |2un+ 1
2 ), un+ 1

2

)
x

= −
(
|un+ 1

2 |2un+ 1
2 ,Dun+ 1

2

)
x

+
∆x

2

(
|un+ 1

2 |2un+ 1
2 ,D−un+ 1

2

)
2

− ∆x

2

(
|un+ 1

2 |2un+ 1
2 ,D+un+ 1

2

)
2
−
(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
2

(1.45)

and, at the same time,

(
(un+ 1

2 )2Dun+ 1
2 , un+ 1

2

)
x

=
(
|un+ 1

2 |2un+ 1
2 ,Dun+ 1

2

)
x

(1.46)

Combining (1.45) and (1.46) in (2.27), we get

(
Fa4(un+1), un+ 1

2

)
x

=
1

2

(
|un+ 1

2 |2D
(
un+ 1

2

)
, un+ 1

2

)
x
− 1

2

(
|un+ 1

2 |2un+ 1
2 ,Dun+ 1

2

)
x

+
∆x

8

(
|un+ 1

2 |2un+ 1
2 ,D−un+ 1

2

)
2

− ∆x

8

(
|un+ 1

2 |2un+ 1
2 ,D+un+ 1

2

)
2
− 1

4

(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
2

and extracting the real part, we get

Re
(
Fa4(un+1), un+ 1

2

)
x

=
∆x

8
Re
(
|un+ 1

2 |2un+ 1
2 ,D−un+ 1

2

)
2

− ∆x

8
Re
(
|un+ 1

2 |2un+ 1
2 ,D+un+ 1

2

)
2
− 1

4
||un+ 1

2 ||44 (1.47)

and recalling that D2u = D+u−D−u
∆x
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Re
(
Fa4(un+1), un+ 1

2

)
x

= −∆x2

8
Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2

)
x
− 1

4
||un+ 1

2 ||44 (1.48)

Finally, for the last nonlinear term, we have

(
Fa5(un+1), un+ 1

2

)
x

=
(
un+ 1

2D(|un+ 1
2 |2), un+ 1

2

)
x

=
(
D|un+ 1

2 |2, |un+ 1
2 |2
)
x

= −
(
|un+ 1

2 |2,D|un+ 1
2 |2
)
x

+
∆x

2

(
|un+ 1

2 |2,D−|un+ 1
2 |2
)

2

− ∆x

2

(
|un+ 1

2 |2,D+|un+ 1
2 |2
)

2
− ||un+ 1

2 ||44

and thus,

Re
(
Fa5(un+1), un+ 1

2

)
x

=
∆x

4

(
|un+ 1

2 |2,D−|un+ 1
2 |2
)

2
−∆x

4

(
|un+ 1

2 |2,D+|un+ 1
2 |2
)

2
−1

2
||un+ 1

2 ||44

which, in turn, can be rewritten as

Re
(
Fa5(un+1), un+ 1

2

)
x

= −∆x2

8

(
|un+ 1

2 |2,D2|un+ 1
2 |2
)

2
− 1

2
||un+ 1

2 ||44. (1.49)

Combining together (1.39), (1.40), (1.41), (1.42), (1.48) and (1.49); multiplying by ∆t, and
summing over n, we obtain

||u0|2x
2

=
||uN+1||2x

2
− a1∆x

N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t+

3a3

2

N∑
n=0

||D+un+ 1
2 ||22∆t

− a4
∆x2

8

N∑
n=0

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2
)

2
∆t

− (a5)

(
∆x2

8

N∑
n=0

(
|un+ 1

2 |2,D2|un+ 1
2 |2
)

2
∆t

)

− a4 + 2a5

4

N∑
n=0

||un+ 1
2 ||44∆t+

N∑
n=0

(
aun+ 1

2 , un+ 1
2

)
x
∆t
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Let us recall the fact that a1, a3 > 0. This can let us drop some terms in the above equality
to get

||u0||2x
2
≥ −a1∆x

N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t+

3a3

2

N∑
n=0

||D+un+ 1
2 ||22∆t (1.50)

− a4
∆x2

8

N∑
n=0

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2
)

2
∆t

− (a5)

(
∆x2

8

N∑
n=0

(
|un+ 1

2 |2,D2|un+ 1
2 |2
)

2
∆t

)

− a4 + 2a5

4

N∑
n=0

||un+ 1
2 ||44∆t

Using (1.24) and (1.25) along with Young, Cauchy-Schwarz and Hölder inequalities, and for
T = N∆t, we can demonstrate with ease the following inequalities:

N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t ≤ 1

2

N∑
n=0

||D+un+ 1
2 ||22∆t+

T

2
||u0||22 (1.51)

N∑
n=0

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2

)
2
∆t ≤ 1

∆x

N∑
n=0

(
||un+ 1

2 ||42 + ||D+un+ 1
2 ||22
)

∆t. (1.52)

Indeed: for (2.35), after using Cauchy-Schwarz and Young Inequalities, and due to the preser-
vation of the discrete L2 norm we have

N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t ≤

N∑
n=0

||D−un+ 1
2 ||2||un+ 1

2 ||2∆t

≤ 1

2

N∑
n=0

(
||D−un+ 1

2 ||22 + ||un+ 1
2 ||22
)

∆t

≤ 1

2

N∑
n=0

||D−un+ 1
2 ||22∆t+

T

2
||u0||22

this leads us to (2.35). We will now consider the following identity for a, b ∈ C:

Re
(
a(a− b)

)
=

1

2

(
|a|2 − |b|2

)
+

1

2
|a− b|2 (1.53)

To prove (2.36), and thanks to (1.53), we have componentwise

Re
(
|un+ 1

2
j |2un+ 1

2
j D2un+ 1

2 j

)
=
|un+ 1

2
j |2

∆x2

(
Re
(
uj(u

n+ 1
2

j+1 − u
n+ 1

2
j )

)
−Re

(
uj(u

n+ 1
2

j − un+ 1
2

j−1 )
))

=
1

2∆x

(
|un+ 1

2
j |2D+|un+ 1

2
j |2 −∆x|un+ 1

2
j |2|D+u

n+ 1
2

j |2

− |un+ 1
2

j |2D−|un+ 1
2

j |2 −∆x|un+ 1
2

j |2|D−un+ 1
2

j |2
)
.
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Hence, after summing by parts and due to Cauchy-Schwarz, Young, and Inverse Triangle
inequalities,

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2

)
2

=
1

2∆x

[(
|un+ 1

2 |2,D+|un+ 1
2 |2
)

2
−∆x

(
|un+ 1

2 |2, |D+un+ 1
2 |2
)

2

−
(
|un+ 1

2 |2,D−|un+ 1
2 |2
)

2
−∆x

(
|un+ 1

2 |2, |D−un+ 1
2 |2
)

2

]
≤ 1

∆x

(
|un+ 1

2 |2,D+|un+ 1
2 |2
)

2

≤ 1

∆x

(
||un+ 1

2 ||42 + ||D+un+ 1
2 ||22
)

and after multiplying by ∆t and summing for n, we get (2.36). Using (1.25), replacing (2.35)
and (2.36) in (1.50), and summing by parts in the fourth term at the right hand side of (1.50),

||u0||2x
2

+ a1
∆x

2

N∑
n=0

||D+un+ 1
2 ||22∆t+ a1T

∆x

2
||u0||22

+ |a4|
∆x

8

N∑
n=0

(
||un+ 1

2 ||42 + ||D+un+ 1
2 ||22
)

∆t

− a5
∆x2

8

N∑
n=0

||D+un+ 1
2 ||22∆t

+
1

2
|a4 + 2a5|

(
N∑
n=0

||un+ 1
2 ||62 + ||D+un+ 1

2 ||22∆t

)
(1.54)

≥ 3a3

2

N∑
n=0

||D+un+ 1
2 ||22∆t

Reordening,

||u0||2x +
(
a1∆x+ |a4|

∆x

4
||u0||2 + |a4 + 2a5|||u0||42

)
T ||u0||22

+
(
a1∆x+ |a4|

∆x

4
− a5

∆x2

4
+ |a4 + 2a5|

) N∑
n=0

||D+un+ 1
2 ||22∆t

≥ 3a3

N∑
n=0

||D+un+ 1
2 ||22∆t

From here, because 3a3 ≥ |a4 + 2a5|, ||u0||2x ≤ L||u0||22, and considering ∆x� 1 we can infere
the existence of the needed constant K = K(T, L) such that (2.15) holds. To prove (2.16), let
us first note that:∣∣∣∣∣∣|un+ 1

2 |2Dun+ 1
2

∣∣∣∣∣∣2
2

=

M−1∑
j=0

|un+ 1
2

j |4|Dun+ 1
2

j |2∆x ≤ ||un+ 1
2 ||4∞

M−1∑
j=0

|Dun+ 1
2

j |2∆x.
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Hence, (2.16) can be obtained after summing over n and using (1.24) and (2.15). To prove
(2.17), we will use the identity (a2− b2) + (a− b)2 = 2a(a− b). For a uj ∈ u, i = 0, 1, . . . , M ,
we have:

D|uj |2 =
|uj+1|2 − |uj−1|2

2∆x
=

1

2∆x

(
|uj+1|2 − |uj |2 + |uj |2 − |uj−1|2

)
=

1

2∆x

[
2|uj |(|uj | − |uj−1|)− (|uj | − |uj−1|)2

+ 2|uj |(|uj+1| − |uj |) + (|uj+1| − |uj |)2
]

= |uj |D−|uj | −
∆x2

2
(D−|uj |)2 + |uj |D+|uj |+

∆x2

2
(D+|uj |)2.

Taking the square at both sides, using inverse triangle inequality, and D2|uj | ≤ 4 ||u||∞
∆x2 ,

(D|uj |2)2 =

(
|uj |D−|uj | −

∆x2

2
(D−|uj |)2 + |uj |D+|uj |+

∆x2

2
(D+|uj |)2

)2

=

(
2|uj |D|uj |+ ∆x3D|uj |D2|uj |

)2

≤ 4

(
4|uj |2|Duj |2 + ∆x6|Duj |2(D2|uj |)2

)
≤ 16||u||2∞|Duj |2 + 16∆x2||u||2∞|Duj |2.

Summing over j will lead us to

M−1∑
j=0

(D|uj |2)2∆x ≤ 32||u||2∞||D+u||22(1 + ∆x2)

and hence, (2.17) is proved, and thus concluding the demonstration of the Lemma.

With these results, we can prove the convergence of the numerical scheme.

Theorem 1.4.7. Let u∆ = {unm}m∈N a sequence in XM of solutions induced by the numerical
scheme (1.14), with γ0 = 1/2 at a time tn = n∆t, computed from a sequence of initial condi-
tions {u0

m}m∈N ⊂ XM using a timestep ∆t and a spacestep ∆x. If 3a3 ≥ |a4 + 2a5|, then there
is a subsequence, still denoted by {unm}m∈N, such that

Q∆u∆ → u strongly in L2(0, T ;L2(Ω)) (1.55)

when ∆t,∆x→ 0, and for u the weak solution of (1.1)
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Proof. From (1.24), we infer the existence of a u such that

Q∆u∆ → u weakly in L2(0, T ;L2(Ω)) (1.56)

From (1.24) and (2.15), we can also say that there exists a u ∈ L2(0, T ;H1
0 (Ω)) such that

{Q∆u∆} is bounded in L2(0, T ;H1
0 (Ω)) (1.57)

and thus
Q∆u∆ ⇀ u weak in L2(0, T ;H1

0 (Ω)) (1.58)

From (1.26) and (2.15), we have

{Q
1
2
∆(|u|2u)∆} is bounded in L2(0, T ;L2(Ω)) (1.59)

And from (2.16) and (2.17),

{Q∆Fa4(u)∆} is bounded in L2(0, T ;L2(Ω)) (1.60)

{Q∆Fa5(u)∆} is bounded in L2(0, T ;L2(Ω)) (1.61)

Let us now consider a ϕ ∈ H2
0 (Ω), with ϕnj = ϕ(xj , tn), 0 ≤ n ≤ N, 0 ≤ j ≤M , . Multiplying

(1.14) by ∆t∆xϕj , sum over j and then sum over n. We then get

N∑
n=0

(
Dtu

n
m, ϕ

)
2
∆t = ia1

N∑
n=0

(
D+D−u

n+ 1
2

m , ϕ
)

2
∆t− a3

N∑
n=0

(
D+D+D−u

n+ 1
2

m , ϕ
)

2
∆t

+ a2

N∑
n=0

(
|un+ 1

2
m |2un+ 1

2 , ϕ
)

2
∆t− a4

N∑
n=0

(
Fa4(un+1

m ), ϕ
)

2
∆t (1.62)

− a5

N∑
n=0

(
Fa5

(un+1
m ), ϕ

)
2
∆t

Our aim is to prove that the left hand side of (2.42) is bounded. From (1.24) and (2.15), and
summing by parts, we get

N∑
n=0

(
D+D−u

n+ 1
2

m , ϕ
)

2
∆t+

N∑
n=0

(
D+D+D−u

n+ 1
2

m , ϕ
)

2
∆t

=

N∑
n=0

−
(
D+u

n+ 1
2

m ,D+ϕ
)

2
∆t+

N∑
n=0

(
D+u

n+ 1
2

m ,D+D−ϕ
)

2
∆t

≤
N∑
n=0

||D+u
n+ 1

2
m ||2||D+ϕ||2∆t+

N∑
n=0

||D+u
n+ 1

2
m ||2||D+D−ϕ||2∆t

≤ Cϕ
( N∑
n=0

||D+u
n+ 1

2
m ||2∆t+

N∑
n=0

||D+u
n+ 1

2
m ||2∆t

)
≤ 2CϕK||u0

m||2

since we are considering any ϕ ∈ H2
0 (Ω), and combining (1.57), (2.40), (2.41) and (1.61) after using

Cauchy-Schwarz Inequality in (2.42) , we get{ ∂
∂t
P∆u∆

}
is bounded in L2(0, T ;H−2(Ω)) (1.63)
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and as in the continuous case, because

H1
0 (Ω)

c
↪→ L2(Ω) ↪→ H−2(Ω),

and employing Aubin-Lions Theorem, there exists a subsequence of {unm}m∈N, still denoted by the
same form, such that,

Q∆u∆ −→ u strongly in L2(0, T ;L2(Ω)) . (1.64)

Now we will prove that u is the weak solution of (1.1). Thanks to (2.43), we have

|un+ 1
2

m |un+ 1
2

m −→ |u|2u, a.e. in (Ω)× (0, T ) (1.65)

using (1.65), and recalling again Lions lemma [Lio69], we will get

Q
1
2

∆(|u|2u)∆ ⇀ |u|2u weakly in L2(0, T ;L2(Ω)). (1.66)

furthermore, combining (2.43) and (2.39),

Q∆(Fa4
(u))∆ ⇀

1

2
|u|2ux +

1

4
(|u|2u)x −

1

4
u2ux weakly in L2(0, T ;L2(Ω)) (1.67)

Q∆(Fa5
(u))∆ ⇀ u|u|2x weakly in L2(0, T ;L2(Ω)) (1.68)

Multiplying componentwise the numerical scheme (1.14) by ∆x∆tφnk , sum by parts, and passing to
the limit, is easy to see that u = u(tn) is, indeed, the weak solution of problem (1.1), and hence the
Theorem is proved.

1.4.3 Behavior of the Energy

In this presentation, we will consider the energy E(n) of the numerical solution un, at a timestep
n, as follows

E(n) :=
a1

2
||D+un||22 −

a3

4
||un||44. (1.69)

The following property holds:

Lemma 1.4.8. ∀ϕ ∈ XM , and for ϕ+,∈ CM+1 : (ϕ+)j = ϕj+1, j = 0, . . . ,M , and ϕ− ∈
CM+1 (ϕ−)j = ϕj−1, j = 1, . . . ,M, (ϕ−)0 = 0, , we have

Re
(
|ϕ|2Dϕ,D2ϕ

)
2

=
1

2

(
|ϕ|2,D+|D−ϕ|2

)
2

(1.70)

Re
(
D(|ϕ|2)ϕ,D2ϕ

)
2

=

(
|ϕ+|2 + 2|ϕ|2 + |ϕ−|2

4
,D+D−|ϕ|2

)
2

(1.71)

Re
(
D(|ϕ|2ϕ),D2ϕ

)
2

=

(
|ϕ+|2 + |ϕ|2 + |ϕ−|2

2
,D+|D−ϕ|2

)
2

(1.72)

+
∆x2

2

(
D|ϕ|2,

∣∣D2ϕ
∣∣2)

2

Re
(
D3ϕ,D2ϕ

)
2

= 0 (1.73)

Proof. starting with (1.70), we have

|ϕj |2DϕjD2ϕj = |ϕj |2DϕjD+D−ϕj

=
1

2
|ϕj |2

(
D+ϕjD−D+ϕj

)
+

1

2
|ϕj |2

(
D−D+D−ϕj

)
(1.74)
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using (1.53) over the real part of (1.74), we get

Re
(
|ϕj |2DϕjD2ϕj

)
=

1

4
|ϕj |2D+

(
|D−ϕj |2

)
− ∆x2

4
|D+D−ϕj |2|ϕj |2

+
1

4
|ϕj |2D−

(
D−(|D+ϕj |2)

)
+

∆x2

4
|D−D+ϕj |2|ϕj |2

=
1

4
|ϕj |2

(
D+
(
|D−ϕj |2

)
+D−

(
|D+ϕj |2

))
.

Summing over j, we get

Re
(
|ϕ|2Dϕ,D2ϕ

)
2

=
1

4

(
|ϕ|2,D+|D−ϕ|2

)
2
− 1

4

(
D+|ϕ|2, |D+ϕ|2

)
2

=
1

2

(
|ϕ|2,D+|D−ϕ|2

)
2

hence, (1.70) is proved. To obtain (1.71), we will first require the following property for
a, b ∈ CZ:

D(ajbj) = aj+1
D+bj

2
+ aj−1

D−bj
2

+ bjDaj (1.75)

D−(ajbj) = bj−1D
−aj + ajD

−bj (1.76)

Using this over all the components of ϕ in (1.71), we get(
Dϕ,D2ϕ

)
2

= −
(
D−

(
D(|ϕ|2)ϕ

)
,D−ϕ

)
2

= −
(
D(|ϕ|2)D−ϕ,D−ϕ

)
2
−
(
ϕ−D

−D(|ϕ|2)D−ϕ
)

2

= −
(
D(|ϕ|2), |D−ϕ|2

)
2
−
(
ϕ−D

−D(|ϕ|2),D−ϕ
)

2

extracting the real part,

Re
(
Dϕ,D2ϕ

)
2

=
(
|ϕ|2,D(|ϕ|2)

)
2
−
(
D−D(|ϕ|2),

(1

2
D−|ϕ|2 − ∆x

2
|D−ϕ|2

))
2

=
(
|ϕ|2,D(|ϕ|2)

)
2
− ∆x

2

(
D−(|ϕ|2),D(|D−ϕ|2)

)
2

=
(
|ϕ|2,D

[
|D−ϕ|2 + |D+ϕ|2

])
2

= −1

4

(
D−|ϕ+|2 + 2D−|ϕ|2 + D−|ϕ−|2, |D−ϕ|2

)
2

=
( |ϕ+|2 + 2|ϕ|2 + |ϕ−|2

4
,D+

(
|D−ϕ|2

))
2
.

Hence, (1.71) is proved. To prove (1.72), and starting by using (1.75), we have(
D
(
|ϕ|2ϕ

)
,D2ϕ

)
2

=
(
D
(
|ϕ|2

)
ϕ,D2ϕ

)
2

+
1

2

(
ϕ+|2D+ϕ+ |ϕ−|2D−ϕ,D2ϕ

)
2

(1.77)

extracting the real part, and by (1.53), we have

Re
(
|ϕ+|2D+ϕ,D2ϕ

)
2

=
1

2

(
|ϕ+|2,D+|D+ϕ|2

)
2

+
∆x

2

(
|ϕ+|2|D2ϕ|2

)
2

(1.78)

Re
(
|ϕ−|2D−ϕ,D2ϕ

)
2

=
1

2

(
|ϕ−|2,D+|D−ϕ|2

)
2
− ∆x

2

(
|ϕ−|2, |D2ϕ|2

)
2

(1.79)
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replacing (1.78) and (1.79) over the real part of (1.77), we get

Re
(
D
(
|ϕ|2ϕ

)
,D2ϕ

)
2

= Re
(
D
(
|ϕ|2

)
ϕ,D2ϕ

)
2

+
1

4

((
|ϕ+|2 + |ϕ−|2

)
,D+|D−ϕ|2

)
2

+
∆x2

2

(
D|ϕ|2, |D2ϕ|2

)
2

and recalling (1.71), the conclusion follows. Finally for (1.73),(
D3ϕ,D2ϕ

)
2

=
(
DD2ϕ,D2ϕ

)
2

= −
(
D2ϕ,DD2ϕ

)
2

= −
(
D3ϕ,D2ϕ

)
2

and hence, the proof of the Lemma is complete.

Theorem 1.4.9. Let un ∈ XM the numerical solution of (1.1) using scheme (1.14) for γ0 = 1
2

in (1.13), such that ∂
∂t

(
P∆u∆

)
is bounded in L2(0, T ;H−1(Ω)). If in (1.1) 3a2a3 = a1(a4+2a5),

then there exists C ∈ R, independent of the values of ∆x and ∆t, such that

||D+un||22 < C, ∀n ∈ N (1.80)

if and only if
E(n+1) = E(n) +O(∆t), ∀n ∈ N (1.81)

where O(∆t) means that it admits the existence of a constant K ∈ R such that |O(∆t)| ≤ ∆tK,
where K does not depend on ∆t and ∆x.

Proof. If (1.81) is true, then (1.80) follows after considering (1.25). We will now focus on the
case when (1.80) hols true. Multiplying (1.14) with ∆xDtu

n
j , sum over j, and extract the real

part, will lead us to

0 =
a1

2a4∆t
(||D+un+1||22 − ||D

+un||22)− a3

∑
j∈Z

Re
(
|un+ 1

2
j |2un+ 1

2
j Dtu

n
j

)
∆x (1.82)

+ a2

∑
j∈Z

Im
(
D3u

n+ 1
2

j Dtuj
n
)

∆x+ a4

∑
j∈Z

Im
(
Fa4(un+1)jDtu

n
j

)
∆x

+ a5

∑
j∈Z

Im
(
Fa5

(un+1)jDtu
n
j

)
∆x

and replacing Dtu
n
j from the numerical scheme on the last three products,

0 =
a1

2∆t

(
||D+un+1||22 − ||D

+un||22
)
− a3

∑
j∈Z

Re
(
|un+ 1

2
j |2un+ 1

2
j Dtu

n
j

)
∆x

+ a1a2

∑
j∈Z

Re
(
D3u

n+ 1
2

j D2u
n+ 1

2
j

)
∆x+ a1a4

∑
j∈Z

Re
(
Fa4

(un+1)jD2u
n+1 1

2
j

)
∆x

+ a1a5

∑
j∈Z

Re
(
Fa5

(un+1)jD2u
n+ 1

2
j

)
∆x+ a2a3

∑
j∈Z

Re
(
D3u

n+ 1
2

j |un+ 1
2

j |2un+ 1
2

j

)
∆x (1.83)

+ a3a4

∑
j∈Z

Re
(
Fa4

(un+1)j |u
n+ 1

2
j |2un+ 1

2
j

)
∆x+ a3a5

∑
j∈Z

Re
(
Fa5

(un+1)j |u
n+ 1

2
j |2un+ 1

2
j

)
∆x
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We will study each term in (1.83) by components if its convenient. For the second term in
(1.83), let us note that

|un+ 1
2

j |2un+ 1
2

j −
|un+1
j |2 + |unj |2

2
u
n+ 1

2
j = −∆t2

8
u
n+ 1

2
j |Dtu

n
j |2.

Hence,

Re
(
|un+ 1

2
j |2un+ 1

2
j Dtunj

)
=

1

4∆t

(
|un+1
j |4 − |unj |4

)
− ∆t2

8
Re
(
u
n+ 1

2
j |Dtu

n
j |2Dtunj

)
(1.84)

Meanwhile, and thanks to (1.73) in Lemma 1.4.8, we can get rid of the third term in (1.83).
For the fourth term in (1.83), we will need to use γ0 = 1

2 in (1.14) in order to recall (1.70),
(1.71) and (1.72) in Lemma 1.4.8; then:

Re
(
Fa4(un+1),D2un+ 1

2

)
2

=

(
|un+ 1

2
+ |2 + 2|un+ 1

2 |2 + |un+ 1
2

− |2

8
,D+|D−un+ 1

2 |2
)

2

+
∆x2

4

(
D|un+ 1

2 |2,
∣∣D2un+ 1

2

∣∣2)
2

. (1.85)

where u+ ∈ CZ : (u+)j = uj+1, and u− ∈ CZ : (u−)j = uj−1. For the fourth term, and by
(1.71) in Lemma 1.4.8:

Re
(
Fa5(un+1)D2un+1 1

2

)
2

=
(
un+ 1

2D|un+ 1
2 |2,D2un+ 1

2

)
2

=

(
|un+ 1

2
+ |2 + 2|un+ 1

2 |2 + |un+ 1
2

− |2

8
,D2|un+ 1

2 |2
)

2

(1.86)

The sixth term can be worked thanks to (1.72) in Lemma 1.4.8:

Re
(
D3un+ 1

2 , |un+ 1
2 |2un+ 1

2

)
2

= −
( |un+ 1

2
+ |2 + |un+ 1

2 |2 + |un+ 1
2

− |2

2
,D+|D−un+ 1

2 |2
)

2

+
∆x2

2

(
D|un+ 1

2 |2,
∣∣D2un+ 1

2

∣∣2)
2

(1.87)

The last two terms in (1.83) require more effort. For the second to last one with γ0 = 1
2 , and

because Re(Du, u) = 0, ∀u ∈ CZ, we have

Re
(
Fa4(un+1), |un+ 1

2 |2un+ 1
2

)
2

=
1

2
Re
(
|un+ 1

2 |2Dun+ 1
2 , |un+ 1

2 |2un+ 1
2

)
2

+
1

2
Re
(
D
(
|un+ 1

2 |2un+ 1
2
)
, |un+ 1

2 |2un+ 1
2

)
2

− 1

2
Re
(
D(|un+ 1

2 |2)un+ 1
2 , |un+ 1

2 |2un+ 1
2

)
2

=
1

2
Re

((
|un+ 1

2 |4Dun+ 1
2 , un+ 1

2

)
2
−
(
|un+ 1

2 |4,D|un+ 1
2 |2
)

2

)
(1.88)
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let us consider the following identity for a, b ∈ R

b2(b− a) =
1

3
(b3 − a3)− 1

3
(b− a)3 + b(b− a)2.

Due to that, and after reordening the sum of the innter product (·)2, we have(
|un+ 1

2 |4,D|un+ 1
2 |2
)

2
=

∆x2

6

((
D+|un+ 1

2 |2
)2
,D+|un+ 1

2 |2
)

2
(1.89)

On the other hand, after recalling identity (1.53),

Re
(
|un+ 1

2 |4Dun+ 1
2 , un+ 1

2

)
2

=
3

2

(
|un+ 1

2 |4,D|un+ 1
2 |2
)

2
− ∆x2

6

((
D+|un+ 1

2 |2
)2
,D+|un+ 1

2 |2
)

2
(1.90)

then, replacing (1.89) and (1.90) in (1.88),

Re
(
Fa4(un+1), |un+ 1

2 |2un+ 1
2

)
2

= −∆x2

24

((
D+|un+ 1

2 |2
)2
,D+|un+ 1

2 |2
)

2
(1.91)

Using the same technique, we can write

Re
(
Fa5(un+1), |un+ 1

2 |2un+ 1
2

)
2

=
∆x2

6

((
D+|un+ 1

2 |2
)2
,D+|un+ 1

2 |2
)

2
. (1.92)

Replacing (1.84), (1.86), (1.85), (1.87), (1.91) and (1.92) in (1.83); multiplying by ∆t, using
the condition 3a2a3 = a1(a4 + 2a5), and recalling definition (1.69), we get

E(n+1) = E(n) − a3
∆t3

8
Re
(
un+ 1

2 |Dtu
n|2,Dtu

n
)

2

+ ∆x2a2a3
∆t

4

(
1

2

(
D2|un+ 1

2 |2,D+|D−un+ 1
2 |2
)

2

+
( 3a5

a5 + 2a4
− 2
)(

D|un+ 1
2 |2, |D2un+ 1

2 |2
)

2

)
(1.93)

+ a3

(
4a5 − a4

)
∆t

∆x2

24

((
D+|un+ 1

2 |2
)2
,D+|un+ 1

2 |2
)

2
.

Let us now consider the following inequality for a, b ∈ R due to Young Inequality

a2 − b2

∆x
≤ a2 + b2 +

1

2

(a− b
∆x

)2

using the previous inequality for a = |uj+1| and b = |uj |, along with reverse triangle inequality,

D+|un+ 1
2

j |2 =
|un+ 1

2
j+1 |2 − |u

n+ 1
2

j |2

∆x
≤ |un+ 1

2
j+1 |

2 + |un+ 1
2

j |2 +
1

2
|D+u

n+ 1
2

j |2

D−|un+ 1
2

j |2 =
|un+ 1

2
j |2 − |un+ 1

2
j−1 |2

∆x
≤ |un+ 1

2
j |2 + |un+ 1

2
j−1 |

2 +
1

2
|D−un+ 1

2
j |2
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thus, we have

D+|D−un+ 1
2

j |2 ≤ |D+u
n+ 1

2
j |2 + |D−un+ 1

2
j |2 +

1

2
|D2u

n+ 1
2

j |2 (1.94)

D2|un+ 1
2

j |2 ≤ 1

2∆x

(
|2un+ 1

2
j+1 |

2 + 4|un+ 1
2

j |2 + 2|un+ 1
2

j−1 |
2 + |D+u

n+ 1
2

j |2 + |D−un+ 1
2

j |2
)

(1.95)

|D2u
n+ 1

2
j |2 =

∣∣∣∣∣u
n+ 1

2
j+1 − 2u

n+ 1
2

j + u
n+ 1

2
j−1

∆x2

∣∣∣∣∣
2

≤ 1

2∆x2

(
|D+u

n+ 1
2

j |2 + |D−un+ 1
2

j |2
)
. (1.96)

Assuming (1.80) is true, then the third, fourth and fifth term in (1.93) will be bounded by
that C constant thanks to (1.94), (1.95) and (1.96). The second term at the right hand side
of (1.93) is also bounded because ∂

∂tP∆u∆ is bounded in L2(0, T ;H−1(Ω). Thus, all terms in
(1.92) will follow the behavior of ∆t; and therefore, (1.93) admits the existence of a constant
K ∈ R such that (1.81) holds. This concludes the proof.

Remark 1.4.10. Theorem 1.4.9 states that the energy of the numerical solution is not com-
pletely preserved, even when ||D+un||22 is bounded by a real constant. From (1.93) however, if
||D2un||22 is bounded, then this quantity can be controlled better. This can be seen as a regular-
ity hypothesis necessary to improve the preservation; improvement which in turn is sufficient
to conclude the regularity hypothesis.

1.5 Numerical Experiments

In this section we will show some numerical experiments with results supporting the theorems
demonstrated in the previous sections. In particular, we will test the scheme with some known
examples whose exact solutions are previously known. Finally, we will test the code for an
initial condition representing colliding solitons.

1.5.1 Computing Strategy

Some comments ought to be made if we consider that solutions of (1.1) are defined over the
whole real line:

• A bounded domain [x0, xf ] ⊂ R is considered because of computational limitations.
As such, the space domain will be discretized using 2N equally spaced grids. Also,
the numerical solution un will be considered as a complex-valued vector with 2M + 1
elements for each timestep. Theorems proved in the previous sections will still hold.

• The finite difference operators D, D2 and D3 can be represented as matrices in R2M+1×2M+1

operating over complex-valued vectors. Furthermore: because these operators will act
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only over the numerical solution un, and because of our choice on the boundary condi-
tions, their matrix representations can be written as:

D =
1

∆x



0 1

−1 0
. . .

. . .
. . .

. . .
. . . 0 1

−1 0


, D2 =

1

∆x2



−2 1

1 −2
. . .

. . .
. . .

. . .
. . . −2 1

1 −2


,

D3 =
1

∆x3



0 −1 1
2

1 0 −1 1
2

−1
2 1 0 −1 1

2
. . .

. . .
. . .

. . .
. . .

−1
2 1 0 −1 1

2
−1

2 1 0 −1
−1

2 1 0


.

• Therefore, the numerical scheme can be rewritten using matrix notation: for a given
u0 ∈ CM , the numerical scheme (1.14) allows us to compute un ∈ CM , the numerical
approximation of the solution u(·, tn) ∈ L2(Ω), as follows:[
− 1

∆t
I + i

a1

2
D2 − a3

2
D3

]
un+1 +

[
1

∆t
I + i

a1

2
D2 − a3

2
D3

]
un =

a4Fa4(un+1) + a5Fa5(un+1)− ia2|un+ 1
2 |un+ 1

2 (1.97)

To compute the numerical solution, we will use a Picard fixed-point iteration in order
to solve equation (1.97) for each time-step, as applied in Delfour, Fortin and Payre
[DFP81]. For a given up=1 = un ∈ CM , we compute a sequence of complex vectors
{up}, p = 2, 3, 4, . . . , until a stopping criteria is verified. The sequence is given by

up =

[
− 1

∆t
I + i

a1

2
D2 − a3

2
D3

]−1
[
a4Fa4(up−1) + a5Fa5(up−1)

− ia2

∣∣∣up−1 + un

2

∣∣∣2(up−1 + un

2

)
−
(

1

∆t
I + i

a1

2
D2 − a3

2
D3

)
un

]
(1.98)

In other words, we have to solve a linear system of equations many times per timestep
until a stopping criterion is fulfilled, where the matrix to be inverted has a pentadiagonal
structure. The fixed point scheme can stop by two reasons: first, if for some p ∈ N we
have

||up − up−1||2L2(Ω) < δ̂

where δ̂ is given. In our computations: δ̂ = 10−6. In that case, we do un+1 = up and
then proceed to the next timestep. The second reason used to stop the iteration is if
(1.98) is not a contraction anymore; that is,

||up − up−1||2
||up−1 − up−2||2

≥ 1 (1.99)
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In that case, the scheme cannot guarantee the uniqueness of the numerical solution;
and thus, the computation ends with no output. This conditions needs of al least three
iterations of the fixed-point scheme in order to proceed with the verification. The scheme
has linear convergence for ∆t sufficiently small.

1.5.2 Single travelling soliton.

As initial condition, we will use the solution found in Potasek and Tabor [PT91b] when t = 0,
this is,

u(x, t) = u0e
itsech(kx+ lt)

where k = 1, |u0|2 = 6, and l = −0.3; while in (1.3), a1 = 3, a2 = 1, a3 = 0.3, a4 = a5 = 0.1.
In our computations, t ∈ [0, 100], x ∈ [−10, 50], ∆t = 0.0001 and ∆x = 60

212 ≈ 0.014. The form
of the travelling soliton can be found in Figure 1.6. The behavior of the preserved quantities
can be seen in Figure 1.7; where ||u0||2 = 3.464101 and the difference in time is equal to
5.7802 · 10−10, and E0 = −12.00029 with a difference in time equal to 6.2904 · 10−4.
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Fig. 1.1: First case results. Left: time evolution of the absolute value of the solution. Right:
numerical error of the solution.
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1.5.3 Collision of 2 Solitons for a HNLS equation.

In this second example, we will replicate a collision between two solitons. For this we consider
the exact solution of Hirota described in [Hir73a]. Then we consider our numerical scheme to
approximate the Hirota equation:

iut + uxx + |u|2u+ i
1

10
uxxx + i

3

10
|u|2ux = 0.

for (x, t) ∈ [−50, 50] × (0, 15]. At that time, we consider as initial condition the solution
obtained by Hirota for t = 0, that approximately corresponds to the sum of two hyperbolic
secants of different amplitudes and centered at distant points. In this way, we calculate the
numerical solution described in section 2 of this paper and we compare the result with the
exact solution described in Hirota [Hir73a].

Because 3a2a3 = a1a4, we conclude that there should not exist any energy decay at L2 and
H1 levels. For our calculations, we have made ∆t = 0.0001, and ∆x = 100

215 ≈ 0.00305.

Regarding the error, we can observe that the shape of the numerical solution moves away from
the exact solution just at the moment of crossing between both solitons (see Figure 1.5 right).
However, surprisingly we can notice that past the crossing, the numerical solution returns to
reasonable levels of error (t > 13). The time evolution of the preserved quantities can be seen
in Figure 1.4, where ∆EL2 = 1.216× 10−8 and ∆EH1 = 4.088× 10−5.

1.5.4 3 Soliton solution for a modified KdV problem.

We will use as initial condition the 3 soliton solution proposed by Hirota [Hir73b] for a modified
Korteweg-de Vries (KdV) equation for (x, t) ∈ [−80, 250]× (0, 1500]:

ut + 24u2ux + uxxx = 0

given that u(x, t) ∈ R for thte KdV problem, we can use Fa4 or Fa5 to approximate the
nonlinear term u2ux. For the sake of this article, we will use the first one; hence, in (1.1),
a1 = a2 = a5 = 0, a3 = 1, and a4 = 24. The initial condition is given by the 3-soliton solution
proposed by Hirota when t = 0:

u(x, t) =
∂φ(x, t)

∂x
tanφ(x, t) = g(x, t)/f(x, t)

f(x, t) = 1 + a12 exp(ξ1 + ξ2) + a13 exp(ξ1 + ξ3) + a23 exp(ξ2 + ξ3)

g(x, t) = exp(ξ1) + exp(ξ2) + exp(ξ3) + a123 exp(ξ1 + ξ2 + ξ3)

a123 = a13a13a23

ξi = Pix+ P 3
i t− Ci, i = 1, 2, 3

aij = −(Pi − Pj)2

(Pi + Pj)2
, i, j = 1, 2, 3, i 6= j
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in this calculation, we’ve used P1 = 0.4, P2 = 0.3, P3 = 0.2, C1 = 12, C2 = 0, C3 = −8,
∆x = 330

212 ≈ 0.056, ∆t = 0.1. As seen in Figure 1.3, the numerical solution replicates the
exact solution with small errors. Numerical L2 norm is preserved, with a value equal to
||u0||2 = 0.67082039 and a difference in time equal to 1.5419 · 10−12.
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Fig. 1.3: Left: numerical error in function of time. Right: time evolution of the 3-soliton
solution for the KdV equation.

1.5.5 HNLS equation with a imaginary parameter.

In the following example, we will solve equation (1.1) using a1 = a2 = 1, a3 = 0.01, a4 = 0.1
and a5 = −0.07 + 0.01i. Here, (x, t) ∈ [−10, 100] × [0, 100] for ∆t = 0.001 and ∆x = 110

212 ≈
0.0268. Our intention with this last experiment is to test the code when some of the hypothesis
of the theorems proved here are missing: when one of the parameters of the equation is not a
real number. As initial condition, we will use again the solution found in Potasek and Tabor
[PT91b] when t = 0

u(x, t) = u0e
itsech(kx+ lt)

where u0 =
√

2, k = 1 and l = 0.0133− 0.0067i. Figure 1.6 illustrates the situation. Through
the calculations, the unicity condition (1.99) was verified in each timestep, which gives us
confidence in our results. As stated in the introduction, when Im(a5) 6= 0, an additional
nonlinear effect is added; the solitons travels following a nonlinear variation of the velocity
due to a frequency shift. The energy at L2 level keeps preserved up to a difference of the order
of 10−3, but not the one at H1 level. This should be expected because of the variation of the
velocity with time.
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Fig. 1.6: Numerical solution when Im(a5) 6= 0.
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Chapter 2

Finite Difference scheme for a HNLS
Equation with localized dissipation

2.1 Introduction

2.1.1 Description of the Problem.

In this chapter, we will study the following HNLS equation with damping:
i ut + a1 uxx + a2 |u|2 u+ i

[
a3 uxxx + a4

(
|u|2u

)
x

+ a5 u
(
|u|2
)
x

+ a(x)u
]

= 0 in (0, L) × (0,∞)

u(0, t) = u(L, t) = 0, ux(L, t) = 0 ∀t > 0

u(x, 0) = u0 in (0, L)

(2.1)

so that the real constants a1, a3 > 0 and ai 6= 0, i = 2, 4, 5. Let us assume that a(x) is a
non-negative real valued function belonging to L∞(0, L); moreover, we will assume that

a(x) > a0 > 0 a.e. in an open, non-empty subset ω of (0, L), (2.2)

where the damping is acting effectively. The main objective of the present chapter is to prove
the exponential decay to zero of the L2−norm of the numerical solutions in problem (2.1);
that is, there exist positive constants C, γ, such that

||un||2 ≤ Ce−γ tn ||u0||2, ∀ tn ≥ T0, (2.3)

where, in this chapter, we will consider the initial data u0 in bounded sets of L2(Ω). This, in
turn, is motivated from the result proved in [CCSVA], where the well-posedness of problem
(2.1) is demonstrated, along with the exponential decay of the solution at L2− level.

In what follows we would like to mention some important papers in connection with the subject
of the present chapter. Let us start by considering the following initial boundary value problem
of the HNLS equation with localized damping:

i ut + a1 uxx + |u|2 u+ i a3 uxxx + i a(x)u = 0 in (0, L) × (0,∞)

u(0, t) = u(L, t) = 0, ux(L, t) = 0 for all t > 0

u(x, 0) = u0 in (0, L),

(2.4)

where a1, a3 ∈ R, a3 6= 0 and the damping a ∈ C∞(0, L) satisfies (2.2). We observe that the
problem (2.4) is a particular case of the problem (2.1) considering a2 = 1 and a4 = a5 = 0.
Bisognin et al., [BBV07] proved the exponential decay in L2– level. Using compactness argu-
ments, the smoothing effect of the KdV equation on the line and the unique continuation
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results, the authors deduced the exponential decay in time of the solutions of the linear
equation and a local uniform stabilization result of the solutions of the nonlinear equation
when the localized damping is active simultaneously only in a neighborhood of both extremes
x = 0, x = L. In order to prove the result, the authors used multipliers together with com-
pactness arguments and the Unique Continuation Principle valid for this problem given in
Bisognin and Vera, [BV07].

Later, Alves, Sepúlveda and Vera, [ASV09] studied local and global existence and smoothing
properties of the problem (2.4) with a(x) ≡ 0. In this situation, the authors verified gain
in regularity for this equation. Specifically, they were proved conditions on this problem for
which initial data u0 possessing sufficient decay at infinity and minimal amount of regularity
will lead to a unique solution u(t) ∈ C∞(R) for 0 < t < T , where T is the existence time of
the solution.

Ceballos et al.,[CCPVV05], analyzed directly the exact boundary controllability problem for
the higher order Schrödinger equation with a ≡ 0 by adapting a method which combines the
Hilbert Uniqueness Method (HUM) and multiplier techniques.

Chen [CLL79] studied the internal stabilization of a simplified version for the HNLS equation:
the nonlinear terms |u|2xu and (|u|2u)x are replaced by a linear term ux. In this case, a result
similar to (2.3) was obtained by Chen using Carleman estimates, but nonetheless, there are
no numerical experiments replicating the result.

A damping of the type a(x)u was introduced in Menzala et al., [PMVZ02] to stabilize the
KdV system inspired in the work of Rosier, [Ros97]. More precisely, considering the damping
localized at a subset ω ⊂ (0, L) containing nonempty neighborhoods of the end-points of an in-
terval, it was shown that solutions of both linear and nonlinear problems for the KdV equation
decay, independently on L > 0. In Pazoto, [PSV10] it was proved that the same holds without
cumbersome restrictions on ω ⊂ (0, L). Linares and Pazoto, [LP09] proved the exponential
stabilization of the Korteweg-de Vries equation in the right half-line under the effect of the
same localized damping term a(x)u. Araruna et al., [ACFD12] proved the exponential decay
in L2 - level for the modified Kawahara equation posed in a bounded bounded interval under
the presence of a localized damping term a(x)u satisfying where the function a(·) satisfies
(2.2) . Cavalcanti et al., [CCKR14] studied the well-posedness and the asymptotic behavior
of solutions of a KdV- Burgers equation subject to a localized dissipation mechanism with
indefinite sign:

ut − uxx + uxxx + uux + λ(x)u = 0x ∈ R, t > 0, λ ∈ L∞(R)

such that a sufficient condition criteria for the exponential decay has been established. Rosier
and Zhang [RZ06] obtained similar results for a generalized KdV equation

ut + ux + a(u)ux + uxxx + b(x)u = 0, x ∈ [0, L], t ≥ 0

where b(x) is a nonnegative function with support in ω ⊂ [0, L], and a ≡ a(µ) is a given
smooth function satisfying the following growth condition

a(0) = 0, |a(j)(µ)| ≤ C(1 + |µ|p−j), ∀µ ∈ R

for j = 0, 1 if 1 ≤ p < 2, and for j = 0, 1, 2 if p ≥ 2. It is worth of mention that these results
are valid for a damping located everywhere in the domain, and for initial data in L2([0, L]).
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The study of decay rate estimates for weakly full damped semilinear focusing and defocusing
Schrödinger equations (a4 = a5 = 0)

iyt + ∆y ± |y|2y + iay = 0 in Ω× (0,∞), a > 0, (2.5)

where Ω is a bounded domain of Rn, with zero Dirichlet boundary condition, has been con-
sidered by Tsutsumi [Tsu90] where exponential stabilization of Hk-solutions (k = 1, 2) is
established. For this purpose, smallness on the initial data is assumed. Later on, Özsarı,
Kalantarov and Lasiecka [ÖKL11] generalized the previous result mentioned above (at least
for the defocusing case) by considering inhomogeneous Dirichlet boundary conditions. Small-
ness on the initial data is also assumed for proving decay rates estimates in H2−norm. In
H1−norm, no smallness is required. Indeed, the result for H1−solutions obtained in [ÖKL11]
is strong in the sense that it is independent of the dimension of the domain and the smallness
of the initial data.

On the other hand, regarding the exponential stability for the semilinear defocusing Schrödinger
equation, subject to a linear damping locally distributed and posed in unbounded domains,
namely,

iyt + ∆y − |y|2y + ia(x)y = 0 in Rn × (0,∞), n = 1, 2, (2.6)

(here a(x) ≥ a0 > 0 for ||x|| > R > 0), we would like to mention the works of the authors
Cavalcanti et al. [CCFN09], [CCSN10]. In order to achieve the desired goal, the authors make
use of two main ingredients in the proof: (i) To establish an unique continuation property
associated with regular and mild solutions of the non-damped problem iyt + ∆y − |y|2y = 0
restricted to a fixed ball of radius r > R; (ii) To employ a smoothing effect as established, for
instance, in Constantin and Saut [CS88]. In the same spirit of Cavalcanti et al., [CCFN09] we
can also mention the following works by Natali, [Nat15] regarding the one-dimensional case,
and Natali [Nat16] in the two-dimensional case. Another stabiliation result can be found in
Muñoz Rivera et al. [MRPS+19] for a problem with double power nonlinearity.

Cavalcanti et al., [CCCT17] proved the existence in H1−norm as well as the stability for the
damped defocusing Schrödinger equation using the following model:{

i ∂t y + ∆ y − |y|p y + i λ(x, t) y = 0 in Rn × (0,∞)

y(0) = y0 in Rn,
(2.7)

where n ≥ 1, p > 0. The damping coefficient λ(x, t) may vanish at infinity and satisfies the
following conditions:

λ ∈ Cb([0,∞); W 1,∞(Rn)), λ(x, t) > 0, ∀x ∈ Rn, ∀t ≥ 0. (2.8)

To prove the existence, the authors employed the method devised by Özsari, et al. [ÖKL11].
In particular, when n = 1 or n = 2, the uniqueness is obtained. Decay estimates for the
L2−norm and (H1 ∩ Lp+2)−norm are established with the help of direct multipliers method,
coupled with refined energy estimates and a lower semi-continuity argument.
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Concerning the numerical results, and regarding the finite difference method, we have to
mention one of the first proposals from Delfour et al [DFP81] to solve the problem (2.5) for
a(x) ≡ 0. Their main contribution was the way the term |u|2u was discretized in order to
preserve the numerical energy. Meanwhile, Pazoto et al. [PSV10] proposed a finite differences
scheme to solve the following KdV problem for u = u(x, t):

ut + uxxx + u4ux + ux + a(x)u = 0, (x, t) ∈ (0, L)× (0,+∞)

u(0, t) = u(L, t) = 0, ux(L, t) = 0, t ∈ (0,+∞)

u(x, 0) = u0(x), x ∈ (0, L),

for a ∈ L∞(0, L) : a(x) ≥ a0 > 0, a. e. in Ω, and Ω a nonempty open subset of (0, L). The
power nonlinearity u4ux =: F (u) was rewritten using algebraic identities widely used in finite
differences analysis, and aiming to achieve two conservation properties:

(u, F (u)) = 0, (u, F (u))x = −1

6
|u|66.

This was done in order to obtain H1
0 -estimates for the numerical solution of the problem. The

exponential decay of the energy at L2− level was also proved. A similar philosofy was applied
in the previous chapter.

For the present chapter, we will modify the numerical scheme proposed previously in (1.14),
so it considers the damping function a(x). We will prove that, along with the continuous case,
the numerical L2−norm decays exponentially when t → ∞. Convergence of the numerical
solution will be also proved. Those results will be accompanied by numerical experiments.

2.2 Numerical Scheme

The numerical scheme used in this section is a slight modification of (1.14). Because of the
difference between (1.3) and (2.1), we are in need to re-write it as

iut + a1uxx + a2|u|2u+ i
[
a3uxxx + a4|u|2ux + (a4 + a5)u

(
|u|2
)
x

+ a(x)u
]

= 0 (2.9)

Let us make the comparison between this expression, and equation (1.3) from the previous
chapter:

iut + a1uxx + a2|u|2u+ i
[
a3uxxx + a4|u|2ux + a5u

(
|u|2
)
x

]
= 0

The numerical scheme to be proposed will consider the case when a(x) ≡ 0 for x ∈ Ω. As in
the previous chapter, we need that the numerical L2 norm remains preserved when a(x) ≡ 0.
Keeping this in mind, the numerical method will be defined as follows: for a given u0 ∈ XM ,
and for un+ 1

2 := 1
2(un+1 + un), then un+1 ∈ XM , n ∈ N, approximated solution of (2.1) at the

time tn+1 = (n+ 1)∆t, ∆t < 1, can be calculated as

iDtu
n + a1D

2un+ 1
2 + a2|un+ 1

2 |2un+ 1
2 + ia3D

+D+D−un+ 1
2 + ia4Fa4(un+1)

+i(a4 + a5)Fa4+a5(un+1) + ia(x)un+ 1
2 = 0 (2.10)

u0 ∈ XM ∩ L2
∆x(0, L) given.
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where the functions Fa4 and Fa4+a5 are given by

Fa4(up) :=
1

2

∣∣∣up + un

2

∣∣∣2D(up + un

2

)
+

1

4
D

(∣∣∣up + un

2

∣∣∣2up + un

2

)
(2.11)

− 1

4

(up + un

2

)2
D
(up + un

2

)
Fa4+a5(up) :=

up + un

2
D

(∣∣∣up + un

2

∣∣∣2) (2.12)

a ∈ RM+1 : aj = a(xj), xj = x0 + j∆x, j = 0, 1, . . . ,M.

Let us mention that this scheme uses γ0 = 1
2 in (1.14). The third derivative approximation

was also changed in order to obtain estimates for D2un. In order to solve this problem in each
timestep, a Picard fixed-point iteration is used to treat the nonlinear part. In each iteration,
a linear problem is solved until a suitable stopping criteria is fulfilled.

2.2.1 Convergence of the Numerical Solution

We will make use of the same extension operators presented in the previous chapter. The
following lemma will show us some bounds of the numerical solution.

Lemma 2.2.1. Let {un}n∈N be a sequence in XM induced by the numerical scheme (2.10)
where 3a3 ≥ |3a4 + 2a5|, and let u0 ∈ XM . Then, there exist some constant K = K(T, L) > 0
such that

||Q∆u∆||2L∞(0,T ;L2(0,L)) ≤ ||u
0||22, ∀n ∈ N (2.13)

||Q
1
2
∆D2u∆||2L2(0,T ;L2(0,L)) ≤

1

2∆x
||u0||22 (2.14)

||P
1
2

∆u∆||2L2((0,T );H1
0 (0,L)) ≤ K||u

0||22 (2.15)

||Q
1
2
∆(|u|2ux)∆||2L2(0,T ;L2(0,L)) ≤ K||q∆u

0
∆||6L2(0,L) (2.16)

||q∆(|u|2x)∆||2L2(0,L) ≤ 32(1 + ∆x2)||q∆u∆||2L∞(0,L)||p∆u∆||2H1
0 (0,L) (2.17)

Proof. We start by multiplying (2.10) component-wise by ∆xu
n+ 1

2
j , sum over j and extract

the imaginary part. This will lead us to

1

2∆t

(
||un+1||22 − ||un||22

)
− a3Re

(
D+D−un+ 1

2 ,D−un+ 1
2

)
2

+
(
aun+ 1

2 , un+ 1
2

)
2

= 0 (2.18)

We can re-write the second term in (2.18) as

Re
(
D+D−un+ 1

2 ,D−un+ 1
2

)
2

= −1

2

∣∣D−un+ 1
2

1

∣∣2 − ∆x

2

∣∣∣∣D+D−un+ 1
2

∣∣∣∣2
2

and thus, (2.18) can be written as

||un+1||22 − ||un||22
2∆t

+ a3

(1

2
|D−un+ 1

2
1 |2 +

∆x

2
||D+D−un+ 1

2 ||22
)

+

M−1∑
j=1

aj |u
n+ 1

2
j |2∆x = 0. (2.19)
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Because the damping function is positive in all its domain, we can conclude (2.13). Multiplying
(2.18) by 2∆t, dropping some terms, and summing for n = 0, 1, . . . , N while considering (2.19),
we get

a3∆x
N∑
n=0

||D+D−un+ 1
2 ||22∆t ≤

N∑
n=0

||un||22 − ||un+1||22 = ||u0||22 − ||uN+1||22

and thus, (2.14) can be concluded. In order to prove (2.15), we need to multiply (1.14)

component-wise by j∆xu
n+ 1

2
j , sum over j = 0, 1, . . . ,M − 1, and extract the imaginary part.

Initially we have

i
(
Dtu

n+ 1
2 , un+ 1

2

)
x

+ a1

(
D+D−un+ 1

2 , un+ 1
2

)
x

+ ia2

(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
x

+ia3

(
D+D+D−un+ 1

2 , un+ 1
2

)
x

+ ia4

(
Fa4(un+1), un+ 1

2

)
x

+i(a4 + a5)
(
Fa4+a5(un+1), un+ 1

2

)
x

+ i
(
aun+ 1

2 , un+ 1
2

)
x

= 0

(2.20)

We will study each term in (2.20). First, and using the definition (1.8), it is easy to see that

Im

(
i
(
Dtu

n, un+ 1
2

)
x

)
=

1

2∆t
(||un+1||2x − ||un||2x) (2.21)

Using (1.27) from the previous chapter, we can write(
D+D−un+ 1

2 , un+ 1
2

)
x

= −||D−un+ 1
2 ||2x + ∆x||D−un+ 1

2 ||22 −∆x
(
D−un+ 1

2 , un+ 1
2

)
2
.

Hence,

Im
(
D+D−un+ 1

2 , un+ 1
2

)
x

= −∆xIm
(
D−un+ 1

2 , un+ 1
2

)
2
. (2.22)

The following identity is also straightforward

Im
(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
x

= 0. (2.23)

For the third derivative term, we have that

Im

(
i
(
D+D+D−un+ 1

2 , un+ 1
2

)
x

)
= −∆x

2 |D
−u

n+ 1
2

1 |2 + 3
2 ||D

+un+ 1
2 ||22

+∆x
2 ||D

+D−un+ 1
2 ||2x − ∆x2

2 ||D
+D−un+ 1

2 ||22

(2.24)

Indeed: for u ∈ XM , we can write(
D+D+D−u, u

)
x

= −
(
D+D−u,D−u

)
x

+ ∆x
(
D+D−u,D−u

)
2

+ ||D+u||22 (2.25)
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Denoting b := D−z, and using (1.30), we can re-write the first term in the right hand side of
(2.25) as

Re
(
D+D−u,D−u

)
x

= −1

2
||D−u||22 −

∆x

2
||D+D−u||2x

Hence,

Re
(
D+D+D−u, u

)
x

=
3

2
||D+u||22 +

∆x

2
||D+D−u||2x + ∆xRe

(
D+D−u,D−u

)
2
. (2.26)

On the other hand

Re
(
D+D−u,D−u

)
2

= −|D
−u1|2

2
− ∆x

2
||D+D−u||22,

(1.42) can be then obtained combining this last result with (2.26). For the nonlinear terms
Fa4 and Fa4+a5 , we have

(
Fa4(un+1), un+ 1

2

)
x

:=

(
1

2
|un+ 1

2 |2D
(
un+ 1

2

)
, un+ 1

2

)
x

+

(
1

4
D
(
|un+ 1

2 |2un+ 1
2

)
, un+ 1

2

)
x

(2.27)

−

(
1

4

(
un+ 1

2

)2
D
(
un+ 1

2

)
, un+ 1

2

)
x(

Fa4+a5(un+1), un+ 1
2

)
x

:=

(
un+ 1

2D
(
|un+ 1

2 |2
)
, un+ 1

2

)
x

(2.28)

Using (1.29), we have

(
D(|un+ 1

2 |2un+ 1
2 ), un+ 1

2

)
x

= −
(
|un+ 1

2 |2un+ 1
2 ,Dun+ 1

2

)
x

+
∆x

2

(
|un+ 1

2 |2un+ 1
2 ,D−un+ 1

2

)
2

− ∆x

2

(
|un+ 1

2 |2un+ 1
2 ,D+un+ 1

2

)
2
−
(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
2

(2.29)

and, at the same time,

(
(un+ 1

2 )2Dun+ 1
2 , un+ 1

2

)
x

=
(
|un+ 1

2 |2un+ 1
2 ,Dun+ 1

2

)
x

(2.30)

Combining (2.29) and (2.30) in (2.27), we get
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(
Fa4(un+1), un+ 1

2

)
x

=
1

2

(
|un+ 1

2 |2D
(
un+ 1

2

)
, un+ 1

2

)
x
− 1

2

(
|un+ 1

2 |2un+ 1
2 ,Dun+ 1

2

)
x

+
∆x

8

(
|un+ 1

2 |2un+ 1
2 ,D−un+ 1

2

)
2

− ∆x

8

(
|un+ 1

2 |2un+ 1
2 ,D+un+ 1

2

)
2
− 1

4

(
|un+ 1

2 |2un+ 1
2 , un+ 1

2

)
2

and extracting the real part, we get

Re
(
Fa4(un+1), un+ 1

2

)
x

=
∆x

8
Re
(
|un+ 1

2 |2un+ 1
2 ,D−un+ 1

2

)
2

− ∆x

8
Re
(
|un+ 1

2 |2un+ 1
2 ,D+un+ 1

2

)
2
− 1

4
||un+ 1

2 ||44 (2.31)

and recalling that D2u = D+u−D−u
∆x

Re
(
Fa4(un+1), un+ 1

2

)
x

= −∆x2

8
Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2

)
x
− 1

4
||un+ 1

2 ||44 (2.32)

Finally, for the last nonlinear term, we have

(
Fa4+a5(un+1), un+ 1

2

)
x

=
(
un+ 1

2D(|un+ 1
2 |2), un+ 1

2

)
x

=
(
D|un+ 1

2 |2, |un+ 1
2 |2
)
x

= −
(
|un+ 1

2 |2,D|un+ 1
2 |2
)
x

+
∆x

2

(
|un+ 1

2 |2,D−|un+ 1
2 |2
)

2

− ∆x

2

(
|un+ 1

2 |2,D+|un+ 1
2 |2
)

2
− ||un+ 1

2 ||44

and thus,

Re
(
Fa4+a5(un+1), un+ 1

2

)
x

=
∆x

4

(
|un+ 1

2 |2,D−|un+ 1
2 |2
)

2
−∆x

4

(
|un+ 1

2 |2,D+|un+ 1
2 |2
)

2
−1

2
||un+ 1

2 ||44

which, in turn, can be rewritten as

Re
(
Fa4+a5(un+1), un+ 1

2

)
x

= −∆x2

8

(
|un+ 1

2 |2,D2|un+ 1
2 |2
)

2
− 1

2
||un+ 1

2 ||44. (2.33)

Combining together (2.21), (2.22), (2.23), (2.24), (2.32) and (2.33); multiplying by ∆t, and
summing over n, we obtain
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||u0|2x
2

=
||uN+1||2x

2
− a1∆x

N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t

+ a3

(
− ∆x

2

N∑
n=0

|D−un+ 1
2

1 |2∆t+
3

2

N∑
n=0

||D+un+ 1
2 ||22∆t

+
∆x

2

N∑
n=0

||D+D−un+ 1
2 ||2x∆t− ∆x2

2

N∑
n=0

||D+D−un+ 1
2 ||22∆t

)

− a4
∆x2

8

N∑
n=0

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2
)

2
∆t

− (a5)

(
∆x2

8

N∑
n=0

(
|un+ 1

2 |2,D2|un+ 1
2 |2
)

2
∆t

)

− a4 + 2a5

4

N∑
n=0

||un+ 1
2 ||44∆t+

N∑
n=0

(
aun+ 1

2 , un+ 1
2

)
x
∆t

Let us recall the fact that a1, a3 > 0. This can let us drop some terms in the above equality
to get

||u0||2x
2
≥ −a1∆x

N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t+

3a3

2

N∑
n=0

||D+un+ 1
2 ||22∆t

− a3
∆x2

2

N∑
n=0

||D+D−un+ 1
2 ||22∆t− a3

∆x

2

N∑
n=0

|D−un+ 1
2

j |2∆t

− a4
∆x2

8

N∑
n=0

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2
)

2
∆t (2.34)

− (a5)

(
∆x2

8

N∑
n=0

(
|un+ 1

2 |2,D2|un+ 1
2 |2
)

2
∆t

)

− a4 + 2a5

4

N∑
n=0

||un+ 1
2 ||44∆t

As in the previous chapter: using (1.24) and (1.25) along with Young, Cauchy-Schwarz and
Hölder inequalities, and for T = N∆t, we have

N∑
n=0

Im
(
D−un+ 1

2 , un+ 1
2

)
2
∆t ≤ 1

2

N∑
n=0

||D+un+ 1
2 ||22∆t+

T

2
||u0||22 (2.35)

N∑
n=0

Re
(
|un+ 1

2 |2un+ 1
2 ,D2un+ 1

2

)
2
∆t ≤ 1

∆x

N∑
n=0

(
||un+ 1

2 ||42 + ||D+un+ 1
2 ||22
)

∆t. (2.36)

Using (1.25), replacing (2.35) and (2.36) in (2.34), and summing by parts in the sixth term at
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the right hand side of (2.34),

||u0||2x
2

+ a1
∆x

2

N∑
n=0

||D+un+ 1
2 ||22∆t+ a1T

∆x

2
||u0||22

+ a3
∆x2

2

N∑
n=0

||D+D−un+ 1
2 ||22∆t+ a3

∆x

2

N∑
n=0

|D−un+ 1
2

j |2∆t

+ |a4|
∆x

8

N∑
n=0

(
||un+ 1

2 ||42 + ||D+un+ 1
2 ||22
)

∆t

− a5
∆x2

8

N∑
n=0

||D+un+ 1
2 ||22∆t

+
1

2
|a4 + 2a5|

(
N∑
n=0

||un+ 1
2 ||62 + ||D+un+ 1

2 ||22∆t

)
(2.37)

≥ 3a3

2

N∑
n=0

||D+un+ 1
2 ||22∆t

Meanwhile, let us recall equality (2.19). Multiplying it by ∆t, and summing from n = 0 to N ,
we get

−a3

N∑
n=0

|D−un+ 1
2

1 |2∆t− a3
∆x

2

N∑
n=0

||D+D−un+ 1
2 ||22∆t (2.38)

=
||uN+1||22 − ||u0||22

2
+

N∑
n=0

(
aun+ 1

2 , un+ 1
2

)
2
∆t ≥ −1

2
||u0||22

therefore,

||u0||2x +
(
a1∆x+

(
2a3 + |a4|

)∆x

4
||u0||22 + |a4 + 2a5|||u0||42

)
T ||u0||22

+
(
a1∆x+ |a4|

∆x

4
− a5

∆x2

4
+ |a4 + 2a5|

) N∑
n=0

||D+un+ 1
2 ||22∆t

≥ 3a3

N∑
n=0

||D+un+ 1
2 ||22∆t

From here, because 3a3 ≥ |a4 + 2a5|, ||u0||2x ≤ L||u0||22, and considering ∆x� 1 we can infere
the existence of the needed constant K = K(T, L) such that (2.15) holds. To prove (2.16), let
us first note that:∣∣∣∣∣∣|un+ 1

2 |2Dun+ 1
2

∣∣∣∣∣∣2
2

=

M−1∑
j=0

|un+ 1
2

j |4|Dun+ 1
2

j |2∆x ≤ ||un+ 1
2 ||4∞

M−1∑
j=0

|Dun+ 1
2

j |2∆x.

Hence, using (2.13) and (2.15),

N∑
n=0

∣∣∣∣∣∣|un+ 1
2 |2Dun+ 1

2

∣∣∣∣∣∣2
2
∆t ≤ ||u0||42

N∑
n=0

||Dun+ 1
2 ||22∆t ≤ K||u0||62
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proving then (2.16). To prove (2.17), we will again use the identity (a2−b2)+(a−b)2 = 2a(a−b).
For a uj ∈ u, i = 0, 1, . . . , M ,

D|uj |2 = |uj |D−|uj | −
∆x2

2
(D−|uj |)2 + |uj |D+|uj |+

∆x2

2
(D+|uj |)2.

Taking the square at both sides, using inverse triangle inequality, and D2|uj | ≤ 4 ||u||∞
∆x2 , and

summing over j will lead us to

M−1∑
j=0

(D|uj |2)2∆x ≤ 32||u||2∞||D+u||22(1 + ∆x2)

and thus concluding the proof of the Lemma.

Now we are in conditions to state and prove the followig theorem:

Theorem 2.2.2. Let u∆ = {unm}m∈N a sequence in XM of solutions induced by the numerical
scheme (2.10), at a time tn = n∆t, computed from a sequence of initial conditions {u0

m}m∈N ⊂
XM using a timestep ∆t and a spacestep ∆x. If u0 ∈ XM and 6a3 ≥ |3a4 + 2a5|, then there
is a subsequence, still denoted by {unm}m∈N, such that

Q∆u∆ → u strongly in L2(0, T ;L2(0, L)), when ∆t,∆x→ 0,

where u is the weak solution of (2.1)

Proof. We infer the existence of a u such that Q∆u∆ → u weakly in L2(0, T ;L2(0, L)). From
(2.13) and (2.15), we can also say that there exists a u ∈ L2(0, T ;H1

0 (0, L)) such that {Q∆u∆}
is bounded in L2(0, T ;H1

0 (0, L)) and thus

Q∆u∆
?
⇀ u weak star in L2(0, T ;H1

0 (0, L)) (2.39)

From (1.26) and (2.15), we have

{Q
1
2
∆(|u|2u)∆} is bounded in L2(0, T ;L2(0, L)) (2.40)

And from (2.16) and (2.17),{
{Q∆Fa4(u)∆}
{Q∆Fa4+a5(u)∆}

are bounded in L2(0, T ;L2(0, L)) (2.41)

Let us now consider a ϕ ∈ H2
0 (0, L), with ϕnj = ϕ(xj , tn), 0 ≤ n ≤ N, 0 ≤ j ≤M , . Multiplying

(2.10) by ∆t∆xϕj , sum over j and then sum over n. We then get

N∑
n=0

(
Dtu

n
m, ϕ

)
2
∆t = ia1

N∑
n=0

(
D+D−u

n+ 1
2

m , ϕ
)

2
∆t− a3

N∑
n=0

(
D+D+D−u

n+ 1
2

m , ϕ
)

2
∆t

+ a2

N∑
n=0

(
|un+ 1

2
m |2un+ 1

2 , ϕ
)

2
∆t− a4

N∑
n=0

(
Fa4

(un+1
m ), ϕ

)
2
∆t (2.42)

− (a4 + a5)

N∑
n=0

(
Fa4+a5(un+1

m ), ϕ
)

2
∆t−

N∑
n=0

(
au

n+ 1
2

m , ϕ
)

2
∆t
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Our aim is to prove that the left hand side of (2.42) is bounded. From (2.13) and (2.15), and
summing by parts, we get

N∑
n=0

(
D+D−u

n+ 1
2

m , ϕ
)

2
∆t+

N∑
n=0

(
D+D+D−u

n+ 1
2

m , ϕ
)

2
∆t

≤
N∑
n=0

||D+u
n+ 1

2
m ||2||D+ϕ||2∆t+

N∑
n=0

||D+u
n+ 1

2
m ||2||D+D−ϕ||2∆t

≤ Cϕ
( N∑
n=0

||D+u
n+ 1

2
m ||2∆t+

N∑
n=0

||D+u
n+ 1

2
m ||2∆t

)
≤ 2CϕK||u0

m||2

since we are considering any ϕ ∈ H2
0 (0, L), and combining (2.39), (2.40) and (2.41) after using Cauchy-

Schwarz Inequality in (2.42) , we get{ ∂
∂t
P∆u∆

}
is bounded in L2(0, T ;H−2(0, L)).

Using H1
0 (0, L)

c
↪→ L2(0, L) ↪→ H−2(0, L), and employing Aubin-Lions Theorem, there exists a subse-

quence of {unm}m∈N, still denoted by the same form, such that,

Q∆u∆ −→ u strongly in L2(0, T ;L2(0, L)) . (2.43)

Now we will prove that u is the weak solution of (2.1). Thanks to (2.43), we have

|un+ 1
2

m |un+ 1
2

m −→ |u|2u, a.e. in (0, L)× (0, T ) (2.44)

using (2.44), and recalling again Lion’s lemma [Lio69], we will get

Q
1
2

∆(|u|2u)∆ ⇀ |u|2u weakly in L2(0, T ;L2(0, L)).

furthermore, combining (2.43) and (2.39),

Q∆(Fa4
(u))∆ ⇀

1

2
|u|2ux +

1

4
(|u|2u)x −

1

4
u2ux weakly in L2(0, T ;L2(0, L))

Q∆(Fa4+a5
(u))∆ ⇀ u|u|2x weakly in L2(0, T ;L2(0, L))

Multiplying componentwise the numerical scheme (2.10) by ∆x∆tφnk , sum by parts, and passing to
the limit, is easy to see that u = u(tn) is, indeed, the weak solution of problem (2.1), and hence the
Theorem is proved.

2.2.2 Exponential Decay.

We will now prove the exponential decay of the numerical energy.

Theorem 2.2.3. Consider a sequence {uN}N∈N ⊂ XM induced by the numerical scheme
(2.10), and consider the function a(x) and the set ω as defined in (2.2). If u0 ∈ XM , 3a3 ≥
|3a4 + 2a5|, and for T0 = n∆t > 0, there exist a positive constant C = C(T0) and µ = µ(T0),
both independent of ∆x and ∆t, such that the inequality

||un||22 ≤ C||u0||22e−µn∆t

holds for all n > 0.
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From here, we will consider T0 = N∆t fixed with N ∈ N. Before proceeding with this result,
we will state and prove the next proposition:

Proposition 2.2.4. Let T0 ≥ 0, u = u(x, t) a solution of problem (1.1), and a(x) ∈ H1(0, L).
If u is such that

u ≡ 0 in ω × (0, L)

then u ≡ 0 in (0, L)× (0, T0).

Proof. Consider the following IVP for real functions r = r(x, t) and g = g(r):
rt + a3 rxxx = g (x, t) ∈ (0, L) × (0, T0)

r(0, t) = r(L, t) = rx(L, t) = 0 t ∈ (0, T0)

r(x, 0) = r0(x) x ∈ (0, L)

(2.45)

Regarding (2.45), the next property was proved in Chen [Che18], Proposition 3.1:

Proposition 2.2.5. Consider T0 > 0. There exists two constants C > 0 and s0 > 0 such
that for any h ∈ L2(0, T0; L2(0, L)), any r0 ∈ L2(0, L) and any s ≥ s0, the solution r of the
problem (2.45) fulfills∫ T0

ε

∫ L

0

[
sψε |rxx|2 + s3 ψε |rx|2 + s5 ψ5

ε |r|2
]

e−2 sψε dx dt

≤ C
(∫ T0

ε

∫
ω

[
sψε |rxx|2 + s3 ψε |rx|2 + s5 ψ5

ε |r|2
]

e−2 sψε dx dt

+

∫ T0

ε

∫ L

0
|g|2 e−2 sψε dx dt

)
, ε ∈ (0, T0) .

where the function ψε is defined as follows: for (l1, l2) ⊂ ω such that 0 < l1 < l2 < L., and for
any ϕ ∈ C3([0, L]) given by

ϕ > 0 in [0, L];

|ϕ′| > 0, ϕ′′ < 0, ϕ′ · ϕ′′ < 0 in [0, L]\(l1, l2);

ϕ′(0) < 0 and ϕ′(L) > 0;

min
x∈ [l1,l2]

ϕ(x) = ϕ(l3) < max
x∈ [l1,l2]

ϕ(x) = ϕ(l1) = ϕ(l2),

max
x∈ [0,L]

ϕ(0) = ϕ(L) and ϕ(0) <
4

3
ϕ(l3) for some l3 ∈ (l1, l2) .

The existence of the function ϕ can be found in Capistrano-Filho et al. [CFPR15]. The
function ψε is then given by

ψε(x, t) =
ϕ(x, t)

(t− ε) · (T − ε)
.

Following the methods developed in [CFPR15], Proposition 2.2.5 holds for the following com-
plex equation: 

ut + a3 uxxx = g (x, t) ∈ (0, L) × (0, T0)

u(0, t) = y(L, t) = ux(L, t) = 0 t ∈ (0, T0)

u(x, 0) = y0(x) x ∈ (0, L)

(2.46)
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where
g(u) = i a1 uxx + i a2 |u|2 u− a4

(
|u|2 u

)
x
− a5 u

(
|u|2
)
x
− a(x)u .

Then, ∫ T0

ε

∫ L

0

[
sψε |uxx|2 + s3 ψε |ux|2 + s5 ψ5

ε |u|2
]

e−2 sψε dx dt (2.47)

≤ C
(∫ T0

ε

∫
ω

[
sψε |uxx|2 + s3 ψε |ux|2 + s5 ψ5

ε |u|2
]

e−2 sψε dx dt

+

∫ T0

ε

∫ L

0
|g|2 e−2 sψε dx dt

)
, ε ∈ (0, T0),

We observe that∫ T0

ε

∫ L

0

|g|2 e−2 s ψε dx dt ≤ C
∫ T0

ε

∫ L

0

[
|uxx|2 + |u|2

]
e−2 s ψε dx dt+

∫ T0

ε

∫ L

0

|u|6 e−2 s ψε dx dt

+

∫ T0

ε

∫ L

0

∣∣(|u|2 u)
x

∣∣2 e−2 s ψε dx dt+

∫ T0

ε

∫ L

0

∣∣u (|u|2)
x

∣∣2 e−2 s ψε dx dt

:=

∫ T0

ε

∫ L

0

[
|uxx|2 + |u|2

]
e−2 s ψε dx dt+ I .

(2.48)

Using the arguments from Chen [Che18], it can be proved that for T0 > 0, s ∈ [0, 3], and
assuming that a ∈ H1(0, L), then for all u0 ∈ L2(0, L)., the solution of the problem (1.1)
satisfies

u ∈ C(ε, T ; H3(0, L)) ∩ L2(ε, T ; H4(0, L)), for any 0 < ε < T.

Due to this local strong smoothing effect, we can infer the existence of a constant C > 0 and
C̃ such that

I ≤ C ‖u‖4L∞((0,L)× (ε,T0))

∫ T0

ε

∫ L

0

[
|ux|2 + |u|2

]
e−2 sψε dx dt

≤ C̃
(
‖u0‖L2(0,L)

) ∫ T0

ε

∫ L

0

[
|ux|2 + |u|2

]
e−2 sψε dx dt .

(2.49)

Combining (2.48) and (2.49), we obtain∫ T0

ε

∫ L

0

|g|2 e−2 s ψε dx dt ≤ C̃
(
‖u0‖L2(0,L)

) ∫ T0

ε

∫ L

0

[
|uxx|2 + |ux|2 + |u|2

]
e−2 s ψε dx dt . (2.50)

Taking s0 large enough, the estimate (2.50) can be absorbed by the left-hand side of (2.47).
Thus, it follows that∫ T0

ε

∫ L

0

[
sψε |uxx|2 + s3 ψε |ux|2 + s5 ψ5

ε |u|2
]

e−2 sψε dx dt

≤ C
(∫ T0

ε

∫
ω

[
sψε |uxx|2 + s3 ψε |ux|2 + s5 ψ5

ε |u|2
]

e−2 sψε dx dt

)
.

Since u ≡ 0 in ω × (0, T0), we infer that u ≡ 0 in (0, L) × (ε, T0). By arbitrarily of ε > 0, we
conclude that u ≡ 0 in (0, L) × (0, T0) and Proposition 2.2.4 is proved.
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For the sake of the proof of this theorem and the lemma that is left to be presented, we
will consider the sequence {uN}N∈N induced by the numerical scheme (2.10) such that un =
u(T0 = N∆t). The proof of Theorem 2.2.3 follows after proving the following lemma:

Lemma 2.2.6. Let T0 = N∆t fixed with N ∈ N, and let {uN}N∈N a sequence in XM induced
by the numerical scheme (2.10) such that ||u0||22 <∞ and using 3a3 ≥ |3a4 +2a5|. Then, there
exist a constant C = C(T0), independent of ∆t and ∆x, such that

||u0||22 ≤ C

(
a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t+
N∑
n=0

M−1∑
j=1

aj |u
n+ 1

2
j |2∆x∆t

)
(2.51)

Proof. Let N ∈ N, and consider the numerical scheme (2.10). Multiplying it by (N + 1 −
n)un+ 1

2 ∆t componentwise, extracting the imaginary part and summing over n = 0, 1, . . . , N ,
we get

||u0||22 ≤
1

2T0

N∑
n=0

||un+1||22∆t+ a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t

+
N∑
n=0

M−1∑
j=1

aj |u
n+ 1

2
j |2∆x∆t. (2.52)

In order to prove (2.51) then, we must to prove the existence of a constant C1 = C1(T0) such
that

N∑
n=0

||un+1||22∆t ≤ C1

(
a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t (2.53)

+
N∑
n=0

M−1∑
j=1

aj |u
n+ 1

2
j |2∆x∆t

)
.

We will proceed by contradiction. Hence, we must assume as true the opposite of (2.53).
Since ||Q∆u∆||L∞(0,T ;L2(0,L)) < ∞, we can extract a subsequence {uNm}m∈R, still denoting it

by {uN}N∈N, such that

lim
∆x,∆t→0

N∑
n=0
||un+1||22∆t

a3

N∑
n=0

(1
2 |D−u

n+ 1
2

1 |2 + ∆x||D+D−un+ 1
2 ||22)∆t+

N∑
n=0

∑M−1
j=1 aj |u

n+ 1
2

j |2∆x∆t

= +∞

(2.54)
Let λN ≥ 0, ∀N ∈ N such that (λN )2 =

∑N+1
k=0 ||uk||22∆t, and let us define vn := un

λn for some
n ∈ N. This induces the following sequence of numerical problems: find vn+1 ∈ XM such that

0 = iDtv
n + a1D

2vn+ 1
2 + a2(λn)2|vn+ 1

2 |2vn+ 1
2 + ia3D

3vn+ 1
2

+ (λn)2Fa4(vn+1) + (λn)2Fa4+a5(vn+1) + iavn+ 1
2

v0 = u0, u0 ∈ XM

59



where
N∑
n=0

||vn||22∆t = 1 (2.55)

Because ||u0||2 <∞, when ∆x,∆t→ 0 in (2.54) we have to consider

a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t+
N∑
n=0

M−1∑
j=1

aj |u
n+ 1

2
j |2∆x∆t→ 0 (2.56)

and due to (2.52), we conclude that ||v0||2 is bounded. And by Theorem 2.2.2, we can extract
a subsequence from {vN}N∈N, still denoted by the same way, that vN → v(tN ) strongly on
L2(0, T0;L2(0, L)), and by (2.55),

||v(t)||L2(0,T0,L2(0,L)) = 1. (2.57)

When passing to the limit in (2.56), we have

0 = lim
∆x,∆t→0

a3

N∑
n=0

(1

2
|D−un+ 1

2
1 |2 + ∆x||D+D−un+ 1

2 ||22
)

∆t+

N∑
n=0

M−1∑
j=1

aj |u
n+ 1

2
j |2∆x∆t

=

∫ T0

0
|v(0, t)|2dt+ 2

∫ T0

0

∫ L

0
a(x)|v|2dxdt,

and thus, v(x, t) ≡ 0 for (x, t) ∈ (ω × (0, T0)). From here, we must distinguish two scenarios:

Case 1: Let us extract a subsequence from {λN}N∈N, denoted by the same way, such that
λN → 0 when N →∞. This induces the following linear problem:

ivt + a1vxx + ia3vxxx + iav = 0, (x, t) ∈ (0, L)× (0, T0)

v(0, t) = v(L, t) = 0

vx(L, t) = 0, t ∈ (0, T0)

v(t = 0) = u0, u0 ∈ L2(0, L)

v(x, t) ≡ 0, (x, t) ∈ ω · (0, T0)

And by Holgrem’s Theorem, we conclude that v(x, t) ≡ 0, for (x, t) ∈ (0, L) × (0, T0), which
contradicts (2.57).

Case 2: There is a subsequence from {λN}N∈N, still denoted by λN ; and there is a λ > 0
such that λN → λ. Thus, the sequence {vN}N∈N converges to the IVP (2.1), while v(x, t) ≡
0, (x, t) ∈ ω · (0, T0]. Due to Proposition 2.2.4, we conclude that v ≡ 0, x ∈ (0, L), t ∈ (0, T0),
which is again a contradiction.

This allows to conclude that the opposite of (2.53) is false, and hence, the lemma is proved.
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2.3 Numerical Examples

We will finally present some computational results using the numerical scheme proposed in
this section.

2.3.1 Initial condition from Potasek and Tabor.

For a first numerical result, we will work with the following HNLS equation for u = u(x, t), (x, t) ∈
(−100, 10)× (0, 1000] :

iut + 3uxx + |u|2u+ i
(

0.03uxxx + 0.05|u|2ux − 0.025|u|2xu+ a(x)u
)

= 0

u(x, 0) = u0(x) = A sech(kx) (2.1)

The initial condition is given by the analytical solution of the IVP (2.1) when a(x) ≡ 0,
proposed by Potasek and Tabor [PT91b]; this is,

u(x, t) = A eintsech(kx+ lt)

where, for α = −2a1, ρ = a5, δ = a4 + ρ, and k = 1,

ε = −1

6
α(δ + ρ), l = −εk3, n = −1

2
αk2, |u0|2 = −αk2

On the other hand, a(x) = 0.005, x < −5, and in our calculations, ∆t = 0.0001 and ∆x = 110
212 ≈ 0.0268.
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Fig. 2.1: First case results. Left: time evolution of the absolute value of the solution. Right:
evolution of the energy.

As shown in Figure 3.1 right, the energy decays at an exponential rate to zero, which is what we expected
from Theorems (??) and (2.2.3). While Figure 3.1 left shows how the soliton is getting dissipated after
entering the damping zone, starting at x = −5.
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Fig. 2.2: Second case results. Left: time evolution of the absolute value of the solution.
Right: evolution of the energy.

2.3.2 Initial condition from Kumar.

A last case will be presented, regarding the following equation for u = u(x, t), (x, t) ∈ (−60, 80)×(0, 500]

iut + 0.1uxx + 2|u|2u+ i
(

0.001uxxx + 0.01|u|2ux + 0.1|u|2xu+ a(x)u
)

= 0

u(x, 0) = u0(x) = A eix sech(−Bx) (2.2)

where we used an initial condition based on a solution propsed by Kumar and Chand [KC13] when
a(x) ≡ 0:

u(x, t) = A ei(−kt+ωx) sech(B(t− x))

where v = 10, k = 0.001, and

B = ±

√
k − a1ω2 + a3ω3

3a3ω − a1
A = ±

√
2(k − a1ω2 + a3ω3)

a4ω − a2
ω =

a1v ±
√
a2

1v
2 + 3a2

3v
3B − 3a3v

3a3v

Meanwhile, for the damping function we’ve considered a(x) = 0.01, x > 10; while for our
computations we’ve used ∆t = 0.001, ∆x = 140

211 ≈ 0.068.

As seen in Figure 3.2 right, the energy also decays following an exponential trend, while as seen
in Figure 3.2 left, the soliton manages to enter the zone with the active damping, dissipating
in the process. It is imperative to note that the parameters used on this example don’t met
the hypothesis requested on Theorem (2.2.2) and (2.2.3); furthermore, the parameters a4 and
a5 don’t met as well the requirement asked by Kumar and Chand in order to get a solution,
this is, 3a4 + 2a5 = 0. Nevertheless, the numerical solution converged to a result which is
expected by Theorems (2.2.2) and (2.2.3). Hence, further reaserch on this topic is needed.

2.3.3 Effects of a strong damping.

We assume the following initial condition

u(x, 0) = u0sech(kx)

where k = 1 and u0 =
√

6. We consider additionally, that, a1 = 3, a2 = 1, a3 = 0.03, a4 = 0.1,
a5 = −0.05, and a(x) ≡ 0 (that is, without damping term). Then an exact solution of (2.1) is
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obtained, which corresponds to a soliton of a hyperbolic secant squared pulses often referred
to as ”bright” pulses (see for more details Potasek and Tabor [PT91b]). Now, the effect that
we want to show in this example is what happens with this solution when adding a strong
damping term. For that, we introduce a damping function concentrated in a neighborhood of
the boundary of the spatial interval, given by

a(x) =

{
1000, x ∈ (−15,−10) ∪ (10, 15)

0, in other case.

In our computations, t ∈ [0, 1000], x ∈ [−15, 15], ∆t = 0.00001 and ∆x = 30
213 ≈ 0.00366.

The form of the travelling soliton can be found in Figure 3.2. First, we observe that in the
first times the wave propagates as the hyperbolic secant soliton predicted in Potasek and
Tabor [PT91b], while does not touch the support of the damping function. However, once the
soliton approaches the area of influence (approximately at t = 180), the damping function is
so high that the soliton gets reflected instead of proceeding with his original path. In each
reflection the soliton loses energy at L2 level following the exponential rate predicted in the
previous theorems, and illustrated in Figure 3.1 left. The energy at H1 level also decays at an
exponential rate in each reflection.
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Fig. 2.3: First case results. Left: time evolution of the L2 energy. Right: time evolution of
the H1 energy.

Fig. 2.4: Time evolution of the travelling soliton for the first case.
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Chapter 3

Finite Volume scheme for a 2D NLS
Equation with localized dissipation.

3.1 Introduction

This chapter is concerned with a numerical implementation of a stabilization result for a
defocusing nonlinear Schrödinger equations (dNLS){

i ∂ty + ∆y − |y|p y + i a(x) y = 0 in Ω × (0, T ),

y(0) = y0 in Ω,
(3.1)

where Ω is a general domain, and a is a nonnegative function that may vanish on some parts
of the domain. We first study (dNLS) on a bounded domain Ω in RN with boundary Γ of class
C2. In this case we assume y = 0 on Γ. Then, we extend the theory to unbounded domains
in the particular cases Ω = RN and Ω being an exterior domain.

The NLS model without a damping term can describe an evolution without any mass and
energy loss such as a laser beam propagated in the Kerr medium with no power losses. However,
it is always true that some absorption by the medium is indispensable even in the visible
spectrum [Fib15]. The effect of the absorption can be modelled by adding a linear (e.g., iay,
a > 0) or nonlinear (e.g., ia|y|qy, a > 0, q > 0) damping term into the model, depending on
the physical situation. A localized damping, where the damping coefficient a = a(x) depends
on the spatial coordinate, can be used to obtain better physical information by distinguishing
the spatial region where the absorption takes place or is detected, due to for example some
impurity in the medium, from the rest of the domain. Throughout the following chapter
(without any restatement), and regarding Problem (3.1), we will assume the following: The
power index p can be taken as any positive number. The nonnegative real valued function
a(·) ∈W 1,∞(Ω) represents a localized dissipative effect.

If Ω is a bounded domain we will assume that a satisfies the geometric condition a(x) ≥ a0 > 0
(for some fixed a0 ∈ R+) for a.e. x on a subregion ω ⊂ Ω that contains Γ(x0), where

Γ(x0) = {x ∈ Γ : m(x) · ν(x) > 0}. (3.2)

Here, m(x) := x − x0 (x0 ∈ RN is some fixed point), and ν(x) represents the unit outward
normal vector at the point x ∈ Γ.

On the other hand, if Ω is the whole space, we assume a(x) ≥ a0 > 0 in RN\BR′ , where
BR′ represents a ball of radius R′ > 0. We assume the same if Ω is an exterior domain:
Ω := RN \O, where O ⊂⊂ BR′ being O a compact star-shaped obstacle, namely, the following
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condition is verified: m(x) · ν(x) ≤ 0 on Γ0, where Γ0 is the boundary of the obstacle O which
is smooth and associated with Dirichlet boundary condition as in Lasiecka et al. [LTZ04]. In
this case, the observer x0 must be taken in the interior of the obstacle O. Regarding to the
localized dissipative effect, we consider a(x) ≥ a0 > 0 in Ω\BR′ .

Moreover, in all cases, we assume that the damping coefficient a(·) satisfies:

|∇ a(x)|2 . a(x), ∀x ∈ Ω. (3.3)

The above assumption on the function a(·) was used for the wave equation with Kelvin-Voight
damping; see for instance Liu [LR06, Remark 3.1] and Burq and Christianson [BC15].

The assumption p > 0 is in parallel with the general theory of defocusing nonlinear Schrödinger
equations when the initial datum is considered at the H1-level. On the contrary, it is well
known that solutions of the focusing nonlinear Schrödinger equation (fNLS) may blow-up if
p ≥ 4/N even in the presence of a weak damping acting on the whole domain for arbitrary
initial data. The main result proved in [CCO+] can be extended to the case of the focusing
problem via a Gagliardo-Nirenberg argument for the allowable range p < 4/N . The critical
case p = 4/N can also be treated with a smallness condition on the initial datum.

The main goal proposed in [CCO+] is to achieve stabilization with the (natural) weaker dis-
sipative effect ia(x)y instead of relying on a strong dissipation such as ia(x)(−∆)1/2a(x)y.
It will turn out that the assumption (3.3) enables us to avoid using such strong dissipation.
The objective is to achieve stabilization in all dimensions N ≥ 1 and for all power indices
p > 0. For this purpose, approximate solutions to a problem similar to (3.1) are constructed
using the theory of monotone operators. It is proved that these approximate solutions decay
exponentially fast in the L2-sense by using the multiplier technique and a unique continua-
tion property. Then, the global existence is proved, as well as the L2-decay of solutions for
the original model by passing to the limit and using a weak lower semicontinuity argument,
respectively. Here it should be noted that the nonlinear structure f(|y|2)y (f(s) = sp/2) is
much more general than those treated to date in the context of stabilization with a locally sup-
ported damping. The manuscript [CCO+] complements the work of Aloui et al. [AKV13] on
unbounded domains, because we prove the global exponential decay for dNLS, while [AKV13]
obtained only a local exponential decay in the linear setting. In addition, a precise and efficient
algorithm is implemented for studying the exponential decay established in the first part of
the paper numerically. Simulations illustrate the efficacy of the proposed control design.

Before stating the maind result proved in [CCO+], we will mention the following notion of
weak solutions for problem (3.1).

Definition 3.1.1. Let y0 ∈ L2(Ω) and set X = H1
0 (Ω) ∩ Lp+2(Ω). Then, y ∈ L∞(0, T ;X ) ∩

C([0, T ];L2(Ω)) is said to be a weak solution of problem (3.1) if y satisfies y(0, ·) = y0(·) in
L2(Ω), and ∫ T

0

[
−(y(t), ∂t ϕ(t))L2(Ω) + i (∇ y(t),∇ϕ(t))L2(Ω)

]
dt (3.4)

+i

∫ T

0

[
〈| y(t) |p y(t), ϕ(t)〉L(p+2)′ (Ω);Lp+2(Ω) − i(a(x) y(t), ϕ(t))L2(Ω)

]
dt = 0

for all ϕ ∈ C∞0 (0, T ;X ).
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Meanwhile, the mass functional for the defocusing NLS is given by E0(y(t)) := 1
2 ||y(t)||2L2(Ω).

The main contribution in this regard is to numerically replicate the following stabilization
result:

Theorem 3.1.2 (Existence and stabilization). Let y0 ∈ X = H1
0 (Ω) ∩ Lp+2(Ω). Then, (3.1)

admits a weak solution y in the sense of Definition 3.1.1. Moreover, there are C, γ > 0
(depending on ||y0||H1

0 (Ω)) such that the following exponential decay rate estimate

E0(y(t)) ≤ Ce−γtE0(y0), t ≥ T0,

holds true for this weak solution provided T0 > 0 is sufficiently large.

To achieve this, we will implement a Finite Volume scheme which solves Problem (3.1) in 2
dimensions. Given the variety of domains that can be considered for the mentioned problem,
the Finite Volume method is a reasonable choice because it can be adapted to a great number
of domains, while guaranteeing the preservation of quantities like the mass or the energy. Even
when the numerical version of the mass functional E(t) is not proved to decay exponentially,
the numerical solutions show nevertheless the same behavior. This not only confirms the result
proved in [CCO+], but also confirms the robustness of the numerical scheme.

3.2 Numerical Approximation

3.2.1 Presentation of the Scheme.

We consider that the domain Ω ⊂ R2 in (3.1). We will approximate the domain using an
admisible mesh (see [EGH00]) composed by a set T of convex polygons, denoted as the con-
trol volumes or cells, a set of faces E contained in hyperplanes of R2, and a set of points
P, representing the centroids of the control volumes. The size of the mesh will be given by
h := maxK∈T {diam(K)}.

To generate the mesh, we have made use of the open-source code PolyMesher [TPPM12],
which contructs Voronöı tessellations iteratively refined through a Lloyd’s method in order to
guarantee its regularity.

We will denote by K ∈ T a control volume or cell inside the mesh, which in turn has centroid
xK ∈ R2, a measure m(K) (in our case: the area of K), a set of neighboring cells N (K), and
a set EK of faces σ ∈ EK ⊂ E = Eint ∪ Eext, where Eint is the set of inner faces and Eext is the
set of boundary faces. We will also write tn = n∆t for a given timestep ∆t. We will denote
ynK as the numerical approximation of the solution of problem (3.1) over the cell K at the time

tn. We will also write y
n+ 1

2
K :=

yn+1
K +ynK

2 . ∀K ∈ T , the proposed Finite Volume scheme for this
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problem will be defined as follows;

im(Ki)
yn+1
K −ynK

∆t +
∑
σ∈EK F

n+ 1
2

K,σ −
m(K)

2p

|yn+1
K |2p−|ynK |

2p

|yn+1
K |2−|ynK |2

(yn+1
K + ynK) + im(K)a(xK)y

n+ 1
2

K = 0

FnK,σ = τσ(ynL − ynK), σ ∈ Eint, σ = K|L, L ∈ T
FnK,σ = −τσynK , σ ∈ Eext : σ ∈ EK
τσ = m(σ)/|xK − xL|, σ ∈ Eint, L ∈ T : σ = K|L
τσ = m(σ)/d(xK , σ), σ ∈ Eext : σ ∈ EK

(3.5)

The discretization of the nonlinear term comes from the work of Delfour, Fortin and Payre
[DFP81], which was proposed in order to preserve the Energy at H1 level if there is no damping
term. The numerical solution over he whole domain [0, T ]×Ω will de denoted by yT ,∆t, such
that yT ,∆t(xK , tn) = ynK . In some cases, we will write yn instead of yT ,∆t(tn) for the sake of
clarity.

Given the symmetric structure of the matrix involved in the induced linear system of equations,
a GMRES method is used to solve it. The nonlinear problem is solved using a Picard Fixed
Point iteration with a tolerance equal to 10−6 before moving to the next timestep.

3.2.2 Properties and convergence analysis.

In order to state the properties of the scheme (3.5), we will need some notation. We will
denote the discrete L2 norm as follows:

||yn||2L2
T (Ω) :=

∑
K∈T

|ynK |2m(K).

In a similar fashion, we define the discrete L2p norm as

||yn||2p
L2p
T (Ω)

:=
∑
K∈T

|ynK |2pm(K).

The discrete version of the H0 norm will be defined as:

||yn||2H1
0,T (Ω) =

∑
σ∈E

τσ|Dσy
n|2,

where τσ is defined as in (3.5), and for K ∈ T and L ∈ N (K),

Dσy
n =

{
ynL − ynK , if σ = K|L ∈ Eint
−ynK , if σ ∈ Eext.

The following property holds:

Theorem 3.2.1. The numerical scheme (3.5) admits the existence of a unique solution yT ,∆t.

Proof. For a given n ∈ {0, 1, . . . , N}, and assuming that ynK = 0,∀K ∈ T , we take (3.5)
and multiply it by yn+1

K , sum over K ∈ T , and extract the imaginary part. This will lead
us to conclude that yn+1

K = 0, ∀K ∈ T , and hence the existence of solutions is proved.
Uniqueness follows after noticing that the linear system induced by the numerical scheme
has finite dimension with respect to the vector of unknowns yn+1

K , and hence has unique
solution.
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Let us define the discrete version of the mass functional E0(y(t)) as follows:

E
(n)
0 :=

1

2

∑
K∈T

|ynK |2m(K), n ∈ N.

If we multiply the numerical scheme by y
n+ 1

2
K , sum over K ∈ T , and extract the imaginary

part, we get the following result:

Theorem 3.2.2. If a(x) ≡ 0, ∀x ∈ Ω in (3.5), then the following property is true ∀n ∈ N:

E
(n)
0 = E

(n+1)
0 (3.6)

If a(x) ≥ a0 > 0, x ∈ ω ⊂ Ω, then

E
(0)
0 ≥ E(n)

0 , ∀n ∈ N.

A consequence of the previous procedure reads as follows:

Corollary 3.2.3. Let yT ,∆t be the solution of (3.5) such that E
(0)
0 <∞. Then, there exists a

constant C∞, depending on y0 and T , such that

||yT ,∆t||∞ < C∞ (3.7)

where ||yn||∞ := maxK∈T |ynK |.

We will also define the discrete version of the Energy functional at H1 level:

E
(n)
1 :=

1

2

∑
σ∈E

τσ|Dσy
n|2 +

∑
K∈T

1

2p
|ynK |2pm(K) (3.8)

The following property holds:

Theorem 3.2.4. Let yT ,∆t be the numerical solution induced by the scheme (3.5) such that
||y0
T ,∆t||2L2

T (Ω)

<∞. If a(x) ≡ 0, ∀x ∈ Ω in (3.5); then the following property holds true ∀n ∈ N:

E
(n+1)
1 = E

(n)
1 . (3.9)

If a(x) ≥ a0 > 0, x ∈ ω ⊂ Ω and a(x) ∈ W 1,∞(Ω), then there exists a constant C > 0,
depending on T , a(x), and y0, such that

E
(n)
1 ≤ E(0)

1 + C. (3.10)

Proof. We multiply (3.5) by
yn+1
K −ynK

∆t , sum over K ∈ T , and extract the real part. We get

Re

( ∑
K∈T

∑
σ∈EK

F
n+ 1

2
K,σ

yn+1
K − ynK

∆t

)
−
∑
K∈T

m(K)

2p∆t

(
|yn+1
K |2p − |ynK |2p

)
(3.11)

+Re
(
i
∑
K∈T

m(K)a(xK)y
n+ 1

2
K

yn+1
K − ynK

∆t

)
= 0.
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After using the identity Re(a(b − a)) = 1
2

(
|b|2 − |a|2 − |b − a|2

)
for a, b ∈ C, and reordening

the sum, the first term in (3.11) becomes

Re

( ∑
K∈T

∑
σ∈EK

F
n+ 1

2
K,σ

yn+1
K − ynK

∆t

)
=
∑
σ∈E

τσ
2

(
|ynL − ynK |2 − |yn+1

L − yn+1
K |2

)
=
∑
σ∈E

τσ
2

(
|Dσy

n|2 − |Dn+1
σ |2

)
.

With this, (3.11) turns into the following:

1

∆t
E

(n+1)
1 =

1

∆t
E

(n)
1 +Re

(
i
∑
K∈T

m(K)a(xK)y
n+ 1

2
K

yn+1
K − ynK

∆t

)
. (3.12)

If a(x) ≡ 0, then we get (3.9). If not, then we will need to recall the following from the
numerical scheme:

yn+1
K − ynK

∆t
=

i

m(K)

∑
σ∈EK

F
n+ 1

2
K,σ −

i

2p

|yn+1
K |2p − |ynK |2p

|yn+1
K |2 − |ynK |2

(yn+1
K + ynK)− a(xK)y

n+ 1
2

K . (3.13)

Replacing (3.13) in (3.12) will lead us to study the following:

i
∑
K∈T

m(K)a(xK)y
n+ 1

2

K

yn+1
K − ynK

∆t
=
∑
K∈T

a(xK)y
n+ 1

2

K

∑
σ∈EK

F
n+ 1

2

K,σ

−
∑
K∈T

a(xK)
m(K)

p

|yn+1
K |2p − |ynK |2p

|yn+1
K |2 − |ynK |2

∣∣yn+ 1
2

K

∣∣2 (3.14)

− i
∑
K∈T

m(K)(a(xK))2|yn+ 1
2

K |2.

After extracting the real part in (3.14) the third term at the right hand side vanishes and
the second term is a strictly negative number. For the first term, again using the identity
Re(a(b− a)) = 1

2

(
|b|2 − |a|2 − |b− a|2

)
and reordering the sum, we get

Re

( ∑
K∈T

a(xK)y
n+ 1

2
K

∑
σ∈EK

F
n+ 1

2
K,σ

)
=
∑
K∈T

∑
σ∈EK

τσ
8

(
|yn+1
K |2 + |ynK |2

)(
a(xL)− a(xK)

)
−
∑
K∈T

∑
σ∈EK

τσ
8
a(xK)

(
|yn+1
L − yn+1

K |2 + |ynL − ynK |2
)

(3.15)

+
∑
K∈T

∑
σ∈EK

τσ
4
a(xK)Re

(
yn+1
K (ynL − y

n
K) + ynK(yn+1

L − yn+1
K )

)
.

The second term in (3.15) is strictly negative. Hence, and given the regularity condition of
the damping function a(x) ∈W 1,∞(Ω), we can infer the existence of a constant C1, depending
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on a(x), such that

Re

( ∑
K∈T

a(xK)y
n+ 1

2

K

∑
σ∈EK

F
n+ 1

2

K,σ

)
≤ C1

∑
K∈T

∑
σ∈EK

τσ
8

(
|yn+1
K |2 + |ynK |2

)
+ C1

∑
K∈T

∑
σ∈EK

τσ
4

∣∣∣yn+1
K (ynL − ynK) + ynK(yn+1

L − yn+1
K )

∣∣∣
≤ C1

8

(
||yn+1||2L2

T (Ω)
+ ||yn||2L2

T (Ω)

)
+
C1

4

∑
K∈T

∑
σ∈EK

τσ

(
4|yn+1

K |2 + 4|ynK |2
)

≤ 9

4
C1||y0||2L2

T (Ω)
.

Hence, (3.12) will turn into

1

∆t
E

(n+1)
1 =

1

∆t
E

(n)
1 +Re

(
i
∑
K∈T

m(K)a(xK)y
n+ 1

2
K

yn+1
K − ynK

∆t

)
≤ 1

∆t
E

(n)
1 +

9

4
C1||y0||2L2

T (Ω)
.

Multiplying the previous result by ∆t and repeating the upper bound n times will lead us to

E
(n+1)
1 ≤ E(0)

1 +
9C

4
n∆t||y0||2L2

T (Ω)
,

and because ||y0||2
L2
T (Ω)

<∞, we can infer the existence of a constant C, depending on T , y0,

and a(x), such that

E
(n+1)
1 ≤ E(0)

1 + C.

Thus, the theorem is proved.

On the other hand, if we go back to (3.10) and compare it with the definition (3.8), we get
the following result:

Corollary 3.2.5. Let yn be the solution of (3.5) such that ||y0||2
L2
T (Ω)

< ∞ and E
(0)
1 < ∞.

Then, there exist some constants C1 and C2, depending on y0, a(x), and T , such that

||yn||H1
0,T (Ω) < C1, ∀n ∈ N. (3.16)

and
||yn||

L2p
T (Ω)

< C2, ∀n ∈ N. (3.17)

This upper bound will help us to prove the convergence of the numerical scheme.

Theorem 3.2.6. For m ∈ N, let {ym}m∈N, ym = yTm,∆tm(x, t) be a sequence of solutions
of (3.5) induced by their respective initial conditions {y0

m}m∈N ⊂ X , while using a sequence
of admissible meshes Tm and timesteps ∆tm such that hm → 0 and ∆tm → 0 when m →
∞. Then, there exists a subsequence of the sequence of numerical solutions, still denoted
by {ym}m∈N, which converges to the weak solution y(t) given by the Definition 3.1.1 when
m→∞.
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Proof. We will start by proving that ∂tym is bounded in X ′; this is

||∂tym||X ′m := sup
||ϕ||Xm=1

{∣∣∣(∂ym, ϕ)L2
Tm (Ω)

∣∣∣}
= sup
||ϕ||Xm=1

{∣∣∣∣∣i
( ∑
K∈Tm

∑
σ∈EK

τσ
(
y
n+ 1

2

L − yn+ 1
2

K

)
ϕK

)

− i

2p

∑
K∈Tm

(
|yn+1
K |2p − |ynK |2p

|yn+1
K |2 − |ynK |2

(yn+1
K + ynK)ϕKm(K)

)
−
∑
K∈K

(
a(xK)y

n+ 1
2

K ϕKm(K)
)∣∣∣∣∣
}

(3.18)

<∞.

The first term in the right hand side of (3.18) can be rewritten as follows

N∑
n=0

∑
K∈T

∑
σ∈EK

τσ(y
n+ 1

2
L − yn+ 1

2
K )ϕK∆t =

N∑
n=0

∑
K|L∈Eint

m(K|L)(y
n+ 1

2
L − yn+ 1

2
K )

ϕK − ϕL
dK|L

∆t.

After (3.16) and the regularity of ϕ, we can write∑
K∈Tm

∑
σ∈EK

τσ
(
y
n+ 1

2
L − yn+ 1

2
K

)
ϕK <∞. (3.19)

For the second term in (3.18), we will consider three cases.

• If p ≤ 1, we have∣∣∣ ∑
K∈Tm

|yn+1
K |2p − |ynK |2p

|yn+1
K |2 − |ynK |2

(yn+1
K + ynK)ϕKm(K)

∣∣∣ ≤ ∑
K∈Tm

|(yn+1
K + ynK)ϕK |m(K)

≤ 2||ϕ||L∞Tm (Ω)||y0||2L2
Tm (Ω)

which is bounded.

• If 1 < p < 2, then

∣∣∣ ∑
K∈Tm

|yn+1
K |2p − |ynK |

2p

|yn+1
K |2 − |ynK |2

(yn+1
K + ynK)ϕKm(K)

∣∣∣ ≤ 2||ϕ||L∞Tm ||y
0||L∞Tm

∑
K∈Tm

(
|yn+1
k |2p−2 + |ynK |

2p−2

)
m(K).

Using Young’s inequality, we get

∑
K∈Tm

(
|yn+1
k |2p−2 + |ynK |

2p−2

)
m(K) ≤

∑
K∈Tm

((
2p− 2

2p

)(
|yn+1
k |2p + |ynK |

2p
)

+
2

p

)
m(K)

which is also bounded due to (3.17), (3.7), and by the fact that |Ω| <∞.
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• If p ≥ 2, then we have

∣∣∣ ∑
K∈Tm

|yn+1
K |2p − |ynK |

2p

|yn+1
K |2 − |ynK |2

(yn+1
K + ynK)ϕKm(K)

∣∣∣ ≤ 2||ϕ||L∞Tm ||y
0||L∞Tm

∑
K∈Tm

p

2

(
|yn+1
k |2p−2 + |ynK |

2p−2

)
m(K)

which is bounded by the same reasons argued in the previous point.

Hence, we conclude that the second term in (3.18) is bounded for any p > 0; this is,∣∣∣ ∑
K∈Tm

|yn+1
K |2p − |ynK |2p

|yn+1
K |2 − |ynK |2

(yn+1
K + ynK)ϕKm(K)

∣∣∣ <∞. (3.20)

Regarding the third term in (3.18): thanks to (3.6), and the regularity properties of a(x), we
observe that ∑

K∈K
a(xK)y

n+ 1
2

K ϕKm(K) ≤ C2

2

(
||yn+ 1

2 ||2L2
Tm (Ω) + ||ϕ||2L2

Tm (Ω)

)
<∞ (3.21)

where C2 is a constant depending on a(x). Combining (3.19), (3.20) and (3.21), we conclude
that

{∂tym} is bounded in L∞(0, T ;X ′). (3.22)

Therefore, due to the fact that

H1
0 (Ω)

c
↪→ L2(Ω) ↪→ H−2(Ω),

and thanks to the Aubin-Lions Theorem, we can extract a subsequence, still denoted by
{ym}m∈N, such that

ym → y strongly in L2(0, T ;L2(Ω)). (3.23)

We will now prove that this y is the weak solution given by Definition 3.1.1. Let ϕ ∈
C∞0 (0, T ;X ) such that ∇ϕ · n̂ = 0 in ∂Ω × [0, T ]. Multiplying the numerical scheme (3.5)

by ∆t
2

(
ϕ(xK , n∆t)+ϕ(xK , (n+1)∆t)

)
=: ∆t

2 ϕ(xK , tn+ 1
2
), and summing over K ∈ T and over

n = 0, . . . , N with T = N∆t, we get:

i

N∑
n=0

∑
K∈T

m(K)(yn+1
K − ynK)ϕ(xK , tn+ 1

2
) +

N∑
n=0

∑
K∈T

∑
N (K)

τK|L(y
n+ 1

2

L − yn+ 1
2

K )ϕ(xK , tn+ 1
2
)∆t

−
N∑
n=0

∑
K∈T

|yn+ 1
2

k |pyn+ 1
2

K ϕ(xK , tn+ 1
2
)∆t+ i

N∑
n=0

∑
K∈T

a(xK)y
n+ 1

2

K ϕ(xK , tn+ 1
2
)∆t = 0. (3.24)

We can re-write the first term in (3.24), after using summation by parts and recalling that
ϕ ∈ C∞0 (0, T ;X ):

i

N∑
n=0

∑
K∈T

m(K)(yn+1
K − ynK)ϕ(xK , tn+ 1

2
) = −i

N∑
n=0

∑
K∈T

m(K)ynK

(ϕ(xK , tn+1)− ϕ(xK , tn−1)

2

)
.

Hence, because {ym}m∈N is bounded in L∞((0, T )×, L2(Ω)), then as m→∞,

− i
N∑
n=0

∑
K∈T

m(K)ynK

(ϕ(xK , tn+1)− ϕ(xK , tn−1)

2

)
→ −i

∫ T

0

∫
Ω
y(x, t)ϕt(x, t)dxdt. (3.25)
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The second term in (3.24) can also be re-written as follows:

N∑
n=0

∑
K∈T

∑
L∈N (K)

τK|L(y
n+ 1

2
L − yn+ 1

2
K )ϕ(xK , tn+ 1

2
)∆t =

N∑
n=0

∑
K|L∈Eint

m(K|L)(y
n+ 1

2
L − yn+ 1

2
K )

ϕ(xK , tn+ 1
2
)− ϕ(xL, tn+ 1

2
)

dK|L
∆t. (3.26)

On the other hand

N∑
n=0

∫ (n+1)∆t

n∆t

∫
Ω
yT ,∆t(x, t)∆ϕ(x, n∆t)dxdt =

n∑
n=0

∑
K∈T

y
n+ 1

2
K

∫
K

∆ϕ(x, tn+ 1
2

)dx∆t (3.27)

=
N∑
n=0

∑
K|L∈Eint

(
y
n+ 1

2
K − yn+ 1

2
L

)∫
K|L
∇ϕ(x, tn+ 1

2
) · nK,Ldγ. (3.28)

By the same reasons argued in (3.25), we have that

N∑
n=0

∫ (n+1)∆t

n∆t

∫
Ω
yT ,∆t(x, t)∆ϕ(x, n∆t)dxdt→

∫ T

0

∫
Ω
y(x, t)∆ϕ(x, t)dxdt (3.29)

as m→∞. Now, subtracting the right hand side of (3.26) from (3.28),

N∑
n=0

∑
K|L∈Eint

m(K|L)
(
y
n+ 1

2
K − yn+ 1

2
L

)(∫
K|L
∇ϕ(x, tn+ 1

2
) · nK,Ldγ −

ϕ(xK , tn+ 1
2

)− ϕ(xL, tn+ 1
2

)

dK|L

)
∆t. (3.30)

Because of the regularity properties of ϕ, we have that (3.30) goes to 0 when m→∞. Hence,
and thanks to (3.27) and (3.29),

N∑
n=0

∑
K|L∈Eint

m(K|L)(y
n+ 1

2

L − yn+ 1
2

K )
ϕ(xK , tn+ 1

2
)− ϕ(xL, tn+ 1

2
)

dK|L
∆t→

∫ T

0

∫
Ω

y(x, t)∆ϕ(x, t)dxdt.

The third and fourth terms in (3.24) can be treated in a similar way because ym ∈ L∞(0, T ;X );
hence, and due to (3.23), we have

N∑
n=0

∑
K∈T

|yn+ 1
2

K |pyn+ 1
2

K ϕ(xK , tn+ 1
2
)∆t→

∫ T

0

∫
Ω

|y(x, t)|py(x, t)ϕ(x, t)dxdt, as m→∞.

Finally,

i

N∑
n=0

∑
K∈T

a(xK)y
n+ 1

2

K ϕ(xK , tn+ 1
2
)∆t→ i

∫ T

0

∫
Ω

a(x)y(x, t)ϕ(x, t)dxdt, as m→∞.

Thus, when passing to the limit in (3.24) and integrating by parts, we conclude that y is the weak
solution of (3.1); concluding the proof.

3.2.3 Example I

In the following example, we will use the given numerical scheme to solve equation (3.1) for
p = 2, T = 500, Ω being disk with ratio r = 10, ω ⊂ Ω : x2 + y2 > 82, and a damping function
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Fig. 3.1: Numerical solution at different timesteps. Cells with black dots indicate the zone
where the damping function is in place.

defined as follows:

a(x, y) =

{(√
(x2 + y2)− 8

)2
, 82 ≤ x2 + y2 ≤ 102

0, otherwise.

Observe that the damping fulfills condition (3.3). The initial condition is given by

y0 =
1

2
exp

(
−
(
(x− 1)2 + (y − 1)2 +

i

2
(x− 1)

))
. (3.31)

In our computations, we’ve used ∆t = 1
26 = 0.015625 and h = 0.64851, where 2000 polygons

were used to approximate the domain. Figure 3.1 illustrates the state of the numerical solution
at different times, while Figure 3.2 left shows the evolution of the energy with time. In this
case the decay is exponential, as expected from Theorem 3.1.2.

3.2.4 Example II

As a second experiment, we will repeat Example I but using p = 2, T = 500, and the damping
function

a(x, y) =

{(
exp(

√
x2 + y2 − 8)− 1

)2
, 82 ≤ x2 + y2 ≤ 102

0, in other case.
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Fig. 3.2: Energy decays for both examples. Left: decay for Example I. Right: decay for Ex-
ample II.

This function also fulfills condition (3.3). Figure 3.2 right shows the time evolution of the
energy. The decay in this case is also exponential, replicating the theoretical result (3.1.2)
proved in the previous sections.

3.2.5 Example III

We will now consider an exterior domain. The new domain Ω will be defined as:

Ω = {(x, y) ∈ R2 : 5 ≤
√
x2 + y2 ≤ 20},

while the effective damping subset will be given by

ω = {(x, y) ∈ R2 :
√
x2 + y2 ≥ 17}.

The initial condition to be used is

y(x, 0) = exp
(
−
(
x2 + (y − 10)2 +

i

2
x
))
.

For these calculations, we’ve done ∆t = 1
26 = 0.0156, and the domain was approximated

using 5000 polygons with h = 0.76172. Figure 3.3 illustrates the initial condition and the time
evolution of the mass functional. Its decay follows an exponential trend, as expected.

3.2.6 Example IV

As a final experiment, we will repeat the previous case but using the following domain

Ω = {(x, y) ∈ R2 : 7 ≤
√
x2 + y2 ≤ 20}.

The effective damping subset will be given by ω = {(x, y) ∈ R2 :
√
x2 + y2 ≥ 17∧α ∈ (−π, 0)},

where α is the angle of the point (x, y) with respect to the positive x axis. This is equivalent
to the geometric condition (3.2) for a point x0 = (0, y) such that y → +∞.
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Fig. 3.3: Results for the experiment with an exterior domain. Left: the initial condition.
Right: semi-log plot for the time-evolution of the mass function.
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Fig. 3.4: Left: the initial condition. Black dots denote the cells where the damping function
is acting effectively. Right: time evolution of the mass functional, at semi-log scale.

For our calculations, we’ve used ∆t = 1
25 = 0.0312, T = 10000, and h = 0.80958 for a domain

approximated using 5000 polygons. The left panel of Figure 3.4 shows the initial condition
and the zone where the damping is acting effectively; while the right panel shows the decay
of the Mass funcional in semi-log scale. We can clearly see the exponential decay rate, as
expected.
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Chapter 4

Finite Diffference scheme for a bridge with
localized nonlinear damping.

The present chapter aims to present numerical results for a hanging bridge model. Let us
consider a thin and narrow rectangular plate where the two short edges are hinged, whereas the
two long edges are free. In absence of forces, the plate lies flat horizontally and is represented
by the planar domain Ω = (0, π)× (−l, l) where l << π, with boundary Γ. Then, the nonlocal
evolution equation modeling the deformation of the plate reads as follows:

utt(x, y, t) + ∆2u(x, y, t) + φ(u)uxx + a(x, y)g(ut(x, y, t)) = 0, in Ω× (0,+∞),

u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, (y, t) ∈ (−l, l)× (0,+∞),

uyy(x,±l, t) + σuxx(x,±l, t) = 0, (x, t) ∈ (0, π)× (0,+∞),

uyyy(x,±l, t) + (2− σ)uxxy(x,±l, t) = 0, (x, t) ∈ (0, π)× (0,+∞),

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in Ω,

(4.1)

where the nonlinear term φ, which carries a nonlocal effect into the model, is defined by

φ(u) = −P + S

∫
Ω
u2
x dx,

and the constant σ is the Poisson ratio: for metals its value lies around 0.3 while for concrete
it is between 0.1 and 0.2. For this reason we shall assume that 0 < σ < 1

2 , a = a(x, y) ∈ L∞(Ω)
is assumed to be a nonnegative essentially bounded function such that

a ≥ a0 > 0 a.e. in ω,

for some non empty open subset ω around the boundary Γ of Ω and some positive constant
a0 > 0; and the function g verifies some conditions to be announced in the following pages.

S > 0 depends on the elasticity of the material composing the deck, the term S

∫
Ω

u2
x dx measures

the geometric nonlinearity of the plate due to its stretching, and P > 0 is the prestressing
constant: one has P > 0 if the plate is compressed and P < 0 if the plate is stretched. Here,
we are considering the absence of a vertical loading accross the bridge.

The present chapter is inspired from the work published in [DCMCC+], whose main goal is to
establish uniform decay rates estimates to problem (4.1) with a minimum amount of damping
which represents less cost of material. This minimum refers a small ‘collar’ ω around the
whole boundary Γ of Ω. In addition, the nonlinear feedback a(x, y)g(ut) can be superlinear,
sublinear or linearly bounded at infinity according to the terminology given in [DCMCC+].
In particular: we aim to show numerical solutions for Problem 4.1 obtained from a Finite

77



Difference scheme, while also numerically replicate the stabilization result. The boundary
conditions are incorporated into the matrix differential operators. Preliminary results show
that the scheme is conservative when no damping funcion is used.

4.1 Well-posedness and stabilization.

The present section describes the well-possednes of the problem, as well as presenting the
stabilization result. We define the Hilbert space H := H2

∗ (Ω)×L2(Ω) endowed with the inner
product (U, V )H = (u, ũ)H2

∗(Ω) + (v, ṽ)L2(Ω), where U = (u, v)T ; V = (ũ, ṽ)T ∈ H. Inspired
in [AB05], [AB10], [ABA11], [CCCT17] and [LT93], let h be a concave, strictly increasing
function, with h (0) = 0, and such that h (s g(s)) ≥ s2 + g2(s), for |s| < 1. Problem (4.1) can
be rewritten as {

Ut +AU = G,

U(0) = U0,

where

U =

(
u

v

)
; AU :=

(
− v
∆2u+ a(·)g(v)

)
; G(U) =

(
0

− φ(u)uxx

)
and U0 =

(
u0

v0

)
,

Using standard nonlinear semigroup theory, it can be proved that A is maximal monotone
operator in H (see, for instance, [CSC14]). Thus, in order to prove that problem (4.1) is
wellposed it is sufficient to prove that:

Lemma 4.1.1. G is locally Lipschitz in H.

Proof: See Cavalcanti et al. [DCMCC+].

After proving that G is locally Lipschitz inH, and according to standard semigroup properties,
the following results follows

Theorem 4.1.2. For U0 ∈ H given, problem (4.1) possesses a unique solution U ∈ C([0,∞);H).
In addition, if U0 ∈ D(A), then problem (4.1) has a unique regular solution U ∈ C([0,∞);D(A))∩
C1([0,∞);H).

On the other hand, the energy associated to problem (4.1) is now defined by

Eu(t) =
1

2
||ut(t)||2L2(Ω)︸ ︷︷ ︸
Ku(t)

+
1

2
||u(t)||2H2

∗(Ω) −
P

2
||ux(t)||2L2(Ω) +

S

4
||ux(t)||4L2(Ω)︸ ︷︷ ︸

Pu(t)

, (4.2)

where t ≥ 0. Here, Ku(t) and Pu(t) represent, respectively, the kinetic and the elastic potential
energy of the model. Moreover, one has the identity of the energy

Eu(t2)− Eu(t1) = −
∫
Q

a(x, y)g(ut(x, y, t))ut(x, y, t) dx dy dt, (4.3)

so that 0 ≤ t1 ≤ t2 < +∞, which shows that the energy is monotonic (non increasing). The
main result proved in [DCMCC+] reads as follows:
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Theorem 4.1.3. For any R > 0 there exist constants C and T0 > 0, depending on R, such
that, if Eu((0)) ≤ R, then

Eu(T ) ≤ C
∫ T

0

∫
Ω
a(x, y)

[
|ut(x, y, t)|2 + |g(ut(x, y, t))|2

]
dx dy dt, ∀T > T0. (4.4)

The previous theorem has the following consequence:

Theorem 4.1.4. Denote by (u, ut) a weak solution of the problem (4.1). Suppose the a =
a(x, y) ∈ L∞(Ω) is assumed to be a nonnegative bounded function such that a(x, y) ≥ a0 > 0
a.e. in ω for some non empty open subset ω around the boundary ∂Ω of Ω and some positive
constant a0 > 0. Define h to be concave, strictly increasing function, vanishing at 0 and such
that

h(sg(s)) ≥ s2 + g(s)2, for |s| ≤ 1, (4.5)

(which can always be constructed since g is continuous increasing g(0) = 0).

In addition, if g is not linearly bounded at infinity, then let the Assumption 5.1.1 (see:
[DCMCC+]) be satisfied with the corresponding integrability indices p0. Next, define

C = ‖ut‖
|1−(g)|
p0−1−(g)

L∞
(

+
;Lp0 (Ω)

), h(s) = s
p0−2 max{(g),1}

p0−1−(g) .

Then, there exist constants T0 ≥ T > 0 such that the energy E(t) given by (4.2) satisfies

Eu(t) ≤ S
(
t

T
− 1

)
, ∀t > T0,

where limt→∞ S(t) = 0.

This result is one of the key contributions in [DCMCC+]. The proof is beyond the scope of
this manuscript, where it can be found in the previously cited article.

4.2 Numerical Results

4.2.1 Description of the numerical scheme.

Will replicate numerically the results obtained in Theorem 4.1.4. In particular, and given the
boundary conditions we have to deal with, our proposal consist on the approximation of the
solution of Problem (4.1) using the finite differences method. To achieve this, the x domain
[0, π] will be subdivided in J + 1 equally spaced sub-intervals with length ∆x each, while the
y domain [−l, l] will be subdivided in K + 1 sub-intervals, each of length ∆y.

The domain Ω will be then discretized using rectangles of area ∆x∆y. We will also write
xj := j∆x, j = 0, 1, . . . , J + 1 and yk := −l + k∆y, k = 0, 1, . . . ,K + 1.
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Integrating from t = 0 to some t = T ∈ R+ using N timesteps of length ∆t := T
N , the solution

at a timestep n will be approximated by a vector

Un ∈ R(J+2)(K+2) : Un = [Un0 Un1 . . . Un(K+1)]
T

where each Unk is such that

Unk ∈ R(J+2) : Unk = [Un0,k U
n
1,k . . . U

n
J+1,k] (4.6)

this is, each Unk describes, for each node k on the y coordinate, the solution for all of the nodes
on the x coordinate.

Discretization of the bilaplacian.

Recalling that ∆2u = uxxxx + 2uxxyy + uyyyy, we will proceed to discretize directly each
term using centered finite differences. Given a function f(x) defined over [0, π], we will write
fi := f(xi), xi ∈ (0, π), i = 0, 1, . . . , J+1. Ignoring the boundary for now, its fourth derivative
at the j-th node can be approximated as follows

fxxxx(xi) ≈
fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2

∆x4
, i = 0, 1, . . . , J + 1

this can be also represented as a matrix-vector product:

fxxxx ≈
1

∆x4
D4f :=

1

∆x4



6 −4 1
−4 6 4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 6





f0

f1

f2
...

fJ−1

fJ
fJ+1


where

D4 :=



6 −4 1
−4 6 4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 6


The second derivative receives also the same treatment: for a centered scheme, we have

fxx(xi) ≈
fi−1 − 2fi + fi+1

∆x2
(4.7)

and as a matrix-vector product, we have

fxx ≈
1

∆x2
D2f :=

1

∆x2


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2




f0

f1
...
fJ
fJ+1

 (4.8)
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where, as in the previous case,

D2 :=


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 (4.9)

This can be extended to further dimensions, while analog definitions can be given for fyy and
fyyyy. With this in consideration, and given the structure of the numerical solution U , its
bilaplacian can be approximated as a pentadiagonal block matrix:

∆2U = D4
xU +D4

yU + 2D2
xD

2
yU (4.10)

where, for the identity matrix I ∈ R(J+2)(K+2)×(J+2)(K+2),

D4
xU =

1

∆x4
I ⊗D4, D4

yU =
1

∆y4
D4 ⊗ I

D2
xU =

1

∆x2
I ⊗D2, D2

yU =
1

∆y2
D2 ⊗ I

4.2.2 Treatment of the boundary

Given the boundary conditions of Problem (4.1), we must proceed to modify the discretized
bilaplacian. On the x coordinate, we know that u(0, y, t) = u(π, y, t) = 0. Hence, we get
Un0,k = UnJ+1,k = 0, ∀k ∈ [0,K + 1], ∀n ∈ [0, N ]. This doesn’t alter the form of the matrix
representing the second derivative if we consider the array U such that Uni,k, i ∈ [1, J ], but
this also forces us to do the same for the fourth derivative matrix. From here, we will denote
[Un]j,k as the j-th element of the vector Unk defined in (4.6). Regarding that case, for i = 1
and i = J we have:

[D4
xU

n]1,k =
Un−1,k − 4Un0,k + 6Un1,k − 4Un2,k + Un3,k

∆x4

[D4
xU

n]J,k =
UnJ−2,k − 4UnJ−1,k + 6UnJ,k − 4UnJ+1,k + UnJ+2,k

∆x4
.

In order to get the values of Un−1,k and UnJ+2,k, we have to take a look at the discretized second

derivative on the boundary. Because uxx(0, y, t) = uxx(π, y, t) = 0, we can write

[D2
xU

n]0,k =
Un−1,k − 2Un0,k + Un1,k

∆x2
= 0, [D2

xU
n]J+1,k =

UnJ,k − 2UnJ+1,k + UnJ+2,k

∆x2
= 0

and thus, Un−1,k = −Un1,k and UnJ+2,k = UnJ,k. Hence, the matrix representation will be given

with the aid of a matrix D̂4 ∈ RJ×J such that

D4
x =

1

∆x4
I ⊗



5 −4 1
−4 6 4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 5


=:

1

∆x4
I ⊗ D̂4 (4.11)
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On the y coordinate, the second derivative can be modified with ease when considering he
boundary condition uyy(x,±l, t) + σuxx(x,±l, t) = 0. With this, we have for j ∈ [1, J ] and for
n ∈ [0, N ] that

[D2
yU

n]j,0 = −σ[D2
xU

n]j,0, [D2
yU

n]j,K+1 = −σ[D2
xU

n]j,K+1

and thus, the matrix representation of the second derivative over y will be

D2
y =

1

∆y2


− σ

∆x2D
2

I −2I I
. . .

. . .
. . .

I −2I I
− σ

∆x2D
2

 (4.12)

For the fourth derivative, we will have the same problem as in the x coordinate case; this is,

[D4
yU

n]j,0 =
Unj,−2 − 4Unj,−1 + 6Unj,0 − 4Unj,1 + Unj,2

∆y4

[D4
yU

n]j,K+1 =
Unj,K−1 − 4Unj,K + 6Unj,K+1 − 4Unj,K+2 + Unj,K+3

∆y4

To compute Unj,k when k = −2,−1,K + 2,K + 3, we need to combine the fourth derivative
discretization at the boundary with the one obtained from the second derivative discretization.
For k = 0, and approximating the boundary conditions using centered finite differences, we
get

−Unj,−2 + 2Unj,−1 − 2Unj,1 + Unj,2
2∆y3

+ (2− σ)
D2
xU

n
j,1 −D2

xU
n
j,−1

2∆y
= 0

Unj,−1 − 2Unj,0 + Unj,1
∆y2

+ σD2
xU

n
j,0 = 0

this leads to

Unj,−2 = 2Unj,−1 −∆y2(2− σ)D2
xU

n
j,−1 − 2Unj,1 + ∆y2(2− σ)D2

xU
n
j,1 + Unj,2

Unj,−1 = 2Unj,0 −∆yσD2
xU

n
j,0 − Unj,1

hence,

D4
yU

n
j,0 =

1

∆y4

(
2Unj,0 + 4∆y4(σ − 1)D2

xU
n
j,0 + ∆y4σ(2− σ)D4

xU
n
j,0 − 4Unj,1 + 2∆y2(2− σ)D2

xU
n
j,1 + 2Unj,2

)
D4
yU

n
j,1 =

1

∆y4

(
− 2Unj,0 −∆y2σD2

xU
n
j,0 + 5Unj,1 − 4Unj,2 + Unj,3

)
in a similar fashion, we get

D4
yU

n
j,K+1 =

1

∆y4

(
2Unj,K−1 − 4Unj,K + 2∆y2(2− σ)D2

xU
n
j,K + 2Unj,K+1

+ 4∆y2(σ − 1)D2
xU

n
j,K+1 + ∆y4σ(2− σ)D4

xU
n
j,K+1

)
D4
yU

n
j,K =

1

∆y4

(
Unj,K−2 − 4Unj,K−1 + 5Unj,K − 2Unj,K+1 −∆y2σD2

xU
n
j,K+1

)
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This gives the following matrix representation

D4
y =

1

∆y4



2I + 4σ1D
2 + σ3D

4 −4I + 2σ2D
2 2I

−2I −∆y2σD2 5I −4I I
I −4I 6I −4I I

. . .
. . .

. . .
. . .

. . .

I −4I 6I −4I I
I −4I 5I −2I −∆y2σD2

2I −4I + 2σ2D
2 2I + 4σ1D

2 + σ3D
4


(4.13)

where σ1 = ∆y4(σ − 1)/∆x2, σ2 = 2∆y2(2 − σ)/∆x2, and σ3 = ∆y4σ(2 − σ)/∆x4. The
bilaplacian matrix then will be a block pentadiagonal matrix of size J(K + 2) × J(K + 2),
where it is defined by the sum (4.10) using the modified matrices given by (4.11) for D4

x, (4.12)
forD2

y, and (4.13) for D4
y.

4.2.3 Integration over time.

Given the definition of the function ϕ(u) on Problem (4.1), the first order derivative will be
approximated using a centered finite different scheme, and the integral will be computed using
a Simpson rule for each value on the y coordinate. Meanwhile, the time derivative will be
approximated using a finite difference scheme, analog the one used in (4.7). Finally, we will
consider a Crank-Nicholson discretization for the bilaplacian; this is, we will approximate the

bilaplacian over time using ∆2
(
Un+1+Un

2

)
.

This lead us to the numerical scheme which we will use on this work: for Unj,k the numerical

solution of Problem (4.1) on (xj , yk, tn) with h(x, y, t) = 0, the solution at the timestep n+ 1
will be given by[(

I +
∆t2

2
(D4

x +D4
y + 2D2

xD
2
y)
)
Un+1

]
j,k

(4.14)

= 2Unj,k − Un−1
j,k −

∆t2

2
[(D4

x +D4
y + 2D2

xD
2
y)Un]j,k −∆t2

(
ϕ(Unj,k) + a(xj , yk)g

(Unj,k − Un−1
j,k

∆t

))
if a(x, y) = 0,∀(x, y) ∈ Ω, and P = S = 0, then this scheme can control numerical diffusion

of the energy if a sufficiently small value of ∆t is used. If g(s) = s, then a Newmark scheme
can be used to compute the numerical solution, which will preserve the energy for any value
given for ∆t < 1.

This scheme was implemented on a MATLAB script, where the linear equation system present in
(4.14) was solved using its default solver. When solving the static problem ∆2u(x, y) = f(x, y),
and using values of ∆x ≈ 0.02 and ∆y ≈ 0.015, the code can approximate the solution of the
problem with errors of magnitude 10−6 for the numerical L2 norm.
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4.2.4 Numerical experiments for a static problem.

As a way to test the numerical scheme, we will attempt to solve the following static problem:
∆2u(x, y) = f(x), in Ω,

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0, (y, t) ∈ (−l, l),
uyy(x,±`) + σuxx(x,±`) = 0, x ∈ (0, π)

uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0, x ∈ (0, π)

(4.15)

Solutions for this problem can be found in Ferrero and Gazzola ([FG15]), and are given by

u(x, y) =
+∞∑
m=1

[
βm
m4

+A cosh(my) +Bmy sinh(my)

]
sin(mx) (4.16)

where A and B are defined as follows

A =
σ

1− σ
βm
m4

(1 + σ) sinh(m`)− (1− σ)m` cosh(m`)

(3 + σ) sinh(m`) cosh(m`)− (1− σ)m`

B = σ
βm
m4

sinh(m`)

(3 + σ) sinh(m`) cosh(m`)− (1− σ)m`

and the βm coefficients come from the following Fourier series of the source function

f(x) =

+∞∑
m=1

βm sin(mx), βm =
2

π

∫ π

0
f(x) sin(mx)dx

Here, we will use different functions f(x) in order to compare the performance of the scheme.

Case 1: f(x) = 4H(π2 − x)− 5H(x− π
2 )

As a first attempt, we will use f(x) = 4H(π2 − x) − 5H(x − π
2 ). We have used ` = π

250 ,

∆x = π
500 , ∆y = 2`

50 , σ = 0.1. Figure 4.1 left shows the numerical solution, while Figure
4.1 right shows the difference obtained between the numerical and the exact solutions. Here,
||e||2 = 7.9707E − 4.

Case 2: f(x) = sech(x− π)

In this second experiment, we use f(x) = sech(x − π). For our computations, ` = π
200 ,

∆x = π
600 , ∆y = 2`

50 ≈ 8.377 ·10−4, σ = 0.3. Figure 4.2 left shows the numerical solution, while
Figure 4.2 right shows the difference obtained between the numerical and the exact solutions.
Here, ||e||2 = 3.6613E − 4.

Case 3: f(x) = sin(x− π
2 )

In this second experiment, we use f(x) = sin(x− π
2 ). We will use the same parameters as in

Case 2. The error obtained was ||e||2 = 1.1837E − 5. Results can be seen in Figure 4.3.
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Fig. 4.1: Left: numerical solution obtained for problem (4.15). Right: difference between the
exact and the numerical solution at each node.

Fig. 4.2: Left: numerical solution obtained for problem (4.15). Right: difference between the
exact and the numerical solution at each node.

Fig. 4.3: Left: numerical solution obtained for problem (4.15). Right: difference between the
exact and the numerical solution at each node.
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4.2.5 Numerical experiments for a conservative problem.

We will now attempt to solve the following problem



utt(x, y, t) + ∆2u(x, y, t) = 0, in Ω× (0, T ],

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0, (y, t) ∈ (−l, l),
uyy(x,±`) + σuxx(x,±`) = 0, x ∈ (0, π)

uyyy(x,±`) + (2− σ)uxxy(x,±`) = 0, x ∈ (0, π)

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y) in Ω.

(4.17)

where the initial condition will be given by (4.16) for f(x) = sin(2x). We will consider
t ∈ (0, T = 20], where ` = π

150 , h = 0, Ω = [0, π]×[−`, `], σ = 0.2, and u1(x, y) = 0, ∀(x, y) ∈ Ω.

For our simulation, ∆t = 10−5, ∆x = π
150 ≈ 0.021, and ∆y = 2`

50 ≈ 8.3775E − 4. Figure 4.4
shows the behavior in time of the numerical energy. The difference between its maximum and
minimum values is1 8.83627E − 3.
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Fig. 4.4: Time behavior of the numerical energy when using a(x, y) ≡ 0, ∀x ∈ Ω.

4.2.6 Numerical experiments with active damping.

For the following experiments, we will solve Problem (4.1) using h = 0, σ = 0.2, S = 10−5,
P = 10−3, l = π

150 , and u1 = 0. Function u0 will be given by the solution of the following
static problem 

∆2u(x, y) = 50 sin(2x), in Ω× (0,+∞),

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0, (y, t) ∈ (−l, l),
uyy(x,±l) + σuxx(x,±l) = 0, x ∈ (0, π)

uyyy(x,±l) + (2− σ)uxxy(x,±l) = 0, x ∈ (0, π)

(4.18)

1A much better choice could be a Newmark scheme, instead of classical Crank-Nicolson. If we repeat
this same experiment using that method, then the difference in energy will get values near 10−7. Sadly, the
method is effective only when the function g(s) is linear.
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The solution is given in [FG15], Theorem 3.2. It can also be computed using this same
numerical scheme. The function a(x, y) is defined as follows:

a(x, y) =

{
1, (x, y) ∈ (0, 5∆x) ∪ (π − 5∆x, π)× (−l,−l + 5∆y) ∪ (l − 5∆y, l)

0, otherwise.

where, on the numerical scheme, ∆x = π
150 ≈ 0.02, ∆y = l

50 ≈ 0.015, and ∆t = 0.01. We will
use three differents forms for the feedback function g(s); or three different cases:

• Case 1: g(s) =
√
|s|

• Case 2: g(s) = s

• Case 3: g(s) =

{
s2, if s ≥ 0

s3, if s < 0

Energy evolutions can be seen in Figure 4.5 in a semilogarithmic plot. The exponential decay,
while oscillating, is clearly visible; as expected from Theorem 4.1.4. Figure 4.6 shows the
numerical solutions at four different instants.
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Fig. 4.5: Energy evolution for all three forms of g(s).
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Fig. 4.6: Numerical solution when using g(s) = s at four different instants.
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